On the Computational Power of Recurrent

Circuits of Spiking Neurons

Wolfgang Maasst* and Henry Markrami
T Institute for Theoretical Computer Science
Technische Universitaet Graz
A-8010 Graz, Austria
email: maass@igi.tu-graz.ac.at

http://www.igi. TUGraz.at /maass

m
o
3.
(9]
(@]
=%
1=}
o)
[=%
c
3
o
=]
(@]
o
3
e]
=%
=3
o
=)
D
(@]
o
3
=3
2
<
]
g
z
o
N
N
Phg
N
8
D

T The Weizmann Institute for Science
Department of Neurobiology
Rehovot, 76100, Israel
email: Henry.Markram@weizmann.ac.il

http://www.weizmann.ac.il/neurobiology /labs/markram /markram.html

January 15, 2002

Abstract

Understanding the structure of real-time neural computation in
highly recurrent neural microcircuits that consist of complex heteroge-
neous components has remained a serious challenge for computational

modeling. We propose here a new conceptual framework that strongly

*Corresponding author.

differs from all previous approaches based on computational models in-
spired by computer science or artificial neural networks. It is based on
a rigorous mathematical model, the liquid state machine, whose com-
putational power is analyzed in this article, both for the case of time —
varying analog input and for the case where the input consists of spike
trains. The theoretical analysis implies that recurrent circuits are able to
carry out complex real-time computations on such inputs, even several
such computations in parallel, provided that they are able to separate
different inputs through different activation patterns at subsequent time
points. Furthermore, biologically realistic recurrent circuits of spiking
neurons, consisting of heterogeneous neurons and synapses with differ-
ent time constants, appear to be particularly good at this separation
task. Based on this new approach one can now for the first time employ
computer models for biologically realistic neural microcircuits as central

processing units for complex computational tasks.

1 Introduction

We propose a new conceptual and theoretical framework for the analysis of
the computational power of recurrent circuits of spiking neurons, such as for
example neural microcircuits in the cortex. It has frequently been conjectured,
and there also exists some empirical evidence to support this conjecture, that
these neural microcircuits are not built individually for each computational
task arising in the cortex, but rather that the same basic circuit architecture is
used for diverse computational tasks in different brain areas. This conjecture
suggests to look for general principles that could endow such generic recurrent
neural circuits with seemingly “universal” computational power.

In computer science and mathematical logic there exist well-established
theoretical frameworks for making such universality-conjectures precise. One
such framework characterizes the class of digital functions that are in prin-

ciple computable (= the class of recursive functions) and shows that Turing

machines have universal computational power with regard to this class. But
this framework is geared towards offline computations on digital inputs, and
is of little use for analyzing parallel real-time computations on analog func-
tions of time (or on spike trains) by neural circuits. The same holds for the
classical framework of computational complexity theory, where the class of re-
cursive functions is replaced as “computational universe” by the class P of all
digital functions that can be computed within an acceptable (=polynomial)
computation time. Turing machines with time bounds that are polynomial in
the bit length of the input have universal computational power with regard to
this class of functions (in the sense that any function from this class can be
computed by such polynomial-time-bounded Turing machine).

We would like to argue that in contrast to Turing machines, generic com-
putations by neural circuits are not digital, and are not carried out on static
inputs, but rather on functions of time (or time series). A circuit that gets as
input an analog function of time u(-) and outputs another function of time y(-)
defines a map F' between functions of time. Such map is called an operator in
mathematics, and a filter F' in engineering. In lack of a better term we will
use the term filter in this article, although filters are usually viewed in neuro-
science as somewhat trivial signal procressing or preprossessing devices, and
are sometimes associated with specific approaches towards neural computation
that are currently not fashionable. However, one should not fall into the trap
of identifying the general term of a filter with special classes of filters such
as linear filters, quadratic filters, or more generally filters that can be repre-
sented by a finite Volterra or Wiener series (see (Marmarelis and Marmarelis,
1978), (Rugh, 1981), (Poggio and Reichardt, 1980), (Rieke et al., 1997)), that
all have rather limited computational capabilities. Rather one should keep in
mind that any input to any organism is a function of time, and any output
of an organism is a function of time. The same holds true for any artificial
behaving system, such as a robot. Hence for investigating the computational

function of any organism (or robot) it is unavoidable that one talks about

filters.

Usually when one discusses filters, one automatically has a specific com-
plexity hierarchy for filters in mind: linear filters are at the lowest level of
this hierarchy, the next level of the hierarchy consists of filters that can be
represented as a sum of a linear filter and a quadratic filter (i.e., a Volterra
polynomial of degree 2), the nth level of the hierarchy consists of all filters that
can be represented as Volterra polynomials (or equivalently as Wiener poly-
nomials) of degree n, and the oo-level of this hierarchy consists of all filters
that can only be represented by infinite Volterra series. However even very
basic computational tasks, such as for example the computational operation
of a threshold gate or a perceptron, see (Poggio and Reichardt, 1980), require
filters that are located at a fairly high finite level, or even at the oo-level of
this hierarchy. Also the computational operation executed by a single neuron
places any realistic computational model for even very simple neural circuits
at the oo-level of this hierarchy.

The approach pursued in this article suggests completely different represen-
tations and hierarchies for filters, which appear to be more useful for analyzing
neural computation. Basic filters that are of particular importance in neural
computation, such as the response of a thresholding device (for example a
spiking neuron) to an incoming spike train, can appear at a low level of such
alternative hierarchy. In fact, this alternative framework allows us to place
any filters, for example those filters that happen to be abundantly available in
some specific physical realization domain, at the bottom level of a hierarchy,
and to measure the complexity of any target filter F' in terms of how many
such basis filters are needed to approximate F'.

We had introduced in (Maass et al., 2001) a quite general computational
model for computing filters, that conceptually divides real-time processing into

two complementary subtasks:

1. separation of different input functions by a filter L that is composed of

finitely many basis filters B, drawn from some fixed pool B of filters

2. static transformation of the current output of L into the current target
output of the system by some fixed readout map f, chosen from some

fixed pool F of “memory less” functions'.

The resulting computational model M = (L, f) is called a liquid state machine.
In contrast to the familiar finite state machine from computer science, which
provides the computational core of any Turing machine, it allows a potentially
infinite set of different output values (¢) of the filter L (that may correspond
for example in a biological interpretation to the current activation state of a
recurrent neural circuit, or more abstractly to the current internal state of a
high dimensional dynamical system). This state z(¢) is liquid in the sense
that it will in general change continuously during the presentation of an input
function u(-), not just at prespecified discrete time points. It is left up to
the readout map f at which resolution this liquid state = () is “read” and
transformed into the output (Mu)(t) of the liquid state machine M at time ¢.

Thus formally each liquid state machine M computes a filter that maps
input functions u(-) onto output functions (Mwu)(-).? In accordance with com-
mon conventions we write (Fu)(t) for the output of a filter F' when F' is applied
to the input function u(-). In this article all these functions will be interpreted

as functions of time. It is important to keep in mind that this filter output

! These functions are called “memoryless” or “static” because they map discrete or analog

numbers on numbers, rather than functions of time on numbers or on other functions of time.
2We often write u(-) instead of u for the input functions in order to remind the reader

that these inputs are functions (of time), rather than numbers. These input functions range
over some domain U, or the m-fold cross product U™ of such domain U. In the latter
case u(-) € U™ represents a multi-dimensional input, consisting of n functions of time that
simultaneously enter the system. The output of all filters that are considered in this article
could also be multi-dimensional. However, a filter with m-dimensional output is formally
equivalent to m filters with one-dimensional output. Hence we address in our notation only
the case where the output of a filter is some function y(-) € R, i.e., a function that maps

real numbers (usually interpreted as time) into real numbers.

(Fu)(t) at time ¢ will in general not just depend on the value of the input
function u(-) at time ¢, but potentially on all values u(s) for s < ¢.> Using this
terminology one can formally describe the two complementary computational

operations of a liquid state machine (LSM) M = (L™, fM) by the equation
2" (t) = (LY u)(t), (1)

i.e., all information about past values u(s), s < t, of the input function u(-)
that might be needed for the output (Mu)(t) of the LSM M at time ¢ is first

condensed into the current liquid state 2™ (¢), and a second equation

(Mu)(t) = f¥ (" (t)), (2)

which says that the output of M at time ¢ is produced from 2™ (¢) by applying
its static readout map f™ to the current liquid state. In the application of
this framework to computations in recurrent neural circuits the first equation
describes (primarily) the task of temporal integration, and the second equa-
tion describes the familiar (and less) difficult task of spatial integration of
information.

A closely related computational model has independently been proposed
in (Jaeger, 2001) under the name of “echo state network”. This model is
formulated for discrete time and iterative updates of network states, rather
than directly for filters. We will show in section 2 that the approximation
theorems that are proven in this article can also be applied to such networks.

We will prove in this article that, under some mild conditions on the pool
B of basis filters and the class F of possible readout functions, the class of
LSMs M that are composed from basis filters in B and readout functions in F'
have universal computational power with regard to a very interesting class of
computational operations on analog functions of time that we will now define.

We will only consider computational operations on functions of time that

are input-driven, in the sense that the output does not depend on any absolute

3We restrict our attention in this article on causal filters F, where (Fu)(t) does not

depend on u(s) for s > t.

internal clock of the computational device. Filters that have this property are
called time invariant. Formally one says that a filter F' is time invariant if any
temporal shift of the input function u(-) by some amount ¢, causes a temporal
shift of the output function by the same amount ¢y, i.e., (Fu)(t) = (Fu)(t+to)
for all ¢,t, € R, where u(t) := u(t + ty). Note that if the domain U of
input functions u(-) is closed under temporal shifts, then a time invariant filter
F : U™ — R® is identified uniquely by the values y(0) = (Fu)(0) of its output
functions y(-) at time 0. In other words: in order to identify or characterize
a time invariant filter /' we just have to observe its output values at time 0,
while its input varies over all functions u(-) € U™. Hence one can replace in the
mathematical analysis such filter F' by a functional, i.e. a simpler mathematical
object that maps input functions on real values (rather than on functions of
time).

Various theoretical models for analog computing are of little practical use
because they rely on hair-trigger decisions, for example they allow that the
output is 1 if the value of some real-valued variable x is > 0, and 0 otherwise.
Another unrealistic aspect of some models for computation on functions of
time u(-) is that they allow that the output of the computation depends on
the full infinitely long history of the input function u(-). On the other hand it
was shown in (Maass and Sontag, 1999) that recurrent analog neural networks
automatically acquire a fading memory quality as soon as any realistic type of
noise is assumed for their analog processing units. One may argue that this
result destroys all hopes that the amazing computational capabilities that have
been predicted in some theoretical articles on recurrent neural networks can
be implemented in any physical device, such as for example a biological neural
system. Therefore, instead of trying to simulate Turing machines, we focus in
this article on analog computations of continuous maps that can be expected to
degrade gracefully under the influence of noise (this has been empirically sup-
ported by computer simulations reported in (Maass et al., 2001), where noise

had been added to the membrane potential of the integrate-and-fire neurons

in the circuit). More precisely, we restrict our attention to the computation
of filters that have fading memory. One may argue that no biologically rel-
evant computations are eliminated by this restriction. Fading memory is a
continuity property of filters F', which requires that for any input function
u(-) € U™ the output (Fu)(0) can be approximated by the outputs (Fv)(0)
for any other input functions v(-) € U™ that approximate u(-) on a sufficiently
long time interval [T, 0] going back into the past. Formally one defines that
F : U™ — R® has fading memory if for every v € U™ and every £ > 0 there
exist 6 > 0 and T > 0 so that [(Fv)(0) — (Fu)(0)| < € for all v € U™ with
||u(t) —v(t)|| < d for all t € [-T,0]. Informally, a filter F' has fading memory
if the most significant bits of its current output value (F'u)(0) depend just on
the most significant bits of the values of its input function u(-) in some finite
time interval [T, 0] going back into the past. Thus, in order to compute the
most significant bits of (Fu)(0) it is not necessary to know the precise value
of the input function u(s) for any time s, and it is also not necessary to know
anything about the values of u(-) for more than a finite time interval back into
the past. Note that a filter F' that has fading memory is automatically causal,
i.e., (F'u)(0) does not depend on values u(s) for s > 0.

In section 2 we will consider a corresponding notion of fading memory for
circuits, which begin their computation at a specific time point in a specific
initial state, and show that all these circuits define fading memory filters. This
creates a link between common concepts from circuit complexity theory and the
filter-based notation used in this article. Basically one just has to observe that
for computational devices with fading memory it does not matter whether they
have been driven “forever” by some time-varying input u : (—oo,00) — R" (as
suggested by the filter notation), or whether the computation had been started
at a specific time point ¢; very far back in the past, in some unknown initial
state x;. The filter-oriented notation is mathematically more convenient, since
one can eliminate the formal dependence on ¢; and x;, which practically is of

little interest for fading memory devices. We will show in section 3 of this

article that liquid state machines (LSMs) with basis filters from some class
B and readout maps from some class F have under mild conditions on B
and F universal computational power with regard to all time invariant fading
memory computations on continuous functions of time, in the sense that any
time invariant fading memory filter F' can be approximated by an LSM M
from this class up to any given degree of precision. In section 4 this result is
extended to the mathematically more difficult case where the input functions
u(-) represent spike trains, rather than continuous functions of time.

The condition on the class B of basis filters that is needed for these results
is the following pointwise separation property: for any two input functions
u(-),v(-) € U™ with u(s) # v(s) for some s < 0 there exists some filter B € B
that separates u(-) and v(-), i.e., (Bu)(0) # (Bv)(0). Note that it is not
required that there exists a filter B € B with (Bu)(0) # (Bv)(0) for any two
functions u(-), v(-) € U™ with u(s) # v(s) for some s < 0. Simple examples for
classes B of filters that have this pointwise separation property are the class
of all delay filters u(-) — u®(-) (for ¢, € R) and the class of all linear filters
with impulse responses of the form h(t) = e~ with @ > 0. A biologically
quite interesting class of filters that satisfies the formal requirement of the
pointwise separation property is the class of filters defined by standard models
for dynamic synapses, see (Maass and Sontag, 2000). A liquid filter L™ of
an LSM M is said to be composed of filters from B if there are finitely many
filters By,...,B,, in B — to which we refer as basis filters in this context
— so that (LMu)(t) = ((Biu)(t),-..,(Byu)(t)) for all + € R and all input
functions u(-) in U™. Thus for a biological interpretation an array of parallel
input synapses with somewhat different synaptic parameters (that control their
internal dynamics) would formally suffice to implement all desired liquid filters
LM, However this argument ignores the fact that in reality the basis filters
B not just have to make (Bu)(0) # (Bv)(0) — as required by the pointwise
separation property — but they have to make sure that for all pairs of input

functions u(-),v(-) for which the target output of the system has to differ

at time 0 there exists some component of the input to the readout module
that assumes at time 0 sufficiently different values for circuit inputs u(-) and
v(+), so that this difference can be picked up by the readout in spite of noise.
Obviously the complex recurrent architecture of cortical microcircuits (“loops
within loops”) and the diverse temporal responses of different types of neurons
and synapses (see for example (Markram et al., 1998) and (Gupta et al., 2000))
contribute a rich repertoire of amplifiers for input differences.

The condition on the class F of readout functions that is needed for our
results is the following approrimation property, sometimes referred to as uni-
versal approximation property in neural network theory: for any m € N,
any compact (i.e., closed and bounded) set X C R™, any continuous func-
tion h : X — R, and any given p > 0, there exists some f in F so that
|h(z) — f(z)| < pforall z € X.

We will show in Theorem 3.1 of section 3 that those two conditions (point-
wise separation property of B and approximation property of F) together
guarantee universal computational power for the corresponding class of LSMs,
i.e. the power to approximate any time invariant fading memory filter /' on
continuous functions of time with any desired precision. In section 4 we define
a suitable notion of fading memory computations on spike trains, that allows
us to prove in Theorem 4.1 a corresponding result for LSMs that carry out
computations on spike trains.

The theoretical approach towards computation on spike trains that is pro-
posed in this article differs strongly from previous approaches that have focused
on the construction of specific circuits of spiking neurons that can carry out
specific computations on spike trains (see for example (Hopfield and Brody,
2001)). A generic problem in these approaches is the need to construct spe-
cial mechanisms for absorbing and integrating information encoded in the in-
terspike intervals of biologically realistic input spike trains, whose interspike
intervals are typically much larger (in the range of 10 to 100 ms) than the

transmission delays between neurons in a cortical microcircuit (that tend to

10

be below 5 ms). Furthermore these explicit constructions of circuits of spik-
ing neurons tend to produce circuits with a dominant feedforward structure,
in spite of the fact that biological neural circuits are highly recurrent, simply
because it is very hard (if not impossible) to construct a recurrent circuit of
spiking neurons that has a given input/output behavior.

On the other hand it had already been shown in (Buonomano and
Merzenich, 1995) that generic recurrent circuits of integrate-and-fire neurons
are able to transform temporal input patterns into spatial activity patterns
of the circuit. Hence one may argue that it is not necessary to understand,
or even control, the full input/output behavior of such circuits. Instead, it
suffices to verify that such recurrent circuits have the pointwise separation
property (practically it even suffices to verify this pointwise separation prop-
erty for input function u(-) and v(-) for which the target output of the filter
should be different). In fact, extensive computer simulations of rather real-
istic models for biological neural circuits (Maass et al., 2001) suggest that a
randomly drawn recurrent circuit consisting of a few hundred neurons, can
separate a very large class of different input spike trains through its state of
activation at some later time point ¢. Hence one can restrict all constructive
(or adaptive) effort for approximating a given filter F' by a recurrent circuit
of spiking neurons to the selection or learning of an appropriate readout map
f. It is known (see (Auer et al., 2001) that already a single pool of spik-
ing neurons (with just feedforward connections into this pool, and out of this
pool) can provide such f: it can approximate any given continuous function,
and hence has the desired approximation property. Furthermore there exists
a simple local learning rule that can adapt such pool of spiking neurons to ap-
proximate a specific given continuous function (see (Auer et al., 2001), (Maass
et al., 2001)). Alternatively one could approximate by spiking neurons any
other class of feedforward neural networks that is known to have the univer-
sal approximation property, such as multi-layer perceptrons (see (Maass and

Natschléager, 2000) for an approximation of these artificial neural networks by

11

networks of spiking neurons). Thus the theoretical approach that is outlined
in this paper suggests to approximate a given input/output behavior F' on
functions of time (or spike trains) by first picking randomly some sufficiently
complex recurrent circuits of spiking neurons, and then adapting the weights
of a pool of output neurons to approximate the given target outputs. This
approach is biologically more realistic from the point of view of learning than
learning algorithms that aim at modifying the state trajectory of the recurrent
circuit, since the neurons that produce the actual circuit output have better
access to error signals, and it is clearer in which direction a synaptic weight
should be changed in order to reduce the output error, compared with neurons
deep inside the recurrent circuit.

In addition this approach has the advantage that the same recurrent cir-
cuit can be used simultaneously — with the help of additional other readout
functions that can be trained independently — to compute in parallel different
outputs from the same input u(-). This provides a new paradigm for parallel
computation in real time on time-varying input that appears to be rather at-
tractive from the biological point of view. In other words: m different filters
Fi, ..., Fy, can be implemented with the same recurrent circuit (i.e., the same
L), yielding a giant saving of hardware (i.e., neurons).

Altogether the computational approach pursued in this article suggests
that for analyzing computations in cortical microcircuits it may be less fruit-
ful trying to understand how (in which specific code) different sensory inputs
are represented by the very high-dimensional vector that describes the current
circuit activity, a question that is usually phrased as the question of neural cod-
ing or neural representation of external stimuli. The more important question
from the point of view of the neural system (more precisely: from the point of
view of the readout modules of the neural system) is how well saliently different
inputs are separated through the high-dimensional vectors describing the cur-
rent neural activity. In this way one arrives on a completely different road at

the concept of “intelligence without representation”, that has previously been

12

proposed in the context of robotics (Brooks, 1991) in order to overcome known
deficiencies of traditional approaches from artificial intelligence in coping with
the need to deliver adequate output-behaviours in real-time for realistically

complex sensory input streams.

2 Recurrent Circuits with Fading Memory
Define Filters with Fading Memory

There exists a difference between the type of functions computed by circuits
and the type of functions represented by filters. A filter F' assigns an output
value (Fu)(t) to a time point ¢ € R and an input function v : R — R (or
u : R — R"), assuming implicitly that input has been coming in “forever”.
In contrast, computations in circuits are usually assumed to start at some
concrete time point ¢t; < t back in the past, in some concrete initial state zy,
thereby defining a circuit output C(zr,u[p,,q,t) € R at the current time ¢
that depends just on a finite segment [y, of the input function wu(-), but
in addition on the initial state x; of the circuit. However many recurrent
circuits have fading memory, which implies that the current circuit output
C(xy,u[y,,q,t) depends less and less on its initial state 2; when ¢ —t; grows.
We prove that any such circuit C' with fading memory defines a fading memory
filter Fiz through the definition (Fou)(t) = limy, _oo C(x1,u|p,,4,t), Where
arbitrary initial values z; may be used on the r.h.s. Therefore it is justified
to model a circuit with fading memory whose activity had started a relatively
long time ago (which is usually the case for a biological neural circuit) by a
fading memory filter. Thus, as long as one restricts the attention to circuits
and filters with fading memory, the structural difference between these two
computational frameworks disappears (or rather: fades away). This result,

which we formulate precisely as Theorem 2.1, creates in particular a bridge

13

between the filter-oriented mathematical analysis pursued in this article, and
the circuit-oriented mathematical analysis in (Jaeger, 2001) of closely related

effects for artificial neural network models.

Definition 2.1. Fiz some space U of input functions v : R = R, and let C' be
a circuit that assigns to any initial state xy from some set I, any t € R, and
any finite segment u[y, 4 of a function (or vector of functions) u(-) € U™ some
output C(xr,ulp,q,t) € R We say that this circuit C has fading memory
(relative to U and 1) if there exists for every t € R and every € > 0 some
6> 0 and t; <t so that |C(xr,ulpyq,t) — C (27, v,)| < € for allu,v € U™
and for all x1, x; € I, provided that ||u(t') — v(t)|| < & for all t' € [tr,1].

Note: We assume that any circuit C' has associated with it a state tran-
sition function S¢ so that Sc(x;,u[y,q,t) € I (which represents the inter-
nal state of circuit C' at time ?) has the property that C(z;,u[y,q,t) =
C(Sc(xr,ulw 1), u[wy,t) for any t' € [tr,].

Theorem 2.1. Any circuit C' that has fading memory (relative to U and I)
defines a fading memory filter Fo : U — RR through the definition

(FCU,)(t) = hm C(x;,u[[tbt],t),

tr——o0

where arbitrary initial states x; € I may be used on the r.h.s.

Remark 2.2. All the concepts and results of this paper can also be formu-
lated for discrete instead of continuous time. For discrete time it was shown
in (Jaeger, 2001) that any network which is uniformly state contracting in
the sense of Definition 4 in (Jaeger, 2001) defines a circuit that has fading
memory according to our preceding definition, and hence according to the pre-
ceding Theorem 2.1 a fading memory filter. Thus all the sigmoidal networks
with weight matrix ||| < 1 that are considered in (Jaeger, 2001) provide

interesting special cases of fading memory filters.

Proof of Theorem 2.1: We first show that limy, ,_o C(z7,u|p, 4,t)

exists, for any choices of states x;y € [for the initial time points t; <

14

t. Fix some ¢ > 0. We show that there exists some ¢; < ¢ so that
\C (21, ulpq,t) — C(Zr,ulpyy,t)| < e for any 2;,Z; € I, any u € U", and
any tq,to < tr. Since C is assumed to have fading memory, there exists some
tr < t so that |C(z,uly,q,t) — C(ah, ulp, 4,t)| < € for all 7,27 € I and
all w € U™. Set x; := Sc(&r, Ul 4,0, tr) and 27 := Sc (&1, u[[t,¢,],tr)- Then
\C(Zr,u[p,,t) — C(&1,ul,,,t)| < € according to the basic property of the
state transition function S. Thus we have shown that the filter F is well-
defined by the definition in the claim of Theorem 2.1. In fact we have shown
that the convergence to (Fgu)(t) is uniform in u, which we will need for the
second part of this proof.

It remains to be shown that this filter Fo has fading memory. Fix some
u € U™ and ¢ > 0. We have to prove that there exist 6 > 0 and 7" > 0 so
that |(Fov)(0) — (Feu)(0)| < e for all v € U™ with ||u(t) — v(t)]| < § for all
t € [=T,0]. Fix A > 0 so that |(Fo@)(0) — C(Zr, @[[,,0,0)| < § for all Z; € 1,
all i € U™, and all t; < —A (we exploit here that the circuit outputs converge
to (Fct)(0) uniformly in @ for t; — —oo, which follows from the first part of the
proof). Furthermore fix § > 0 and A’ > 0 according to the definition of fading
memory for circuits so that |C(zr, u[[—a0},0) — C(27, v[[—arg,0)| < § for all
u,v € U™ and z;, 2} € I, provided that ||u(t') —v(t')|| < d for all ¢’ € [-A',0].
Since x;,z; € I are allowed to be arbitrarily chosen, the same property holds
with the same § > 0 for any ¢t; < —A' instead of —A' (use the state transition
function S¢). Set t; := —max(A, A’). Then if ||u(t) —v(t)|| < 6 for all ¢t €
[—T,0], we have for any z;, z} € I that C(xr,u[[,0,0) — C(2}, (1,0, 0)| < 5,
|(Fou)(0) — C(xr, ul[,,0,0)] < 5, and |(Fev)(0) = C(zr,v][1;,0,0)| < %, hence
|(Fou)(0) — (Fcv)(0)| <e. u

Remark 2.3. One usually assumes that a circuit C' has no absolute depen-
dence on time, i.e., that the internal state and current output of C' just de-

pend on the time that has passed since the circuit C' had been activated (but

15

of course also on the initial state x; and the input that has entered the cir-
cuit in the meantime). Such circuit C is time invariant in the sense that
C(xr,u[p,,t) = Clxr, ul [t +10,0410], t + to) for all functions u' € U™ defined
by u%(t) = u(t + to). If a circuit C' with fading memory is time invariant in
this sense, then the filter Fz that is defined by C' has not only fading memory,

but is in addition time invariant.

3 Real-Time Computing with Analog Input

In this section we discuss the mathematically simpler case of computations
on continuous input functions, such as for example the postsynaptic currents
(or contributions to the membrane potential) in neurons of a neural circuit
that result from spiking activity in afferent neurons, i.e., neurons that are not
components of the considered circuit. These inputs can be modeled by a vector
of continuous functions of time v : R — R. In this interpretation it is justified
to assume that the values of these functions are uniformly bounded, and also
that their steepness (= absolute value of the derivative in case that they are
differentiable) is uniformly bounded. Both assumptions will be needed for the
subsequent theorem. More precisely, we assume that the domain U of input

functions has the form
U={u:R—[-K,K]|: |u(s) —u(t)| < K'-|s—t| forall s,teR}

for some arbitrary constants K, K’ > 0. The filters in the subsequent theorem
are applied to vectors u = (us, ..., u,) of functions from U for some arbitrary
fixed n € N.

In order to be able to approximate any given time invariant fading memory
filter F' by liquid state machines M with liquid filters L™ composed from

basis filters By, ..., B,, from some fixed class B of basis filters, it is obviously

16

necessary that B has the pointwise separation property, because for any u, v €
U™ with u(s) # v(s) for some s < 0 there exists a time invariant fading memory
filter F* with (F'u)(0) # (F'v)(0). Obviously this filter ' can be approximated
arbitrarily closely by liquid state machines with basis filters from B only if
there exists some basis filter B € B with (Bu)(0) # (Bv)(0). The following

theorem shows that this necessary condition is essentially also sufficient.

Theorem 3.1. Assume that B is an arbitrary class of time invariant fading
memory filters that has the pointwise separation property. Furthermore assume
that F is an arbitrary class of functions that has the approximation property.

Then any given time invariant fading memory filter F' can be approrimated
arbitrarily closely by LSMs M with liquid filter L™ composed from basis filters
in B and readout maps fM chosen from F. In formal terminology: For every
e > 0 there exist m € N, By,...,B,, € B and fM € F so that the LSM M =
(LM MY with LM composed of By, ..., By, satisfies |(Fu)(t) — (Mu)(t)| < ¢
for allu € U™ and all t € R.

Furthermore, if all functions in F are continuous, then a gwen filter F
can be approximated arbitrarily closely by such LSMs if and only if F' s time

imwvariant and has fading memory.

Remark 3.2. A remarkable consequence of this theorem is that for a large
variety of classes B of basis filters (such as delay lines, linear filters, dynamic
synapses, or circuits with fading memory) the pointwise separation property,
in combination with sufficiently “flexible” readout maps, endows the resulting
LSMs with “universal computational power” in the giant class of filters F' that
are time invariant and have fading memory. In fact, one may argue that any
neural computation that may be vital for the survival of an organism can be

represented by such time invariant fading memory filter F.

Proof of Theorem 3.1: The last part of the theorem (“if and only if”)
follows immediately from the first part, because any LSM M = (LM fM)

with LM composed from time invariant fading memory filters (from B) and a

17

continuous function f™ represents a time invariant fading memory filter. Fur-
thermore time invariance and fading memory are properties that are inherited
by any filter F' that can be approximated arbitrarily closely by time invariant
fading memory filters.

The first part of the theorem follows from the Stone-Weierstrass Approxi-
mation Theorem, similarly as in (Boyd and Chua, 1985), see also (Sandberg,
1991). For simplicity of notation we just consider the case n = 1 (the case
n > 1is analogous). We apply the Stone-Weierstrass Theorem (see for example

(Dieudonne, 1969)) to functionals that map
U = {U,[(_OO,O] RS U}

into R (where u[(_s) is the restriction of the function u : R — R to the
domain (—oo,0]; the set U was defined before Theorem 3.1. The transition
to functionals is necessary because the Stone-Weierstrass Theorem can only
be applied to functions with values in R, hence not directly to filters (whose
values are from RX, rather than R). Note that a fading memory filter F is
automatically causal, hence the value of (F'u)(0) depends only on u[(_ -
Furthermore, since U is closed under shifts in time, any time invariant filter
F : U — R® is already completely determined by its values (Fu)(0) for u € U.
Hence we can define for any fading memory filter F' the value (Fu[(—c0,07)(0) of
F for input functions from U~ uniquely as the value (Fv)(0) for any v € U with
V[(=00,0) = ¥[(=00,0]- Furthermore, if a filter ' : U — RR is time invariant, then
it is already uniquely determined by these values (Fu[(—s,0)(0) for u € U.
We will apply the following formulation of the Stone-Weierstrass Theorem
from (Dieudonne, 1969): Assume that E is a compact metric space, and S is
a set of continuous functions from E into R that has the pointwise separation
property (i.e., for any u,v € E with u # v there exists some function B € S
with B(u) # B(v)). Then there exist for any continuous function F from E

into R and for any € > 0 some functions By, ..., B,, in S and a polynomial *

4Sums and products of functions B;, B; € S are pointwise defined, e. g. (B; - B;)(u) :=

18

p such that |F(u) — p(Bi,-..,Bn)(u)| < e for every u € E.

In order to apply this result for the proof of Theorem 3.1 we just have to
show that U~ can be endowed with a metric d that turns U~ into a compact
metric space. Furthermore this metric d needs to have the property that for
any fading memory filter F' on U the function from U~ into R defined by
(Fu[(~c,0)(0) is continuous with respect to this metric d on U~. In addition
we have to show that the polynomials p can be replaced by functions f € F.

We define a function d: U~ x U~ — R by

o Ju®) = (@)
d(u,v): = Stlgl%)) 117

Lemma 3.3. The function d defines a metric on U~ that turns U~ into a

compact metric space.

We refer to the Appendix for a proof of Lemma 3.3.

If F' is any filter on U with fading memory, there exists for every given
u € U and every given p > 0 some § > 0 and 7" > 0 so that [(Fu)(0) —
(Fv)(0)] < p for all v € U with the property that |u(t) — v(t)| < ¢ for all
t € [-T,0]. Set ¢ = HLT. Then it is obvious that for any v € U~ the
assumption d(u[(—co,0];V[(-00,0) < ¢’ implies that % < ¢', and hence
lu(t) —v(t)| < 9, for all t € [=T,0]. Thus [(Fu[(-c0,0])(0) = (Fv[(-c0,0)(0)] < p
for any u[(_oo,0; V(=000 in U™ with d(u[(_oo0],¥[(~00,0) < ¢'. Hence the
function from U~ into R defined by (Fu[(—o,01)(0) is continuous with respect
to the metric d on U~

To complete the proof of Theorem 3.1 it just remains to show that the

polynomial p, which occurs in the statement of the Stone-Weierstrass Theorem,

(B;(u)) - (Bj(u)). Once one has defined sums and products of functions in S, the definition
of a polynomial p(By, ..., B,) of functions in S is obvious. Note that such polynomial may

also have a constant term, with an arbitrary real value.

19

can be replaced in our context by a function f € F. Since all basis filters B € B
are assumed to have fading memory, they yield continuous functions from the
metric space (U7, d) into R. Since (U™, d) is compact according to Lemma
3.3, any continuous function with domain (U™, d) has a bounded range. Hence
it suffices to approximate the given polynomial p(By,..., B,) on a compact
subset S of R™. The approximation property of the class F implies that there
exists for every p > 0 some f € F so that |p(z) — f(z)| < p for all z € S. This
completes the proof of Theorem 3.1. [|

4 Real-Time Computing on Spike Trains

Previous theoretical work on computations with spiking neurons has usually
focused on computing with single spikes (see (Maass, 1999) for a survey). In
this section we address the question which computations on spike trains can
in principle be carried out by neural circuits.

We show that if there exists for any two different spike trains v and v a
neural circuit B, , that can separate u and v (through its activity at time 0,
after the spike train was given as input to the circuit), then an extremely large
set of computations on spike trains can be carried out by networks of spiking
neurons. We use here the fact that a pool of spiking neurons can approximate
any given continuous function on static inputs (see (Maass, 2000) and (Auer
et al., 2001) for a proof). In order to model the computation of a neural circuit
on spike input by a fading memory filter, as we do in this section, one also
needs to assume that the circuit output depends continuously on the temporal
structure of the spike input to the circuit, i.e. moving the arrival time of a spike
by an infinitesimal amount changes the circuit output just by an infinitesimal
amount. This assumption is approximately satisfied if one takes into account

that a biological circuit of neurons is really a stochastic system, and in order

20

to arrive at a formally deterministic output one needs to average: either over
space, i.e., over the outputs of several basically identical circuits, or over time,
i.e. over several trials with the same input. Obviously only the averaging over
space can be carried out by a neural system in real time. Furthermore we view
the effects of the output neurons of the circuit on the membrane potential of
postsynaptic neurons as the output of the filter, rather than the output spikes
themselves, in order to approximate the computational operation of a neural
circuit with spike input by a fading memory filter with spike input.

The theoretical result about the computational power of networks of spik-
ing neurons that is presented in this section has consequences for practical
computations with spiking neurons in software- and hardware simulations. In
fact, our computer simulations suggest that the theoretical predictions about
effects that occur “in the limit” become already clearly visible for rather small
networks, even in the presence of noise. Although our theoretical result leaves
open the question how large a network of spiking neurons needs to be in or-
der to carry out a given computation on spike trains, and also leaves open
the question how that computation would be affected by noise, the computer
simulations of (Natschliger and Maass, 2001) and (Maass et al., 2001) sug-
gest that a large variety of complex computational operations on spike trains
can be carried out by networks consisting of a few hundred neurons, even with
noise added to the membrane potential of these neurons. In fact, the paradigm
for computations on spike trains that is suggested by the subsequent Theorem
4.1 provides at present the only strategy for implementing a given complex
computation on spike trains by a circuit of spiking neurons. In addition it al-
lows us to implement such computation on a circuit of spiking neurons whose
architecture has not been constructed for that particular computation, since
it turns out that even moderately large randomly connected circuits of spiking
neurons exhibit enough separation capability to apply the general scheme of
Theorem 4.1 to such circuits.

The analysis of the computational power of LSMs on continuous input

21

functions from section 3 cannot be applied directly to the case where the
input u consists of spike trains, i.e., of sequences of point events in time. As
mathematical object one can view a spike train u simply as a subset of R:
the set of time points where a spike occurs in the spike train, or equivalently
(up to some fixed delay): the set of firing times of the neuron that emits this
spike train). Alternatively one could represent each spike train u (defined as
a subset of R) as a function f, : R — {0,1} with f,(¢t) =1 <t € u. Due to
the firing mechanism of biological neurons there exists some minimal distance
A > 0 (say, A = 0.1ms) between any two firing times of the same neuron.
Hence it is safe to assume that the sets u C R that represent spike trains are
not arbitrarily dense, but that |s —t| > A for any two different points s,¢ € w.
This rather trivial condition will be essential for the subsequent mathematical
analysis. We denote the class of all sets v C R with this property by U, where
A > 0 is some arbitrary fixed parameter (say: A = 0.1ms).

From the point of view of mathematics there exist some pretty weird func-
tions F' from spike trains into real numbers, that cannot be expected to be
computable by any realistic network of spiking neurons under realistic noisy
conditions. Examples are functions F' that output 1 if the last interspike in-
terval was > 7, and 0 otherwise, or functions F' that output 1 if the infinite
sequence of spikes in the preceding spike train encodes — one bit per spike —
an infinite bit sequence that corresponds to an irrational number, and that
output 0 if this infinite bit sequence encodes a rational number. Hence be-
fore one can formulate a practically meaningful result about the capability of
LSMs to approximate any given “relevant” map F' from spike trains into real
numbers, one first has to identify a suitable class of such maps F' that may
serve as “computational universe” for this purpose. Obviously the output of F’
needs to depend in a continuous way on spike times in the input, since other-
wise no physical device can implement it. For the same reason the amount of
information that F' needs to “remember” from past interspike intervals of the

input spike train should be finite. We will show that a variation of the fading

22

memory notion, that was discussed in the preceding section, can be used to
define a suitable universe for analyzing realistic computations on spike trains.
We define a suitable notion of fading memory for filters F' : U? — R® that
map arrays of n spike trains from U, into arbitrary functions of time. The cor-
responding definition from section 1 for continuous input functions cannot be
applied to functions f,, f, : R — {0, 1} that represent spike trains, since these
functions have the property that for any ¢ < 1 the condition |f,(¢) — f,(¢)| < ¢
implies already that f,(t) = f,(¢), i.e., t € u <= t € v. One also expects
from any function F' on spike trains that can be realistically computed by a
neural circuit that its output Fu does not depend on hair-trigger decisions
regarding the precise timing of spikes in the input u. Instead, one expects
that infinitesimal changes of firing times in the input spike trains cause only
infinitesimal changes in the output value of F'. In addition one does not expect
from any biologically realistic computation on spike trains that its current out-
put depends in an essential manner on the spike times of infinitely many input
spikes. Both of these conditions are formalized in the subsequent definition
of fading memory on spike trains. We assume here always that the output of
F is some smooth function of time, such as the currents (or changes in mem-
brane voltage) that a neural circuit triggers in subsequent neurons to which
it is synaptically connected. Hence the subsequent theory cannot be applied
directly to the case where the output of the computation of a neural circuit
is the spike train of some neuron v, but it can be applied to model the time
course of the currents that are injected into such output neuron v by a neural

circuit.

Definition:® Informally a filter F' : Un — R® has fading memory on spike

trains if for any spike trains u,v € Ua and any time point ¢ the difference

5 An alternative definition of fading memory on spike trains is made explicit in the proof
of Theorem 4.1 (see Lemma 4.6): A time invariant filter F' : Un — R® has fading memory

on spike trains if and only if there exists for every u € Ua and every € > 0 some § > 0 such

23

|(Fu)(t)— (Fv)(t)| becomes arbitrarily small in case that (for some sufficiently
large m € N) the spike times of the last m spikes in u are sufficiently close to
the spike times of the corresponding spikes in v.

The formal definition is somewhat more complex, since we have to take into
account that u and v may contain different numbers of spikes. In that case one
has to demand that all “extra spikes” in one of the two spike trains occurred
sufficiently far back in the past. Formally, we say that a filter F': Un — R
has fading memory on spike trains if for every u € U and every € > 0 the
following holds: There exist 6 > 0 and m € N such that |(Fu)(t) — (Fv)(t)| < e

for every v € Ua that satisfies the following conditions:

i) if |unN(—o0,t]| >m then |vN(—o0,t]|>m and foreach k& <m
the k' last point in u N (—oc,] has distance < § from the k™ last point

in v N (—o0,t]

ii) if my :=|un(—oo,t]| <m then |vN(—o0,t]] > m,, and for each
k <m, the k™ last point in u N (—oo,] has distance < § from the k"

last point in v N (—o0, t], and all other points in v N (—oo, t] are < —m.

The class of filters on spike trains that satisfy these conditions is very large.
In fact, one might argue that it contains any map from spike trains (e. g. spike
trains form sensory neurons) to muscle activations that a behaving organism
might need to compute in order to survive.

The following theorem exhibits a sufficient condition for showing that neu-

ral circuits can approximate any given map F' from spike trains into real num-

that [(Fu N (—o0,0])(0) — (Fv N (—o00,0])(0)| < € for every v € Ua with

0
Cu(t) — Cy(t
[ez,

where C,, is a smooth function from R into R that results form replacing each “spike” s <0

in u by some continuous “hill” (C, is defined analogously).

24

bers that belong to the previously defined “computational universe”. Provided
that there exists for any two different spike trains u and v a neural circuit or
circuit component B, , whose current state (e. g. membrane potential of neu-
rons in B,,,) is different depending on which of the two spike trains u or v was
previously sent to this circuit component, circuits that are assembled from
finitely many such components B, , can approximate with any given degree
of precision any given time invariant filter F' that has fading memory on spike

trains.

Theorem 4.1. Let Un (for some A > 0) be the class of spike trains u with
distance > A for any two spikes in u. Assume that B is an arbitrary class of
time invariant filters over UR that have fading memory on spike trains, and
that B has the pointwise separation property on Ua (i. e., for any u,v € Un
with u N (—o00,0] # v N (—o0,0] there exists some B € B with (Bu)(0) #
(Bv)(0)). Furthermore assume that F is an arbitrary class of functions that
has the approxrimation property. Then any given time invariant filter I :
UR — RR with fading memory on spike trains can be approzvimated arbitrarily
closely by LSMs M = (LM fMY with L™ composed from finitely many basis
filters in B and fM € F (formally: Y ¢ >0 I M VueUt Vte
R |[(Fu)(t) — (Mu)(t)] <).

Proof of Theorem 4.1: We will just consider the notationally simpler
case n = 1; the case n > 1 is handled analogously. Since all filters involved
are assumed to be time invariant, and since U, is closed under translation, it
suffices to focus on the time point ¢ = 0. We show that there exists a metric d
over Uy :={uN(—00,0] : u € Upa} that turns this set into a compact metric
space, and which also has the property that fading memory on spike trains is
equivalent to continuity over this metric space (Ux, d). The proof of Theorem
4.1 follows then from the Stone-Weierstrass Theorem just like the proof of
Theorem 3.1. In order to define the metric d we first associate with any spike

train u C (—oc, 0] a continuous function C, : (—o00,0] — R. We define for

25

s,t < 0 the “tent map” with center s by

1—(s—t), if s—1<t<min(s+1,0
D ARICED (5+1,0)

0 , else,

and

Cyu(t) : = Z T(t) .

scu

Thus each s € u is first replaced by a continuous function T () that reaches its
maximal value at t = s, and then these continuous functions 7§(-) are added
up for all s € u. Since the density of any v € Uy is limited, this function C,(¢)
has a bounded value for any ¢ < 0, is continuous and piecewise linear.

We define the desired metric d over U, by

0

d(u,v) - / |Cu(t) _Cv(t)| dt .

t2

Thus we first replace the spike trains v and v by smooth functions C, and
C, (reminiscent of low pass filtering) and then measure the difference between
these smooth functions in some straightforward manner, giving less weight
to differences between C,(t) and C,(t) for strongly negative values ¢ in order
to arrive at an integral that converges for any w,v € U,. The continuous
functions C,, C, could also be defined in other ways for this purpose, as long
as the proofs of subsequent lemmata (especially Lemma 4.2) carry over to these
alternative definitions.

It requires a little bit of effort to verify that the previously defined function
d: U,y x Uy — R satisfies the axioms for a metric (see (Dieudonne, 1969)).
Whereas in this case it is trivial to verify the triangle inequality, it is harder to
verify the seemingly obvious axiom that represents the claim of the following

lemma (whose proof is given in the Appendix).
Lemma 4.2. d(u,v) = 0= u = v for any u,v € UL.

In order to prove that the metric space (Uy, d) is compact, and that conti-

nuity with respect to d is equivalent to fading memory on spike trains, we first

26

prove auxiliary lemmata that allow us to express convergence with regard to
the metric d in terms of relationships between spike times of the spike trains
involved. We write |v| for the number of spikes in a spike train v € U, (thus
|v| € NU {oco}). For any k € N and any v, vy, ve,... € Uy we formalize the
statement that it looks as if (v;);en converges to v if one just focuses on the

k™ most recent spike in each of the spike trains involved as follows:
Q(k, (vi)ien, v) &
(Jv| > k= Vo > 0FigVi > io(|v;| > k and the
k™ last spike in v; has distance < § from the £™ last spike in v) A
(Jv] < k= VT > 03igVi > iy (|Jv;| > k = the k' largest spike in v;
is not contained in [T, 0])).

It will be shown in Lemma 4.3 and 4.5 that Vk € N Q(k, (v;)ien, v) is

equivalent to d(v;,v) — 0 for i — oo.

Lemma 4.3. For any v,vy,vy,... € Uy one has Vk € N Q(k, (v;)ien, v) =

d(v;,v) = 0 for i — oo.

The proof of Lemma 4.3 is given in the Appendix. With the help of

Lemma 4.3 it is not difficult to prove:
Lemma 4.4. The metric space (Uy,d) is compact.

Proof of Lemma 4.4. According to Lemma 4.3 it suffices to show that
for any wi,us,... € U, there exists some v € U, and a subsequence
(@;)ien of (u;)ien so that Vk € N Q(k, (@;)ien, u) holds. For each i € N let
u;i(1) > u;(2) > ... be the elements of the set u; C (—o0,0] in descending
order, with w;(k) := —oo if u; is a finite set with fewer than k£ elements. We
construct now by recursion on [€ N a subsequence (ugl))ieN of (u;)ien and
a sequence u®) = {u(1),...,u(m)} with 0 > u(1) > u(2) > ... > u(m),

where 0 < m < [(the set u¥) is assumed to be empty if m = 0) so that

27

VEk <1 Qk, (u{)ien, u®) if m =1 and Vk € N Q(k, (ugl))ieN, u®) otherwise

1

I=1:
Consider the set {u;(1) : ¢ € N}. If there exists some T > 0 so that

u;(1) € [-T,0] for infinitely many ¢, choose some u(1l) € [-T,0] and a

subsequence (u!" o

This implies that Q(1, (ul");en, u®) for u® := {u(1)}. Otherwise set m = 0

2

(thus u™®) = @) and ulY) = u; for all i € N. Since either {ui(1) : i € N}| < o0,

i

)ien of (u;)ien so that u; ’(1) converges to u(1) for i — oo.

or {u;(1) : i € N}| = oo and lim; ,ou;(1) = —oo, this implies that
Vk € N Q(k, (uf”)jen, u®).

I-1—1:
Assume that w9 = {u(1),u(2),...,u(m)} with m < [— 1 and

(u(-lfl))ieN have already been constructed so that either m < [— 1 and Vk €

7

N Q(k, (u(-l_l))ieN, u(l_l)), orm=I[—1and Vk <1—-1Q(k, (ugl_l))ieN, u(l_l)).

(3

In the former case we define u® = u(1 and v = "V for all i € N,

and the claim is obvious. In the latter case we check whether there exists
(1-1)

some T > 0 so that u; '(I) € [-T,0] for infinitely many i. If yes, we

choose some u(l) € [—T,0] with u(l) < u(l — 1) and a subsequence (ugl))ieN
of (ugl_l))ieN so that ugl)(l) converges to u(l) for i — oo (this implies that
VE <1 Q(k, (uz(l))ieN,u(l))). If not, we set m := [— 1 and define ugl) = uglfl)
for all 7 € N. We then have Vk € N Q(k, (ugl))ieN,u(l)). Finally we define
()

7

u = J;ey ulV. It is then obvious that V& € N Q(k, (@;)ien, u)- |

the desired subsequence (u;);eny Of (u;)ien by setting 4; := wu,’, and a set

With the help of the preceding Lemma 4.4 we can now prove the converse

of Lemma 4.3:

Lemma 4.5. For any u,uy, us, ... € Uy one has d(v;,v) — 0 for i — oo =
Vk € N Q(k, (Ui)iENa U).

The proof of Lemma 4.5 is given in the Appendix. Lemma 4.3. and

28

Lemma 4.5 together allow us to derive the following essential lemma for the
proof of Theorem 4.1. It provides a link between the notion of fading memory
on spike trains and the notion of continuity with regard to the metric d, to

which the Stone Weierstrass Theorem can be applied.

Lemma 4.6. A time invariant filter F' : Uy — R® has fading memory on
spike trains if and only if the function F~ : Uy — R defined by F~(u™) : =
(Fu)(0) (for some arbitrary u € Un with u N (—o0,0] = u™) is well-defined

and continuous with respect to the metric d on Uy .

Proof of Lemma 4.6. “=" If I’ has fading memory on spike trains then
the value of (F'u)(0) only depends on uN(—o0, 0], hence F'~ is well-defined. In
order to prove that F'~ is continuous with respect to the metric d we assume
that some u € U, and some € > 0 have been given. We need to show that there
exists some 0 > 0 so that |F~u — F~v| < ¢ for all v € Uy with d(u,v) < 6.

Assume for a contradiction that such 0 does not exist. Then there exists
for every m € N some u,, € Uy with d(um,u) < - and [F up, — Fu| > e.
Thus we have d(u,,,u) — 0 for m — oo, and hence V k € N Q(k, (U)men,)
according to Lemma 4.5. But that implies |F'~u,, —F~u| — 0 by the definition
of fading memory on spike trains, a contradiction.

“<” Since F is assumed to be time invariant it suffices to show that
for every u € Ua and every € > 0 there exist § > 0 and m € N so that
[(Fu)(0) — (Fv)(0)| < ¢ for all v € Ua such that conditions i) and ii) of
the definition of fading memory on spike trains hold for u,v,d, m. Since F'~
is continuous with respect to the metric d, we know that there exists some
0~ > 0 so that [F~(un (—00,0]) — F~(vN (—00,0])| < ¢ for all v € Up with
d(un(—00,0], vN(—00,0]) < §. But it is obvious that there exist 6 > 0 and
m € N so that one has d(uN(—o0, 0], vN(—o0,0]) < 6~ for all v € Ua such that
conditions i) and ii) hold for u, v, §, m. Hence one has |(Fu)(0) — (Fv)(0)| < ¢
for all these v € Ua. [|

29

In order to complete the proof of Theorem 4.1 we just have to apply the
Stone-Weierstrass Theorem to functions F'~ : U, — R that are continuous
with respect to the metric d on U,. The Stone-Weierstrass Theorem can be
applied to these functions since (Uy, d) is a compact metric space according to
Lemma 4.4. According to Lemma 4.6 this yields the desired statement about

filters with fading memory on spike trains. [

5 Conclusions

We have proposed in this article a new framework for the analysis of the com-
putational power of neural circuits. Whereas there exists a well-established
computational theory for batch-computing on digital input (see for example
(Savage, 1998)), the biologically more realistic case of real-time computing
on fast varying analog input hat remained largely unexplored. In order to
eliminate unrealistic types of such computations, where infinite bit precision
of some input u(t) at time ¢ becomes relevant, or where values of u(t) for
an infinitely long interval of time points ¢ matter, we have proposed to focus
on fading memory computations where such pathological cases do not occur.
On the other hand, since the fading memory concept leaves open how fast
dependence on previous input segments is fading, it subsumes also all biologi-
cally relevant computations that involve memory or temporal integration. We
have shown that within this context of fading memory computations universal
computational power can be achieved by a class of circuits under rather weak
conditions. One just has to assume that this class of circuits satisfies the obvi-
ously necessary conditions that any two different inputs u, v can be separated
by a subsequent circuit state. Since recurrent circuits of spiking neurons tend
to have this property for fairly large classes of inputs, in particular if they
are sufficiently large and heterogeneous, one arrives in this way at a theoret-
ical foundation for the possible computational use of such circuits. Previous

theoretical approaches in this direction were based on attempts to implement

30

finite automata or well-understood and highly structured circuit architectures
with circuits of spiking neurons. These approaches usually can only explain
rather simple computations with spiking neurons in rather regularly structured
circuits (primarily feedforward, allowing no stochastic component in their con-
nectivity) with uniform computational units and static synapses. In contrast,
the theory presented in this article provides a possible theoretical explanation
for the computational function of the complex and highly recurrent circuits
consisting of neurons and dynamic synapses with a diverse set of time con-
stants, which emerge as the biologically more realistic models from detailed
empirical studies of neocortical microcircuits ((Markram et al., 1998), (Gupta
et al., 2000)).

Another aspect in which the theoretical framework presented in this article
differs from previous approaches is that it de-emphasizes the need to identify
a clear neural representation for each external stimulus to an organism: it
suggests instead that neural separation is more important than neural repre-
sentation. In other words: it suffices that saliently different external stimuli
leave significantly different traces in the activity of neural circuits, even if there
is no clear neural code by which these traces encode these stimuli. This ap-
proach is consistent with the fact that in many experiments the initial state
of the neural circuit varies from trial to trial: traces are piled up on top of
other traces that were caused by earlier external or internal inputs to the neu-
ral circuit. Neural separation may still be guaranteed even if there exists no
invariant neural representation of specific stimuli.

Our theoretical approach suggests that purposeful real-time processing of
sensory stimuli is possible just on the basis of neural separation (rather than
representation), since readout modules can easily be trained to assign target
outputs to complex circuit states, even if there is no simple rule that makes this
assignment easy (from the point of view of a human observer). This prediction
relies on the fact that almost any classification task can be carried out by a

linear separator (or a small pool of linear separators) if the patterns that need

31

to be classified are first projected nonlinearly into a fairly high-dimensional
space, even if this nonlinear projection is very complicated (in a biological
context this nonlinear projection would be defined by the current state of ac-
tivation of a neural microcircuit resulting from the injection of some input
pattern). The whole approach towards pattern recognition via support vector
machines in machine learning, see (Vapnik, 1998), relies on this effect. Also in
this regard the theory presented in this article is complementary to preceding
approaches, since it works particularly well for those types of circuits where
other approaches have difficulties: for fairly large recurrent circuits consisting
of heterogeneous neurons and dynamic synapses that respond in a complex
nonlinear way to incoming input. The theoretical prediction that the readout
from a recurrent circuit is easier if the circuit is fairly large may suggest on first
sight that this computational model is rather uneconomical, since it requires so
many neurons in the recurrent circuit. But one should keep in mind that the
same recurrent circuit can be used simultaneously by a large number of differ-
ent readouts, and thereby support simultaneously a large number of different
computational tasks (see Figure 4 in (Maass et al., 2001) for an experimental
demonstration of this fact).

(Jaeger, 2001) has discovered independently the power of liquid state ma-
chines in artificial neural networks with discrete time, showing for example
that they may yield novel solutions to difficult control problems. We have
shown in section 2 that circuits with fading memory of the type considered
in (Jaeger, 2001) give also rise to fading memory filters, and hence provide
another application domain for the theoretical results of this article.

The concepts and results of this article are not suitable for answering the
question how many basis filters By, ..., B,, from the class B of basis filters
may be needed to approximate a given filter F' up to a certain degree of
precision. Such bounds on the speed of convergence are very rare even in
the case of neural computation on static inputs, i.e. for standard artificial

neural networks, and the only mathematical results that provide such bounds

32

(see (Sontag, 1993) for a discussion) are almost never used practically. At this
point it is not clear whether similar theoretical results for the approximation
of filters are feasible, and even if they are found it is dubious whether they
would be practically relevant. Hence from the practical point of view it appears
to be more fruitful to carry out experimental studies. For the case of LSMs
whose liquid filter L is simply some generic recurrent circuit consisting of a
few hundred spiking neurons and the readout function is implemented by some
other pool of spiking neurons, some quite encouraging experimental results are
reported in (Maass et al., 2001). In (Haeusler et al., 2001) it is shown that
even single readout neurons may be quite successful. In (Natschliger and
Maass, 2001) it is shown that liquid filters L that are composed from a very
small number of dynamic synapses as basis filters (which have the pointwise
separation property according to (Maass and Sontag, 2000)) endow liquid state
machines with rather good approximation capabilities. Thus so far it appears
that the approximation results that were derived in this paper are not just
somewhere “up in the sky”, but that they are practically relevant.

The approximation results derived in this article induce new complexity
hierarchies for nonlinear filters that appear to be more useful and flexible
than the well-known degree-hierarchy of Volterra polynomials. One can fix
any collection B of basis filters that are natural computational units from the
point of view of a specific theoretical or practical context (e.g. in the context
of modeling biological neural computation the set of filters that are computed
by neurons). One can then measure the complexity of other filters F' in terms
of how many basis filters from B have to be composed in order to approximate
F up to a certain degree of precision. If the class B of basis filters satisfies
the pointwise separation property, the complexity of any time invariant fading
memory filter F' can be measured in this way (according to Theorems 3.1 and
4.1).

Finally, it turns out that the new approach towards neural computation

that is suggested by the theoretical framework of this article is the first one

33

that allows us to carry out complex computations on basically any computer
models of biologically realistic neural circuits, thereby opening up new ways of
investigating such circuits. Hence this approach may contribute to an experi-
mental and theoretical basis for understanding the computational function of
neural microcircuits in the cortex, and it may provide new ideas for capturing

their computational capability in artificial devices.

Acknowledgment:

The first author would like to thank Herbert Jaeger for stimulating discus-
sions. The work was partially supported by project P12153 of the Austrian
Science Fond, the NeuroCOLT project of the EU, the Office of Naval Research,
HFSP, Dolfi & Ebner Center and the Edith Blum Foundation. HM is the in-

cumbent of the Diller Family Chair in Neuroscience.

References

Auer, P., Burgsteiner, H., and Maass, W. (2001). The p-delta learning
rule for parallel perceptrons. submitted for publication. See # 126 on

http://www.igi.tugraz.at/maass/publications.html.

Boyd, S. and Chua, L. O. (1985). Fading memory and the problem of approxi-
mating nonlinear oparators with Volterra series. IEEE Trans. on Circuits

and Systems, 32:1150-11.

Brooks, R. A. (1991). Intelligence without representation. Artificial Intelli-
gence, 47:139-159.

Buonomano, D. V. and Merzenich, M. M. (1995). Temporal information trans-

34

formed into a spatial code by a neural network with realistic properties.

Science, 267:1028-1030.

Dieudonne, J. (1969). Foundations of Modern Analysis. Academic Press, New
York.

Gupta, A., Wang, Y., and Markram, H. (2000). Organizing principles for
a diversity of GABAergic interneurons and synapses in the neocortex.

Science, 287:273-278.

Haeusler, S., Markram, H., and Maass, W. (2001). A closer look at readouts
from high-dimensional dynamical neural systems. submitted for publica-

tion.

Hopfield, J. J. and Brody, C. D. (2001). What is a moment? Transient
synchrony as a collective mechanism for spatio-temporal integration. Proc.

Natl. Acad. Sci. USA, 89(3):1282.

Jaeger, H. (2001). The ”echo state” approach to analyzing and training recur-

rent neural networks. submitted for publication.

Maass, W. (1999). Paradigms for computing with spiking neurons. In van Hem-
men, L., editor, Models of Neural Networks, volume 4. Springer (Berlin), to
appear. See # 110 on http://www.igi.tugraz.at/maass/publications.html.

Maass, W. (2000). On the computational power of winner-take-
all. Neural Computation, 12(11):2519-2536. See # 113 on
http://www.igi.tugraz.at/maass/publications.html.

Maass, W. and Natschlager, T. (2000). A model for fast analog computation
based on unreliable synapses. Neural Computation, 12(7):1679-1704. See
102 on http://www.igi.tugraz.at/maass/publications.html.

Maass, W., Natschliger, T., and Markram, H. (2001). Real-time com-

puting without stable states: A new framework for neural computa-

35

tion based on perturbations. submitted for publication. See # 130 on

http://www.igi.tugraz.at/maass/publications.html.

Maass, W. and Sontag, E. (1999). Analog neural nets with Gaussian
or other common noise distribution cannot recognize arbitrary reg-
ular languages. Neural Computation, 11:771-782. See # 95 on
http://www.igi.tugraz.at/maass/publications.html.

Maass, W. and Sontag, E. D. (2000). Neural systems as nonlin-
ear filters. Neural Computation, 12(8):1743-1772. See # 107 on
http://www.igi.tugraz.at/maass/publications.html.

Markram, H., Wang, Y., and Tsodyks, M. (1998). Differential signaling via
the same axon of neocortical pyramidal neurons. Proc. Nat. Acad. Sci.

USA, 95:5323-8.

Marmarelis, P. Z. and Marmarelis, V. Z. (1978). Analysis of Physiological
Systems: The White-Noise Approach. Plenum Press, New York.

Natschlager, T. and Maass, W. (2001). Spiking neurons and the in-
duction of finite state machines. Theoretical Computer Science:
Special Issue on Natural Computing. in press. See # 136 on
http://www.igi.tugraz.at/maass/publications.html.

Poggio, T. and Reichardt, W. (1980). On the representation of multi-input
systems: computational properties of polynomial algorithms. Biological

Cybernetics, 37:167-186.

Rieke, F., Warland, D., van Steveninck, R. R. D., and Bialek, W. (1997).
SPIKES: Ezploring the Neural Code. MIT Press, Cambridge, MA.

Rudin, W. (1987). Real and Complex Analysis. McGraw-Hill, New York.

Rugh, W. J. (1981). Nonlinear Systems Theory. John Hopkins University

Press, Baltimore.

36

Sandberg, I. W. (1991). Structure theorems for nonlinear systems. Multidi-
mensional Systems and Signal Processing, 2:267—-286.

Savage, J. E. (1998). Models of Computation: Exploring the Power of Com-
puting. Addison-Wesley, Reading, MA.

Sontag, E. D. (1993). Neural networks for control. In H. L. Trentelman,
J. C. W., editor, Essay on Control: Perspectives in the Theory and its
Applications, pages 339-380. Birkhauser, Boston. Online available from:
http://www.math.rutgers.edu/ sontag/papers.html.

Vapnik, V. N. (1998). Statistical Learning Theory. John Wiley, New York.

6 Appendix

Proof of Lemma 3.3. One can easily show that the function d defined by

d(u,v) : = suptg()% satisfies the axioms for a metric. For exam-

ple, the triangle inequality is verified as follows for any w,v,w € U~
u(t)—v(t)

u(t)—w(t)|

d(u, 1}) = SuptSOTm < SuPtgo \u(t)—w(ti:‘;rl(t)—v(t” < SuPth S
+SUP;<o w = d(u,w) + d(w,v).

In order to prove that the metric space (U ,d) is compact, it suffices to
verify that there exists for any sequence (uy)gen of functions from U~ some
v € U~ and some subsequence (1;);en Of (ug)ken such that lim; o, d(;,v) = 0.
But this is an immediate consequence of the Arzela-Ascoli Theorem (see for

example (Rudin, 1987)). |

Technical Remark: The proof of Lemma 3.3 shows that it is not nec-
essary to assume that the functions in U are uniformly Lipschitz-continuous.
It suffices if the functions in U are equicontinuous (i.e., for every € € 0 there
exists a § > 0 such that |u(z) — u(y)| < € for every u € U and any z,y € R
with |z — y| < 0).

37

Proof of Lemma 4.2. The claim is not completely obvious, since in the
larger domain Ua there exist in fact different spike trains u,v with C, = C, :
define for example v :=Z,v := {z + 3 : z € Z}.

Assume for a contradiction that there exist u,v € U, with u # v but
d(u,v) = 0. The latter implies that C,(t) = C,(t) for all t < 0 (since C,, and
C, are continuous functions), and hence also that their derivatives C.,, C; have
the same value for any ¢t < 0 where these derivatives exist (since C,,C, are
piecewise linear, their derivatives are piecewise constant and do not exist at
those points where linear pieces with different slopes meet).

Let sp < 0 be a maximal point in the symmetric difference (v —v)U (v —u)
of the two different sets u and v. We can assume without loss of generality
that sqg € u — v.

Case 1: 50 =0
We first show that v N (—1,0) = v N (—1,0). For that we actually do not
even need the assumption so = 0. According to the definition of the piecewise
linear function C, every point t € u N (—1,0) causes at ¢ a downwards jump
by —2 or —1 of the piecewise constant derivative C,’, independently of the
other points in u (a downwards jump by —1 occurs at ¢ only if ¢ — 1 € u; note
that ¢ > —1 implies that ¢ + 1 ¢ u). Furthermore these are the only points in
(—1,0) where downwards jumps of C,’ occur. Hence C,’ = C,’ implies that
uN(=1/0) =vN(—1,0). But then the assumption 0 = sy € u — v implies that
Cy(0) = C,(0) + 1, thus C, # C,, a contradiction.

Case 2: s <0
We then have S := u N (s9,0] = v N (s0,0]. Set & :=u—S and ¥ :=v — S.
Since C,, = C, we also have C; = Cj, hence C%L = C’;. On the other hand
so € % — ¥ and @ N (sg,0] = O imply that the piecewise constant function Cj
has a downwards jump at sy, whereas C% has no downwards jump at sy (since

s0 ¢ ¥), a contradiction to Cy = Cj. n

38

Proof of Lemma 4.3. Fix some arbitrary ¢ € 0. We will show that there
exists some ig so that d(vi,v) < ¢ for all ¢ > 45. Choose T" > 0 sufficiently

T [Cu(t)—C.
2

large so that [~ 2Ol gt < £ for any u, @ € Uy.

Case 1: |[v| < o©
By the assumption of the Lemma there exists some 7 such that for every i > 7
and every k > |v| the k™ largest point of v; is < —T—2. Obviously these points

Mdt By choosing

< —T — 2 have no relevance for the value of fi)
G0 > 1 sufficiently large we can achieve that for ¢ > 4, all the other points of v;
(i-e., the k™ largest points for k& < |v]) lie so close to the corresponding points

|Cu, (£)—Cy (t

of v that [°, [Ca0ZC0lg; < <

Case 2: [v| =0
Choose ky € N so large that the k" largest point of v is < —T — 2. Then

> ip and all £ <

it suffices to choose 7y sufficiently large so that for all ¢
ko the kth largest point in v; lies so close to the k* largest point in v that

|G ()= C ()]
1. - dt < . a

Proof of Lemma 4.5. Assume that the claim is wrong, and choose k£ € N
minimal so that Q(k, (v;);en, v) does not hold.
Case 1: k£ < |v|

If there were infinitely many 7 such that |v;| < k this would contradict the
assumption that d(v;,v) — 0 for i — oo (since C, is a superposition of > &
functions T;). Hence there exists some ¢ > 0 and infinitely many ¢ € N so that
|v;| > k and the k™ largest point of v; has distance > ¢ from the k' largest
point in v. According to Lemma 4.3 and according to the proof of Lemma 4.4
there exists an infinite subsequence (7;);en of these v; and some u € U, so that
d(;,u) — 0 for i — oo and Vk € N Q(k, (¥;)ien,). Since the k™ largest point

of 9; and v have distance > ¢, this implies that |u| < k or that the k*" largest

39

point of u has distance > ¢ from the k™ largest point of v, thus in either case
u # v. According to Lemma 4.2 this implies that d(u,v) > 0. But then it is
impossible that d(9;,u) — 0 for i — oo and d(%;,v) — 0 for i — oo (by the
triangle inequality for the metric d).
Case 2: k£ > |v]

Then there exist infinitely many ¢ € N and some T > 0 that |v;| > k and k"
largest point of v; is > —T. But since Q(k’, (v;)ien, v) holds for all ¥’ < k (by
the minimal choice of k), we have for all m < |v| that |v;| > m for sufficiently
large i, and the m!* largest point of the v; converge to the m* largest point
of v. Define u; as the subset of v; consisting of the |v| largest points of v;.
Thus we have d(u;,v) — 0 for i — co. But this yields a contradiction to the
assumption that d(v;, v) — 0 for i — 0, since there are infinitely many i with

|v;| > k > |v| and the k' largest point of v; is > —T. |

40

