Electronic Colloquium on Computational Complexity, Report No. 18 (2002)

Approximating Huffman Codes in Parallel

Piotr Berman * Marek Karpinski f Yakov Nekrich *

Abstract

In this paper we present some new results on the approximate par-
allel construction of Huffman codes. Our algorithm achieves linear
work and logarithmic time, provided that the initial set of elements is
sorted. This is the first parallel algorithm for that problem with the
optimal time and work.

Combining our approach with the best known parallel sorting algo-
rithms we can construct an almost optimal Huffman tree with optimal
time and work. This also leads to the first parallel algorithm that
constructs exact Huffman codes with maximum codeword length H in
time O(H) and with n processors. This represents a useful improve-
ment since most practical situations satisfy H = O(logn).

1 Introduction

A Huffman code for an alphabet ay,as,...,a, with weights p1,ps, ..., pa
is a prefix code that minimizes the average codeword length, defined as
>y pil;. The problem of construction of Huffman codes is closely related
to the construction of Huffman trees (cf., e.g., [H51], [VL76]).

A problem of constructing a binary Huffman tree for a sequence w =
w1, Wa, . .., Wy, consists in constructing a binary tree 1" with leaves, corre-
sponding to the elements of the sequence, so that the weighted path length of

*Research done in part while visiting Dept. of Computer Science , University of Bonn.
Work partially supported by NSF grant CCR-9700053 and DFG grant Bo 56/157-1. Email
berman@cse.psu.edu.

tSupported in part by DFG grants, DIMACS, PROCOPE Project, and IST grant
14036 (RAND-APX). Email marek@cs.uni-bonn.de.

Work partially supported by IST grant 14036 (RAND-APX).
Email yasha@cs.uni-bonn.de.

ISSN 1433-8092

T is minimal. The weighted path length of T, wpl(T) is defined as follows:
wpl(T, @) =Y wil;
=1

where [; is a depth of the leave corresponding to the element w;,.

The classical sequential algorithm, described by Huffman ([H51]) can be
implemented in O(nlogn) time. Van Leeuwen has shown that if elements
are sorted according to their weight, a Huffman code can be constructed in
O(n) time (see [vL76]). However, no optimal parallel algorithm is known.
Teng [T87] has shown that construction of a Huffman code is in a class NC.
His algorithm, uses the parallel dynamic programming method of Miller
et al. [MRS85] and works in O(log®n) time on n® processors. Attalah et
al. have proposed an n? processor algorithm, working in O(log®n) time.
This algorithm is based on the multiplication of concave matrices. The
fastest n-processor algorithm is due to Larmore and Przytycka [[.P95]. Their
algorithm, based on reduction of Huffman tree construction problem to the
concave least weight subsequence problem runs in O(y/nlogn) time.

Kirkpatrick and Przytycka [KP96] introduce an approximate problem of
constructing, so called, almost optimal codes, i.e. the problem of finding
a tree 7" that is related to the Huffman tree 7" according to the formula
wpl(T'") < wpl(T) + n~" for a fixed error parameter k& (assuming > p; = 1).
We call =% an error factor. In practical situations the nearly optimal codes,
corresponding to nearly optimal trees, are as useful as the Huffman codes,
because compressing a file of polynomial size with an approximate Huffman
code leads to the compression losses limited only by a constant. Kirkpatrick
and Przytycka [KP96] propose several algorithms for that problem. In par-
ticular, they present an algorithm that works in O(klognlog™ n) time and
with n processors on a CREW PRAM and an O(k*logn) time algorithm
that works with n? processors on a CREW PRAM.

The problems considered in this paper were also partially motivated by
a work of one of the authors on decoding the Huffman codes [N0OOb], [N0Oa].

In this paper we improve the before mentioned results by presenting an
algorithm that works in O(klogn) time and with n processors. As we will
see in the next section the crucial step in computing a nearly optimal tree
is merging two sorted arrays and this operation is repeated O(log n*) times.
We have developed a method for performing such a merging in a constant
time.

We also further improve this result and design an algorithm that con-
structs almost-optimal codes in time O(logn) and with n/logn processors,

provided that elements are sorted. This results in an optimal speed-up of the
algorithm of van Leeuwen [v.76]. Our algorithm works deterministically on
a CREW PRAM and is the first parallel algorithm for that problem with the
optimal time and work. Combining that algorithm with parallel radix sort
algorithms we construct an optimal-work probabilistic algorithm that works
in expected logarithmic time. We construct also a deterministic algorithm
that works on a CRCW PRAM in O(klogn) time and with nloglogn/logn
Processors.

The above described approach also leads to an algorithm for constructing
exact Huffman trees that works in O(H) time and with n processors, for H
the height of Huffman tree. This is also an improvement of the algorithm of
Larmore and Przytycka for the case when H = o(y/nlogn). We observe that
in the most practical applications height of the Huffman tree is O(logn).

2 A Basic Construction Scheme

Our algorithm uses the following tree data structure. A single element is
a tree, and if #; and ty are two trees, then t = meld(tq,t2) is also a tree,
so that weight(t) = weight(t,) + weight(ty). Initial elements will be called
leaves.

In a classical Huffman algorithm the set of trees is initialized with the
set of weights. Then one melds consecutively two smallest elements in the
set of trees until only one tree is left. This tree can be proven to be optimal.

Kirkpatrick and Przytycka [KP96] presented a scheme for paralleliza-
tion of a Huffman algorithm. The set of element weights pi,pa,...,py is
partitioned into sorted arrays Wy, ..., W,,, such that elements of array W;
satisfy the condition 1/2* < p < 1/2'='. 1In this paper we view (sorted)
arrays as an abstract data type with the following operations: extracting of
subarray A[a,b], measuring the array length, /(A), and merging two sorted
arrays, merge(A, B). The result of operation merge(A, B) is a sorted array
C which consists of elements of A and B. If we use n processors, then each
entry of our sorted array has an associated processor.

Since in the Huffman algorithm lightest elements are processed first and
sum of any two elements in a class W, is less than sum of any two elements in
a class W;, 7 < i, elements of the same class can be melded in parallel before
the elements of classes with smaller indices are processed. The scheme for
the parallelization is shown on Figure 1. We refer the reader to [KP96] for
a more detailed description of this algorithm.

Because the total number of iterations of algorithm Oblivious-Huffman

Algorithm Oblivious-Huffman
for ¢ := m downto 1 do
it (W) =1)
Wi_1 := merge(W;, W;_1)
else
t := meld(W;[1], W;[2])
W; := merge(t, W;[3,(W,)])
a :=1(W;)
b:=|a/2]
for 2 :=1 to b pardo
10: Wili] == meld(W;[2i — 1], W;[21])
11: W, := merge(W;(1,b), Wi[2b+ 1, a])
12: Wi_1 = merge(W;_1, W;)

©OND>OEHWh 2

Figure 1: Huffman tree construction scheme

equals to the number of classes W, and the number of classes is linear in the
worst case, this approach does not lead to any improvements, if we want to
construct an exact Huffman tree.

Kirkpatrick and Przytycka [KP96] also describe an approximation algo-
rithm, based on Oblivious-Huffman. In this paper we convert Oblivious-

Huffman into an approximation algorithm in a different way. We replace
—k

new

each weight p; with pP® = [p;n®In=". Let T™* denote an optimal tree for

weights py, ..., pi. Since pP*¥ < p; + n~F,

YoPE <Y opili+ Y nTM <Y pili+ nPe

because all [; are smaller than n. Hence wpl(T™, ppew) < wpl(T,p)+n
Let T4 denote the (optimal) Huffman tree for weights p?**. Then

—k+2

wpl(T4,5) < wpl(Ta, 7"") < wpl(1*, ") < wpl(1*,5) + n~H+?

Therefore we can construct an optimal tree for weights p™®", than replace
—k+2

pre" with p; and the resulting tree will have an error of at most n

If we apply algorithm Oblivious-Huffman to the new set of weights,
then the number of iterations of this algorithm will be [k log, n], since new

elements will be divided into at most [k log, n] arrays. An additional benefit
is that we will use registers with polynomially bounded values. Note that
in [KP96] PRAM with an unbounded register capacity was used. That
advantage of our algorithm will be further exploited in section 4.

3 An O(klogn) Time Algorithm

In this section we describe an O(klogn) time n-processor algorithm that
works on CREW PRAM.

Algorithm Oblivious-Huffman performs k log n iterations and in each
iteration only the merge operations are difficult to implement in a constant
time. All other operations can be performed in a constant time. We will
use the following simple fact, described in [V75]:

Proposition 1 If array A has a constant number of elements and array B
has at most n elements, than arrays A and B can be merged in a constant
time and with n processors.

Proof: Let C' = merge(A, B). We assign a processor to every possible pair
Ali], B[j],i=1,...,cand B=1,...,n. If A[i] < B[j] < A[i + 1], then B[]
will be the ¢ 4 j-th element in array C. Also if B[j] < A[i] < B[j + 1], then
A[i] will be the i + j-th element in array C. O

Proposition 1 allows to implement operation merge(W;(1,b), W;[2b +
1,a]) (line 11 of Figure 1) in a constant time.

Operation merge(W;_1, W;) is the slowest one, because array W; can
have linear size and merging two arrays of size n requires log log n operations
in general case (see [V75]). In this paper we propose a method, that allows
us to perform every merge of Oblivious-Huffman in a constant time. The
key to our method is that at the time of merging, all elements in both
arrays know their predecessors in other array, and can thus compute their
positions in a resulting array in a constant time. A merging operation itself
is performed without comparisons. Comparisons will be used for the initial
computation of predecessors and to update predecessors after each merge
and meld operation.

We say that element e is of rank k, if e € Wj. A relative weight r(p) of
an element p of rank k is r(p) = p-2*. We will denote by r(i,c) a relative
weight of the ¢-th element in array W;, w[e] will denote the weight of element
e, and pos|e] will denote the position of an element e in its array W;, so that
Wi[pos[e]] = e. To make description more convenient we say that in every

array Wy Wi[0] = 0 and W[l (Wy)+1] = +oo At the beginning we construct

a list R of all elements, sorted according to their relative weight. We observe
that elements of the same class Wj, will appear in R in a non-decreasing order
of their weight. We assume that whenever e # €', r(e) # r(e’).Besides that,
if leaf e and tree t are of a rank k and ¢ is the result of melding two elements
ty and ty of rank k41, such that r(t1) > r(e) and r(t3) > r(e) (r(t1) < r(e)
and r(t2) < r(e)) then a weight of ¢ is bigger (smaller) than a weight of e.

We also compute for every leaf e and every class i the value of pred(e, i) =
Wilj], s.t. r(i,7) < r(e) < r(i,j 4+ 1). In other words, pred(e,i) is the
biggest element in class i, whose relative weight is smaller than or equal
than r(e). To find values of pred(e, j) for some j we compute an array C’
with elements corresponding to all leaves, such that C’[{] = 1 if R[i] € W;
and C'[i] = 0 otherwise and compute prefix sums for elements of C7. A
prefix sum for any class k& can be computed on an arithmetic circuit in
linear depth and logarithmic time (see [B97]). In our case we have to solve
d = O(logn) instances of prefix sum problems. Since the total work for
every single instance is linear we can pipeline all instances in such a way
that all problems are solved in O(d 4 logn) = O(logn) time and with n
processors. Thus we can iterate j = 1,..., klogn, and for each value of j
compute C7, and send its content to the prefix sum circuit.

We use an algorithm from Figure 2 to update values of pred(e, @) for all
e € Wi_y,...,W; and values of pred(e,t) foralle e W, and t=4i—1,...,1
after melding of elements from W; .

First we store the tentative new value of pred(e, i) foralle € W;_y, ..., W,
in array temp (lines 1-3 of Figure 2). The values stored in temp differ from
the correct values by at most 1.

Next we meld the elements and change the values of w[s] and pos[s] for
all s € W; (lines 4-8 of Figure 2).

Finally we check whether the values of pred(s,i) fors € Wy UW,U...U
W;_1 are the correct ones. In order to achieve this we compare the relative
weight of the tentative predecessor with the relative weight of s. If the
relative weight of s is smaller, pred(s, i) is assigned to the previous element
of W;. (lines 10-14 of Figure 2). In lines 15 and 16 we check whether the
predecessors of elements in W; have changed.

If a number of elements in W; is odd then the last element of W, must
be inserted into W; (line 11 of Figure 1). Using Statement 1 we can perform
this operation in a constant time. We can also correct values of pred(e, i) in
a constant time and with linear number of processors.

When the elements of W, are melded and predecessor values pred(e, i) are
recomputed pos[pred(W;[j], i —1)] equals to the number of elements in W,;_,
that are smaller than or equal to W;[j]. Analogically pos[pred(W;_1[j],1)]

1: for a < 1, b < [(W,) pardo

2: s 1= W,[b]

3: temp[s] := [pos[pred(s,i)]/2]
4: for ¢ < {(W;)/2 pardo

5: s := meld(W;[2¢ — 1], W;[2¢])
6: w(s] == w[W;[2¢c — 1]] + w[W;[2¢]]
7: pos[s] :=c

8: Wile] :=s

9: for a < 1, b < [(W,) pardo

10: s = W,[b]

11: ¢ :=templs]

12: if r(i,¢) > r(a,b)

13: ci=c—1

14: if r(a,b4+1) > r(i,c+1)
15: pred(Wilc+ 1],a) := s
16: pred(s, 1) := W;[c]

Figure 2: Melding operation

equals to the number of elements in W, that are smaller than or equal
to Wi_1[j]. Therefore indices of all elements in the merged array can be
computed in a constant time.

After melding of elements from W; every element of W,_i UW,_,U...U
W1 has two predecessors of rank i — 1. We can find the new predecessor
of element e by comparing pred(e,i) and pred(e,i — 1). The pseudocode
description of an operation merge(W;_1, W;) (line 12 of Figure 1) is shown
on Figure 3.

Since all operations of the algorithm Oblivious-Huffman can be im-
plemented to work in a constant time, each iteration takes only a constant
time. Therefore we have

Theorem 1 An almost optimal tree with error factor 1/n* can be con-
structed in O(klogn) time and with n processors on a CREW PRAM.

The algorithm described in the previous section can also be applied to

do simultaneously:

1: for j < I(W;_1) pardo for j < I(W;) pardo

2: t:=Wi1[j] t = Wilj]

3: k := pos[pred(t,1)] k := pos[pred(t,i — 1)]
4: pos[t] :==j+k pos[t] :=j+ k

5: Wilj+k]l:=t Wilj+ k] =t

6: for a < i, b <I(W,) pardo

7: s := W,[b]

8: if (w[pred(s,i—1)] > wlpred(s,i)])

9: pred(s,i) := pred(s,i— 1)

Figure 3: Operation merge(W;, W;_1)

the case of exact Huffman trees. The difference is that in case of exact
Huffman trees weights of elements are unbounded and number of classes
W; is O(n) in the worst case. However, it is easy to see that number of
classes W; does not exceed H + 2 where H is the height of the resulting
Huffman tree. We can sort elements and distribute them into classes in time
O(logn) with n processors. We can then compute values of pred for classes
H, H—-1,...,H — logn and perform first logn iterations of Oblivious-
Huffman in time O(logn). Then, we compute values of pred for the classes
H—logn,H—logn—1,..., H—2logn and perform the next log n iterations
of the basic algorithm. Proceeding in the same manner we can perform H
iterations in O(H) time.

4 An O(kn) Work Algorithm

In this section we describe a modification of the merging scheme, presented
in the previous section. The modified algorithm works on a CREW PRAM
in O(logn) time and with n/logn processors, provided that initial elements
are sorted.

The main idea of our modified algorithm is that we do not use all values
of pred(e, i) at each iteration. In fact, if we know values of pred(e,i — 1)
for all e € W; and values of pred(e, i) for all e € W;_; then merging can be
performed in a constant time. Therefore, we will use function pred instead

of pred such that the necessary information is available at each iteration,
but the total number of values in pred is limited by O(n). We are also able
to recompute values of pred in a constant time after each iteration.

For an array R we denote by sampler(R) a subarray of R that consists
of every 2*-th element of R. We define pred(e,i) for e € Wy, [> i (I < 1)
as the biggest element € in sample;—;—1(W;) (sample;—i—1(W;)), such that
r(é) < r(e). Besides that we maintain the values of pred(e,i) only for
e € sample;_;_y (W;). In other words for every 2!==1_th element of W, we
know its predecessor in W; with precision of up to 2!=* elements. Obviously
total number of values in pred is O(n).

Now we will show how pred can be recomputed after elements in a class
W; are melded. Number of pairs (e,) for which values pred(e,i) must be

computed is O(n), and we can assign one processor to every pair.

We denote by sibling(e) an element with which e will be melded in
Oblivious-Huffman. Consider an arbitrary pair (e,a), e € W;. First the
value pred(e,a) is known, but the value of pred(s,i), where s = sibling(e)
may be unknown. We can set a tentative new value of pred(e,,,a) where
em = meld(e, s) to pred(e, a).

Next we recompute the values of pred(s,i) for s € sample;_W; U
sample;—_oWo U ... U sampleyW;_1. Let e; = pred(s,1i), ea = sibling(e)
and e = meld(ey, e3). The correct new values of pred(s,i) can be computed
in a similar way as in section 3. If the relative weight of s is smaller than
that of e, pred(s,i) is assigned to the element preceding e. Otherwise, we
also compare the relative weight of s with the relative weight of the element
following e. If the first one is bigger we set pred(s, i) to the element follow-
ing e. We also can check whether the predecessors of elements in W, are
the correct ones at the same time. A pseudocode description of the parallel
meld operation is shown on Figure 4.

When elements from W; are melded the new elements will belong to
W;—1. Now we have to compute pred(e,a) in sample;_,_2(W,) for every
2i=2=2_th element of W,. Suppose pred(e,a) = W,[p-279"1]. We can
find the new “refined”value of pred(e,a) by comparing r(e) with r(W[p -
2¢=1=1 1 9=1=2]) When the correct values of pred(e, i) e € sample;_;_, (W)
are known we can compute pred(e, 1) for all e from sample;_,—2(W,). Let
e be a new element in sample;_,_o(W,) and let e, and e, be the next
and previous elements in sample;_,_2(W,). Obviously e, and e, are in

sample;_q_1(W,) and pred(e, i) is between pred(ep, i) and pred(e,,i). New
correct values of pred(e,i) can be found in a constant time.

w N

0 N O 01

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

for a < 1, b < l(sample;_,_1W,) pardo
5 1= W,[b- 207271
temp[s] := [pos[pred(s,i)]/2]

for ¢ < {(W;)/2 pardo
s := meld(W;[2¢ — 1], W;[2¢])
w[s][:]: w[W;[2¢ — 1]] + w[W;[2¢]]
pos[s] :=c¢

Wile] :==s

for a < i, b < l(sample;_,_1W,) pardo
d1 = 2—~!
d2 ;=272
s 1= W,[b- d1]
¢ := templs]
if r(i,c-d2) > r(a,b-dl)
ci=c—1
if r(a, (b+1)-d1) > r(7, (c
pred(Wil(c-+1) - d2),) :

else
if r(i, (c+1)-d2) < r(a,b-dl)
c:=c+1
if r(a,(b—1)-dl) < r(i,(c—1) d2)
pred(W;[(c — 1) -d1],a) := W,[(b— 1) - d2]
pred(s, 1) == W;[c- d2]

||ﬂL

1) d2)

Figure 4: A melding operation for the improved algorithm

Using the values of pred we can merge W;_; and the melded elements
from W; in a constant time in the same way as described in section 3.
A detailed description of the meld and merge operations for the modified

algorithm will be given in the full version of the paper.

Since all other operations can also be done in a constant time we can per-
form log n iterations of Oblivious-Huffman in a logarithmic time. There-
fore we get

Theorem 2 An almost optimal tree with error factor 1/n*

10

can be con-

structed in time O(klogn) and with n/logn processors, if elements are
sorted according to their weight.

We can combine the algorithm described above with algorithms for the
parallel bucket sort. Depending on the chosen computation model and as-
sumptions about the size of the machine word we can get slightly different
results. We will see that in this case optimal time-processor product can be
achieved under reasonable conditions.

Using a parallel bucket sort algorithm described in [H87] we can sort
polynomially bounded integers in O(lognloglogn) time and with n/logn
processors on a priority CRCW PRAM. Using the algorithm described by
Bhatt et al. [BDHT91] we can also sort polynomially bounded integers
in the same time and the processor bounds on arbitrary CRCW PRAM.
Combining these results with our modified algorithm we get

Proposition 2 An almost optimal tree with error 1/n* can be constructed
in O(klog nloglogn) time and with n/logn processors on a priority CRCW
PRAM or on an arbitrary CRCW PRAM.

Applying an algorithm of Hagerup [H87] we get the following result

Proposition 3 An almost optimal tree with error 1/n* can be constructed
for the set of n uniformly distributed random numbers with n/logn pro-
cessors in time O(klogn) and with probability 1/C~V"™ for any constant C

By using the results of Andersson, Hagerup, Nilsson and Raman [AHNR95],
n integers in the range 0..n* can be sorted in O(logn) time and with
nloglog n/logn processors on a unit-cost CRCW PRAM with machine word
length klogn. Finally [AHNR95] shows that n integers can be probabilis-
tically sorted in an expected time O(logn) and expected work O(n) on a

unit-cost EREW PRAM with word length O(log?** n).

Proposition 4 An almost optimal tree with error 1/n* can be constructed
with expected time O(logn) and expected work O(n) on a CREW PRAM

with word size log?™* n.

The last statement shows that a Huffman tree can be probabilistically
constructed on a CREW PRAM with polylogarithmic word length.

11

5 Conclusion

This paper describes the first optimal work approximate algorithms for con-
structing Huffman codes. The algorithms have polynomially bounded errors.
We also show that a parallel construction of an almost optimal code for n
elements is as fast as the best known deterministic and probabilistic meth-
ods for sorting n elements. In particular, we can deterministically construct
an almost optimal code in logarithmic time and with linear number of pro-
cessors on CREW PRAM or in O(logn) time and with nloglogn/logn
processors on CRCW PRAM. We can also probabilistically construct an
almost-optimal tree with linear expected work in logarithmic expected time
provided that the machine word size is log?t® n. This is the first optimal
work and the logarithmic time algorithm for that problem.

Our approach also leads to the improvement of the construction of Huff-
man trees for the case when H = o(y/nlogn), where H is the maximum
codeword length. This gives the first parallel algorithm that works in O(H)
time and with n processors. In practical applications H is usually of order
O(logn). The question of the existence of algorithms that deterministically
sort polynomially bounded integers with linear time-processor product and
achieve optimal speed-up remains widely open. It will be also interesting
to know, whether efficient construction of almost optimal trees is possible
without sorting initial elements.

Acknowledgments

We thank Larry Larmore for stimulating comments and discussions.

References

[AHNRY5] Andersson, A., Hagerup, T., Nilsson, S., Raman, R., Sorting
in Linear Time?, Proc. STOC: ACM Symposium on Theory of
Computing (1995).

[BDH191] Bhatt, P., Diks, K., Hagerup, T., Prasad, V., T.Radzik, Saxena,
S., Improved deterministic parallel integer sorting, Information
and Computation 94 (1991), pp. 29-47.

[B97] Blelloch, G., Prefiz Sums and Their Applications, Reif, J., ed,
Synthesis of Parallel Algorithms, pp. 35-60, 1997.

12

[H87]

[H51]

[KP96]

[LP95]

[MRS85]

[NOOa]

[NOOb]

[T87]

[V75]

[VL.76]

Hagerup, T., Toward optimal parallel bucket sorting, Information
and Computation 75 (1987), pp. 39-51.

Huffman, D. A., A method for construction of minimum redun-
dancy codes, Proc. IRE,40 (1951), pp. 1098-1101.

Kirkpatrick, D., Przytycka, T., Parallel Construction of Binary
Trees with Near Optimal Weighted Path Length, Algorithmica
(1996), pp. 172-192.

Larmore, L., Przytycka, T., Constructing Huffman trees in par-
allel, SIAM Journal on Computing 24(6) (1995), pp. 1163-1169.

Miller, G., Reif, J., Parallel tree contraction and its applica-
tions, Proc. 26th Symposium on Foundations of Computer Sci-
ence (1985), pp. 478-489.

Nekrich, Y., Buyte-oriented Decoding of Canonical Huffman
Codes, Proc. Proceedings of the IEEE International Symposium
on Information Theory 2000, (2000), p. 371.

Nekrich, Y., Decoding of Canonical Huffman Codes with Look-
Up Tables, Proc. Proceeding of the IEEE Data Compression
Conference 2000 (2000), p. 342.

Teng, S., The construction of Huffman equivalent prefiz code in

NC, ACM SIGACT 18 (1987), pp. 54-61.

Valiant, L., Parallelism in Comparison Problems, SIAM Journal
on Computing 4 (1975), pp. 348-355.

van Leeuwen, J., On the construction of Huffman trees, Proc.
3rd Int. Collogium on Automata, Languages and Programming

(1976), pp. 382-410.

13

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

