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Abstract

We study the proper learnability of axis parallel concept classes in the PAC learning
model and in the exact learning model with membership and equivalence queries. These
classes include union of boxes, DNF, decision trees and multivariate polynomials.

For the constant dimensional axis parallel concepts C' we show that the following
problems have the same time complexity

1. C'is a-properly exactly learnable (with hypotheses of size at most a times the
target size) from membership and equivalence queries.

2. C'is a-properly PAC learnable (without membership queries) under any product
distribution.

3. There is an a-approximation algorithm for the MINEQuIC' problem. (given a
g € C find a minimal size f € C that is equivalent to g).

In particular, C is a-properly learnable in polynomial time from membership and
equivalence queries if and only if C' is a-properly PAC learnable in polynomial time
under the product distribution if and only if MINEQUIC' has a polynomial time a-
approximation algorithm. Using this result we give the first proper learning algorithm
of decision trees over the constant dimensional domain and the first negative results in
proper learning from membership and equivalence queries for many classes.

For the non-constant dimensional axis parallel concepts we show that with the
equivalence oracle (1) = (3). We use this to show that (binary) decision trees are not
properly learnable in polynomial time (assuming P#£NP) and DNF is not s®-properly
learnable (¢ < 1) in polynomial time even with an NP-oracle (assuming 5 # PNT).
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1 Introduction

We study the proper learnability of axis parallel concept classes in the PAC-learning model
and in the exact learning model with membership and equivalence queries. A class N-P® of
axis parallel concepts is a class of boolean formulas ¢(T7,Ts, ..., T;) where ¢ is from a class
of boolean formulas ® (such as DNF, decision tree, etc.) and {T;} are boxes in N, where
N ={0,...,m — 1}, that satisfy a certain property P (such as disjointness, squares, etc.).
These classes include union of boxes, union of disjoint boxes, exclusive or of boxes, decision
tree partition, and for the boolean case N, they include DNF, decision trees, disjoint DNF
and multivariate polynomials.

The term a-proper learning refers to learning where the intermediate hypotheses used
by the learner (in the equivalence queries) and the final hypothesis have size (number of
boxes T;) at most o times the size of the target formula. A class is properly learnable if it is
1-learnable. The following table summarizes the results for the n-dimensional boolean case.

Upper for | Complexity | Source Lower | Condition | Source
DNF Nonproper 20(n'/) [KSO01] Proper P#£NP [PRY6]
Nonproper NP-oracle [BCGI6|
Proper Y. -oracle OPEN s-Proper | ¥2 £ PY" | [ours]
CDNF Nonproper poly(n) [B95]
Proper ¥ -oracle [HPRW96]
Proper poly(n) OPEN
Disj-DNF | Nonproper poly(n) [BCV96] Proper P#ANP OPEN
Proper ¥ -oracle OPEN
DT Nonproper poly(n) [B95] Proper P#NP [ours]
Proper ¥ -oracle OPEN
MP Nonproper poly(n) [BCV96] Proper P#£NP OPEN
Proper Zg—orac]e OPEN
MMP Proper poly(n) [SS93]

Hellerstein et al. [HPRW96] show that proper learnability of a class C' from membership
and equivalence queries is possible in a machine with unlimited computational power if and
only if C' has polynomial certificates. They also show that if C' has a polynomial certificate
then C' is properly learnable using an oracle for ¥4. They then give a polynomial size certifi-
cate for CDNF (a polynomial size DNF that has a polynomial size CNF). This implies that
CDNF is properly learnable using an oracle for ¥4. For DNF, decision trees (DT), Disjoint
DNF (DNF where the conjunction of every two terms is 0) and multivariate polynomials
(with nonmonotone terms (MP)) it is not known whether they have polynomial certificates.
Therefore it is not known if they are properly learnable. Pillaipakkamnatt and Raghavan
[PR96] show that if DNF is properly learnable then P=NP. On the other hand, Bshouty et
al. [BCG96] show that any circuit is (nonproperly) learnable with equivalence queries only
and the aid of NP-oracle. The best algorithm today for learning DNF runs in time 20(n/?)
[KSO1].

CDNF, Decision trees, disjoint DNF and multivariate polynomials are (nonproperly)
learnable in polynomial time from membership and equivalence queries [B95, BCV96, BBBKV00].
Multivariate polynomials with monotone terms (MMP) are properly learnable [SS93].



In this paper we use a new technique for finding negative results for learning from mem-
bership and equivalence queries (see Theorem 1). We use Theorem 1 and the result of
Zantema and Bodlaender [ZB00] to show that if a decision tree is properly learnable from
membership and equivalence queries then P=NP. We then use the result of Umans [U99]
and show that if DNF is s“-properly learnable with an NP-oracle, where s is the size of the
DNF, then X} = PNP. We show our results are still true even if the learner can use other
oracles such as Subset, Superset, Disjointness, etc. Therefore, if PZNP then decision trees
and DNF are not properly learnable from membership and equivalence queries (and all the
other oracles defined in subsection 2.3).

The following table summarizes our results for axis parallel classes over N for a constant
dimension n.

Positive results | Negative results
poly(logm) iff P=NP
Union of ¢ Boxes log t-Proper Proper
Disjoint Union Boxes | dim=2 Proper dim>2 Proper
Decision tree Proper
Xor of Boxes a-Proper OPEN

For axis parallel classes over a constant dimension we show that these classes have poly-
nomial certificates. Therefore by [HPRW96], they are properly learnable from membership
and equivalence queries using the X oracle. We further investigate the learnability of these
classes and show that an NP-oracle is sufficient for proper learnability. We also show that
the following problems have the same time complexity.

1. C is a-properly exactly learnable from membership and equivalence queries.

2. C is a-properly PAC learnable (without membership queries) under any product dis-
tribution.

3. There is an a-approximation algorithm for the MINEQuUIC' problem (given a g € C
find a minimal size f € C that is equivalent to g).

4. C is exactly learnable with a learning algorithm that uses all the queries (mmembership
and nonproper equivalence, subset, superset, etc.) and outputs a hypothesis that has
size at most a times the target size.

We start with some surprising results that follow from this. The first is (1)=-(2). It is
known that (proper) learnability from equivalence and membership queries implies (proper)
learnability in the PAC model with membership queries [A88]. Here we show that in the case
of finite dimensional space and for the product distribution we can change a weak learner
(that learns with membership queries) to a strong learner (that learns without membership
queries). Another surprising result that we show from this is: a decision tree over any
constant dimension is properly learnable from membership and equivalence queries. We also
show that decision tree is proper PAC-learnable under any distribution.

We also show that union of disjoint DNF in dimension 2 has a polynomial time proper
learning algorithm. On the other hand, union of boxes and disjoint union of boxes over
dimensions greater than 2 are properly learnable if and only if P=NP. Union of boxes is



log t-properly learnable where ¢ is the number of boxes and Xor of boxes is a-properly
learnable for some constant a.

All the results in the literature for the constant dimensional domain give nonproper
learning of the above classes in the exact learning model and there were no negative results
for proper learning of these classes from membership and equivalence queries.

In [CM94] Chen and Maass give a proper exact learning of one box from equivalence
queries. Beimel and Kushilevitz [BK98] show that N-Disjoint DNF is (nonproperly) learn-
able from membership and equivalence queries. This result is also true for the nonconstant
dimensional domain. The output hypothesis is represented as a N’-Multiplicity Automa-
ton." Since N-Multiplicity Automaton contains the class of N”-Multivariate Polynomi-
als [BBBKV00], the class of N’-Multivariate Polynomials is (nonproperly) learnable in
polynomial time from membership and equivalence queries. In [BGGM99] Bshouty et al.
give an O(dlogt)-proper learning algorithm that learns a union of ¢ boxes in d-dimensional
space. The algorithm in this paper is log t-proper.

There are many algorithms in the literature that learn the union of boxes in the constant
dimensional space [CH96, MW98] (and even any combination of thresholds in the constant
dimensional space from equivalence queries only [BBK97, B98]). All of these algorithms are
nonproper and return hypotheses that have large size.

2 Preliminaries

2.1 Learning Models

The learning criteria we consider are exact learning and PAC-learning.

In the exact learning model there is a function f called the target function f : N — {0,1}
(where NV, = {0,1,...,m —1}), which has a formula representation in a class C' of formulas
defined over the variable set V,, = {x1,...,2,}. The goal of the learning algorithm is to halt
and output a formula h € C that is equivalent to f.

The learning algorithm performs a membership query by supplying an assignment a to
the variables in V,, as input to a membership oracle and receives in return the value of f(a).
For our algorithms we will regard this oracle as a procedure MQ¢(). The procedure’s input
is an assignment a and its output is MQs(a) = f(a).

The learning algorithm performs an equivalence query by supplying a formula A € C as
input to an equivalence oracle with the oracle returning either “YES”, signifying that A is
equivalent to f, or a counterezample, which is an assignment b such that h(b) # f(b). For
our algorithms we will regard this oracle as a procedure EQ(h).

We say that a class C' of boolean functions is a-properly exactly learnable from member-
ship and equivalence queries in polynomial time if there is an algorithm that for any f € C'
over V,, the algorithm runs in polynomial time, asks a polynomial number (polynomial in
n, logm and in the size of the target function) of membership and equivalence queries with
hypothesis h € C of size at most a times the size of the target, and outputs a hypothesis

'One can also define N -Multiplicity Automaton. Using the algorithm from that paper, N -Multiplicity
Automaton is properly learnable from membership and equivalence queries.



h € C that is equivalent to f. The size of h is at most « times the size of the target. We
say that C is properly exactly learnable if it is 1-properly exactly learnable.

The PAC learning model is as follows. There is a distribution D defined over the domain
N™. The goal of the learning algorithm is to halt and output a formula % that is e-close to
f with respect to the distribution D, that is,

l:J’Jr[f(x) =h(z)]>1-c

We say that A is an e-approximation of f with respect to the distribution D. In the PAC or
example query model, the learning algorithm asks for an example from the example oracle,
and receives an example (a, f(a)) where a is chosen from N according to the distribution
D.

We say that a class of boolean functions C' is a-properly PAC learnable under the distri-
bution D in polynomial time if there is an algorithm A, such that for any f € C over V,
and any ¢ and 4, algorithm A runs in polynomial time, asks a polynomial number of queries
(polynomial in n, logm, 1/¢, 1/§ and the size of the target function) and with probability
at least 1 — 0 outputs a hypothesis A € ' that is an e-approximation of f with respect to
the distribution D. The size of h is at most a times the size of f. It is known from [A88]
that if a class C' is a-properly exactly learnable in polynomial time from equivalence queries
(and membership queries) then it is a-properly PAC learnable (with membership queries)
in polynomial time under any distribution D.

We say that a distribution D is a product distribution over N7 if

D(,Tl, . ,xn) = Dl(;cl)Dg(xg) e Dn(;cn)

where each D; is a distribution over N,,.

2.2 Axis Parallel Concept Classes

A boolean function over N is a function f : N — {0,1}. The elements of N are called
assignments. We will consider the set of variables V,, = {zy,...,x,} where z; will describe
the value of the i-projection of the assignment in the domain N of f. For an assignment
a, the i-th entry of a will be denoted by a;.

An N -literal is a function [z; > a] or [z; < a] where i < n and a € N,, U {m}. Here
[#; > a] = 1 if 2; > a and 0 otherwise. An N -monotone literal is [z; > a]. An N -term
is a product (conjunction) of literals. An N -monotone term is a product (conjunction)
of monotone literals. An N”-DNF is a disjunction of terms. An N”-Monoltone DNF is a
disjunction of monotone terms. An N -multivariate polynomial is a sum of terms (mod 2).
An N”-disjoint DNF'is an N"-DNF where the conjunction of every two terms is 0.

For example, when n = 3, T' = [21 > 2] A [#1 < 5] A [x2 > 9] is an N}-term and can be
written as

T:[2§I1<5]/\[9§$2<11]/\[0§$3<11].

Therefore, every term N”-term can be written as

T; = /\ la;r < @ < bygl,

k=1



where a; g, bix € Ny U{m}.

Notice that if we take an N"-term T and replace all rn with some m’ > m then we get an
N7 -term T'. Therefore we will sometimes ignore m and talk about N"-terms where each
m is replaced by co. For an N"-term T we write T* for the corresponding N"-term. For
the above example the corresponding N™-term is

T =12<2 <5|A[9< 2 <] A0 < 25 < 0.

An N -decision tree (N72-DT) over V,, is a binary tree whose nodes are labeled with
N literals and whose leaves are labeled with constants from {0,1}. each decision tree T
represents a function fr : N2 — {0,1}. To compute fr(a) we start from the root of the
tree T if the root is labeled with the literal / and [(a) = 1, then fr(a) = fr,(a) where Tg
is the right subtree of the root (i.e., the subtree of the right child of the root with all its
descendents). Otherwise, fr(a) = fr,(a) where T}, is the left subtree of the root. If T' is a
leaf then fr(a) is the label of this leaf.

Sometimes we write N,,-DNF when we do not want to specify the dimension. A DNF
(multivariate polynomial, decision tree) is an Np-DNF (respectively, Ny-multivariate poly-
nomial, NVy-decision tree).

In general, for every set of boolean functions @ (e.g., exclusive or, or, etc.) and prop-
erty function Py : (N"-term)’ — {0,1} that is computable in polynomial time, (e.g.,
PuTy,...,Ty) = 1if Ty, ..., Ty are pairwise disjoint) we can build a concept over N as
follows. We define the concept class PO[N2] (or N2-P®) to be the set of all ¢(T1,...,T;)
where ¢ € ® and {T;} are N-terms with Py(7T7°,...,T7°) = 1. The property P is always

computable in polynomial time and independent of m and therefore can be defined for N"-

terms for any m. We will sometime ignore the superscript oo and just write Py(T4,...,T}).
These classes are called azis-parallel concept classes. When Py = 1 then we write ®[N] (or
NT-B).

For example, let ® = {zy, 21V 29,21 V22 V 3, }. Let Py(Th,...,T¢) =1 if and only if
T;ANT; =0 for every 1 <i < j <t. Then P®[N7] is the set of disjoint DNF and PP®[N?] is
the set of union of disjoint rectangles in the two dimensional space.

For an f € P®[N] we define sizepe(f) to be the minimal number of N -terms Ty, ..., T,
with property P; (that is, Py(T7°,...,T°) = 1) such that there is an h € ® where [ =
h(Ty,...,T;). For a decision tree f the size will be the minimal number of non-leaf nodes in
an N"-decision tree that is equivalent to f.

A monotone projection from N,/ to N,, is a function M : N, U {m'} — N, U {m}
such that for every i,j € N, where i < j we have M(i) < M(j) and M(m') = m. A
monotone projection M : (N, U {m'})" — (N, U{m})" is M = (M,,..., M,) where each
M; : N U{m'} — N,, U{m} is a monotone projection. We say that C' = P®[N "] is closed
under monotone projection if for any monotone projection M whenever P(Ty,...,T}) =
1 we also have P(T'M,...,T,M) = 1. Notice that if f = ¢(T,...,T;) € ®[N]] then
M =o(TWM, ..., TiM) € B[N"]. When the class C' = PP®[N"] is closed under monotone
projection then fM € POIN")].

For a monotone projection M define the dual monotone projection M* where M*(y) is
the minimal z such that M(z) > y. Since M(m') = m, the dual monotone projection is well



defined. For a monotone projection M = (My,..., M,) we define M* = (M7,..., M}). We

now show
Lemma 1 If

T = /\ [ai, < @ < byl
k=1

then .
TM = /\azk<Mk$k <b2k /\ azk <$A<M<b )]
k=1 k=1
and therefore T M is again an N™-term.

Proof. We first show the following two properties of monotone projection.
1. If M is monotone then M* is monotone.
2. 2 > M*M(z).

To prove (1), let y; < y2 and M*(y1) = 1 and M*(y2) = 2. Then z3 is the minimal integer
such that M(z2) > ya. Since M(x3) > y2 > y1, the minimal z; such that M(z;) > y; must
be less than or equal to x3. Therefore,

M*(y1) = z1 < 2y = M*(y,).

To prove (2) let M*(M(z)) = z. Then z is the minimal integer such that M(z) > M(z).
Then M(z) = M(z) and since z is minimal M*(M(z)) = z < .

Now we are ready to prove the result. It is enough to show that
M(z) <y ifand only if = < M*(y).

Suppose M(z) < y. Let z = M*(y). Then z is the minimal integer such that M(z) > y.
Now M(z) >y > M(x) and therefore M*(y) = z > «.
If M(z) > y then by properties (1) and (2) we have x > M*M(z) > M*(y).O

Now the proof of the following Lemma is straightforward.

Lemma 2 If C,, = PO[N?"] is closed under monotone projection and f € C,,, then fM €
Cpi for any monotone projection M : N, — N . Also,

sizepp(fM) < sizepa(f).

In a similar way one can define the class P®[N,,, X -+ x N, ]. In that case a monotone
projection is M = (M, ..., M,) where M; : N,y — Ny, and for f € PO[N,, X - x N, |
fM e PON, x - x Ny ]. All the results of this paper are also true for that class.
Constructiveness Assumption: We assume that there is an algorithm “Construct” such
that for any function v : N, x -+ x N, — {0,1} that is computable in polynomial time,
Construct(¢) runs in time poly([] m;) and returns some formula f € PO®[N,,, x -+ x N, ]
that is equivalent to o, if there exist such a formula, and returns “error” otherwise. Such
algorithms exist (and are in fact very trivial) for all the classes presented in this paper.

7



2.3 Oracles

The other oracles we will consider in this paper are the following, as defined in [A88].

e Subset oracle. Subs(h) for h € C. This oracle returns ‘YES’ if A = f and returns a
counterexample a such that h(a) =1 and f(a) = 0 otherwise.

e Superset oracle. Sup(h) for h € C'. This oracle returns ‘YES’ if b <= f and returns
a counterexample a such that h(a) = 0 and f(a) = 1 otherwise.

e Disjointness oracle. Disj¢(h) for h € C'. This oracle returns ‘YES’ if A A f = 0 and

returns a counterexample a such that h(a) =1 and f(a) = 1 otherwise.

e Exhaustiveness oracle. Fxzh¢(h) for h € C. This oracle returns ‘YES* if AV f =1

and returns a counterexample a such that h(a) = 0 and f(a) = 0 otherwise.

Given a set of oracles O, we say that O is easy (resp. NP-easy) for C' if every oracle in
O can be simulated in polynomial time for C' (resp. simulated using an NP-oracle).

Lemma 3 Let ® be a set of boolean functions. For a constant dimension d, membership
and equivalence oracles and all the above oracles (subsel, superset, etc.) are easy for ®[N2].

Proof. Let R¢(h) be an oracle asked for the target f. We take all the literals [z;Qa] for
Q € {>,<} in the terms of the target f and of the function & in the oracle. Let A be the
set of all the a’s in those terms and the two constants 0 and m. Suppose A = {0 < a; <
az < --- < a; <m}. Notice that ¢ < 2d(sy, + s¢) where s; and sy are the number of terms in
h and f, respectively. It is easy to see that the functions A and f are constant functions 0
or 1 in each subdomain [a;,, @;,+1) X - -+ X [a;,, a;,41). We check the oracle Ry for every such
subdomain. The number of subdomains is (¢4 1)? which is polynomial for any constant d.0

2.4 Lattice Projection

In this section we will give the definition of the lattice projection of functions and prove some
claims. This will be one of the main tools used in this paper. Since this technique is used
for constant dimension we will use d for the dimension n.

A lattice in N2 is [ = Ly x --+ x Lg where L; C N,,. Let f = ¢(Th,...,Ti) € ®[NZ]
where ¢ € ¢ and

d
T; = /\ [ai,k <ap < bi,k]-
k=1

Let L = Ly x --- x Lg be a lattice in ./\/7% For a,b € N,, define
\_CLJL'; =max{zr € L; | + <a}U{0}, [b]Li =min{z € L; | « > b} U {m}.

For an assignment v € N,i we define |v|r, = (|v1]rys..., [va]r,). Define



T = N\ [Taigln, < wx < [big]r,]

k=1
and fl=¢(Tl, -, TF). We call f* the laltice projection of f on L.

Lemma 4 For every u we have
Fi(u) = f(luz) = 4 (Lu]z).

Proof. Notice that the lattice projection is a monotone projection with M;(z;) = [z;]|r,. Tt

is also easy to see that M7 (x;) = [z;]. Let M = (M, M;,..., M;). Then M(z) = \_;ij is
a monotone projection and M*(z) = [z]r. We also have MM = M. Therefore,

FH(lulz) = IM(Mu) = [(MMu) = [(Mu) = [*(u) = [(Mu) = [(lu]r).0

Lemma 5 Let PO[N2] be closed under monotone projection. For any function f € POIN]
and lattice I we have ¥ € PO[N?].

Proof. Since M(z) = |z], is a monotone projection and P®[N2] is closed under monotone
projection, the result follows.O

Lemma 6 Let f = ¢(Th,....T;) where ¢ € ® and T; = /\Z=1 [a;x < @ < byg]. If for every
© and k we have a;, b, € Ly then fl=r.

Proof. If Ak, b@k € L2 then [aﬁkka = Uik, [bi,k-‘Lk = b“c, Tﬁ-L = T2 and fL = qD(TlL, e ,TtL) =
o(Ty,...,T;) = f.0

2.5 Polynomial Certificates

Following the definition of [HPRWY6], the class C' = P®[N"] has polynomial certificates if
for every f € C of size ¢ there are ¢ = poly(t,n) assignments A = {a{, ceey a(’;} such that for
every g € C of size less than t, g is not consistent with f on A. That is, g(a) # f(a) for
some a € A.

Lemma 7 Let d be constant. If C' = POIN?] is closed under monotone projection then il
has polynomial certificates.

Proof. Let f = ¢(T4,...,T;) where ¢ € ® and T; = /\,fi:1 [aip < @ < bigl. Let L =
{aip,bir|1=1,...,t}and L = Ly x --- x Lq. Notice that |L| < (Qt)d = poly(t) for constant
d. We now show that if g € PO®[N?] is consistent with f on L then sizeps(g) > t.

Since g is consistent with f on L, by Lemmas 4 and 6 we have g"(z) = g(|z]|1) =
f(lz]z) = f“(z) = f(z). By Lemma 5 we have g* € P®[NZ]. Therefore, by Lemma 2
sizepa(g) > sizepa(gh) = sizepo(f).0

It follows from [HPRWY6] that if C' = P®[N?] is closed under monotone projection then
C is learnable from membership and equivalence queries using an oracle for . Tn this paper
we will show that an NP oracle is sufficient.



2.6 Approximation algorithms

We assume the reader is familiar with approximation algorithms, a-approximation and some
of the basic concepts in approximation theory and complexity theory. For a problem in which
we seek to minimize the size of a formula equivalent to a function f, an a-approximation
algorithm (for a > 1) returns a formula A = f that has size at most a times the size of the
smallest formula equivalent to f. Given a class C' = P®[N"], we define the optimization
problem Minimal Equivalent Formula (MINEQUI (') to be the following problem:
MINEQuUIC

Given a formula f € C = PO[N]].

Find a minimal size h € C that is equivalent to f.

We expect the algorithm to run in time polynomial in n and the size of f. In some cases
the function is given as an n-dimensional my X mg X - - - X m,, matrix and the time is expected
to be polynomial in [ m;. We call this the unary representation of the input. The problem
is defined as follows.

MINEQUI Cyy
Given an my X -+ X m, matriz A representing a formula in C = PO[N,,, x -+ x N ]
Find a minimal size h € C thatl represents A.

A generalization of this problem is the MINEQUI* Cy problem. In this problem the
input is given in its unary representation. The matrix may contain % entries which denote
unspecified values.

MINEQUT* C
Given an my X -+ X m, matriz A with entries 0,1 and x, representing a function in C' =
PON,,, x - x Ny ]

Find a minimal size h € C' that is equivalent to f on the specified values.

Another problem that is related to the latter problem is the minimal size consistency

problem.

MINEQuI* C

Given a set S = {(ay, f(ar)), -+, (as, f(as))} where f € C = PO[N2].

Find a minimal size h € C that is consistent with S. That is, h(a;) = f(a;) for all 1.

Some of these problems appear in the literature. For example, MINEQUINZ-DNFy; is
the task of covering orthogonal polygons by rectangles. MINEQUIN?2-Disj-DNF,; is the
problem of partitioning orthogonal polygons into rectangles.

It turns out that MINEQUIC' and MINEQUICy are equivalent for the constant dimen-
sional domain.

Lemma 8 Let C = PO[N?] for a constant d, be closed under monotone projection. Then

1. MINEQUIC' has a polynomial time a-approzimation algorithm if and only if MINEQUI Cyy
has a polynomial time a-approximation algorithm.

2. MINEQUT* C has a polynomial time a-approzimalion algorithm if and only if MINEQUT* Cyy
has a polynomial time a-approximation algorithm.

Proof. We prove (1). The proof of (2) is similar. Let A be a polynomial time a-
approximation algorithm for MINEQuUICy. Let f € C be represented as ¢(75,...,Ty)

10



where q; € ¢ and TZ = /\Zzl[a@k <z < b;x]. We build an approximation algorithm
B for MINEQuI*C. Let Ly = {aig,bix | 1 = 1,...,t',k = 1,...,d} and suppose L; =
{¢1hy-- s Cmp ik} where ¢1 < c24 < -+ < €y k- Algorithm B defines L = Ly x -+ x L.
By Lemma 6 and 4 we have fl(z) = f(z) = f(|z]z). Let A be my x -+ X my ma-
trix where Aliy,...,14] = f(ei 1, ,¢iya). This matrix represents the function fM where
M(ir, ..., 14) = (¢ia, - ,¢i,a). Notice that the size of this matrix is at most [[m; < (2¢/)?
which is polynomial for a constant d. Define the inverse function M™"' : L — N, X+ x N,
where M~ (¢; a1, ,¢iya) = (i1,...,0q) and let M~(z) = M~'(|z]r). Notice that M~
is a monotone projection. Since (' is closed under monotone projection we have fM €
PONy, X -+ x Ny, Algorithm B runs algorithm A on fM to find ¢ € ® and T1,..., T}
such that

PuTy,...,Ty) =1, M =¢(Ty,...,T}) and t < a-sizepe(fM).

Consider the function

g = ¢(T1M_, . .,TtM_>.

Since (' is closed under monotone projection and M~ is a monotone projection we have

P(TyM~, ..., TyM™) = 1. Therefore, g € P®[N2]. We also have by Lemma 2,
sizepo(g) <t < asizepe(fM) < a-sizepo(f).
Finally, we have

g(z) = J(TIM™, ..., TTMT) = (fM)(M () = (fMYM T ([2]1)) = f(L=]L) = f(=).

The algorithm returns g = ¢(T/M~, ..., TyM™).
For the other direction, suppose that we have an algorithm for MINEQuIC. Given
an my X --- X mg matrix A, by the constructiveness assumption we can build a formula

[ € POIN,,, x---x N, ] that represents A in time poly([] m;) and then using the algorithm
for MINEQUIC' we get the desired representation.O

3 Approximation Algorithms and Learning
In this section we show the connection between approximation and learning.

Theorem 9 [IfC is a-properly exactly learnable from a set O of oracles and O is easy (resp.,
NP-casy) for C then MINEQUIC' has an a-approzimation algorithm (resp., with the aid of
an NP-oracle).

Proof. Let A be a learning algorithm that uses the oracles in O to learn a hypothesis of size
less than o times the size of the target. Since O is easy for (', all the oracles in O can be
simulated in polynomial time for C'. So we can run algorithm A and simulate all the oracles
in polynomial time. Since the learning is a-proper, the output hypothesis has size less than
a times the size of the target.O

The next Theorem follows from Lemma 8 and the Consistence Theorem [PV8S].
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Theorem 10 Let C = PO[NZ] for a constant d be closed under monotone projection. The
following three problems have the same time complexity.

1. C s a-properly PAC-learnable.
2. There is an a-approximation algorithm for MINEQUI* C.

3. There is an a-approximation algorithm for NMiNEQuI* Cy.

Theorem 11 Let C = PO[NZ] for a constant d be closed under monotone projection. The
following problems have the same ltime complexity.

1. C is a-properly exactly learnable from membership and equivalence queries.

2. Cis a-properly PAC learnable (without membership queries) under any product distri-
bution.

3. There is an a-approximation algorithm for the MINEQUIC' problem.

Proof. We first show (1) = (3). By Theorem 9 and since by Lemma 3 the oracles are easy,
we have (1) = (3). Now we show (3) = (1). Let A be an a-approximation algorithm for
MINEQUIC. Let f = ¢(Ti,...,T;) be the target function where ¢ € ®, f € PON?] and

d
T; = /\ (i < @k < big).
k=1

The learning algorithm works as follows. At each stage it holds d sets Lq,..., L, where
Li CH{aig,big|t=1,...,t} U{0}. Ly is initially {0}. The elements of L are sorted in an
increasing order:

Ly = {6171.C <Cp< < Cik,k}-

The learning algorithm then builds the function f¥. It saves a table A of size HZ:1(ik +1)

where A[j1,...,74] = f(¢ji15- -+ ¢jpa). This can be done using the membership oracle. Now,
J* can be defined using this table by fL(u) = f(|u].) = A[j, ..., ja] where |u;|1, = ¢;, for
i =1,...,d. Since fI' € PO[NZ] (the class is closed under monotone projection), we can

use algorithm A and construct a formula A that is equivalent to f* and has size at most «a
times the size of fL. Since the size of f¥ is at most the size of f, the size of h is at most «a
times the size of f.

After we construct h = f*(x), we ask the equivalence query EQ(h(z)). Let v be the
counterexample. That is, f“(v) = h(v) # f(v). Then by Lemma 4 f(|v]z) = f*(|v]1) =
f“(v) # f(v). Intuitively, since f(|v]|z) # f(v), the straight line that connects the two
points v and |[v], hits the “boundary” of f. Now we give an algorithm to find a point close
to this boundary and using this point we will add a new point to the lattice L that is equal
to one new a;; or b; ;.
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The algorithm works as follows. It first finds the smallest value k (or some k using binary
search) such that

f(UhJLl, SRR ka—lek_l,Uk,UkH, .- -,Ud) 74 f(LUﬂLl, SRR ka—de_l, LUkJLk,UkH, s avd>-

Such a k exists since f(|v]r) # f(v). Then (again with a binary search) the algorithm finds
an integer ¢ such that |vg]z, < ¢ < g where

f(\_rUIJLU RIS ka—lek_lac - 17 Uk41y---» Ud) ?é f(\_rUIJLU ey \_Uk—lJLk_laca Uk41y- - - 7Ud>-
Now we prove the following.

Claim 1 We have ¢ € {a;,bi s} for some i, and ¢ & L.

Proof of Claim 1. Let 6(zx) = f((vi]rys--- [Vk=1]0p_,s Tk, Vkt1,...,vq). Here v; are
constant so the function 6 is a function on one variable z4. So 8(xy) = @'(Tl, cee Tm) where

each TZ is either 0, 1 or [a;; < @ < byg]. Since 6(c — 1) # 6(c) we must have some i where
either a;; < cand a;p > c—1,0r ¢ —1 < b and ¢ > b; . In the first case ¢ = a; and in
the second case ¢ = b; . Thus ¢ € {a;x, bix}.

Now notice that [vk]p, # vk and |vg |1, < ¢ < vg. Therefore, ¢ was not in L. O

We add ¢ to Ly and update the table by adding all the missing values f(v) where v €
Ly x --- x Lg. We now show that this algorithm runs in polynomial time. Notice that the
number of equivalence queries is at most

d
Y Haigbie | i=1,.... 3 U{0} < (2t +1)d,
k=1

and the number of membership queries is at most the size of the table which is (2¢ +1)? plus
the number of membership queries needed for the binary search. We do one binary search
for each equivalence query. Therefore the algorithm uses at most (2¢ + 1)d + (2t +1)d* logm
membership queries.

We now give the proof that (2) is equivalent to (3).

To prove (2) = (3), suppose C' is a-properly PAC-learnable under any product distribu-
tion. We show that (3) is true for MINEQUICy. Then by Lemma 8 the result follows. Let A
be an my X - -+ X my matrix, an instance for MINEQUI Cy. Define the product distribution
D(iy, ... 1q4) = 1/(Hj=1 m;) (uniform over NV,,, X -+ x N,,,). We now run algorithm A with
error € = 1/(2 H;lzl m;). The hypothesis we get is consistent with A with probability at least
1 — ¢ and has size at most « times the target size.

To prove (3) = (2), let A be an a-approximation algorithm for MINEQUIC. Let
r(1/e,1/8) be the number of examples needed to learn €', assuming we have unlimited
computational power. This r is polynomial and can be upper bounded by the VCdimension
Theorem [BEHWS8Y]. Let B be a polynomial time (nonproper) PAC-learning algorithm for
C under any distribution D. Such an algorithm exists. See for example [B98]. The idea
of the proof is very simple. Since we cannot use membership queries, we learn a nonproper
hypothesis h that is close to the target function f and then use h for membership queries.
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We do that by first running B to nonproperly learn the target function with a small error.
Algorithm B will output some hypothesis h. Then we use the hypothesis h to simulate
membership queries of f. We show that when the distribution is the product distribution
then with high probability h simulates membership queries of f.

We define the following algorithm to learn f.

Proper_Learning

1. Run B with ¢ = 1/(8r%) where r = r(1/¢,8) and § = 1/8. Let h be the output
hypothesis.

2. Get r =r(1/e, 8) examples ( M FMy), o (20 f(20)),
DeﬁneL—{JLJ|]—1 Srytand L =1 x - x L.
Define the my x- - -1, matrix A, where m; = |L;|, and Afiy, ..., 14 = }AL(.TCEH), el :cglzd)).
Run Aon A and let h: N, X -+ x Nz, — {0,1} be the output.
Define g = hM* where M*(z) = M~'(|z]), and A/l_l(,rgzl), o ,xgd)) = (41, .,%4).
Output (g)

In algorithm Proper_Learning, step 1 learns some function . Steps 2-3 take examples
and build a lattice L. Since we do not have membership queries to find the value of the target
on this lattice we use instead / to find the values. Steps 4-6 build a consistent hypothesis.

o Pk W

We now show that with probability 7/8 all of the membership queries that are simulated
by h give a correct answer. Notice that since the distribution is the product distribution,

(i) (ia)

xy ', .., xy" are chosen independently. Therefore,

Pr[h(a{™, ... al?) £ ™, 2l <

and

Pr[3z e L : h(z)# f(z)] < é|L

Since the learning algorithms B and A also have failure probability at most 1/8, algorithm
Proper_Learning succeeds with probability at least 1 —(3/8) > 1/2. We can run the above
algorithm many times to achieve success 1 — §. This completes the proof of Theorem 11.0

Corollary 12 Let C = PO[N?] for a constant d be closed under monotone projection. Then
C' is properly learnable from membership and equivalence queries using an oracle for NP.

Proof. Since MINEQUI Cfr can be solved in polynomial time using an NP-oracle, by Theorem
11, C is properly learnable from membership and equivalence queries using an oracle for NP.O

Let C' = P®[NZ] for a constant d be closed under monotone projection. Consider these
problems:

1. (' is exactly learnable with a learning algorithm that uses oracles that are easy for C,
and outputs a hypothesis of size at most « times the target size.

2. (' is exactly learnable with a learning algorithm that uses equivalence queries only.
The hypotheses may not be of small size but the output hypothesis has size at most «
times the target size.
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Since all the oracles for €' = PO[N?] are easy, both problems give an a-approximation

algorithm for MINEQu1C'. Therefore they are equivalent to the problems in Theorem 11.
This shows that a negative result for the a-approximation of MINEQuI1 C will give a neg-

ative result for the a-proper learnability of C' from all of the oracles mentioned in section 2.3.

4 Positive and Negative results for Proper Learning

In this section we will prove positive and negative results for the a-proper learning of different
axis parallel classes.

4.1 Decision trees

In this section we give the results for Decision trees.

We first show

Lemma 13 The class of Decision trees is easy for all the oracles.

Proof. We show that for any ¢ : {0,1}* — {0,1} there is a polynomial time algorithm A
such that for any two decision trees Ty for f and T} for g, A can decide in polynomial time
if ¢(f,9) =0 and if ¢(f,g) # 0 then A finds an assignment xg such that ¢(f(zo), g(x)) = 1.

The algorithm takes the decision tree Ty and replaces each leaf v in T by a decision tree
T; = T,. It then takes each leaf u in T; and label it with ¢(l,,[,) where [, is the label of v
in Ty and [, is the label of uw in T). Tt is easy to see that this new tree computes ¢(f, g). We
will call this tree T".

FEach path in the tree 7' from its root to a leaf labeled with 1 defines a term (see for
example [B95]). If all such terms are identically 0 then there is no assignment that gives value
1 in 7" and therefore ¢(f,g) = 0. Otherwise, there is a term that is 1 for some assignment
zo and then the algorithm returns z(.0

Theorem 14 If there is a proper learning algorithm for N -decision trees from membership
and equivalence queries (and other oracles) then P = NP.

Proof. Decision tree is easy for all the oracles. Then, this result follows from Theorem 9
because MINEQUI N -Decision Tree is NP-complete [ZB00].0

Theorem 15 There is a proper learning algorithm from membership and equivalence queries
for N -decision tree for constant dimension d.

Proof. We describe an algorithm for MINEQUICyy where C' is the class of N?2-decision
trees. The algorithm easily generalizes to other constant dimensions d. Let A be an m x m
binary matrix. Each node v of the decision tree for A partitions a submatrix of A into two
submatrices, which are passed to the left and right subtrees v. The partitioning continues
until each submatrix contains only 0Os, or only 1s, and the corresponding path in the decision
tree terminates with a leaf. Define S(a,b,z,y) to be the size (number of non-leaf nodes) of
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a minimum decision tree that partitions the submatrix with rows a through x and columns

b through y. Then

0 if the submatrix is monochrome,
1+ min m%na@-Sx(S(a, b,1 —.l, y) + S(i,b,.:c, Y))
mingej<y(S(a,b,2,5— 1)+ S(a,7,2,y)

S(a,b,x,y): )’ } otherwise.

There are at most O(m?) submatrices, so the number of subproblems is polynomial, and
S(0,m — 1,0,m — 1) can be computed in time O(m”). The subproblems also provide in-
formation to build the minimal tree. For general d, the algorithm has time complexity
O(drm?**') which is polynomial for constant d. O

Theorem 16 There is a proper PAC-learning algorithm for N2 -decision trees for constant
d.

Proof. The same algorithm above will also solve MINEQUI* Cy. By Theorem 10 the result
follows.O

4.2 DNF and Union of Boxes

In this section we give the results for DNF, Union of Boxes and disjoint union of Boxes. We
first prove

Theorem 17 There is an ¢ < 1 such thal: If the class N -DNF is s®-properly learnable
with membership and equivalence oracles (and all the other oracles) where s is the size of the

DNF, then Y5 = PNF,

Proof. The oracles are NP-easy for NJ-DNF and approximating MINEQUIN*-DNF within
s is Xh-hard [U99]. Then the result follows from Theorem 9. O

For union of boxes in a constant dimension we have the following.

Theorem 18 For union of boxes over dimension 2 (N2-DNF) we have

1. There is a logt-proper learning algorithm for union of boxes over dimension 2 from
membership and equivalence queries, where t is the optimal number of boxes required.

2. There is an a such thal there is an a-proper learning algorithm for union of boxes over
dimension 2 from any set of oracles if and only if P = NP.

Proof. Part 1 uses the fact that MINEQUIN?Z-DNFy has a logt-approximation algo-
rithm [Fr89]. Part 2 uses the result that MINEQUINZ-DNFy; is NP-complete and does
not admit an approximation scheme unless P=NP [BD92]. Then both parts follow from
Theorem 11 and Lemma 8. O

For union of disjoint boxes (N-disjoint DNF) we have the next Theorem.

Theorem 19 We have
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1. There is a proper learning algorithm for union of disjoint boxes over dimension 2 from
membership and equivalence queries.

2. There ts a proper learning algorithm for union of disjoint boxes over dimension 3 from
membership and equivalence queries if and only if P = NP.

Proof. This follows from Theorem 11 and Lemma 8, and the fact that problem MINEQUIN,,-
disjoint DNFy; is the same as the problem of partitioning a (set of ) orthogonal polygons into
a minimum number of boxes. This problem is in P for dimension 2 [LLLMP79], and NP-
complete for dimension 3 [DK91]. O

4.3 Multivariate Polynomials and Xor of Boxes

In this subsection we investigate the learnability of Multivariate Polynomials.
For Multivariate Polynomials with Monotone terms we have

Theorem 20 There is a proper learning algorithm for N -Monotone Multivariate Polyno-
mial from membership and equivalence queries.

Proof. We give an algorithm to optimally solve the MINEQUI Cyy problem where C' is the
class of N2-Monotone Multivariate Polynomials (Xor of monotone rectangles). A monotone
term [z7 > a][zz > b] in the polynomial is a rectangle with lower left corner (a,b), and
covering all the points (¢, d) with (a,b) < (¢,d) (i.e., a < cand b < d or a < ¢ and b < d).
Any nonzero input matrix A = (a;;) over {0,1} will have a point p = (¢,d) such that
Alp] = 1 and A[g] = 0 for all ¢ < p. Then an optimal cover must use the monotone rectangle
R = [x1 > ¢][z2 > d] to cover p. We update the matrix by setting Az, j] = 1 — A[i, 5] for
all points (i,7) covered by R. Repeating the process until A = 0;; will yield the minimum
number of rectangles. This algorithm for the 2-dimensional case generalizes to d dimensions
for any constant d. O

In a moment we will give a result for Multivariate Polynomial with nonmonotone terms.
But first we consider “Almost Monotone” Multivariate Polynomials. An Almost-Monotone
Multivariate Polynomial is a sum of terms that contain literals of the form [z; > a] for
i=1,...,d and [z; < (] (only z; may be negated).

Lemma 21 There is a proper learning algorithm for N -Almost-Monotone Multivariate
Polynomial from membership and equivalence queries.

Proof. We consider the 2-dimensional case and note that it generalizes to d dimensions. An
Almost-Monotone Rectangle [z, > a][z; < a'][z2 > b] covers all points (¢, d) with a < ¢ < o
and d > b. Suppose that we have two points (a,b), (a’,b) such that Afe,d] = 0 for all (¢,d)
with d < b, Ale,b] = 0 for ¢ = @’ and all ¢ < a, and Ale,b] = 1 for a < ¢ < a’. Then for
f=T+T,+ -+ T, that represents A, we have f = [z, > b]f and therefore without loss
of generality, no term T; contains a literal [z > d] with d < b.

Now consider the row of A that corresponds to z3 = b. Let k be the number of transition
points a for which Afa,b] # Ala + 1,b]. Then f must have at least [k/2] rectangles T;

covering this row (since a rectangle has two vertical edges, it can cover just two transitions).

17



So without loss of generality we may assume that consecutive 1s are covered by their own
rectangle, and the points (a,b) < (¢,b) < (a’,b) are covered by R = [z1 > a][z1 < a'][z2 > b]
in an optimal cover.

So the algorithm works as follows. It finds the two points (a,b) and (a’,b) as described
above. It adds rectangle R = [z > a][z1 < d][xy > b] to the cover. It then toggles the
matrix entries that are covered by R, and recurses. O

Theorem 22 There is a 2" —proper learning algorithm for N -Multivariate Polynomial
from membership and equivalence queries.

Proof. To prove the Theorem we show that every multivariate polynomial f containing ¢
terms can be written as a sum (Xor) of at most 277'¢ Almost-Monotone terms. Thus the
algorithm to optimally solve the Almost Monotone Multivariate Polynomial problem, is a
24-1_approximation algorithm for the Multivariate Polynomial problem. Let f = Ty 4---+T;
be a NV2-multivariate polynomial. We change each term to a sum of almost-monotone terms
as follows:

d
T, = H[Jck > aig)[zr < bl

k=1
d

= [#1 > a;1][x1 < big] H([évk > aig] + [xr > big))

k=2

So f is a sum of at most 297'¢ almost-monotone terms. O
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