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Abstract

The method of obtaining lower bounds on the complexity of Boolean functions
for nondeterministic branching programs is proposed. A nonlinear lower bound on
the complexity of characteristic functions of Reed—Muller codes for nondeterministic
branching programs is obtained.

1 Introduction

The problem of finding nontrivial lower bounds on the complexity of well-defined Boolean
functions is one of important problems in the theory of complexity. In the paper the
computation of Boolean functions by nondeterministic branching programs is considered.
A nonlinear lower bound Q(nlog /loglog n) on the complexity of characteristic functions
of Reed—Muller codes for nondeterministic branching programs is obtained.

The best known lower bound on the complexity of Boolean functions for these pro-
grams is the bound Q(%) obtained by P. Pudlak [10] with the use of Nec¢iporuk’s method
[4]. Besides the lower bound Q(nlogloglog®n) for some symmetric functions (including
the Majority function) follows from the bound of A. A. Razborov [11] for the contact—
rectifier circuits.

The best known lower bound on the complexity of Boolean functions for deterministic
branching programs is the bound Q(;:2—) obtained by P. Pudldk [10] with the use of

2
log® n

Neciporuk’s method [4].
For some symmetrical Boolean functions, in particular for the Majority function, P.

Pudlék [9] obtained a lower bound
BP(MAJ,) > Q(nloglogn/logloglogn)

in the class of deterministic branching programs. This bound was subsequently improved
to the bound Q(nlogn/loglogn) on the complexity of some symmetrical Boolean func-
tions, including the Majority function MAJ, and the elementary symmetrical function
E|y,/2) in n variables [1]. E. A. Okol'nishnikova [5] obtained lower bounds on the com-
plexity of characteristic functions of binary codes with the large number of code nodes
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and growing (on n) code distance for deterministic branching programs. In particular,
the lower bound Q(nlogn/loglogn) for characteristic functions of BCH codes with a
code distance log n/loglogn was obtained. These codes are widely used in the code the-
ory and its applications. Nevertheless there is some problem with the constructibility of
their definition. In the present paper the computation of Boolean functions by nondeter-
ministic and deterministic branching programs is considered. The problem of obtaining
nonlinear lower bounds on the complexity of Boolean functions for branching programs
is reduced to the problem of obtaining lower bounds on the complexity of covering of the
set of “ones” of a Boolean function by functions of the defined type (theorem 4) or to the
problem of obtaining the upper bounds on the number of “ones” of a Boolean function in
i-faces of a cube of the defined dimension (theorem 5). The application of these results
allows obtaining nonlinear lower bounds on the complexity of characteristic functions of
Reed-Muller codes for nondeterministic programs.

The bounds were obtained by a modification of the method from [5]. This method
reduces obtaining lower bounds on the complexity of Boolean functions for branching
programs without restriction to obtaining lower bounds on the complexity of minorant
of the considered function for branching programs with restriction on the number of
occurrences of a variable in a path (read-k-times branching programs).

At present two methods [5, 2] of obtaining lower bounds on the complexity of func-
tions for read-k-times branching programs are known. Exponential lower bounds on
the complexity of Boolean functions for deterministic read-k-times branching programs
(k(n) = O(logn/loglogn)) were obtained in [5]. Subsequently this method was extend-
ed to nondeterministic branching programs [6]. In [2] exponential lower bounds on the
complexity of Boolean functions for nondeterministic read-k-times branching programs
for k(n) = O(log n) were obtained. In the paper the method from [5] is used for obtaining
lower bounds on the complexity of minorant functions of the considered function.

Results for generalized Hamming weights of linear codes [14] are essentially used for
obtaining results of the present paper.

This paper is organized as follows. In section 2 we outline the general idea of the
proof and give reasons for preferring a method from [5] for obtaining lower bounds on
the complexity of read-k-times branching programs in this paper. Section 3 contains
definitions and preliminary. In section 4 the main mathematical result (theorem 1) is
proved. This theorem permits to reduce obtaining lower bounds on the complexity of
Boolean functions for programs without restrictions to obtaining lower bounds on the
complexity of minorant functions of the considered function for programs with restrictions
(read-k-times branching programs). In section 5 a method of obtaining lower bounds on
the complexity for read-k-times branching programs is considered; main theorems that
permits to obtain lower bounds on the complexity of a function for programs without
restrictions are given. In section 6 the result on the generalized Hamming weights [14] is
used for counting the number of “ones” in i-faces of the cube for characteristic function
of Reed-Muller code. It permits to receive nonlinear lower bounds on the complexity of
characteristic functions of Reed—Muller codes for nondeterministic branching programs in
section 7.

Main results of the paper are published in [7] (in Russian), see also [8] (in English) for
a brief presentations of this paper.



2 Main idea

The idea of a method of obtaining nonlinear lower bounds for branching programs without
restrictions is the same one as in [5]. Let P be a branching program that computes a
Boolean function f(xy,22,...,2,). Let the number of occurrences of a variable z; on a
path from the input node to the output node exceeds k(n), where k(n) — oo as n — oo,
and the number of such variables is not small. Then the size of P can not be small too.
If the number of such variables is small, we substitute constants for these variables. It
allows us to transform the program P to a program P’ with restrictions on the number
of occurrences of a variable in a path, i. e. to consider the computation of a minorant
function of the function f by read-k(n)-times branching programs.

This approach allows to reduce obtaining lower bounds on the complexity of a Boolean
function for branching programs without restrictions to obtaining lower bounds on the
complexity of minorant functions of the considered Boolean function for programs with
restrictions, namely, for read-k(n)-times branching programs.

Note that methods of obtaining high lower bounds on the complexity of Boolean
functions for read-k-times branching programs in [5, 2, 6, 13] are similar. Let P be a
branching program computing the Boolean function f in n variables. To each “one” of a
Boolean function f we can assign a path in P. This path is divided into “equal” parts.
A separating set for these parts is a subset of nodes [5, 6] or a subset of edges [2, 13] of
the branching program. The cardinality of this set depends only on beforehand selected
parameters and is considerably less than the path length. The function f; is assigned to
the chosen subset of nodes or edges of the program P. This function depends only on this
subset of nodes or edges and does not depend on the paths to that these subsets belong.
Thus

f=Vfi (1)
1. e. the functions f; cover the set of “ones” of the function f. If the number of “ones” of
each function f; is not large, and the number of “ones” of f is large, then the number of
different subsets that corresponds to units of the Boolean function is large. It allows to
obtain lower bound on the number of nodes (or edges) of the branching program.

In [5] subsets of nodes of the branching program correspond to “ones” of the function.
We need to transform a branching program to uniform form (the definition of this concept
will be given in section 3) in this case. This transformation slightly increases the size of
a program, but it makes possible to consider the generalized parts of the path. It gives
the possibility to assign to a path not all nodes that were chosen as a separating set
of the path, but only a part of them. Sometimes in this a way it is possible to receive
bounds that are better than bounds obtained by the application of a method from [2],
especially when read-k-times branching programs are used for obtaining lower bounds on
the complexity for branching programs without restrictions.

In [2] subsets of edges of the branching program correspond to units of the function.
On the one hand, there is no need to transform a branching program to a uniform form
in this case, and on the other hand it does not allow to combine parts of the path, i. e., it
is necessary to assign to a path all edges that were the separators of the parts. In order
to obtain lower bounds on the complexity for branching programs by this method it is
necessary to extract the root of the greater than in [5] degree from the cardinality of the
obtained covering of set of “ones” of the function from (1).



3 Definitions, preliminary

We use traditional definitions of nondeterministic and deterministic branching programs
(see, e.g. [12]). A branching program is called a read-k-times program if each variable
does not occur more than k times in each path. By NBP(P) (BP(P)) denote the size
of the nondeterministic (deterministic) branching program P. By NBP(f) (BP(f)) de-
note the size of the minimal nondeterministic (deterministic) branching program that
computes the Boolean function f. By NBPE(f) (BPE(f)) denote the size of the min-
imal nondeterministic (deterministic) read-k-times program that computes the Boolean
function f.

A nondeterministic (deterministic) read-k-times branching program is said to be uni-
form if for every node a of this program and for every ¢, 1 <1 < n, in each path from the
input node to a node a the number of nodes labeled with the variable x; does not depend
on paths (this number can differ for different ¢). Besides for every i, 1 <1 < n, in every
path from the input node to an output node the number of nodes labeled with a variable
z; is equal to k. By UNBPk(f) and UBPE(f) denote the complexity of a Boolean func-
tion f for nondeterministic and deterministic uniform read-k-times branching programs
accordingly.

Let P be a uniform nondeterministic (deterministic) read-k-times branching program.
A node a of the program P is said to be at the distance [ from the input node if the
number of labeled edges in any path from the input node to the node a is equal to
[. By UNBPd(P) (UBPd(P)) denote the number of nodes labeled with variables in the
nondeterministic (deterministic) branching program P that are at the distance divisible
by d from the input node.

Let’s consider a branching program P computing a Boolean function f. A node «;
is said to precede a node a; in P if there is a path from a; to a; in the program. A set
of nodes ay,...,a; (not necessarily different) of the branching program P is said to be a
sequence of nodes if there is a path to which the nodes aq, ..., a; belong, and a; precedes
a; or a; coincides with a; for 1 < j.

4 Reduction of lower bounds on complexity for pro-
grams without restrictions to bounds on complex-
ity for read-/i-times programs

Let f(x1,q,...,2,) be a Boolean function, X’ = {z;,,...,z,,} be a subset of the set
{z1,29,...,2,}, and o = {e;,,...,;,} be a set of constants. By f|y,__, denote the
function that is obtained from f by substitution of constants from « instead of variables
from X'.

The following theorem shows that it is possible to obtain lower bounds on the com-
plexity of Boolean functions for branching programs without restrictions by the use of
read-k-times branching program.

Theorem 1 Let g(X) be a Boolean function, C', 0 < C < 1, be a constant, (n) be
a growing function. Let Xo be a subset of variables, i. e., Xo C X, and let | Xo| = [Cn].
If for each Xg there exists a substitution of constants o in the set Xo such that

NBPE(n) (gl y,—a(X \ X0)) > ntp(n), then NBP(g) > min{Cnk(n), n)(n)}.



Proof. Let P be a branching program that computes g. Let’s show that its complexity
is no less than min{Cnk(n),ny(n)}. By X’ denote the set of variables of the function g
such that there are at least k(n) nodes labeled by each variable of X’ in the program P.
It is possible to consider 2 cases.

I. |X'| > [Cn]. Hence there are at least [C'n]| variables such that there are at least
k(n) nodes labeled by each of these variables in the program P. Therefore the total
number of labeled nodes in the program P is no less than C'nk(n), and the complexity of
the program P is not less than min{Cnk(n),ny(n)}.

II. |X'| < [Cnr]. If |X'| < |Cn], then we complete the set X’ in an arbitrary way
in order to obtain the set Xy of the cardinality |Cn|. By the condition of the theorem
there exists a substitution of constants a in the subset of variables X such that the
complexity of the function g[y _, for read-k-times programs is not less than ni(n). We
can substitute constants « for variables from Xj in the program P. By simple modification
of the program P we shall obtain a new program P’. The size of P’ is no more than the
size of the program P. The program P’ computes the function g|y _ (X \ Xo). In the
program P’ there is no variable with which more k(n) nodes are labeled. It means that
P’ is read-k(n)-times branching program. Therefore, by the condition of the theorem its
size is not less than niy(n).

The theorem is proved.

Thus, for obtaining lower bounds on the complexity of the function g for programs
without restrictions it is necessary to obtain lower bounds on the complexity of minorant
functions of the function g for read-k-times branching programs.

5 Lower bounds on the size of read-i-times programs

In order to estimate the increase of the complexity of a function g in going from compu-
tation of g by nondeterministic read-k-times programs to computation of g by uniform
nondeterministic read-k-times programs we need to obtain an upper bound on the total
number of edges (including free edges) in the nondeterministic program. It is made as well
as in the proof of the Theorem 1 from [2]; but this statement was formulated for acyclic
switching-and-rectifier networks in [2]. It is known that complexities of a Boolean func-
tion for acyclic switching-and-rectifier networks and nondeterministic branching programs
coincide up to the order. Nevertheless, it seems convenient to formulate this statement
in terms of nondeterministic branching programs.

Lemma 1 A nondeterministic program P can be transformed into a nondeterministic
program P’ of the size nol exceeding the size of the program P, and the total number of
edges (including free edges) in P’ does not exceed 16(NBP(P))? — 2.

Proof. By ag,ay,...,ar, denote the input node and nodes to which the edges labeled with
0 or 1 enter. It is clear that L < 2NBP(P). Let a;, 0 < j < L, be a nondeterministic
node, let by, ...,b; be labeled nodes or the output nodes to which the paths consisting of
free edges that leave goes the node a; (I < NBP(P) 4 2). We can replace the set of these
paths by the oriented tree with the root a; that contains no more than 2(l — 1) free edges;
paths of this tree enter the same nodes by, ..., b (see Fig. 1).



b

bl bQ 62

Program P Program P’

Fig. 1

We make replacements of this kind for all nondeterministic nodes from the set
{ag,a1,...,ar}. We receive a new program P’ in which the number of labeled nodes
is the same; the number of free edges does not exceed (2(NBPP +1))(2NBP(P)+1). The
total number of edges in the new program does not exceed 2(NBP(P + 1))(2NBP(P) +
1) + 2NBP(P) < 16(NBP(P))? — 2. The lemma is proved.

Consider the transformation of a branching program into a uniform one as it was made
in [5, 6]. We were not interested in precise bounds in [6]. In this paper we estimate not
only the relation between sizes of a branching program and a uniform branching program,
but a relation between the size of a branching program and the number of nodes of a
uniform branching program that are at the distance that is divisible by some preliminary
defined number from the input node (as it was done in [5] for deterministic branching
programs).

Lemma 2 a) Fach nondeterministic read-k-times branching program P computing a
Boolean function f(x1,...,x,) can be transformed into a uniform read-k-times branching
program Py that computes the function f and an inequality

UNBPEY(Py) < [kn/d](4NBPE(P))?

holds.



b) Fach deterministic read-k-times branching program P computing a Boolean function
flz1,...,2,) can be transformed into a uniform read-k-times branching program Py that
computes the function [ and an inequality

UBPEY(Py) < 2[kn/d] - BPK(P)
holds.

Proof of this Lemma is similar to that of Lemma 1 in [5, 6].

a) Let P be a nondeterministic read-k-times branching program computing the
Boolean function f(zy,zq,...,2,). By Lemma 1 a nondeterministic read-k-times branch-
ing program P can be transformed into a nondeterministic read-k-times branching pro-
gram P’ with the same number of labeled nodes, and with the total number of edges
(including free edges) less than or equal to 16NBP(P)? — 2.

By [,(a) denote the maximal number of nodes labeled with z, in an arbitrary path
from the input node to the node a in the program P’. It is clear that if a node a; precedes
a node a; in P’ then for any ¢ = 1,2,...,n an inequality

lq(ai) < lq(aj)
holds.

Let’s consider a case when the edge (a;, a;) leaves a node labeled with a variable, and
the case when an edge (a;, a;) leaves a nondeterministic node.

Case 1. Let the edge (a;,a;) leaves a labeled node. Without loss of generality it is
possible to assume that this edge has the label 1 and leaves a node labeled with ;. Then
an inequality [;(a;) < l1(a;) holds. We replace the edge (a;, a;) with an edge (a;,a’) and a
“chain” of edges connecting nodes a’ and a; and computing fictitious testing of variables
Ty, T, ..., 2y (Li(aj)—1i(a;) —1) testing of the variable zy and ([,(a;)—[,(ai)), 2 < ¢ < n,
testing of the variable z,. There are no more than [kn/d]| nodes that are at the distance
divisible by d from the input node in paths from a; to a; after adding fictitious testing of
variables (the node a; is not taken in the account).

Case 2. Let (a;,a;) be a free edge in P'. If [,(a;) = [,(a;) for each ¢, 1 < g < n, then
we do not make any changes. If there exists ¢, 1 < g < n, such that [,(a;) # [,(a;) we
replace the edge (a;,a;) with an edge (a;,a’) and to a “chain” of edges connecting nodes
a’" and a; and computing fictitious testing of variables zq,22,..., 2, (I,(a;) — [,(a;)),
1 < g < n, testing of a variable x,. There are no more than [kn/d| nodes that are at
the distance divisible by d from the input node in the paths from a; to a; after adding
fictitious testing of variables (the node a; is not taken in the account).

Let’s carry out these operations on all edges of P’. In order to have exactly k nodes
labeled with each variable in each path from the input node to the output node we insert a
new output node and we connect the former output node and the new one by a “chain” of
edges containing the necessary number of fictitious testing of variables =y, z9,...,2z,. Asa
consequence we obtain a uniform read-k-timed branching program Py, and the inequality

UNBP!(Py) < [kn/q](4NBP(P))*
holds.

b) There are no free edges in deterministic programs; and, consequently, there is no
need to transform the program as indicated in Lemma 1. Therefore, the bound from the
item b) of Lemma is valid. The lemma is proved.
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Let Py be a uniform read-k-times program computing a Boolean function f(X). Then
each path in Py computes either an elementary conjunction in variables from X or a
conjunction that is equal to zero. Let m be a path in Py computing a non-zero conjunction
K. A variable z is said to occur in an interval (b, ¢) of a path 7 if there is an edge going
out from the node labeled with x in the interval (b, ¢).

Let ay,as, ..., as, be a sequence of nodes of a uniform read-k-times program Py, and
let all nodes of this sequence belong to the path .

We introduce the following notation:

e Ql(ay,az,...,az,) is the set of variables that occur only in the intervals
(a1,a2), (as,a4),...,(azm_1,asy) in the path .
e Q%(ay,as,...,azy,) is the set of variables that occur only outside the intervals above

in the path =.

e Q%ay,as,...,az,) is the set of variables that occur in both intervals above and
outside them in the path .

A set of variables that occur in an interval (b, ¢) of a uniform read-k-times program P,
does not depend on a path to which nodes b and ¢ belong. Therefore, the sets Q7 (ay, as,
ceeyQ2m), 7 = 0,1,2, depend only on the sequence of nodes ay,as,...,as, and do not
depend on the path to which these nodes belong. Therefore, the index 7 in Q. can be
omitted. It is clear that the sets Q/(ay, as,...,azy,) (j = 0,1,2) are pairwise disjoint and
the union of these sets is the set of variables of the computing function.

Let k, p, and ¢ be natural numbers such that 2 < k < p <{. Introduce the following

notation:
ni(n;k,p,t) = {n(;:];) / (;ﬂ (2)

na(ns ko p,t) = n—p(kn/ﬂ—l—(k—l){n(;:];) / (m (3)

no(n;k,p,t) = n—ny —ns. (4)

Values of ny(n; k,p,t) and ny(n;k,p,t) for some parameters p and ¢ are given in the
following lemma.

Lemma3 1. Ifp =k, t = k2 + k, and n > 4(ke)*, then ny(n;k,p,t) > I and
2. If p=k, t = 2k?, and n > (2ke)*, then ny(n;k,p,t) > (2i:)k and nay(n; k,p,t) > 2.

Proof. It follows from Stirling’s formula that for any b and a, 1 < a < b/2, the inequality

)<
holds.

1. Let p =k and ¢t = k* + k. From (2) and (5) it follows that n; = [n/(k:"kﬂ >
((k—ff)e)k > kkiz‘*‘l > 2(]:Le)k' From this fact and (3) it follows that ny > -

2. Let p = k and ¢t = 2k*. From (2) and (5) it follows that n; = {n/(%fﬂ > (212) .
From this fact and (3) it follows that n, > 7.

The lemma is proved.

kol



Theorem 2 Let Py be a uniform nondeterministic branching read-k-times program
computing a function f; let k, p, and t be the natural numbers such that 2 < k <p <t
and numbers ni(n;k,p,t), na(n;k,p,t), no(n;k,p,t) are positive; let v = (y1,...,7v,) be
an n-tuple such that f(v) = 1. Then there exists a sequence W(y) containing 2p', p' < p,
different nodes labeled with variables such that

(a) all nodes of the sequence W(v) belong to a path w(~y) realizing ~;

(b) the distance between the input node and a node of the sequence V(v) is divisible

by [kn/t];

(c) |QYW (7)) > ni(n;k,p,t);
|Q*(W(7))| > na(n; k, p, t);
1Q°(W ()| < no(n; ks py L),

Proof. The proof of this lemma is conceptually identical with that of Lemma 2 in [5].
The presence of free edges changes the proof slightly.

There is a path m() of the length kn that realizes a “one” 5 of the Boolean functions
f in the uniform program Py. We choose nodes ag, a1, ..., a; in the path 7(y), where ag is
the first node labeled with a variable in the path 7 (i. e., the node that is at the distance
0 from the input node), a; a node labeled with a variable and is at the distance [kn/t]
from the input node, a3 is a node labeled with a variable and is at the distance 2 - [kn/t]
from the input node and so on as long as the exit node labeled with 1 occurs. We choose
this exit node as the next s-th node of the path. In this case the distance between the
node preceding the exit node and the exit node can be less than [kn/t]. If s < ¢ then we
choose the exit nodes labeled with 1 as nodes azy1,...,a;.

It is clear that all nodes of the chosen sequence (except for nodes that coincide with
the exit node) are labeled with variables and are at the distance divisible by [kn/t] from
the input node.

Any p nodes a;,...,a;,, 0 < 13 < 13 < ... < 1, < t— 1, from the set
{ao,a1,...,a,_1} determine p intervals of the path w(v): (ai,ai+1), (@i, a@it1),-. -,
(@i, ai,41). By A 4. i, denote the set of ends of these intervals, i. e., Ay, . =
{ai), @41, Qiyy Qigg1y - -5 QG5 @G 41§ 1t 1s @ sequence of nodes of Pg.

At the end of the proof of the theorem it will be shown that we can choose a sequence
from the set of all sequences A;, ;, ;. such that its insignificant modification (a sequence
B) satisfies the conditions of the theorem.

By the same way as it was done in [5, 6] we can show that there exist a sequence

A ig...im such that
Q1 (Aiy sy, | > 115 (6)
|Q*(Aiy igoivn )| > 12 (7)
1Q°(As i) | < 10 (8)

are at the distance that is divisible by
then it is possible to

It is clear that all nodes of a sequence A;, ;, ..,
[En/t]. If a node occurs more than once in the sequence A; i, i,
unite intervals containing common nodes by throwning out these nodes. For example, if
i3 = 12+ 1, then the node a;, occurs twice in a sequence A;, ;, i, . Therefore it is possible
to consider a sequence that consists of the ends of intervals (a;,, a;,41), (@iy, @Gigr1), .-,
(a;,,a;,41). We carry out this operation on all coinciding ends of intervals. By this way

we transform the sequence A to a sequence B containing 2p’ nodes, p’ < p. It is

114%24.-43%p



easy to see that the sequence B satisfies the conditions (a) and (b) of the theorem. It is
also easy to see that

Q' (Airiyin) = Q'(B)
for 7 = 0,1,2. Then from (2)—(4), (6),(7), and (8) it follows that the sequence B satisfy

the condition (c¢) of the theorem. The theorem is proved.

Let P be a branching program computing a Boolean function f, a and b be nodes
of the program P. By f(P;a.,b) denote a Boolean function computed by a subprogram
of the program P in which the node @ is considered as the input node, and the node
b as the exit node labeled with 1. (In order to transform the obtained subprogram to
a branching program it is necessary to label the node b with 1 and delete edges of the
programs that leave the node b.) Let ¥ = (ay,ay,...,as,y) be a sequence of nodes of a
branching program P computing the Boolean function f(xy,...,z,). By ao denote the
input node of the program P, by ag,4+1 denote the exit node labeled with 1. Put

/

SH(P;w) = F(P;agj-1,az;),

1

i

s,
Il

h@\

fz(P§\II) = f(P;agj,ang).

7=0

From the definition of sets Q7(¥), j = 0,1,2, it follows that f'(P;¥) depends only on
variables from the sets Q*(¥) and Q°(¥); the function f?(P; ¥) depends on the variables
from the sets Q*(¥) u Q°(W).

It is clear that if f(y) =1, then

S P () () A AP U (7)) (y) = 1.

Let Py be a uniform nondeterministic read-k-times branching program computing the
function f; k, p, and ¢ be natural numbers such that & < p <t and numbers nq(n; k, p, 1),
na(n; k,p,t), no(n;k,p,t) are positive. By theorem 2 the sequence W(v) containing 2p’
nodes (p' is a natural number and p’ < p) that are at the distance divisible by [kn/t]
from the input node, and such that |Q'(¥(v))| > ni(n; k, p,t); |Q*(V(y))| > na(n; k, p, t);
|Q°(¥(7))| < no(n; k, p,t) can be assigned to each “one” v of a Boolean functions f

By V(P) denote a set of 2p’-nodes sequences of the uniform branching program P
corresponding to “ones” of a Boolean function f that is computed by the program P.

The following lemma is obvious.

Lemma 4 The Boolean function f computed by the program Py can be represented as
IV (Po)l , . , , , ,
f="\ FH (P W )QW)U QW) A f(Po; W) (Q(W) U Q*(W7)).
7=1
Let’s consider all possible representations of the function f(Y), |Y| = n, of the form
V)=V "(YiUYo) A 2 (YU Yo), (9)
where Y1, Y3, and Yj are nonintersecting sets; Y = YUY UYg; |Y| = n; |Yi| > na(n; k, p, t);
Y| > na(nsk, p, 1); [Yo| = n — [Ya] — Y.

10



By R(f;n,k,p,t) denote the minimal number of disjunctive terms in the representation
(9). It is clear that for any uniform read-k-times program P, computing the function f
we have

R(f;n, k,p, ) < |V(Po)l. (10)

Theorem 3 Let f be a Boolean function essentially depending on n variables, n > 16
ik, pandt, 2 <k <p<t, be natural numbers such that values ny(n;p, k,t), nao(n;p, k,t)
and no(n;p, k,t) computed from the formulas (2)-(4) are positive.

(a) The complexity NBPk(f) of computation of the Boolean function f with nondeter-
ministic read-k-times programs satisfies an inequalily

NBPE(f) > max{n; 1/4 \/%. (R(f;N,k,p,t))l/(4p)} ‘

(b) The complexity BPk(f) of computation of the Boolean function f with determin-
istic read-k-times programs satisfies an inequalily

BPE(f) > max{n; 5 . (R(f;n,k,p,t))l/@p)} .

Proof. Let P be a nondeterministic read-k-times program computing the Boolean
function f. By Lemma 2 we can transform the read-k-times program P into a uniform
nondeterministic read-k-times program Py computing the function f. By Ly denote a set
of all nodes of the program Py that are at the distance divisible by [kn/t] from the input
node.

By Theorem 2 all nodes of sequences corresponding to “ones” of the Boolean function
f belong to the set Lg. Therefore a relation

vl <y (1) (1)

is fulfilled.

As the function f essentially depends on n variables, NBPk(f) > n and BPk(f) > n
Therefore it is sufficient to consider a case R(f;n,k,p,t)"/?” > n. By condition of the
theorem we have n > 16, therefore it is sufficient to consider a case

R(fin,k,p,t) > n® = 2%l8" > 2%, (12)

Let’s show that |Lg| > 8p in this case. Assume that |Ly| < 8p. Then by (10) and (11)
we have

P
R(f;n,k,p,t) < V(Po) Z (|Lo) < 9ol < 98p,

It contradicts the assumption (12).
Thus, |Lo| > 8p. From this fact, (10), (11) and (5) it follows that

R(f;n,k,p,t) < |V(Po)| < zp: (|§]o|) - 2(|L0|) . (e|L0|)2p

2p 2p

Therefore,
2p
| Lo| = —( (f5myk,p, )P, (13)
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By definition of the set Ly and of UNBP,Ekn/ﬂ(PO) we have
| Lo| = UNBPK*/f(py).
Then, by Lemma 2, we get

|Lo| < Mjli?;tﬂ (ANBPk(P))* < t(ANBPk(P))>.

From this fact and (13) it follows that

L /2p . 1/(4p)
NBPK(P) > - Q(R(f,n,k,p,t)) ")

P is an arbitrary program computing the Boolean function f, therefore from the obtained
inequality the statement (a) of the theorem follows.
The statement (b) of the theorem can be proved similarly.

From theorems 1 and 3 we can obtain the following theorem.

Theorem 4 Let g,(X,), |Xn| = n, be a sequence of Boolean functions, k(n) be an
increasing function, and C, 0 < C' < 1, be a constant. If for each subset of variables
X, X C X, |Xo| = [Cn], there exists a substitution of constants o in the set X, and
integer-valued p(X), 1(X), 2 < k(n) < p(X) < H(X), such thalt ny, ny, and ng calculated
by the formulas (2)—(4) as functions in | X, \ X|,k(n),p(X),t(X) are positive, then (a)
the complexily of the function g,(X) for nondeterministic branching program (without
restrictions) satisfies the inequality

NBP(gn) 2 min {Onkm A2 (Rl i 10\ X|,k,p,t>>”(4p>} ;
€

(b) ([5], theorem 3) the complexity of the function g,(X) for deterministic branching
program (without restrictions) satisfies the inequality

BP(gn) > min {Cnk(n), L+ (Rlgu x_051%0\ X1, b, 0) 72}
It is possible to propose some ways to obtain lower bounds for R(f;n,k,p,t) (see [5]).
We use the following one in the paper.
By H;(f) denote the maximal number of “ones” of a Boolean function f belonging to
i-faces of a cube.

Lemma 5 The value R(f;n,k,p,t) satisfies an inequality

| /()]
R(f;n,k,p,t) > 950 H, () Ho, (

where ny = ny(n;k,p,t), ng = na(n; k,p,t). no = no(n; k, p,1

)7
).

Proof. FEach disjunctive term in the representation (9) realizes no more than
2" H, (f)H,,(f) “ones” of the function f. The statement of the lemma follows from
that fact.

We use Lemma 5 and Theorem 4 to obtain the following theorem.
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Theorem 5 Let ¢,(X,), |X.| = n, be a sequence of Boolean functions; k(n) be a
growing function; C', 0 < C' < 1, be a constant. Let p(n), t(n) (2 < k(n) < p(n) <t(n))
be integer-valued, and let values ny, ne, and ng , calculated by the formulas (2)—(4) as the
functions of [(1 — C)n]; k(n), p(n) and t(n)) be positive, then

(a) the complexity NBP(g,) of the function g,(X,) for nondeterministic branching
programs without restrictions satisfies an inequality

_ /(4p)
‘ 1 [2p g~ (V)] 1
NBP(gn) > min {an(n), 4 Ve ) <2n—n1—”2H ((;)H (9) .

(b) the complexity BP(g,) of the function g,(X,) for deterministic branching programs
without restrictions satisfies an inequality

. 2 g~ (1) e
BPlg) 2 min {O”k et (2 i, (9) 11, <g>) } ‘

Proof. Let Xy be an arbitrary |Cn]-element subset of the set X,,. We substitute
constants in the set Xg in such a way that an inequality

(9 1xm) ™ )] 2 w

holds for the function g [y _,. From this fact and Lemma 5 it follows that

(91x,-0) ™ (1)

R _1(1=C)nl, k,p,t) >
(9 Lxomai € )l k. p,t) 200 Ho, (9 x,0)  How (9 15,0
N g (1) N g™ (1)
a 2|X0|+non (g |Xo=oz) ' Hn2 (g |Xo=oz) - 2Lc4nJ-I—[(1_C)n-|_nl_n21q”1 (g) ' Hn2 (g)

< lg~ (1]
B 271_711_712]_]7%1 (g) ' Hn2 (g)

From this inequality and Theorem 4 the statement of the theorem follows.

6 Estimation of the number of “ones” in i-faces for
Reed—Muller codes

The concept of the generalized Hamming weights and the weight hierarchy for linear
code was introduced in [14]. Let C' be a [n, k] linear code (i. e., a code that contains 2*
codewords of length equaled to n) and D be its subcode. The support of D (it is denoted
by x(D)) is the set of not-always-zero bit position in the codewords, in each of which at
least one code word of D is not equal to 0, i. e.,

x(D)=A{i : Iz1,22,...,2,) € D, x; #0}.

In these terms a [n, k] linear code is a binary linear code of rank & and with the support
size < n.
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A one-dimensional subcode D of a code (' consists of two codewords: the zero codeword
and a non-zero codeword. The support of D is equal to the Hamming weight of the non-
zero codeword. The size of the smallest support of the subcode of a rank r of the code C'
is called the rth generalized Hamming weight of the code C' (denoted by d.(C)), i. e.,

d,(C) = min{

X(D)| : D is asubcode of C' with rank r}.

It is easy to see that d;(C') is equal to the traditional minimum Hamming weight of C'. The
weight hierarchy of a linear code C is defined to be the set of integers {d;(C), ..., dx(C)}.
The interest to the generalized Hamming weights in [14] is caused by the possibility of
application of this concept in cryptography. Other application of generalized Hamming
weights is t-resilient functions.
In the given work the interest to the generalized Hamming weights is caused by the
fact that they allow to estimate maximum number of the code nodes belonging to i-faces.

Lemma 6 There are no more than 2" code nodes of a linear code C in any d,.(C')-face
containing the zero node.

Proof. Assume that there are more than 2" code nodes in d,.(C)-face containing zero
node, i. e., there are at least 2"*! code nodes in it. It means that it is possible to embed
a subcode with 2"*! code nodes into d,(C)-face containing the zero node. i. e.,

d.11(C) < d.(C). (14)
But, as shown in [14, Theorem 1] a sequence d,.(C) is strictly monotone, namely,

Therefore, the inequality (14) is not valid. Thus, any subcode of the dimension d,.(C)
contains no more than 2" code nodes. The lemma is proved.

This lemma shows that for obtaining the upper bound on the number of code nodes
in faces containing zero node it is suffice to know the generalized Hamming weights of the
code.

Besides in [14] the hierarchy of generalized Hamming weights for Reed-Muller codes
was been researched. For these codes we shall use the notation from [3, 14]. By R(u,m)
denote the mth Reed—Muller code of order u. R(u,m) is considered as a linear space
composing of all Boolean polynomials of degree u or less in m variables vy, vy, ..., vp.

It is known that the number of code nodes in R(u, m) is equal to

91+ (1) +(3)+-+(1), (15)
the length of code words is equal to
n=2"; (16)
the minimal code distance is
d=2""".
It is possible to list all monomials in variables vy,...,v,, in the antilexicographical

order defined by v, < vnp_1 < ... < vy < A (the empty string). For example, if
¢ <b=<a=< A, {cba,ch,ca,c,ba,b,a,A} is a list of monomials in the antilexicographic
order. As it is indicated in [14] the antilexicographical order is not is not equivalent to the
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reverse of the lexicographical order. Really, in the given example {A, a, ab, abe, ac, b, be, ¢}
is a list in the lexicographic order. Its reverse is not in the antilexicographical order.

The complete weight hierarchy of Reed—Muller codes is described in [14] in terms of
the antilexicographic order.

Theorem 6 ([14], theorem 7) The subcode of R(u,m) spanned by the antilexico-
graphically first r monomials of degree u or less has support d.(R(u,m)).

As an example, as well
as in [14], we shall consider the code R(2,5). Its antilexicographically ordered base is
{v5v4, V503, V5Vg, V5V1, Us, V403, V402, V401, Vg, U3V2, U3V, U3, VaU1, Vg, U1, 1 }. The weight hier-
archy of this code is {8,12,14, 15, 16, 20, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32}.

There is no need to know the complete weight hierarchy of Reed—Muller codes for
obtaining lower bounds on the complexity for branching program. We need to know the
exact values only of some values d,.(C).

Theorem 7 Lel ¢ be a natural number not exceeding m. Then a 2™ [2¢-face of the

cube contains no more than 20" )" T)++(120) code nodes of the code R(u,m).
Proof. Let’s consider the first 2("0)+("77)+-+(i2) antilexicographically ordered
monomials. All these monomials and only these ones contain a monomial vy, ... V,_u41
as a factor. Therefore the support of all these monomials is contained in the support of a
Vector Uy, . .. Um—gt1, 1. €. is equal to 27 /29, Thus 2™ /2¥-face with the zero node contains

no more than 2(7 )+("T)++(0Z5) code nodes.
Since Reed-Muller code is a linear code, it follows from this statement that any 2 /2¢-
m—g

face of a cube contains no more than 2(m5¢)+(ml_(p)+"'+(u—so) code nodes. The theorem is
proved.

7 Lower bounds on the complexity of characteristic
functions of Reed—Muller codes for branching pro-
grams

Theorems 5 and 7 will be used for obtaining lower bounds on the complexity of charac-
terictic functions of Reed—Muller codes.

Theorem 8 Lel —=— — o0 asm — 00 and m —u > 3. Then

m—1Um

NBP(R(up, m)) = 0 <2mm TUM/ln - ) .

_um

m

Proof. Since — — 00 as m — 00, we can assume that

—Um

> 26, (17)

m — Uy,

We set |
k= k(m) T flog, ——. (18)

dm—u m—u
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Put
C=1/2, p=k, t=k +k. (19)

Then by the statement (a) of Lemma 3 we have

n B 2m S 2m
2. Q(ke)k T 92+klogy(ke) = 9o’

nl(N/Q,k,p,t) >

where

o= | (20)

In fact, if 2 > 2'% then

m

2+ klogy(ke) < 24— <log2 " og, log, —— + log, f)
4logy m—u m—u 4
m o logy logy 2 m
< 2 _ m—"Uu m—u < .
= e 4(m — u) 4log, ~ [4(m —u)
Furthermore,
n 2m 2m
na(nf2ik.p,) 2 2k +1)  20Hoes (1) 2 2¢2
where
m
p2 = [log, =] (21)
m—u

This statement is valid for —— > 216,
Recall that the maximal number of “ones” of a Boolean function f that belong to
i-face of the cube was denoted by H;(f). If n” < n” then an inequality

Hon(f) < 27" Ho(f)
also holds. From this fact it follows that the bound from the theorem 5 is also valid as
the values n; and ns decrease. Therefore it can be considered that

2m 2m

ny = ngzﬁ.

= — "
2¢1

From this fact and the theorem 7 it follows that

Hm (R(Um, m)) < 2(m5¢1)+(m—1¢1)+...+(’:_—§11) (22)
and _ - )
H,y (R(tm,m)) < 2(m 52)+( 1¢2)+...+(u_522). .

We use the theorem 5 for obtaining lower bounds on NBP(R(u, m)).
Therefore it is necessary to obtain a lower bound on the value

_ [(R(u, m))"'(1)]
R = S T (R R ) (24)
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By (15), (22) and (23) we have
() 4(2)

gam—gn—ei_gmn=er o("F)H("T) A () 9T+ 4 (152)
227=ui1¢1+1(m )+ u¢2¢2+1(m #2)
227 ut1 (m)
ST (e (5
2 ;n=ou 1(7)

= oL T+ =(7), (25)

R >

Therefore for obtaining a lower bound on R(R(u,m);n/2,p,t) it is necessary to obtain a
lower bound on the value (mj—w)/ 7;), where 7 < m —u — 1. For thise purpose we use the
relations (20), (21), conditions of the theorem, and the assumption (17). We have

m>3-2% 3<m—u<m/2'.

From this fact, Stirling’s formula we obtain for j < m —u —1 and p < p; <

m =g\ fm) _ (m—=¢)ljl(m—j)!
J )/(j)_ jHm — ¢ —j)tm!
(m—p)m—j) __ (m—g)"m—j"7

> : ;
(m—@—J)m  (m—¢— jyr—e-immeBm—on*t2m

4(77’:1—11)

v

Y
3
6
|
|
|
|

exp{( . )(:L Qf; ...)+(m—j)(—%—%—...)—

(= — ) ety (etd) 1
L m 2m? 6(m—4(7;”—u)—(m—u—1))
2 o0 I+1 l+1
¢ @
> _ R -
= eXp{ S‘Q—I_Qm—l_;l(l—l—l)m +Z z+1
_|_( + )_M (SO—I_])I-H_ 1
v 2m = U(l+ )m!  5,49m
IR - (99+J)l“ _6}
> S AT —2,8-10 26
> {2 2

We obtain the lower bound on the sum 72, ‘pl+l+?(l;+ll—)£)fl+f')l+l for j <m —wu—1and

p < < 4(7;”—_@. Let us consider the case when j < ¢ and the case when 5 > ¢.
Case 1. Assume that j < ¢, then

itpl“—l— 't (L,o—l—])l“ . i ((p+ )+ e+ e +...+¢!)
] (I 4 1)m! 1=2 [l 4 1)m!
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(1 + 1)(2 o0 - u) 2tm! o0 1
0 T 7 > >
1)m Z [ 41 u)tm! ; [-2H(m — u)t

Case 2. Assume that ¢ < 7, then

R (¢+y)l+1 . _iw((¢+j)l+(¢+1)l Gt

= I(I+ 1)m! -5 I(I+ 1)m!

> c,o(l—l—l ) < m- 2 (m—u—1) 2 (m — u)t 6
> PO bl ? S T

lz; 1+ 1)mt — ; 4l(m —uw)ymt  — ; 4mt-1 — 810

From these bounds and (26) it follows that

(m_%)/(m) >_2ﬂ—o 048.
J J m

From these inequalities, (20), (21) and (17) we have

. 2m
— 9 “F~(m —u—1
(m ¢1)/<m) Zexp{— LAt —0,048} Zexp{—4( )( )—0,048}
7 7 m m

> exp{—0,5 — 0,048} > 0,57 (27)

("57)/ () 2ol 00w

(m=w) 048} > 0, 95. (28)

From these two inequality and (25) it follows that

92 L T ((MIH(T)=(T)) > 9L 08095 1)(T)
9052(%) > > 20, 25m2 (29)

R

(A\VARAYS

From theorem 5, (19), (18), ), (17), (29), and (16) it follows that

NBP(R(u,m)) > : Rl/(‘““)}

— i nm/(m u) 1 2 | RSt log, 22
8 log,m/(m —u) 4 e (ol 1)
1 1 0,25777‘2 m—u m
> min 2o/ (rm u) | T S o
10g2 m/( ) 4 log, m/m—u
1 1
> min 2%m /(m u) Tl T S
10g2 m(m —w) 4Nzl

logy, m/m—u
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From this inequality and the assumption that m/(m — u) > 2'¢ we obtain that

NBP(R(u,m)) = Q (zm " /m o u) .

The theorem is proved.

Corollary 1 Let u,, = m — C°, where C°,C° > 3 is a constant. Then

NBP(R(tm,m)) = Q(nlogn/loglogn),

where n is the number of variables of the characterictic function of Reed—Muller code

R(th, ).
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