
Space Efficient Algorithms for
Directed Series-Parallel Graphs

�

Andreas Jakoby
�

Maciej Liśkiewicz
�

Rüdiger Reischuk

Institut für Theoretische Informatik
Universität zu Lübeck

Wallstr. 40, D-23560 L übeck, Germany

jakoby/liskiewi/reischuk@tcs.mu-luebeck.de

March 2002

Abstract

The subclass of directed series-parallel graphs plays an important role in computer
science. Whether a given graph is series-parallel is a well studied problem in algorithmic
graph theory, for which fast sequential and parallel algorithms have been developed in a
sequence of papers. Also methods are known to solve the reachability and the decomposi-
tion problem for series-parallel graphs time efficiently. However, no dedicated results have
been obtained for the space complexity of these problems when restricted to series-parallel
graphs – the topic of this paper.

Deterministic algorithms are presented for the recognition, reachability, decomposi-
tion and the path counting problem for series-parallel graphs that use only logarithmic
space. Since for arbitrary directed graphs reachability and path counting are believed
not to be solvable in Logspace the main contribution of this work are novel determinis-
tic path finding routines that work correctly in series-parallel graphs, and a characterization
of series-parallel graphs by forbidden subgraphs that can be tested space-efficiently. The
space bounds are best possible, i.e. the decision problem is shown to be � -complete with
respect to ����� -reductions. They have also implications for the parallel time complexity of
these problems when restricted to series-parallel graphs.

Finally, we sketch how these results can be generalised to extension of the series-
parallel graph family: to graphs with multiple sources or multiple sinks and to the class
of minimal vertex series-parallel graphs.

CLASSIFICATION: efficient algorithms, algorithmic graph theory, computational complexity

1A preliminary version of these results has been presented at 18. STACSS’2001, Springer LNCS 2010, 339-352
2Part of this research was done while visiting the Depart. of Computer Science, Univ. of Toronto, Canada
3On leave from Instytut Informatyki, Uniwersytet Wrocławski, Poland.

1

Electronic Colloquium on Computational Complexity, Report No. 21 (2002)

ISSN 1433-8092

1 Introduction

In this paper, all graphs ���������
	�� considered are directed. For two nodes ���� there may exist
several edges connecting them, in this case we will differentiate them by ���������� , ������������������ .� denotes the number of vertices � of � and � the number of edges 	 . A well studied subclass
of graphs are series-parallel graphs, for which different definitions and characterizations have
been given [6]. We will consider the basic class, sometimes also called two terminal series-
parallel graphs, that are most important for applications in program analysis.

Definition 1 ��� �����
	!� is a series-parallel graph, SP-graph for short, if either � is a line
graph of length " , that is a pair of nodes connected by a single edge, or there exist two series-
parallel graphs �$#%�&�'�(#��
)#*� , +,� "-�
. , with exactly one source �/#1032 # , and one sink �/4'57682 # such
that �9�:�;��<=�(� , 	9�:	>�?<@	A� , and either

(A) parallel composition: �/#10B�C�3#D0E2 �F�G�3#D0E2 � and �E4�5H6I�G�E4'57682 �F�G�34�5H682 � , or

(B) series composition: �E#10B�C�3#1032 � and �34�5H6J�G�34�5H682 � and �E4�5H682 �K�C�3#D0E2 � .
The node sets of the graphs �B# have to be disjoint except for the sources and sinks as required
by the composition; the edge sets have to be completely disjoint.

Since in a parallel or series composition the sources and sinks of the two graphs �L# are merged
the resulting graph � again has a unique source and a unique sink.

We assume that the graphs considered are specified by a list of edges, but we put no restrictions
on the ordering of the edges. In particular, it is not required that this ordering reflects the
structure of the series-parallel composition operations. Otherwise, recognizing and handling
series-parallel graphs becomes quite easy. The correctness and efficiency of the algorithms
presented below will not depend on the representation of the input graphs. For example, one
could use adjacency-matrices as well.

Series-parallel graphs are suitable to describe the information flow within a program that is
based on sequential and parallel composition. The graphical description of a program helps to
decide whether it can be parallelised and to generate schedules for a parallel execution.

To determine whether a given graph � belongs to the class of series-parallel graphs is a basic
problem in algorithmic graph theory. An optimal linear time sequential algorithm for this prob-
lem has been developed by Valdes, Tarjan, and Lawler in [17] long time ago. Also, fast parallel
algorithms have been published. He and Yesha have presented an EREW PRAM algorithm
working in time MN��OQP/R � � � while using �TS � processors [13]. Eppstein has reduced the time
bound constructing an algorithm that takes only MU��OQP-R � � steps on the stronger PRAM model
with concurrent instead of exclusive read and write, that requires VW���X� � � processors [11]. Here
VW���X� � � denotes the number of processors necessary to compute the connected components of a
graph in logarithmic time. Finally, Bodlaender and de Fluiter have presented an EREW PRAM
algorithm using MN��OQP/R �ZY OQP-R\[� � time and MN� �]S �@� operations [5].

The space complexity of this problem, however, has not been determined precisely so far. In
this paper we give an answer to this question.

The decomposition of a series-parallel graph is useful to decide other graph properties. Hence,
another important task is to compute such a decomposition efficiently. In [17] a linear-time

2

sequential algorithm for decomposing series-parallel graphs has been given. We will show that
this task can be done in small space as well.

For general graphs, the reachability problem, that is the question whether there exists a path
between a given pair of nodes, is the classical ��� -complete problem, also called GAP. For
the parallel time complexity one can infer a logarithmic upper bound on CRCW PRAMs by
well known simulations. The reachability problem restricted to series-parallel graphs, however,
can be solved in logarithmic time already by an EREW PRAM using the minimal number
� �@S �@����O P-R � of processors [16]. Certain graph properties like acyclicity are also complete
for ��� , while for other problems their computational complexity is still unsolved. Recently,
Allender and Mahajan have made a major step in classifying the computational complexity
of planarity testing showing that this problem is hard for � and belongs to ��� (symmetric
Logspace) [3]. They leave as an open problem to close the gap between the lower bound and
the upper bound. In this paper we determine the computational complexity of a nontrivial
subproblem of planarity testing precisely. The question whether a graph is series-parallel –
which implies that it is also planar – is � -complete.

For � several simple graph problems are known to be complete with respect to �
	 � -reductions:
for example, whether a graph is a forest or even a tree, or whether in a given forest � two
nodes belong to the same tree (for a list of complete problems see [9, 14]). In this paper we
will prove three problems for series-parallel graphs to be � -complete: the recognition problem,
the reachability problem, and counting the number of paths mod 2. While the hardness of these
problems can be obtained in a straightforward way, it requires a lot of algorithmic effort to
prove that the lower bound can actually be achieved. Thus, the main technical contribution
of this paper are new graph-theoretical notions and algorithmic methods that allow us to solve
these problems using only logarithmic space.

Furthermore, not only decision problems for series-parallel graphs turn out to be tractable. A
decomposition of such graphs can be computed within the same space bound as well. For gen-
eral graphs counting the number of paths is one of the generic complete problems for the class� � [2]. Thus, this problem is not computable in �� , the functional deterministic Logspace
complexity class, unless certain hierarchies collapse. We will prove that restricting to series-
parallel graphs the counting problem can be solved in ��� . This will be achieved by combining
our space efficient reachability decision procedure with a modular representation of numbers
requiring only little space, and the recent result that a Chinese Remainder Representation can
be converted to the standard binary one in logarithmic space [8].

Because of the relation between � and parallel time complexity classes defined by the EREW
PRAM model (see [15]) these new algorithms can be modified to solve these problems in loga-
rithmic time on EREW PRAMs as well. Finally, these results can also be extended to general-
izations of series-parallel graphs: multiple source or multiple sink, and minimal vertex-series-
parallel graphs.

This paper is organized as follows. In Section 2 we will prove the � -hardness of the reachability
and the recognition problem. Procedures solving these problems within logarithmic space will
be described in detail in Section 3. Section 4 outlines an algorithm that generates an edges-
ordering that reflects the structure of a given series-parallel graph. Based on this ordering we
sketch a decomposition algorithm in Section 5. In Section 6, we combine the methods presented
so far to solve the path counting problem. Finally, in Section 7 and 8 it will be indicated how

3

these results can be extended to generalizations of series-parallel graphs. We finish with some
conclusions and open problems.

2 Hardness Results

To establish meaningful lower bounds for the deterministic space complexity class � one has to
restrict the concept of polynomial time many-one reductions to simpler functions. We consider
the usual requirement that the reducing function � can be computed in �
	 � . The � -hardness
for series-parallel graphs can be shown in a direct way.

�
	 � -many-one reductions are defined as follows. Let � be an alphabet. For problems �B�����
� [���
	���� � holds if there exists a function � that is computable by unbounded fanin circuits
of polynomial size and constant depth with the property that for all ����� [holds: ����� iff
� ���;����� .

Theorem 1 The following problems are hard for � under �
	 � reducibility:

1. reachability in series-parallel graphs,

2. recognition of series-parallel graphs, and

3. counting the number of paths mod 2.

Proof: Let � be a language in � and � a logarithmic space-bounded deterministic Turing
machine accepting � by taking at most ��� steps on inputs � of length � , where � is a fixed
exponent. We may assume that � has unique final configurations V��! � , the accepting one, and
V�"$#&% , the rejecting one. In addition, all configurations V of � on � are time-stamped, that
means are actually tuples �'V �(' � with)*�+',� ��� . Then the successor configuration of �'V �(' � is
��V.-Q�(' S " � if '0/ �1� and � can move in one step from V to V2- . If V is a final configuration and
'�/ �1� then �'V �(' S " � is the successor of ��V$�3' � . For input � we construct a directed graph �54 ,
where the time-stamped configurations �'V �(' � are the vertices of �64 and edges represent (the
inverse of) the successor relation: �24 contains the edge ����V - �(' S " �7� �'V �(' ��� iff �'V - �(' S " � is a
successor of �'V �(' � . Obviously, �74 is a forest consisting of trees with roots of the form ��V$� � � � .
To prove the hardness of the reachability problem we augment �84 by two new nodes and
� . For every configuration ��V$� � � � the edge ���� ��V$� � � ��� is added, and for every leaf ��V$�(' � the
edge ���'V �(' �H����� . It is easy to see that the resulting graph is series-parallel with source and
sink � . Furthermore, it contains a path from �'V
�! � �� �6� � to �'V #10�#16 ��) � , where V #10 #D6 represents the
starting configuration of � iff � accepts � . The reduction itself can be computed in �
	 � . It
is illustrated in Figure 1.

In order to prove the hardness of the recognition problem we modify �54 as follows. For
every configuration V 9� :3V;�3 �
�
V�"$#&%�< add an edge ���'V=�! � �� � � �7� �'V � � � ��� to �>4 . Also add
the edge ����V #10�#16 ��) �H� �'V�"$#&%�� � � � � . Augment the graph by a new node � , and for every leaf

4

��������� 2 0
	��

�

��� ��� 2 0 	 �

����������� 2 � �

��������� 2 0�	��

Figure 1: The � -hardness reduction to reachability problem for
series-parallel graphs. The bold path from ��V
�3 �
� �1� � to �'V #10 #D6 ��) �
represents an accepting computation of � on � in reverse direc-
tion.

��V$�3' ��9� �'V #10�#16 ��)-� add the edge ���'V �(' �H����� . If � accepts � then the new graph is series-
parallel with source ��V,�! �
� �6� � and sink � . Otherwise, it contains a cycle connecting �'VA#10 #16 ��) �
and �'V�" # %�� �6� � .
Finally, let us consider the problem to count the number of paths mod 2. To prove the hardness
we will modify again the computation forest � 4 . Let

���� �!#"1� � :%$ ��& �(' ��)�<\��:��*$ ��&��7� �*$ �('��7� ��&3��)��H� �+' ��)�� <E� �
To each leaf �'V � � � 9� ��V #10 #D6 ��) � and to each root �'V �(' � 9� ��V,�! � �� �6� � of �>4 attach a separate
copy of �,�� �! drawing edges ���'V � � �H��$�� , resp. �*) � �'V �(' � � . Then we add new nodes ���� and
connect with each source - of the modified graph by ����� -1� , and each sink � - of the graph
with � by ��� -8����� . Clearly, the resulting graph is series-parallel. Furthermore, the number of - �
paths is odd iff there exists a path from a node ��V �! �
� �6� � to �'V #10�#16 ��) � , i.e. � accepts � .

3 Recognition and Reachability in Logspace

Establishing corresponding upper bounds is not obvious at all. We will give a space efficient
characterization of series-parallel graphs by forbidden subgraphs and exploit the structure of
internal paths very thoroughly. Assume that the nodes of the input graph � are represented
by the set of numbers :\"-�H.���� ���H� � < . � is given by a list of edges ��+ � �.- ���7� ��+�� �.-��H�H����������+ � �.- � � ,
where + � �.- � are binary representations of the names of the nodes. Let pred /�021 denote the set of
immediate predecessors of � , and pred /�043
5�1 the + -th immediate predecessor of � according to
the ordering implicitly given by the specification of � . Similarly, let succ /�021 and succ /�043
5�1 be
the set of immediate successors of � , resp. its + -th immediate successor. succ ��� ��+ � and pred ��� ��+ �
can be computed in deterministic logarithmic space: the Turing machine searches through the
list of edges looking for the + -th entry that starts (resp. ends) with � .
Define pred67/�021 , resp. succ 6 /�021 , as the transitive closure of pred ����� , resp. succ ����� , not con-
taining � , and pred 89/:021
"1� pred ;/����� <�: ��< and succ 8 /�021
"D� succ ; �����K< : � < . To shorten the

5

notation, let us introduce the predicate PATH /�� 3
021 being true iff the given graph � possesses
a path from node to � . Thus,

PATH �������� ��� � pred [����� ��� � � succ [��;�%�
Remember that deciding PATH for arbitrary graphs is ��� -complete. To construct a determin-
istic space efficient algorithm solving this problem for series-parallel graphs we introduce the
following concepts:

lm-down ����� "D� the maximal acyclic path ���GJ���� � � ����� ���� with (# ; �F� succ ��(#���" � ,
lm-up ����� "D� the maximal acyclic path �L� J���� � � ����� ���� with (# ; �F� pred ��(#���" � ,
lm-pred [����� "D� : � lm-down �� �
	 lm-up ����� 9��� <\� and
lm-succ [����� "D� : � lm-down �����
	 lm-up ��;� 9��� < �

Here, “lm” stands for left-most, that means in each node # the path follows the first edge as
specified by the representation of � . A path being acyclic requires that all its nodes
are
different. Thus, a maximal acyclic down-path either ends in a sink or stops immediately before
hitting a node as the left-most successor a second time. These concepts are illustrated in Fig. 2
and 3

lm-up ��

�

���

����
�

lm-down ��� � �

� �

Figure 2: 9� lm-down ����� and
� 9� lm-up ��;� .

lm-down ���

�

�

lm-up ��

�

Figure 3: � � lm-pred [��;� and
 � lm-succ [����� .

The sets can be decided by the procedure membership-lm-down �������� that returns TRUE if and
only if � lm-down ����� .

procedure membership-lm-down ��������
let � be the number of nodes in � ;
� "D� ���
+ "1�9"��
while � 9� and �

succ ���;� ���) and + � � do
let � "D� succ ����� " ���?+ "D�G+ S " od

if �Z�G then return TRUE else return FALSE

Testing whether � lm-up ����� can be done by the algorithm which is just the symmetric dual
hence we omit a description of a corresponding procedure membership-lm-up �������� .
To check if �� lm-pred [����� one can use the procedure membership-lm-pred �������� , which uses
membership-lm-down and membership-lm-up to decide lm-down and lm-up.

6

procedure membership-lm-pred ��������
����� � ' "1� FALSE
forall nodes � in � do
if � � lm-down �� � and � � lm-up ����� then let ����� � ' "D� TRUE od

return ����� � '

In the dual way we can test whether � lm-succ [����� . Hence it follows:

Lemma 1 For an arbitrary graph � and node � the membership problem for the sets lm-down ����� ,
lm-up ����� , lm-pred [����� , and lm-succ [����� can be solved deterministically in logarithmic space.

Definition 2 A graph � is called �	� -connected if � is has a unique source named � and a
unique sink named ' , and for every node � it holds: PATH � � ����� and PATH ��� �(' � , i.e. there exists
a path from � to � and a path from � to ' .

We start with a procedure called preliminary-test. For an acyclic graph � it returns TRUE iff �
is � ' -connected. If � contains a cycle V�� ���\�����3������� � ����� � the procedure will detect the cycle
if it is on a left-most path. In such a case the procedure outputs FALSE. Cycles that are not of
this form will not be detected, and the procedure erroneously may output TRUE.

procedure preliminary-test(�)
if not [� has a unique source � and a unique sink ']

then return FALSE and exit
forall nodes � in � do

if '>9� lm-down ����� or � 9� lm-up ����� then return FALSE and exit
return TRUE

Lemma 2 The procedure preliminary-test can be implemented deterministically in Logspace.
Moreover, if preliminary-test �'�B� outputs TRUE then � is � ' -connected. If it outputs FALSE
then at least one of the following conditions holds:

1. � has more then one source or more than one sink, or

2. � is � ' -connected, but it has a cycle.

The proof of this lemma is straightforward and we omit it. Note that a graph � with output
TRUE can still have a cycle. To detect this property is difficult for deterministic machines since
this question can easily be shown to be ��� -complete. Therefore, we look for a simpler task.

Let
 denote the graph shown in Fig. 4. A graph
�- is homeomorphic to
 if it contains
four distinct vertices $ ��& �(' ��) and pairwise internally vertex disjoint paths � ��
��� �!
������� ��� �� and
��� . If � contains a homeomorphic image of
 as a subgraph then
 is called a minor of � .
The following characterization of series-parallel graphs by forbidden minors has been known
for long.

Theorem 2 ([10], [17]) Let � be an � ' -connected acyclic graph. Then � is series-parallel iff

 is not a minor of � .

7

To make series-parallel graph recogniton space efficient, instead of searching for the forbidden
minor
 we will use the following characterization. Let � be a graph with four distinct nodes� � � � ��� ��� � ��� such that

1. � � ��� � �7�H� � ��� � ��� � are edges of � and PATH � � � � ��� � ,
2. � PATH � � � � ��� � and � PATH � � � � ��� � .

These conditions are illustrated in Fig. 5. In the following we will show how � can be used to
determine whether a graph is series-parallel. We say that � is an induced subgraph of � if �
contains four nodes � � � � ��� ��� � ��� which fulfil these connectivity conditions.

��
	

� �

Figure 4: The forbidden minor
 .

�
:

���

���

���

���

Figure 5: The forbidden induced sub-
graph � .

Theorem 3 Let � be an � ' -connected acyclic graph. Then � is series-parallel iff it does not
contain � as an induced subgraph.

Proof: Let � be acyclic and � ' -connected with source � and sink ' . We will show that � contains

 as minor iff it contains � as an induced subgraph.

First assume that
 is a minor and denote the corresponding nodes of � by $ ��&3��'3��) . Because
of the acyclicity � cannot contain a path from) to ' . Hence, on the path � ��� there must be an
edge ��& � ��&H�H� such that

PATH �*&�� �('�� and � PATH ��&7� �('��F�
Similarly, on the path � �! one can find an edge �+'D� ��'7�H� such that

PATH �*&�� �('7�
� and � PATH ��& � �('����F�
� PATH �*&H� �('�� implies � PATH �*&7����'7�7� . Hence, the nodes � � "D� &�� , � � "1� &H� , ��� "D� ' � , and��� "D� '7� fulfill the conditions from above.

To prove the opposite implication assume that nodes � � � � ��� ��� � ��� form the basis of � as an
induced subgraph of � . Choose & "1� � � and ' "1� ��� . Moreover, let $ be the first common
predecessor of & and ��� according to left-most paths from & and ��� back to the source of � .
Since � is � ' -connected such a node $ exists. Hence, we have found internally vertex disjoint
paths � �� and � ����� from $ to & and from $ to ��� , respectively. Analogously, let) be the first
common successor of � � and ' according to the left-most path order which gives rise to vertex
disjoint paths ��� � � and � � . The acyclicity of � and � PATH � � ��� ��� � and � PATH � � � � ��� �

8

imply that the path � �� , the path � �3 L� � � � � � ' (here ’ � ’ means a concatenation), the path
�����,� & � � � � � , and the path � �� are also internally vertex disjoint from the path � � �� � ��� ��� , in
other words
 is a minor of � .

Now, we will deduce the key property that makes reachability in SP-graphs easier compared to
arbitrary graphs. Although the parallel composition operator introduces a lot of nondeterminism
into the structure of these graphs when trying to find a path from a node to a node � this
question can be solved by considering the unique lm-down-path starting at and the unique
lm-up-path starting in � and deciding whether these two intersect. In other words, it holds:

Theorem 4 If � is series-parallel then pred [������� lm-pred [����� for every node � .
Proof: Assume that pred [����� 9� lm-pred [����� for some node � of � . We will show that then �
has to be an induced subgraph of � – a contradiction to Theorem 3.

Obviously, � cannot be the source � of � . Since � is � ' -connected and acyclic every lm-down-
path from an arbitrary node has to terminate in the sink ' . Thus, for ' holds pred [� ' �X�
lm-pred [��' �%�:� , and hence � 9��' .
Let ;� � pred [����� � lm-pred [����� . Since every lm-up-path terminates in the source � we can
conclude �.9� � . Let ;������� � �� � �+' be the leftmost down-path lm-down ��J��� . ;�.9� lm-pred [�����
implies that #79� � for all +.��� "-� � �
	 . Furthermore, let �X� � � ���3������� � ����� � � be the leftmost
up-path lm-up ����� from � .
Since �2� pred [���-��� there exists a non-trivial path from J� to �/� . On the other hand, because
of ��� � � and �-�F�G� 9� � it holds � PATH ��� �������� , and similarly because of � ��' and �-�29��' ,
� PATH �� � ���/��� . Hence, there exist +.��� "/� � ����"�	 and - ��� "/� �����:"�	 such that PATH �� #�����%7� ,
� PATH ��(# ��� % ; � � , and � PATH �� # ; ����� %�� .
The nodes � � "D� (# , � �,"1�9 # ; � , ��� "D� � % ; � , and ��� "1�9��% prove that � is an induced subgraph
of � .

Thus, if for some node � of � the relation pred [�����F� lm-pred [����� is violated one can conclude
that � is not series-parallel. This equality, however, can be tested space efficiently.

Lemma 3 There exists a deterministic logarithmic space-bounded Turing machine that for ar-
bitrary �*� � decides whether pred [������� lm-pred [����� .
Proof: Assume that pred [������9� lm-pred [����� . First, we claim that there has to be an edge
������ � � 	 such that �� pred [����� � lm-pred [����� and � � lm-pred [����� . To see this, let � �
pred [����� � lm-pred [����� and �X� ���� ���� � ����� � �� � � � be a down-path from � to � . Obviously,
;���� ������������ � � pred [����� , ;�*9� lm-pred [����� , and � � lm-pred [����� . Therefore, there exists an
index +���� "-� � ��� "�	 such that # � pred [����� � lm-pred [����� and # ; �
� lm-pred [����� . This proves
our claim. Now it is easy to see that the following algorithm answers the question whether
pred [������� lm-pred [����� :

procedure equality-test �����
����� � ' "1� TRUE
forall edges ������ � in � do
if �� 9� lm-pred [��������� ��� � lm-pred [������� then ����� � ' "D� FALSE od

return ����� � '

9

Corollary 1 Let � be an � ' -connected graph with pred [�����]� lm-pred [����� for every node � .
Then reachability within � can be decided in � .

Proof: The identity pred [�����F� lm-pred [����� guarantees that for all � in � holds:

� is reachable from � ��� PATH ���B����� ��� � � pred [����� ��� � � lm-pred [�������

Lemma 1 gives that the membership problem for lm-pred [����� can be solved space efficiently.

From the corollary above and from Theorem 4 follows immediately:

Theorem 5 The reachability problem in SP-graphs is in � .

Now, the following procedure SER-PAR decides for an arbitrary graph � whether it is series-
parallel.

procedure SER-PAR ���!�
1 if preliminary-test(�) returns FALSE then return FALSE and exit
2 forall nodes � in � do
3 if pred [����� 9� lm-pred [����� then return FALSE and exit od
4 forall pairs of nodes ����� in � do
5 if � � lm-pred [����� ��� � lm-pred [���;�
6 then return FALSE and exit od
7 forall pairs of edges � � � � � �H�7� � ��� � ��� � , with � �.9� ��� do
8 if � �,� lm-pred [� ��� � � � �.9� lm-pred [� ��� � � � �29� lm-pred [� ��� �
9 then return FALSE and exit od

10 return TRUE

The correctness of this procedure can be seen as follows. From Lemma 2 one can conclude
that the algorithm stops at line 1 and outputs FALSE if � has more then one source or more
than one sink, or � is � ' -connected, but it has a cycle. Hence, � is not series-parallel and the
answer FALSE is correct. On the other hand, if the procedure does not stop at line 1 then � is
� ' -connected.
If SER-PAR ���!� outputs FALSE in line 3 then pred [������9� lm-pred [����� for some node � . By
Theorem 4 it follows that this answer is correct, too.
If the algorithm continues, we can presuppose at the beginning of line 4 that � is � ' -connected
and for every � it holds pred [�����F� lm-pred [�����H� In lines 4-6 we check whether � is acyclic, and
stop if not. The answer will be correct since lm-pred [��� � contains all predecessors of a node � .
Let us recapitulate the conditions a graph � has to fulfill such that SER-PAR �'�B� does not stop
before line 7: � has to be � ' -connected, acyclic and for every pair of nodes ����� in � it holds:
PATH ��� �(�;� ��� ��� lm-pred [� �;� . This guarantees that in lines 7-9 the existence of � as
an induced subgraph is tested correctly. Finally, since all tests applied can be performed in
deterministic logarithmic space we can conclude:

Theorem 6 The question whether a graph is series-parallel can be decided in � .

10

4 An Edge Ordering Algorithm

For a graph specified by a list of edges we have made no assumptions about their ordering. In
particular, this ordering is not required to reflect the construction process of the SP-graph in any
way. In this section we present a log-space algorithm that given an series-parallel SP-graph �
outputs a special ordering called SP-ordering. The crucial property of this ordering is that for
any series-parallel component V with source � all immediate successors of � in V are enumer-
ated with consecutive integers. Speaking formally, for a node � the sequence SP-succ /�021 is a
permutation of succ ����� such that for all � succ ; ����� the set :)+ � SP-succ ��� ��+ �=� pred [��;� <
consists of consecutive integers. Here, for " � + � �

succ ����� � the value SP-succ ��� ��+ � de-
notes the + ’th vertex in the SP-ordering of succ ����� . Recall that succ ��� ��+ � is the + ’th immediate
successor of � according to the ordering implicitly given by the input specification. Hence, in
general SP-succ ��� ��+ � will be different from succ ��� ��+ � . To compute the SP-ordering we will
use succ ��� ��+ � and the following functions for a node :
for 9� � , START ��;� "1� closest �*� pred ; �� � such that every path from � to contains � ,
for 9��' , FINAL ��;� "1� closest �*� succ ; �� � such that every path from to ' contains � .
For all 9� � , START ��;� is well defined. It gives the source � of a smallest series-parallel
subgraph of � that contains and all its immediate predecessors. Analogously, FINAL �� � for
 9��' is the sink of a smallest series-parallel subgraph containing and its immediate succes-
sors. If has only one immediate predecessor � then obviously START �� �$� � . Otherwise,
START �� � will be computed by finding the closest common predecessor of the left-most up-
paths from any immediate predecessor of to the source of � . FINAL ��;� can be computed in
an analogous way. We define an inverse relation by

START �
� ����� "1� : � START ��;��� ��< �

FINAL �
� ����� "1� : � FINAL ��;��� ��< �

Observe that

START �
� ������� succ [����� and FINAL �

� ������� pred [�����%�
The set START ��;� and FINAL ��;� can be computed in logarithmic space as follows:

procedure START �� �
if 9� � then � "D� pred ���� " �
for +?��. to �

pred �� � � do
while � 9� lm-up � pred �����+ ��� do
� "D� pred ��� ��" � od od

return �
endif

procedure FINAL �� �
if 9��' then � "1� succ �����" �
for +?��. to �

succ ��;� � do
while � 9� lm-down � succ �����+ � � do
� "D� succ ��� ��" � od od

return �
endif

Using the above functions the membership problems for the sets START �
� ����� and FINAL �

� �����
can be decided in logarithmic space. Therefore we conclude:

Lemma 4 Let � be a series-parallel graph, then for every node in � the values START ��;� ,
FINAL �� � , START �

� ��;� , and FINAL �
� ��;� can be computed in logarithmic space.

11

Proof: It remains to show that the procedures START ��;� and FINAL ��;� compute the correct
values. By definition, START ��;� is the first common node � of all up-paths starting from nodes
in pred ��;� . It is easy to see that for SP-graphs � is at the same tame the first common node of
all leftmost up-paths starting from nodes in pred ��;� . On the other hand, the specification of the
procedure START implies that it returns such a node � . The argument for FINAL is analogous.

Next, we will introduce a notion that is motivated by the analysis of SP-graphs above.

Definition 3 The set of bridge nodes between two nodes ��� and �E� is defined as follows:

BRIDGES ���-� ���3�H� "1� : � START �
� ���-�
� 	 pred ;/���3�H� �

� ��� succ ; ��;� 	 pred ;����3�H� " � �� START �
� ���-�
��< �

� �

� �

Figure 6: The nodes in START �
� ���-�
� are marked darker;

in black: the subset BRIDGES ���\� ���E�
� .

Less formally speaking, to find the set of bridges between two nodes ��� ���E� consider the induced
subgraph ������� �
	 of � that has �-� as source and �/� as sink and consists of the nodes in succ [���/����	
pred [���E�7� . Then on every non-trivial path in ��� � 2 � � from �/� to �E� we select those node that is
closest to �/� and for which � � is the START-node.

Lemma 5

1. If �E� is a successor of �-� then the subgraph �� � 2 � � is a nonempty SP-graph.

2. If ��� � 2 � � has at least 1 additional node besides its source � � and sink �/� then it holds
START �

� ���/��� 	 pred ;����3�7� 9� � and BRIDGES ��� �����E�7� contains some elements, namely
at least those � START �

� ���-��� 	 pred ; ���3�7� that have no successor in this set.

3. Every path from � � to �E� different from the directed edge ���\�����3�7� contains a node that
belongs to BRIDGES ��� � ���E�
� .

4. Bridge nodes are pairwise incomparable, i.e. none is a successor of another.

5. If �E� is not a successor of � � then BRIDGES ��� � ���E�H�%� � .

12

Proof: The first property is obvious using the characterization by the forbidden minor
 .
The second property follows from the observation that for an SP-graph with source ��� , sink �E�
and at least 1 additional node, START �

� ���-��� always contains another element in addition to �\� .
For claim 3, assume that � ��� ����;���� � �������7�� � ���E� is a path of length at least 2 from �\� to �E�
that does not intersect BRIDGES ���\�����3�7� . By definition, �� � START �

� ���/�
� . Let � be the last
node before �E� of � that belongs to START �

� ���/��� . If �79� BRIDGES ���-� ���3�H� there must exists
� � � succ ; �� � � 	 pred ; ���3�7� 	 START �

� ���/�
��� � � that prevents � from becoming a bridge
node. Furthermore, there has to be a path from � � to � that does not contain � . Now let � - 9�G �
be the nearest common predecessor of � and � , and ' - 9��� be the nearest common successor
of � and � . Then the nodes � - ������B�(' - span
 as a minor of � .

The last two properties follow easily from the definition.

All sets used in the definition of BRIDGES can be decided in logarithmic space, thus

Lemma 6 For an SP-graph the set BRIDGES ��� �����3�7� can be computed in logarithmic space for
arbitrary nodes �-�����3� .

The sets BRIDGES will be used to decompose a given series-parallel graph � . We will order
the elements in BRIDGES ���\� ���3�H� according to their names. For " �G+ � �

BRIDGES ���\�����3�7� �
let BRIDGES ��� �����3� ��+ � be the + -th largest element according to this ordering. By enumerating
all nodes of � and testing for membership in BRIDGES ��� �����3�7� the node BRIDGES ��� �7���E� ��+ �
can be computed in logarithmic space as well.

Lemma 7 For an SP-graph � with nonempty set BRIDGES � � �(' � of cardinality � let J# denote
the + -th element in this set, and let �B# be the series composition of ��� 2 5 � and � 5 � 2 6 . Then it holds:

1. if � has an edge � � �(' � then � is the parallel composition of � � "1� :�� � �(' � ������� � � � � �3' � �3<
and �!�7�
�$� ���������
� � ,

2. if � � �(' � 9� 	 and �]� " then � is the series composition of ����2 5 � and � 5 � 2 6 ,
3. if � � �(' � 9� 	 and � � " then � is the parallel composition of �]� �
�$� ���������
� � .

Proof: First let us consider the case � � �(' �>9�X	 .
If � � " then it remains to show that there can be no nodes outside of ����2 5 � < � 5 � 2 6 and no
edges connecting ��� 2 5 � with � 5 � 2 6 . These two properties follow easily from Lemma 5(3) since
otherwise one could construct a path from � to ' that avoids the only bridge node ?� .
For � � " , we have to prove for arbitrary "2� + / -*��� :

�*$�� pred [��(#�� 	 pred [�� %7����: � < ,
�*&�� succ [��(#�� 	 succ [�� %7����: '�< ,
�+'��T	 	 � pred [��(#8� � succ [�� %�� ����� ,

�*)�� � �*� � � � � � � �X����2 5	� <=� 5	� 2 6 .

13

To show the first property let us assume to the contrary that ��9� � is a common predecessor
of both # and % . Let � be the closest node with this property. Since START ��I#���� � there
exist three pairwise internally vertex disjoint paths: � � 2 � ��� �
2 5 � and � ��2 5 � . Moreover, there has to
be a path � �
2 5 � that is internally disjoint with the previous paths. Finally, let '�- be the nearest
common successor of # and % . Then � ��(#���� �(' - would span the forbidden minor
 .

For claim ��&�� assume to the contrary that � is a nearest common successor of I# and % different
from ' . By ��$�� every pair of paths � ��2 5 � and � ��2 5 � is internally vertex disjoint. The same property
holds for paths �?5 � 2 � and ��5 � 2 � because of the choice of � . The concatenations of � ��2 5 � with ��5 � 2 �
and � ��2 5 � with ��5 � 2 � yields two disjoint paths from � to � which would imply � � START �

� � � �
or the existence of the forbidden minor
 . But this is a contradiction to J# �� % being bridge
nodes.

Assume now that there exists an edge ��� ��� ���X	 with � � pred [�� #*� and � � succ [�� %�� . From
��$�� and ��& � we know that �+9� # and � 9� % . Therefore, there exist a path � ��2 � from � to �
that does not intersect BRIDGES � � �(' � and similarly a path � � 2 6 from � to ' . The concatenation
� ��2 � � � � � � 2 6 gives a path that would not intersect BRIDGES � � �(' � – a contraction to Lemma 5(3).

For claim ��)�� assume that a node � of � does not belong to any of the subsets pred [��(#��K<
succ [�� #*� . Since � has to be connected to � and ' somehow there must be a path from � to
' containing � which does not go through BRIDGES � � �(' � . This, however, would contradict
Lemma 5(3).

Finally, the case � � �(' �0�X	 can be reduced to the other two cases by considering the component
� � "D��:�� � �(' ����� ����� � � � �(' � �3< separately and then removing the edges � � �3' �H����������� � � �(' � � from � .

Now we can specify the algorithm to compute an SP-ordering. The recursive procedure SP-
sequence ����3' � outputs the sequence of immediate successors of a node in an SP-ordering.

procedure SP-sequence ��������
if ����������X	 then output � endif
for +?� " to �

BRIDGES �������� � do
SP-sequence ���� BRIDGES ������ ��+ � �

Theorem 7 For every node of a series-parallel graph an SP-ordering of its immediate suc-
cessors of can be computed in logarithmic space.

Proof: The correctness of the procedure SP-sequence follows directly from Lemma 7. A loga-
rithmic space bound, however, will not be sufficient for this recursive approach. Instead, con-
sider the following iterative implementation of SP-sequence �������� that recomputes the parame-
ters of a recursive call.

14

1 if �������� � 	 then output � endif
2 + "1� "
3 if + � �

BRIDGES �������� � then goto 7
4 � "D� BRIDGES ������ ��+ ���
5 if �������� � 	 then output � endif
6 goto 2
7 if �L� FINAL ��;� then exit endif
8 compute � � START �

� ��;� such that �*� BRIDGES ���� � �
9 compute + such that BRIDGES ������B��+ � � �

10 � "D� � �?+ "1�G+ S "��
11 goto 3.

This procedure uses only 4 variables: 3 to index the nodes of the input graph and 1 as a counter
that is bounded by the maximal size of the sets BRIDGES �������� . Hence, logarithmic space
suffices.

The SP-ordering of the predecessors of a node can be computed analogously.

5 The Decomposition in Logspace

A decomposition tree of a series-parallel graph provides information how this graph has been
built using the parallel and serial constructors. It will also allow us to solve several counting
problems for series-parallel graph.

Definition 4 A binary tree
� � �'������	�� � with a labelling function � "J����� :��I�
	 <A< 	 is a

decomposition tree of an SP-graph �9� �����
	�� iff
1. leaves of

�
are labelled with elements of 	 , internal nodes with p or s,

2. � can be generated recursively using
�

as follows:

(a) If
�

is a single node � then � consists of the single edge ������� and its associated
nodes;

(b) otherwise, let
� � and

� � be the right (resp. left) subtree of
�

and �!# be SP-graphs
with decomposition tree

� # :
if �%��������� then � is the parallel composition of �]� and � � ,
if �%��������	 then � is the series composition of �L� and �$� .

Note that the decomposition tree in general is not unique since several parallel compositions
may be combined in different ways, and similarly several series compositions. However, if in a
decomposition tree neighbouring nodes with the same label are collapsed to a single node such
that the resulting tree may have nodes of outdegree larger than 2, but on every path from a leaf
to the root the sequence of labels alternates between � and 	 the tree becomes unique.

Bridge nodes play an essential role when computing a decomposition tree. Given a series-
parallel graph � with source � and sink ' , the procedure SP-DECOMP � � �(' � outputs the root
DTR of a decomposition tree of � . To generate the nodes of the tree we use the procedure

15

getnode � � � that allocates a needed amount of memory for a new node and assigns a pointer to
this node to � . The decomposition algorithm is based on the characterization given in Lemma 7.
For an example of such a decomposition see Fig. 7.

procedure SP-DECOMP ��������
1 if

�
BRIDGES �������� ��� " then do

2 getnode � � � � ��� � � "1� s;
3 left � � � "D� SP-DECOMP ���� BRIDGES ������ ��" � �
4 right � � � "D� SP-DECOMP � BRIDGES ������ ��" �H�����
5 DTR:=r;
6 for + "1�:. to

�
BRIDGES �������� � do

7 getnode �+'���� �%�+'�� "1� s;
8 left �+'�� "1� SP-DECOMP ���� BRIDGES ������ ��+ ���
9 right �+'�� "1� SP-DECOMP � BRIDGES ������ ��+ �7�����

10 getnode �*&�� ; �%��& � "D� p; left ��& � "D������� ; right �*&�� "1� ' ;
11 ����� "1� &
12 endfor
13 endif
14 if 	 contains � � " copies ��������
�7��� ��� � �������� � of ��������
15 then do
16 getnode(c); �%�*' � "D������������ ;
17 for �A�G.������ � � � do
18 getnode(a); ���*$�� "1� �������� � ;
19 getnode(b); ���*&�� "1� � ; left ��&�� "D� $; right ��&�� "1� ' ;
20 ' "D� & ;
21 endfor
16 if

�
BRIDGES �������� ��� " then do

17 getnode ��&���� �%�*&�� "1� p; left �*&�� "1������� � right ��&�� "D� ' ;
18 ����� "D� & od
19 else ����� "D� '
20 endif
21 endif
22 return DTR.

a) b)

� �
5 �

5 �� �
5��

� � � � �
	��
������ � ���� � � ��

� � ���:��	��

�� � � � ���� � � ��� � � � ���� � � �

� � ���:��	��
� � ������	�� � � � ����	��

Figure 7: An example of a decomposition tree generated by SP-
DECOMP ���-� ���3�H� : � �
2 5 are subtrees generated by SP-DECOMP that
consist of a single edge or a larger component.

16

Theorem 8 A decomposition tree of an SP-graph can be computed in ��� .

Proof: It remains to estimate the space required by SP-DECOMP. To be efficient we do not
store the values of the variables for each recursive activation of SP-DECOMP as it is done
in a standard implementation of recursion. In our special situation these values of the calling
activation of SP-DECOMP can be recomputed by using the procedure BACK-DECOMP ���������
when returning from a recursive call.

procedure BACK-DECOMP � ����� �
1 "1� source �'�B���A� "D� sink ���!� �E+ "D� "
2 if ���T� � �L� BRIDGES ������ ��+ ����� ���Z� BRIDGES ������ ��+ � � ���G���
3 then return ������ ��+ �
4 if ����� � succ [��;� 	 pred [� BRIDGES ������ ��+ ���
5 then � "1� BRIDGES ������ ��+ � � + "D� " ; goto 2
6 if ����� � succ [� BRIDGES ������ ��+ ���
	 pred [�����
7 then "1� BRIDGES ������ ��+ � � + "D� " ; goto 2
8 + "D�G+ S "�� goto 3.

The procedure BACK-DECOMP on input ����� returns a pair ���� and an integer + with the
following properties: if SP-DECOMP is called recursively for nodes ������� � then ���� and +
are the current values for this recursive call in lines 3, 4, 8, 9. Thus one can implement SP-
DECOMP without any stack for the recursion, and it follows easily that only logarithmic space
is needed.

6 Path Counting Problems

In this section we show that for series-parallel graphs the classical problem to count the number
of paths can be solved in ��� . For general graphs counting the number of paths is not solvable
in �� – unless certain hierarchies collapse – since this problem is one of the generic complete
problems for the class

� � [2]. Speaking more precisely, let us define the function ����� ��� /	� 3�
 1
as the number of different paths from $ to & in � .

Theorem 9 Restricted to series-parallel graphs
� ��� ��� can be computed in �� .

Proof: Consider the subgraph � �
2 � of � induced by �2- "D� succ [��$�� 	 pred [��&�� . It is either
empty (and then

� ��� ������$ ��& � �)), or it is a series-parallel graph with source $ and sink
& . Furthermore, all paths from $ to & in � occur in � �H2 � as well, thus the number of paths
is identical. A simple induction shows that

� ��� ���J��$ ��&�� can be bounded by . 0 ; � . Using
the reachability algorithm presented in Section 3 we can also decide in Logspace whether an
arbitrary edge of � belongs to � �
2 � .
Let

� � �'� ���
	 � � be the decomposition tree of � �
2 � and � � � S � be its size. We interpret the
tree as an arithmetic expression as follows. Every leaf represents the integer " . An internal node
� of

�
labeled by ��������� 	 (resp. �) defines a multiplication (resp. addition) of the expressions

generated by its sons. One can check easily that the value of the root of
�

equals
� ��� ���I�*$ ��&�� .

17

Below we sketch how can be computed in logarithmic space. Let ��� /��(� / ��� � be the
standard enumeration of primes. The prime number theorem implies

��� ��� 0 ; � � #N�
� � 0 ; � � � � ; 4 � �.� � � � ��� ���J��$ ��&��K� (1)

Using the log-space algorithm of [7] one can transform
�

into a binary tree
� - of depth MN��O P-R � �

representing an arithmetic expression with the same value as
�

.

We evaluate
� -��WP
	�� # using the algorithm in [4]. For � #.� � S � this algorithm works in

space MN��O P-R � S O P-R � �US �@� �
�:MU��O P-R � � . By inequality (1), taking all � # � �WS � the values
 mod � # gives a Chinese Remainder Representation of . Using the results of Chiu, Davida,
Litow, resp. Hesse [8, 12] that such a representation can be converted to the ordinary binary
representation in Logspace, finishes the proof.

Using the hardness result shown in Section 2 it follows, that the problem to compute
� ��� ����� P
	

. is � -complete. Using the techniques presented so far one can also solve other counting prob-
lems, like determining the size of � �H2 � in �� .

7 Generalization to Multiple Terminal Series-Parallel Graphs

The class of series-parallel graphs can be extended by no longer requiring a unique source and
a unique sink.

Definition 5 The family of multiple source series-parallel graphs, MSSP-graphs for short, is
obtained by adding the following constructor:

(C) In-Tree Composition: given two graphs �L���
� � select a node �� in �!� , identify it with
the sink �E4�5H682 � of � � and form the union of both graphs.

In-tree compositions may be applied several times, but only after completion of all parallel
and series compositions. As soon as a graph contains several sources the series and parallel
constructors can no longer be used.

Multiple sink series-parallel graphs with a unique source, but possibly several sinks can be
defined in an analogous way. In the following, we will restrict ourselves to the first extension –
dual results hold for the second class.

Unlike ordinary series-parallel graphs, the reachability problem for an MSSP-graphs � cannot
be solved by simply following the leftmost paths, since (see for example Fig. 8 a) PATH ���������
no longer implies lm-down ���;� 	 lm-up ��� � 9� � . To decide reachability a more sophisticated test
is required. Define

ELUDE ����� "1� :, � � �>�����,�
� succ �� � " � � lm-down � �>��� � lm-down ���,�H� < �
It should be obvious that the membership problem for ELUDE ����� can be decided in � .

Lemma 8 For ordinary series-parallel graphs it holds ELUDE ������� lm-up ����� .

18

Proof: Assume to the contrary that some �� ELUDE ����� does not belong to lm-up ����� . Then
we get a contradiction to Theorem 2 as follows: Let �=� � � ���/�����3������� � ����� be the leftmost up-
path of � and let �>�����,�8� succ ��;� be nodes such that � � lm-down ��� ��� � lm-down � �)�7� . By
assumption, 9� �3# for all + . Let � be the first index with � � � pred ; ��;� and let - be the largest
index such that � % lies on the path lm-down � � �
� . Moreover if the paths � %3����% ; ���������7��� � and
lm-down � �)�
� are not disjoint then let � "D�G��� be the common node of these two paths with the
largest index

�
; otherwise let � be the nearest common node of lm-down ��� %7� and lm-down � �)�H� .

Then � � ����% �� and � induce the forbidden minor
 .

�

5 �
5 �
� �

�
� �

�
a) b)

Figure 8: a) left-most paths that do not meet, b) computing ELUDE �����

Fig. 8 (a) shows that for MSSP-graphs the left-most up-paths may not contain ELUDE ����� : the
node � belongs to ELUDE ����� , but lm-up ����� takes the other direction. But at least, almost the
same proof as above shows:

Lemma 9 The nodes in ELUDE ����� are linearly ordered, that is for all 9� - � ELUDE �����
either � succ ; ���- � or �- � succ ; ��;� .
Otherwise, one could find the forbidden minor
 . Thus the closest predecessor of � in ELUDE ����� ,
let us call it NEXT-ELUDE ����� , is well defined if ELUDE ����� 9� � .

Lemma 10 NEXT-ELUDE ����� can be computed in � .

Proof: The node �Z� NEXT-ELUDE ����� uniquely fulfils the property

� � � ELUDE ����� � : � < � � ����	� �
�
 � � � lm-down ���;�

which can be tested space-efficiently.

Now we define a set CRITICAL ����� of nodes that play the essential role for testing reachability
in MSSP-graphs:

CRITICAL ����� "D� : � < < CRITICAL � NEXT-ELUDE ������� if ELUDE ����� 9��� ,
: � < else.

The analogue of Theorem 4 looks as follows.

19

Theorem 10 For every node � in an MSSP-graph � it holds

pred [�����X� : � lm-down �� � 	 CRITICAL ����� 9��� < �

Proof: Let � � ���A����� ��� ��� � denote the sequence of critical nodes for a given node � , i.e. � � � � ,� # ; � � NEXT-ELUDE � �)#*� , and ELUDE ��� ��� � � . Assume to the contrary that for some
 � pred [����� it holds: lm-down ��;� 	 CRITICAL �����)� � . Let + be the maximal index such
that � # � succ ; ��;� . Then we define

� "D� succ [��;� 	 pred [� � #����
Obviously, �,# � � . By definition, � 	 ELUDE � � #�� � � , otherwise + would not be maxi-
mal. Let ��5 2 � � be a path from to �,# . Obviously �?5 2 � � ��� . Because �,# ; � 9� succ ; ��;� and
� #59� lm-down ��;� there has to exist a node 1- on the path ��5 2 � � such that �,#89� lm-down ���- �
and either �,# � succ �� - � or there exists a node - - � succ �� - � , with �,# � lm-down �� - - � . Hence
 - � � 	 ELUDE � �,#*� – a contradiction.

Combining this theorem together with Lemma 10 we obtain

Theorem 11 The reachability problem for MSSP-graphs can be decided in � .

To verify whether a given graph is an MSSP one we can use the forbidden subgraph � again.
However, a set of nodes fulfilling its PATH conditions can occur in MSSP-graph � , but only if��� belongs to another component �!� of � than � � and � � , which is connected to the rest graph of
� via an in-tree composition step at ��� . Since this can also be verified in Logspace we obtain:

Theorem 12 The recognition problem for MSSP-graphs is in � .

The notion of decomposition trees can be extended to this larger class of graphs as well.

Definition 6 A binary tree
� ����� ���
	 � � with a labelling function � " ��� � :��;�
	 � ��� � ����< < 	

is a decomposition tree of an MSSP-graph �9� �'�%��	�� iff

1. every leaf of
�

is labelled with an edge in 	 and every internal node with an element
from :��;�
	 � ��� � ����< ;

2. � can be generated recursively using
�

as follows:

(a) If
�

is a single node � then � consists of the single edge ������� and its associated
nodes;

(b) otherwise, let
� � (resp.

� �) be the right (resp. left) subtree of
�

and �B# be MSSP-
graphs with decomposition tree

� # :
i. if �%������� � then � is the parallel composition of �]� and �$� ,

ii. if �%������� 	 then � is the series composition of �L� and �$� ,

20

iii. if �%����� � ���\����� then � is the in-tree composition of �]� and �$� , where � is a
node of �!� and the sink of �$� is identified with � .

To generate a decomposition tree for an MSSP-graph we first generate nodes that represent the
in-tree composition steps, then the subtrees that describe the decomposition of the basic series-
parallel graphs. To enumerate these subgraphs we will use the sources of the MSSP-graph.
Note that there may arise ambiguities between an in-tree composition and a series composition
step, see for example node ;� in Fig. 9.

� � � � � � � �

� � � � � �

 �
��

 � �
�

 � �

� � � �

 �

b)a)

Figure 9: Two different alternatives for decomposing an MSSP-graph

To distinguish between an in-tree and a series composition we define the following set of nodes
for a source � :

��� �I� � � "1� : � � ELUDE ����� 	 succ [� � �.9� � < �
��� �I� � � "1� : � � ELUDE �����%� ��� � � succ [� � � < �
��� � � � "1� : � � � � - 9� � � �*� ��� �I� � - � � succ [������� succ [� � � 	 succ [� � - � 	 < <

: �*� ��� �J� � � � � � - 9� � � � - is a source � pred ��� � " ��� succ [� � - � � succ [� � � 	�< �
Intuitively speaking, a node � is in

��� � � � if it is a sink of a component in an in-tree composition
such that � is a source of this component. Moreover if for � there exist different alternatives for
an in-tree composition then the definition of

��� � � � resolves the ambiguity in such a way that
� is source of an in-tree component with a sink � if the first predecessor of � does not belong
to succ [� � � ; otherwise � is a node of a series composition with a component including � . For
example, if in Fig. 9 pred ��;����" ��� ��� then we decompose the graph as illustrated in (a), i.e. it is
an in-tree composition of a an ordinary SP-graph with source � � and sink ' and an MSSP-graph
with sources � � � � � and sink � . Finally we define:

�	��
� � � � "D� first node on the leftmost down path starting at � , which belong to
��� � � � ,

resp. the sink of � , if
��� � � � 	 lm-down � � ����� ,

in-rank � � � "1� �
lm-down � � � 	 ��� � � � � �

To generate a decomposition tree for an MSSP-graph � with sources � � � � ������� ��� � � we compute
an ordered sequence ��� � �.� � ��� � �:� ��������� ��� � � � such that in-rank � ��� � # � � � in-rank � ��� � # ; �.� � for all
+ � :\"-�������7� ��� " < . Using the implicitly given input ordering we can compute the + ’th element

21

of this sequence in logarithmic space for any + . Let I# "1� � ��
 � � ��� � # � � , � #B� ��� # �
	,#�� be the
decomposition tree of ��� ��� ��� 2 5 � , and � # be the root of

� # . The decomposition tree
� � �'������	�� �

can be generated as follows:

� � "D� �
# ��� � 2	�	�	� 2 ��
 �(# < :=�;������� � �(� �

�
� <

	 � "D� �
# ��� � 2	�	�	� 2 ��
)# < :B���(#��(�(# ; �
�

� + � :\"-��� ��� � � � . <><

< :B� � ���(�;�
� < < :$� � # ; � �(�(#��
� + � :\"-� ����� ����� " <><

where �(# are new nodes with �%��� #��%����� �� #8� .

Theorem 13 A decomposition tree of a MSSP-graph can be computed in �� .

Proof: That the subgraph induced by the node set : ��� � �����7�(� �
�
��� � ����������� � � < gives a correct

decomposition of � into two-terminal SP-graphs can be shown by induction on the length of
the chain � � ����� � �(� �

�
� . Assume that

� -����'�.-� ��	7-� � with

� -� "D� �
# ��� � 2	�	�	� 2 �

�
�
 �(# < :=�;� �������7�(� �

�
� <

	 -� "D� �
# ��� � 2	�	�	� 2 �

�
�
)# < :B���(# �3�(# ; ���

� + � :\"-����� ��� � �� <><
< :B� � ���(�;�
� < < :$� � # ; � �(�(#��

� + � :\"-� ����� ����� . <><
is a correct decomposition tree of �2- where �.- is the MSSP-graph � minus its subgraph with
sink �

�
� and source ��� � � � . Since, in-rank � ��� � � � � is maximal for all sources � # there exists no

node in � � ��� 	 � 2 5 	�� � that has to serve as an in-tree composition node of � in ��� ��� 	 � 2 5 	�� � . Note,
that according to the definition of

��� � � � , each series composition in the top level can not be an
in-tree composition.

Hence, � can be generated by an in-tree composition of �5- and � � ��� 	 � 2 5 	�� � at �
�
� – as described

by the decomposition tree
�

.

The counting algorithm for SP-graphs can be extended to this class as well. To compute
� ��� ���

we use the algorithm for SP-graphs for every subgraph given by a source-sink pair � �3' . Note
that each subgraph of the form � �� is a two-terminal SP-graph. Therefore we can compute the
decomposition tree of each ����6 in Logspace. Furthermore we can compute the number of paths
in ����6 modulo a given prime number � � � � � and also the sum� �

��� ��
�� � ���	��� 6 � ��� �����'����6�� � P
	 ��� � P
	 �

in logarithmic space. Hence, we can conclude from the algorithm discussed for two-terminal
SP-graphs:

Theorem 14 For MSSP-graphs the function
� ��� ��� can be computed in �� . The same holds

for the size of subgraphs � �� with arbitrary nodes $ ��& .

22

8 Vertex-Series-Parallel Graphs

Another alternative to generalize the family of SP-graphs are vertex-series-parallel graphs:

Definition 7 A graph � � �����
	�� is a minimal vertex-series-parallel graph (MVSP for
short) if it can be constructed using a sequence of the following operations, where � # � ��� # �
	,#��
for +?�9"-�H. are disjoint MVSP-graphs:

Initial Step: if G consists of a single node it is an MVSP-graph;

Parallel Composition: �9� ��� �?< � � ��	 ��<=)�H� ;
Series Composition: let �

�����
��/ ����1 denote the set of sinks of �B# and �	��
������� / ����1 its sources,

then �9� �'�;�?< � � �F	>�?<@	A� < �	��
� � ���!�
� � � P������	� � �'� �H��� .

MVSP-graphs are a subclass of a graph family called CBC-graphs [17].

Definition 8 A graph � is a complete bipartite composite graph (CBC) if there exists a set
: � ����� ��� ����� � � � < of complete bipartite subgraphs of � , called the bipartite components of � ,
such that

1. every edge of � belongs to exactly one bipartite component,

2. for each non-sink node � , all edges leaving � belong to some bipartite component ��� ����� ,
and

3. for each non-source node � , all edges entering � belong to some bipartite component
� � ����� .

Lemma 11 The membership problem for CBC-graphs is in � .

Proof: To test whether � is a CBC-graph it suffices to test for every node � that for all �'�7���E� �
succ ����� " pred ���-��� � pred ���E�7� , and that for all � � ���E�>� pred ����� " succ ���-�
� � succ ���E�7� , which
can easily be done in Logspace.

Recognition of MVSP-graphs is based on the concept of a line graph.

Definition 9 A line graph �A���!�T� �'��� �
	�� � of a graph � � �����
	�� consists of
� 	 � nodes

��� "D��:)� # � � �X	 < and the edge set 	 � defined by

	 � "1� :���� # �
��� # ��� � � �� � ��� � � such that � �F������ � � and � � ��� � ��� ��< �

Valdes, Tarjan and Lawler have shown in [17] that a graph � is an SP-graph iff its line graph
�A���!� is an MVSP-graph. Furthermore, for every MVSP-graph � - one can find an SP-graph � - -
such that � - � �A�'� - - � . Then � - - � � �

� ��� - � will be called a (line graph) inverse of � - . � �
� �'� - �

is unique when restricted to SP-graphs.

23

In the following we will concentrate on MVSP graphs and their inverses. To construct the
inverse of an MVSP-graph � , consider the bipartite components of � . Each bipartite compo-
nent �># is replaced by a node # and two such nodes �� # �� %7� are connected if � # and �0% are
consecutive components, i.e. either

sinks ���>#���� sources � �0% � or sources ���=%���� sinks ���>#��F�
The number of edges between two nodes ;# and % is given by

�
sinks ��� #���	 sources � �0%7� � . Finally

we add a new source � and a new sink ' and connect � to all other source nodes obtained so far,
and connect all sinks to ' .
How can this be done in Logspace? For each bipartite component �$# let �3# be the left-most
(according to the input ordering) source of � # . The number of edges �� #'�� %7� between two nodes
(# and % of the line graph can be determined by

�
succ ���-#*��	 pred � succ ����% ��" � � � . The source � of

the line graph � - is connected to a node ;# by
� : � � pred � succ ���3# � " ��� � pred �����A� � < � many

edges. This number is 0 for all bipartite components which are not sources. Finally, there are� :,� � succ ���3#�� � succ �����%� � < � many edges from a node # to ' in �.- . This transformation can
be performed in logarithmic space.

Lemma 12 For CBC-graphs their inverses can be computed in �� .

Now to test whether a given graph � is an MVSP we first check whether it is an CBC-graph. If
yes then we construct an inverse and test whether this inverse is an SP-graph. Since Logspace
is closed under composition we can conclude from section 3:

Theorem 15 The membership problem for MVSP-graphs is in � .

To decide whether a node � is reachable from a node � in an MVSP-graph � the following
algorithm can be used:

procedure MVSP-PATH(�;�(�)
1 if �T� � then return TRUE
2 else if � is a sink of � or � and � are sinks of the same bipartite component

then return FALSE
3 else
4 let � - be the inverse of �
5 let � - be the node of �.- for the bipartite component � # of � with � � sink � �>#��
6 let � - be the node of �.- for the bipartite component � # of � with �*� source � �>#��
7 if PATH ��� - �(��- � then return TRUE
8 else return FALSE

Since all subroutines can be implemented in Logspace we get

Theorem 16 Reachability for MVSP-graphs can be decided in � .

24

Proof: It remains to show, that MVSP-PATH(�;�3�) decides the reachability problem correctly.
Obviously, � is reachable from � if �=� � and unreachable if � is a sink of � different from � ,
or if both are different sinks of the same bipartite component. On the other hand, the sequence
of nodes in a path in the inverse of � represents a sequence of edges in � . Hence, if � is an
element of a set of sources of a bipartite component, to which � does not belong, then each path
from � - to ��- represents a path from the bipartite component of � to � . It follows that if � - is
reachable from � - in � - then � is reachable from � in � .

Now consider the problem to compute the decomposition tree of an MVSP-graph.

Definition 10 A binary tree
� � ��� ���
	�� � with a labelling function � "���� � :�� � 	 < < � is

called a decomposition tree of an MVSP-graph �9� �'�%��	�� iff

1. for every leaf of
�

it holds �������0� � and for every other node ��������� :��;�
	 < ,
2. � can be generated recursively using

�
as follows:

(a) if � �Z��� then � is empty;

(b) if
�

is a single node � then � consists of the single node ������� ;
(c) let

� � be the left and
� � be the right subtree of

�
the roots of which are the sons of

the root � of
�

. Furthermore, let �B# be a graph with decomposition tree
� # , then

i. � is the parallel composition of �L� and �$� if ��������� � ;

ii. � is the series composition of �L� and �$� if �%�����%� 	 .

In [17] it has been shown that the decomposition tree of an SP-multigraph can by transformed
into a decomposition tree of the corresponding MVSP-graph by changing the labelling of the
leaves. Recall that each edge of the inverse graph corresponds to a node of the original graph.
Furthermore, using the transformation described above we can label each edge in the SP-graph
�>- by its corresponding node in the MVSP-graph � . Hence, given a decomposition tree of
�>- we can compute the decomposition tree of � by exchanging the labels at the leaves by the
corresponding edge labels of �2- .

Theorem 17 The decomposition tree of an MVSP-graph can be computed in ��� .

Finally, let us consider the problem to compute the number of paths between two nodes of an
MVSP-graph. Again we use the inverse graph.

Lemma 13 Given a MVSP-graph � and its inverse � - , then the number of paths between a
pair of nodes ���� in � equals the number of paths between the pair - and � - in � - where - is
the node that corresponds to the bipartite component of � containing as a source and � - to
the bipartite component containing � as a sink.

Proof: We perform induction on the maximal distance between nodes and � . If the distance
between and � is 1, i.e. is a source of the bipartite component with sink � then the number

25

of paths from to � is one. The strategy used in the Lemma above maps and � to the same
node of � - . Hence, the number of paths from - to � - is 1 as well.

Let us now assume that claim holds for distance � from . Then the number of paths from to
a node � with maximal distance � S " from is the sum of the number of paths from to the
predecessors of � which have maximal distance � . These numbers can be computed by using
Lemma 13. It holds:

� ��� �������������� �
�

� � � !����*� � ��� � ��� ������������ #��
�

�
� � !�� ��� � ���
 �	� ! � � � � � ��
 � � �	��
� � � �>#�� 	 pred ����� � Y � ��� ��� � �����(#8�F�

where (# is the leftmost sink of � # according to the input ordering of � . The number
� �	��
� � ��� #���	

pred ����� � determines the number of edges between the node � -# in � - representing � # and the node
� - representing the bipartite component with sink � . It follows that

� ��� ��� � �������� �
�

� � !�� ��� � � �
 �	� ! � � � � � ��
 � � � �
� � ���>#�� 	 pred ����� � Y � ��� ��� �� �� - ��� -# �

�
�

� � � !�� ��� � � � � �	��
� � � �>#�� 	 pred ����� � Y � ��� ��� �� �� - ��� -# � � � ��� ��� �� �� - ��� - �%�

Hence we can conclude

Theorem 18 For MVSP-graphs the function
� ������� can be computed in �� .

Similarly, using MVSP-PATH we can also compute the size of subgraphs of an MVSP graph:

Theorem 19 For MVSP-graphs the size of subgraphs �5� � can be computed in �� .

9 Conclusions and Open Problems

A deterministic Turing machine working in space
� � OQP-R can be simulated by an EREW

PRAM in time MN� � � using at most an exponential number of processors with respect to
�

(see
e.g. [15]). Our space efficient algorithms for the various graph problems considered here imply
logarithmic parallel time algorithms with a polynomial number of processors. The simulation
of space-bounded Turing machines by PRAMs can even be performed by the EROW model
(exclusive-read owner-write). Hence we can deduce

Corollary 2 For series-parallel graphs and their extensions considered above, recognition,
reachability, decomposition, and path counting can be done in logarithmic time on EROW
PRAMs with a polynomial number of processors.

26

The exact number of processors depends on the time complexity of the Turing machine. Since
our basic log-space algorithms require time MN� � � for some constant ' significantly larger than
" , we probably will not achieve a linear number of processors this way. The reachability prob-
lem in series-parallel graphs has been shown to be solvable by an EREW PRAM in logarithmic
time using � � OQP-R � processors [16]. But it is still open whether also recognition and decompo-
sition can be done in logarithmic time with a linear number of processors.

If we switch to undirected graphs the problems considered here seem to be inherently more
difficult. In the undirected case, series-parallel graphs can be characterized as the set of graphs
containing no clique of size 4 as a minor [10]. To illustrate the difference between a directed
and an undirected series-parallel graph consider the example given in Fig. 10. The first graph
�B� shows a series-parallel directed graph, whereas ��� is not series-parallel. The third graph � �
illustrate the undirected graph corresponding to �L� . Note that � � is series-parallel, while � � is
a 4-clique and thus not series-parallel.

� �� ��!� � �

Figure 10: comparing directed and undirected series-parallel graphs

In contrast, for arbitrary graphs the reachability problem seems to be easier in the undirected
case than in the directed case. From [1] we know that the undirected version can be solved by
a randomized log-space bounded machine, whereas no randomized algorithm is known for the
directed case. Are there other distinctions of this kind?

Acknowledgment: Thanks are due to Eric Allender and Markus Bl äser for helpful comments
and pointers to the literature. Furthermore we would thank Faith Fich, Pierre McKenzie, and
Christian Schindelhauer for fruitful discussions.

References

[1] R. Aleliunas, R. Karp, R. Lipton, L. Lovasz, C. Rackoff, Random Walks, Universal Se-
quences and the Complexity of Maze Problems, Proc. 20. FOCS, 1979, 218-223.

[2] C. Álvarez, B. Jenner, A Very Hard Log-space Counting Classes, TCS 107, 1993, 3-30.

[3] E. Allender, M. Mahajan, The Complexity of Planarity Testing, Proc. 17. STACS, LNCS
1770, 2000, 87-98.

[4] M. Ben-Or, R. Cleve Computing Algebraic Formulas Using a Constant Number of Regis-
ters, SIAM J. Comput. 21, 1992, 54-58.

[5] H. Bodlaender, B. de Fluiter, Parallel Algorithms for Series Parallel Graphs, Proc. 4. ESA,
LNCS 1136, 1996, 277-289.

27

[6] A. Brandst ädt, V. Bang Le, J. Spinrad, Graph Classes: A Survey, SIAM 1999.

[7] S. Buss, S. Cook, A. Gupta, V. Ramachandran, An Optimal Parallel Algorithm for Formula
Evaluation, SIAM J. Comput. 21, 1992, 755-780.

[8] A. Chiu, G. Davida, B. Litow, Division in logspace-uniform � V � , Theoretical Informatics
and Applications 35, 2001, 259-275.

[9] S. Cook, P. McKenzie, Problems Complete for Deterministic Logarithmic Space,
J. Algo. 8, 1987, 385-394.

[10] R. Duffin, Topology of Series-Parallel Networks, J. Math. Analysis Appl. 10, 1965, 303-
318.

[11] D. Eppstein, Parallel Recognition of Series-Parallel Graphs, Inf. & Comp. 98, 1992, 41-
55.

[12] W. Hesse, Division Is in Uniform
� V � , Proc. 28. ICALP, Springer LNCS 2076, 2001,

104-114.

[13] X. He, Y. Yesha, Parallel Recognition and Decomposition of Two Terminal Series Parallel
Graphs, Inf. & Comp. 75, 1987, 15-38.

[14] B. Jenner, K.-J. Lange, P. McKenzie, Tree Isomorphism and Some Other Complete Prob-
lems for Deterministic Logspace, publication #1059, DIRO, Université de Montréal, 1997.

[15] R. Karp, V. Ramachandran, Parallel Algorithms for Shared-Memory Machines, in: J. van
Leeuwen (Ed.): Handbook of Theoretical Computer Science, Volume A, 1990, 869-941.

[16] R. Tamassia and J. S. Vitter, Parallel Transitive Closure and Point Location in Planar
Structures, SIAM J. Comput. 20, 1991, 708-725.

[17] J. Valdes, R. Tarjan, E. Lawlers The Recognition of Series Parallel Digraphs, SIAM J.
Comput. 11, 1982, 298-313.

28

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

