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Abstract

We prove a quasi-polynomial lower bound on the size of bounded-depth Frege proofs of
the pigeonholeprinciple PHP, wherem= (14 1/polylog n)n. Thislower bound qualitatively
matches the known quasi-polynomial-size bounded-depth Frege proofs for these principles.
Our technique, which uses a switching lemma argument like other lower boundsfor bounded-
depth Frege proofs, isnove in that the tautology to which this switching lemmais applied re-
mains random throughout the argument.
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1 Introduction

The propositiona pigeonhole principle asserts that m pigeons cannot be placed in n holes with at
most one pigeon per hole whenever mis larger than n. It is an exceptionally simple fact that un-
derlies many theoremsin mathematics, and isthe most extensively studied combinatorial principle
in proof complexity. (See [Razb02] for an excellent survey on the proof complexity of pigeon-
hole principles.) It can be formalized as a propositional formula, denoted PHP", in astandard way
which we shall describe later in the paper.

Clearly for m > n the pigeonhole principleisvalid and proving super-polynomial lower bounds
on the length of propositional proofs of the pigeonhole principle when m= n+ 1 has been a ma-
jor achievement in proof complexity. There are several ways in which the principle can be made
weaker (and hence easier to prove). One way is to increase the number of pigeons with respect to
the number of holes. Ancther is to put more constraints on how the pigeons can be placed in the
holes. The onto-PHP and the functional-PHP are two well-studied weakenings, which assert, re-
spectively, that the mapping from pigeons to holes must be surjective and a well-defined function.
In this paper, we will prove lower bounds which apply to al of these variations of the basic PHP.

For al m> n, Buss has given polynomial-size Frege proofs of PHP/". The basicideaisto for-
mulate polynomial-size circuits that count the number of 1'sin an N-bit string. Then using basic
axioms about the counting circuit plus the pigeon clauses, derive that the counting circuit applied
to the vector of variables F; j outputs anumber that islarger than n, while on the other hand, using
the basic axioms about the circuit plus the hole clauses, derive that the counting circuit applied to
the same vector of variables, outputs a number no larger than n.

In weaker proof systems, however, the proof complexity of the pigeonhole principle dependsin
acrucia way on the number of pigeons, m, asafunction of the number of holes, n. Asmincreases,
the principle becomes weaker (easier to prove) and in turn the proof complexity question becomes
more difficult. We review the basics of what is known for Resolution and bounded-depth Frege
systems below. Generally, theweak pigeonhol e principle has been used to refer to PHP" whenever
mis at least a constant factor larger than n but we will be primarily concerned with forms of the
pigeonhol e principlethat are significantly weaker than the usual pigeonhole principlebut somewhat
stronger than these typical weak forms.

For the Resolution proof system, the complexity of the pigeonhole principleis essentially re-
solved. 1n 1985, Haken proved thefirst super-polynomial lower boundsfor unrestricted Resolution
proofs of PHP™, for m= n+ 1 [Hak85]. This lower bound was generalized by Buss and Turan
[BT88] for m < n?. For the next 10 years, the resolution complexity of PHP™ for m > n? was
completely open. A recent result due to Raz gave exponential Resolution lower bounds for the
weak pigeonhole principle, and subsequently Razborov has resolved the problem for most interest-
ing variants of the PHP. (See [RWY 97, PR01, Raz, Razbla, Razblc, Razblb].)

Substantially lessis known about the complexity of the pigeonhol e principle in bounded-depth
Frege systems. 1n 1990, Ajtai proved super-polynomial lower bounds for PHP*1 with an inge-
nious blend of combinatorics and nonstandard model theory [Ajt94]. This result wasimproved to
exponential lower boundsin [BIK192, PBI93, KPW95]. It was observed in [BR98] that the above
lower bounds can in fact be applied to PHP" for m < n+ nf, for some ¢ that falls off exponentially



in the depth of the formulasinvolved in the proof.

The complexity of bounded-depth Frege proofs of the weak pigeonhole principle (for larger m)
isan important open question in proof complexity. The question is subtle and has deep connections
to other important problems. First, lower bounds for weak pigeonhole principles suffice to show
unprovability resultsfor the P versus NP statement [Razb98]. Secondly, the long-standing question
of whether or not the existence of infinitely many primes has an |Ag proof is closely related to the
complexity of WPHP in bounded-depth Frege systems [PWW88]. Thirdly, the question is closely
related to the complexity of approximate counting [PW85].

The subtlety of theproblemisillustrated by two competingresults. First, thereareknown bounded-
depth Frege proofs of PHP for m = n+ n/polylog n of quasi-polynomial size [PWW88, Krad6,
MPWO0O0]. Thus, exponential lower bounds are out of the question. Secondly, the complexity of
weak pigeonhole principlesisintimately connected to approximate counting: if it were possible to
construct polynomial-size constant-depth circuits to approximately count, and to prove basic ax-
ioms about these circuits with polynomial-size bounded depth proofs, then the weak pigeonhole
principlewoul d have efficient bounded-depth Frege proofs. Using hash functions, such circuitsthat
approximately count exist, but all known proofsof the associated basic axiomsrely on probabilistic
counting arguments, and hence do not appear to have efficient bounded-depth Frege proofs.

In this paper we prove quasi-polynomial lower boundsfor theweak pigeonhol e principlewhen-
ever m< n+ n/polylog n. More precisely, we show that given integers ¢ and h such that c is suf-
ficiently large compared to h, there exists an integer a > 1 such that any depth-h proof of PHP",
wherem < n+n/log®n, requiressize 2/°9"", Thisisasubstantial improvement over previous|ower
bounds. Our proof technique applies a switching lemmato aweaker tautology based on certain bi-
partite graphs. This type of tautology was introduced by [BSW99]. Although we rely heavily on
the simplified arguments presented in [Bea94] and [UF96], in a major difference from previous
switching-lemma-based proofs, both the tautologies themselves and the restrictions we consider
remain random throughout most of the argument.

In the next section we give an overview of the key issues involved in extending bounded-depth
Frege lower bounds to the weak pigeonhole principle and how we deal with them. We follow this
with fairly standard definitions of bounded-depth Frege proof systems and the precise formulation
of the tautologies we use in section 3, definitions for restrictions and matching decision treesin
section 4. We present the lower bound argument itself in section 5.

2 Overview

The overall schemaof our proof isnot new (see below). Ignoring parameters for aminute, we start
with an aleged proof of PHP of small size. We then show that assigning values to some of the
variablesin the proof leaves us with a sequence of formulas, each of which can be represented as
a particular type of decision tree of small height. This part of the argument is generally referred
to as the switching lemma. We then prove that the leaves of any such short tree corresponding to
aformulain the proof must all be labelled 1 if the proof isto be sound. Finaly, we show that the
tree corresponding to PHPT" has leaves labelled 0, which is a contradiction since it must appear as



aformulain the alleged proof. We now overview the components of lower bound in more detail
and context.

Thelower boundsfor bounded-depth Frege proofsof PHPI 1 [Ajt88, BIK* 92, PBI93, KPW95]
used restrictions, partial assignments of valuesto input variables, and iteratively applied “ switching
lemmas’ with respect to random choices of these restrictions. Thefirst switching lemmas [FSS84,
Ajt83, Has86] showed that after one applies a randomly chosen restriction that assigns values to
many, but far fromall, of theinput variableswith high probability one can convert an arbitrary DNF
formulawith small termsinto a CNF formulawith small clauses (hencethe name). More generally,
such switching lemmas allow one to convert arbitrary DNF formulas with small termsinto small
height decision trees (which implies the conversion to CNF formulas with small clauses). The ba-
sicideaisthat for each level of the formulas/circuits, one provesthat arandomly chosen restriction
will succeed with positive probability for all sub-formulas/gatesat that level. Onethen fixes such a
restriction for that level and continuesto the next level. To obtain alower bound one choosesafam-
ily of restrictions suited to the target of the analysis. In the case of PHP", the natural restrictions
to consider correspond to partial matchings between pigeons and holes.

Theform of the argument by which switchinglemmasare proven generally dependson the prop-
erty that the ratio of the probability that an input variableremains unassigned to the probability that
itisset to O (respectively, to 1) is sufficiently lessthan 1. In the case of arandom partial match-
ing that contains (1 — p)n edges applied to the variables of PHPY", there are pn unmatched holes
and at least pm unmatched pigeons. Hence, the probability that any edge-variable remains unas-
signed (i.e. neither used nor ruled out by the partial matching) is at least p?. However, the partial
matching restrictions set less than a 1/m fraction of variablesto 1. Thus the proofs required that
p?n < p?m < 1 and thus p < n~Y/2, This compares with choices of p = n=%/" for depth h cir-
cuit lower boundsin the best argumentsfor parity provenin [Has86]. Hence, the best known lower
bounds on the size of depth-h circuits computing parity is of the form on'/ h, while the best known

—h
lower bound on the size of depth-h proofs of PHP*1 is of the form o

A problemwith extending thelower boundsto PHR for larger misthat, after apartial matching
restrictionisapplied, theabsol ute diff erence between the number pigeons and hol es does not change
but the number of holes is dramatically reduced. This can qualitatively change the ratio between
pigeons and holes. If thisis too large then the probability that variables remain unassigned grows
dramatically and, in the next level, the above argument does not work at all. For example, with the
above argument, if the difference between the number of pigeons and holesis as large as n3/4 then
after only one round the above argument will fail. The extension in [BR98] to lower bound proofs
for PHPM*1™ for formulasof depth h relieson thefact that even after h roundsof restrictionsthe gap
issmall enough that there is no such qualitative change; but thisis the limit using the probabilities
as above.

We are able to resolve the above difficulties for m as large as n+ n/polylog n. In particular,
we increase the probability that variables are set to 1 to 1/polylog n from 1/m by restricting the
matchingsto be contained in bipartite graphs G of polylog n degree. Thus we can keep as many as
n/polylog n of the holes unmatched in each round. This means that, by choosing the exponentsin
the polylog n carefully as a function of the depth of the formulas, we can tol erate gaps between the
number of pigeons and the number of holes that are also n/polylog n.



A difficulty with thisoutlineisthat one must be careful throughout the argument that the restric-
tions one chooses do not remove all the neighbors of a node without matching it, which would sim-
plify the pigeonhole principleto atriviality. Itisnot at all clear how one could explicitly construct
low degree graphs such that some simple additional condition on the restrictions that we choose
at each stage could enforce the desired property. It is unclear even how one might do this non-
constructively because it is not clear what property of the random graph would suffice.

Instead, unlike previousarguments, we do not fix the graph in advance; we keep theinput graph
random throughout the argument, and consider for each such graph G its associated proof of the pi-
geonhole principlerestricted to G. Since we do not know what G is at each stage we cannot ssimply
fix the restriction as we deal with each level; we must keep that random as well. Having done this,
we can use simple Chernoff bounds to show that, for almost all combinations of graphsand restric-
tions, the degree at each level will not be much smaller than the expected degree, so the pigeonhole
principle will remain far fromtrivial. We adjust parametersto reduce the probability that arestric-
tion fails to smplify a given level so that it is much smaller than the number of levels. Then we
apply the probabilistic method to the whole experiment involving the graph G as well as the se-
guence of restrictions.

There is one other technical point that isimportant in the argument. It does not merely suffice
that the degrees of vertices are small in the original graph G. In order for the probabilitiesin the
switching lemma argument to work out it is critical that the degrees of vertices in the graph after
each level of restriction is applied are decreased significantly at each step. Using another smple
Chernoff bound we show that the degrees of vertices given aimost all combinations of graphs and
restrictionswill not be much larger than their expected value and this suffices to yield the decrease
in degree.

Overall, our argument isexpressed in much the same termsas thosein [Bea94, UF96], although
wefind it smpler to omit formally defining k-evaluations as separate entities. One way of looking
at our techniqueisthat we apply two very different kinds of random restrictionsto aproof of PHP™:
first, one that sets many variablesto O, corresponding to the restriction of the problem to the graph
G, and then, one that sets partial matchings for use with the switching lemma.

3 Theproof system

Let G = (V1UV,, E) be abipartite graph where [V, = nand |V;| = m > n.

DEFINITION 3.1: L(G) isthelanguage built from the set of propositional variables {Xe : e € E},
the connectives {V, -} and the constants 0 and 1.

DEFINITION 3.2 A formula isatree whose internal nodes are labelled by either v (fanin 2) or —
(fanin 1) and whose leaves are labelled by variables. Given anode in this tree, the full tree rooted
at that nodeis called a (not necessarily proper) subformula of the original formula.

DEerFINITION 3.3: If theformulacontains no connectives, then it has depth 0. Otherwise, the depth
of a(sub)formulaA isthe maximum number of alternations of connectives along any path fromthe
root to leaf, plus one.



A Frege proof system is specified by afinite set of sound and complete rules. Our results hold
for any Frege system, but one common variant isthe following, dueto Schoenfield (p, g, r stand for
formulasand we will use the notation p, gt r to denote that p and qyield r in one step of the Frege
system):

e Excluded Middle: - —pVv p

e ExpansonRule: pFqV p

e ContractionRule: pVv pF p

e AssociativeRule: pv (qVvr)F (pva)Vvr

CutRule: pvg, -pVrkqvr

Let ¥ be one such Frege system.

DEFINITION 3.4: Thesize of aFrege ruleisthe number of distinct subformulas mentioned in the
rule.

For example, the size of the cut rule above is 7; the subformulas mentioned are: p,q,r,—p,pV
g,—pVvr,qVvr. We'll assumethat the rules of # all have size at most some constant f.

DEFINITION 3.5: A proof of aformulaA in F isasequence of formulas A4, ..., A, = A such that
F A; and for al i > 1 thereis some (possibly empty) subset 42 C {Aq,...,Ai_1} suchthat 4+ A.

DEFINITION 3.6: For a Frege proof M, let cl(M) denote the closure of the set of formulasin I
under subformulas.

For convenience, we introduce the following normal form of aformula:

DEFINITION 3.7: Consider aformulaof depth h, A. The merged form of Aisthetree such that all
V’s of depth h are identified into a single node of unbounded fanin, also labelled V.

DEFINITION 3.8 Thesize of aproof isthetotal number of distinct subformulasthat appearsinthe
proof. The depth of a proof is the maximum of the depths of the formulasin the proof.

The following is a formulation of the onto and functional weak pigeonhole principle on the
graph G. Notethat if G is not the complete graph K, then this principleis weaker than the stan-
dard onto and functional weak pigeonhole principle.

DEFINITION 3.9: WPHP(G) isthe OR of the following four (merged forms of) formulasin L(G).
Ingenerdl, i, j, k represent verticesin G and I (i) represents the set of neighborsof i in G.



1. \/(e,e')el _'(ﬁxevﬁxe’) for | = {(e7e() : e7e( € E!e: {|7k}7e, = {J,k},hj EV]_;i # J’ke
V5 }: two different pigeons go to the same hole.

2. \/ ee)el _‘(_‘Xev_‘xe’> for | = {(eae(> : eae( € E!e: {kal}ae, = {kaj}’laj EVZ;i 7£ J’ke
Vl(}: one pigeon goes to two different holes.

3. Viev, ~ Vijer i) X{i,j}: Some pigeon doesn't have ahole.

4, \/jEVZ - \/ier(j) X{i,j}: some hole remains empty

In fact, we consider an arbitrary orientation of the above formulawhereby each V is binary.

4 Representing matchingsby trees

In this section we make minor modifications to standard definitions from [Bea94, UF96] to apply
to the edge variables given by bipartite graphs and not just complete bipartite graphs.

Let G = (V1 U V5, E) be abipartite graph where |V,| = nand |Vi| = m > n. Assumethereisan
ordering on the nodes of G. Assumefurther that we have aBoolean variable X for each ec E. Call
thisset of variables D.

DEFINITION 4.1: Two edges of G are said to be inconsistent if they share exactly one endpoint.
Two partial matchings p1, p2 onthe graph G are said to be consistent if no edgein p; isinconsi stent
with an edgein p,.

DEFINITION 4.2: For p a partiad matching on the graph G that matches nodes V{ C V; to nodes
Vj C V,, we define G|, as the bipartite graph (Vi \ V) U (V2 \ V), E— (V] x VoUVy x V).

DEFINITION 4.3: A matching decisontree T for G isatree where each interna node u islabelled
by anode of G, v, and each edge from anode u islabelled by an edge of G that touchesv. Further-
more, given any path in the tree from the root to a node u, the labels of the edges along the path
constitute a partial matching on G, called path(u). Let path(T) = {path(u) : uisaleaf of T}. If
visanode of G that appears as alabel of somenodein T, then T issaid to mention v.

Furthermore, each leaf of T islabelled by 0 or 1 (if atree satisfies the above conditions but its
leaves remain unlabelled, we will cal it aleaf-unlabelled matching decision tree). Let T¢ be the
sameas T except with the value of each leaf-label flipped. If U isthe set of leavesof T labelled 1,
let disj(T) be the DNF formula

VA %

ueU ec path(u)
DEFINITION 4.4: A complete (leaf-unlabelled) matching decision tree for G is one in which, for

each internal node u labelled v, the set { path(u’) : U achild of u} congtitutes all matchingsin G
of the form path(u) U {{v,V'}} for all V' such that {v,V'} € E.



DEFINITION 4.5: Let K be a subset of the nodes in G. The full matching tree for K over G is a
leaf-unlabelled matching decision tree for G defined inductively: if K = {k}, then the root of the
treeislabelled by k and, for each edge ein G that touchesk, thereisan edge from theroot of thetree
labelled e. If K contains more than one node, et k be its largest node under the ordering of nodes
and assume we have a full matching tree for K\ {k}. For each (unlabelled) leaf u of thistree, let
p be the path from the root to u. The labels of the edges along p constitute a partial matching on
G. If this partial matching touchesk, leave u unlabelled. Otherwise, 1abel u by k and and attach an
edge to u for each edge in G that touches k and that extends the partial matching.

Note that the full matching tree for any subset K iscomplete. If the degree of each nodeinK is
at least |K|, then the full matching treefor K is guaranteed to mention al nodesin K. Otherwise, it
might not.

Lemma 1l: Let T be acomplete matching tree for G and let p be any partial matching on G.
Let d be the minimal degree of any nodein G mentioned by T. If d > max{|p|,height(T)}, then
thereisamatching in path(T) that is consistent with p.

Proof: Assume we have found an internal node u in T labelled by v in G such that path(u)
is consistent with p. We will find achild u’ of u such that path(u’) is still consistent with p. Since
the degree of v is greater than the size of p, thereis an edge {v,v'} in G such that {v,V'} is either
includedinp (if p touchesv) or extendsp (if p doesnot touchv). Since T iscomplete and the degree
of visgreater than height(T), the edge {v,V'} appearsasalabel of an edgefromuinT. O

DEFINITION 4.6: We call F a matching digunction if it is one of the constantsO or 1, or it isa
DNF formulawith no negations over the variables D such that the edges of G corresponding to the
variables in any one term congtitute a partial matching. In the latter case, order the termslexico-
graphically based on the nodes they touch and the order of the nodesin G.

DEFINITION 4.7: For F amatching disunction, the restriction F|, for p apartial matching is an-
other matching digunction generated from F asfollows: set any variablein F corresponding to an
edge of p to 1 and set any variable corresponding to an edge not in p but incident to one of p’s nodes
to 0. If avariableintermt is set to O, removet from F. Otherwise, if avariableintermt isset to
1, remove that variable fromt.

The DNF disj(T) for amatching decision tree T is aways a matching disjunction.

DEFINITION 4.8 A matching decision tree T is said to represent a matching digunction F if, for
| aleaf of T, F|,any = L whenl islabelled 1 and F| pyny = O when | islabelled O.

A matching decision tree T always represents disj(T). Furthermore, if p extends some match-
ing path(l) for | aleaf of T, thendisj(T)|p = 0 (1, respectively) if | islabelled 0 (1).



DEFINITION 4.9: Let F beamatching digunction. We defineatree Treeg(F) called the canonical
decision tree for F over G: if F is constant, then Treeg(F) is one node labelled by that constant.
Otherwise, let C bethefirst term of F. Let K be the nodes of G touched by variablesin C. Thetop
of Treeg(F) isthefull matching tree on K over G. We replace each leaf u of that tree, with thetree

TreeG| path(u) ( F | path(u) ) .

The tree Treeg(F) will have all of its leaves labelled. It is designed to represent F and to be
complete.

DEFINITION 4.10: For T amatching decision treeand p amatching, T restricted by p, written T|,
is amatching decision tree obtained from T by first removing al edges of T that are inconsi stent
with p, and retaining only those nodes of T that remain connected to theroot of T. Each remaining
edge that corresponds to an element of p isthen contracted (itsendpoints areidentified and labelled
by the label of the lower endpoint).

Lemma 2 ([UF96], Lemma 4.8) Restricting matching trees commuteswith some transforma-
tions and is related to restricting matching digunctions:
(a) disj(T)|p =disj(T|p).
(0) (Tlp)®=TCp.

(c) If T represents amatching disunction F, then T |, represents F| .

5 Thelower bound

Let m=n+n/log®n for someinteger ¢ > 0 and let h > 0 be an integer. We assume for simplicity
that nislarge compared to c and that all subsequent expressions are integers. We will show that for
any a such that 8"(a+ 3) < c, any proof of PHPT" = WPHP(Kmy) of depth his of size greater than
299" To do this we do not work directly with proofs of WPHP(Kmn) but rather we work with
proofs of WPHP(G) for randomly chosen subgraphs G of Kmp.

More precisely, let b = 8"(a+ 3), defined = log°n and observethat a < b < c.

Let G(m,n,d/n) be the uniform distribution on all bipartite graphs from m nodes to n nodes
where each edge is present independently with probability d/n.

DEFINITION 5.1 Let M“(H) bethe set of all partial matchings of size ¢ on afixed graph H.

We now define several sequences of parameters for a probabilistic experiment. The meanings
of these parameters will be explained after the definition of the experiment. For initial values, let

My=mMm, Ng=n, bO:ba



and
ko = 7ho/8, o= ng— ng/logn.

Then, for 1 <i < h, we define recursively:

m=m_1—"0i_1, i =n_1—4i_1, bj=b_1 —ki_1,

and
ki = 7b;/8, ¢; = nj —n;/log" n.
In closed form:
~ i i—1 _
n = n/(logn)2=0% = n/(logn)®/® m = n; + (m—n), by = b— Zbkj =b/8,
j:
and

k = 7b/8*1, ;= (1—1/log" n)(n/(logn)>"/%).

Now we are ready to define the experiment: let Gg = G be a graph chosen randomly from the
distribution G(m, n,d/n) and choose pg randomly and uniformly from M‘(Gg). Again, for 1 <i <
h, let G; = Gj_1|p,_, and choose p; randomly and uniformly from M%(G;).

First note that the distribution induced on each G; by thisexperimentis G(m, nj,d/n). Further-
more, the expected degree of any pigeon in G; isn;d/n = log? n. The expected degree of any hole
in G; ismd/n, which is between log® nand 2log® nsince n; < my < 2n; (because ¢ > b).

We make several observations about “bad” eventsin this experiment.

Lemma 3: Theprobability, for fixedi suchthat 0 <i < h, that any nodein G; hasdegree greater
def b~
than A, = 6log” nisat most

(my -+ y)2-1o8n < p-log=in,

Proof: The expected degree of any hole at stage i will be m;d/n. The expected degree of any
pigeon will be n;d/n. By the conditions on mand n, the former quantity isat most twice the | atter,
whichisequal tolog® n. Fix anodein thegraph and let X be the random variable that representsits
degree. Thisisasum of Bernoulli trials since the edges occur independently with the same prob-
ability. Chernoff’s bound tells us that Pr(X > 3u(X)) < (€2/27)*X) < (1/2)4X). We know that
logP n < u(X) < 2log® nand bj > 2, so we havethebound. C

Lemma 4: Supposethat nissufficiently largeand let 0 <i < h. The probability that any node
in G; has degreelessthan 2 1og” nisat most
(m + ni)Z_%i"’gbi n _ p—logh~tn
Proof: Theexpected degreeof any particular nodein G; isat least log® n. Applying aChernoff
bound in the form Pr(X < 3u(X)) < exp(—3p(X)), we have theresult. O

We now develop a switching lemma using the smplified counting techniques of [Razb95] and
[Bea%4.
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DEFINITION 5.2: ForagraphH andintegers/ and A, let N“4(H) bethe set of al pin M’ (H) such
that all nodes of H|, have degreeat most A. Let Nf_’jA(H) bethe set of partial matchingsof size + |

on H that are extensions of matchingsin N“4(H).

For aparticular i, the set N“4i+1(G;) representsin some sense the usable or “good” portion of all
the matchingsin M (G;). The next lemma shows that with high probability most of the matchings
at any particular stage i are good:

Lemmab: LeeO0<i < h. Then

NG . o
= V712709 n 1/n.
[ MG - <in

Proof: Observe that

|N£i7Ai+l(Gi)|> - —logPi+1-1
— - P8 - 1—-2 g n
Exp< IMA(Gy)] Prlp € NPE(Gi] >

% is bounded above by 1, we can apply Markov's inequality

to yield that Pr [% 1 n-2-108"+7' — 1/n_ The result follows by observing that n-

2—Iog i+17 1 2—Iog i+1~ O

by Lemma 3. Now, since

Lemma 6 (SwitchingLemma) Consider G and po, - .., Ph—1 chosen according to the experi-
ment defined above. Let i, s, r beany integerssuchthat 0 <i < h,0<s< Ai+1/log3n andr > 0.
Finally, let F be any matching digunction with conjunctions of size < r over the edge-variables of
Gi. The probability that Treeg, , (F|p,) has height > s conditioned on the events

e G; has maximum degree at most 4;

INTBH+L(G))[ 1 _ o—log+172n
IMA(G)| =
o D€ Nli’AH'l(Gi)

is at most o2
2 (720r /logP/? n)

DEFINITION 5.3: Let stars(r, j) be the set of all sequences 3 = (B4, ...,Bx) such that for each i,
Bi € {*,—}"\ {—1}" and the total number of x’sinBisj.

Lemma 7 ([Bea94]) |stars(r, j)| < (r/In2)i.
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Lemma 8: For H afixed bipartite graph with an ordering on its nodes, let F be a matching
digunction with conjunctions of size < r over the edge-variables of H and let SC N“4(H) be the
set of matchings p such that Treey (F|p) hasheight > s. Thereisan injection from the set Sto the
set

U NOS(H) < stars(r, j) < [A]°.
s/2<j<s

Proof: LetF=C;VC,V.... If p€ S then let 1t be the partial matching labelling the first
path in TreeH|p(F|p) of length > s (actually, we consider only the first s edges in 11, starting from
theroot, and hencewe assume |1 = ). Let C,, bethefirst termin F not set to O by p and let K1 be
the variables of C,, not set by p. Let 01 be the unique partial matching over K; that satisfies C,, |p
and let Ty be the portion of Ttthat touches Kj.

Now define By € {x, —}Kil\ {—}IK1l g0 that the p-th component of By isax if and only if the
p-thvariablein C,, isset by 0;.

Continue this process to define 15, 0j, K, etc. (replacing p with pr...T5_1 and Tt with 11\
TG . . . TG_1 until some stage k when we' ve exhausted all of Tt Let o bethe matchingoy .. .ok, and 3
bethevector (By,...,Bx). Let j = |o| bethe number of edgesin a. Notethat s/2 < j <'s. Observe
that B € stars(r,s) and pa € N7 (H).

We now encode the differences between al the corresponding 14 and o; pairsin asingle vector
0 congisting of |1l = s components, each in {1,...,A}. Let u; be the smallest numbered node in
K1 and suppose that Tt (in particular Tt) matches u; with some node v;. Then the first component
of d isthe natural number x such that v, is the x-th neighbor (under the ordering of nodes) of u;
in the graph H|pg,0..0,. More generally, until the mates of all nodes in K; under Ty have been
determined, we determine the p-th component of & by finding the smallest numbered node up of
K1\ {u1,...,Up_1,V1,...,Vp_1} and then we find its mate v, under 1 and encode the position x of
vp inthe order of the neighbors of up in Hlpg,0,...0,. Once Ky (and thus 1y) has been exhausted the
next component is based on the mates of the smallest numbered nodes in K, under 15, until that is
exhausted, etc. where the ordering about each vertex when dealing with K; is with respect to the
graph H |DGi+10i+2~~~0k'

Finally, we define the image of p € Sunder the injection to be (po, 3,8). To prove that thisis
indeed an injection, we show how to invert it: Given po; . ..ok, we can identify v, asthe index of
the first term of F that is not set to O by it. Then, using 3; we can reconstruct o; and K;. Next,
reading the components of d and the graph H|pg,...q,, until all of K; is matched, we can reconstruct
. Then we can derive pry05. . . Ok.

Atageneral stagei of theinversion, wewill know 1y, ..., T§_1 and 01, ...,0j_1andKq, ..., Ki_1.
We use p11 ... TG_10;j . . . Ok to identify v; and, hence, o; and K; (using [3). Then we get 15 from 9,
Ki, and poj, 1 ...0k. After k stages, wewill know all of o and can recover p. O

LA
N (G|

Proof: [of Lemma 6] We prove this by obtaining an upper bound on NG|

plying Lemma8.
By definition, Nﬁ’in“(Gi) C M%t1(Gj) so we develop an upper bound on |[M‘+1(G;)|. We can
count the number of matchingsin M‘i*(G;) by choosing matchingsin M‘i(G;) and extending them

and then ap-
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by j edges. A matching p € M%(G;) can be extended by j edges by choosing j unmatched holes
and then choosing the sequence of their j neighborsin G;|p. For each such p, thereare (”Tli) way's
to choose the unmatched holes. Then, for p € N“4i+1(G;), there are at most A ; waysto choose a
neighbor for each of these holes since that is the degree of Gip. If p € Mi(G;) \ N‘-4i+1(G;), then
thedegreeof G|, isat most thedegree of G;, whichisA; by assumption, sothereareat most A; ways
to choose a neighbor for each of the unmatched holes. This procedure overcounts each matching
of size (; + j by afactor of (“+1). Hence we have

. i . . j i i i j n. _E. E. —I_ -
Now by assumption

o—loghi+172n

|M€i(Gi) \ Nﬁi,Ai+1(Gi)| < Nﬁi,Ai+1(Gi)| < 21_|Ogbi+l_2n|Ngi’Ai"'l(Gi)|.

1 — 2—log’+17%n |

Thus, using the fact that [N 2+1(Gp)| < |M%+i(G;)|, we have
+i

A A ' _log?i+12n A ) (i — L fit]
|Nf_'7jA'+1(Gi)| < |N£"A'+1(Gi)| (Aij—|—1+21 log-i+1 nAij>< i J |)/< |j J)

Then,
£ r . )
NG Gl _ 1+21_.ogbi+1—zn< o )‘ (Am(ni—m)’
N B 7
[ : Dy !
< 1_|_21—Ai+1/(6log2n,) logn)ks ( i+1Mi ) 1
_ (ogn)®] { S 6
- Coon \J
< 1_|_21—Ai+1/(6log2n:)(|ogn)kiAi+1/Iog3n} < A|—|—1|:‘| ) )
: liloghn
A j
= (Iogl'ji:l> )

[ 12logP+1n :
B logh n '
Inequalities (1) and (2) follow from j < s < Ai+1/log3n and the definitions of A and Ay 1. In-

equality (3) follows since 12kjloglogn < logn for n sufficiently large and the fact that n; /¢ =
1/(1—1/log%n) whichiscloseto 1.

The probability we wish to bound isthe size of theimagein Lemma8withH « G;j, ¢ + ¢;, and
A+ D44 divided by |[N/4i+1(G;)|. By the above bound, thisisless than

Di+1 !
z <720r|0%, i n) X (GIOQbi+1 n)®.
s/2<j<s\ 1ogTn

13



Since b1 = bj — ki and without |oss of generality Z?Cr,éggibriln < 1/2 (otherwise the probability bound

in the lemma statement is meaningless), this quantity is at most

2(720r log® =4 n)$/2 < 2(720r / 1ogh/?n)¥/?

snce3b; — 4k, = —bj/2. O

DEFINITION 5.4: Let Sg be aset of formulas of depth at most h that is closed under subformulas
and defined over thegraph G. For p =pg. .. pn_1, we define, for every 0 <i < h, 7o, amapping
from formulas with depth < i+ 1 in Sg to matching decision trees. It is defined inductively as
follows:

For avariable Xe, Zp,(Xe) isTreeg(Xe)|p,. Furthermore, 7o, (—Xe) is(7Zp,(Xe))®. For A adepth-
1 formulawith merged form \/ | Xe, Zp,(A) isTreeg, ((Veel Xe)lpo)-

For 0 <i < h, for al formulas A of depth < i+ 1, Tp,..0/(A) is Zp,..0_,(A)|p. For aformula
Aof depthi+1,if A= =B, then Ty, _o,(A) is(Zp,..0;(B))C, and otherwisg, if the merged form of
Ais\/jc;Bj, let F be the matching disunction \/c;disj(Zp,..p,_,(Bj)) and let 7y o, (A) be the
canonical matching tree Treeg,, (F|p; )-

From the definition of 7,, we have that if —A isaformulain Sg, then Z5(-A) = (Zp(A))°.
Also, by lemma 2, if \/ic; A is the merged form of some formulaA in Sg, then Z,(A) represents

Vier disj(Zp(A)).

Lemma 9: Letaandhbepositiveintegers. For each graph G, let Sg beaset of formulasclosed
under subformul as defined on the variables of G such that |Sg| < 2/°9°" and each formulaA € Sg has
depth at most h. For n sufficiently largein a and h, there exists achoice of G and p = po, - - -, Ph-1
as defined above such that the following conditions hold:

1. 75(A) has height at most log?nfor al A € S, and
2. every nodein Gy, has degree at least log?™1n.
Proof: We proceed using the probabilistic method. For 0 <'i < h, definethefollowing events:

e A: Every nodein G; has degree at most A = 6log” n.

Bi: Every nodein G; has degree at least (1/2) log® n.

. INGLi+1(Gy)|

biy1— .
il > 1 2710gM N, Herei < h

Di(A): Tp,...p_, (A) hasheight at most log?n for someformulaA € S; of depth at mosti. Here
i>1

D;: for al formulas A € S of depth at most i, D;(A) holds. Herei > 1.

14



We compute an upper bound on the probability that any of these eventsfailsto betrueand prove
that this probability isstrictly lessthan 1. Since by, = a+ 3, if By, occursand D;(A) occursfor each
i=1,...,hand each A € S; of depth i then the claims of the lemma are satisfied for that(G, p), so
this probability bound suffices.

Now by Lemma3, Pr[-A;] < 2-'99" ™1 and by Lemmad4, Pr[-B;] < 2-'%" 1 Furthermore, by
Lemmas, Pr[-Cj] < 1/n. Let A€ S beof depthi < hwith themerged form of Aequal to \/¢; Q;
and let F bethematching diiunction \/ ;¢ disj(Zp,...,_, (Qj)). Observingthat b, = b/8" = (a+3),
by Lemma 6 applied to F withr = s= log?n < A,/ log®n, we have

2(720/ logP/?~2n)(logn /2
2(720/ |ogbh_1/ 2-a n) (log?n)/2
2(720/ |Og3a+3 n)(Ioga n)/2
2—Iogan/n

Pr[-Di;1(A) | A ADi AAL1 AC]

VAN VAR VAN

A\

forn suff|C|entIy large. Therefore, Pr{—Djy1 | A ADj AA 11 AG] < 1/nsince each Ss contains at
most 2!°9°" disjunctions of depthi + 1.

Therefore the total probability that some A;, B;, G;, or D; failsisat most:

%Pr[—'A, + %PI’[—'B| + %PI’—'C,
+ —'D1|A0/\A1/\Co]+PI'[—|D2|A1/\D1/\A2/\C]_]
4+

+  Pr[=Dp | An-1 ADp_1 AARACh_y].

In total there are 4h termsin this sum, each of whichisat most 1/n, and thus the whole probability
is<l1l O

From now on, we fix a graph G and arestriction p = po, - . ., Pr—1 0Obeying the conditions of
Lemma9 when appliedtothesetsof formulasin Sg = cl (Mg ) whereeach Mg isaproof of WPHP(G)
in aproof system F whose largest rule has size f.

The following three lemmas are adapted from [UF96], which elegantly proved them for an ar-
bitrary Frege system.

Lemma 10: Let Cbealinein aFregeproof I'. Let 4 be the immediate ancestors of C in the
proof (if there are any), so that 4 - C. Let B be the subformulas of 4 and C mentioned in the
application of the rule which derivesC from 4. Let ' = 2U BU {C}. Note that by our bound on
thesizeof rulesin 7, |F'|+1 < f. Findly, let o be amatching which extends soundly some o €
path(Zy(A)) for each A€ 4, someog € path(Zy(B)) for each B € B, and some o¢ € path(Z,(C)).
If disj(Zp(A))|o = 1 for al Ae 4, then disj(75(C))|o = 1.

Proof: First notethefollowingfacts, wherea, 3 € I and D(a) isan abbreviationfor disj(Zp(a)):
D(a)lc=0o0rD(a)ls=1
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e If —a e, thenD(—0a)|s = 1iff D(a)|s =0.
o If (aVvpP)el, thenD(aVpP)|s=1iff D(a)|c=1orD(B)lc =1

Now consider the rule R used to derive C formulated as in the examples from section 3. The
application of R substitutes subformulas Ap, Aq, Ar,. .. inT for each of theatoms p, q,r,...inRand
thereis aderived correspondence mapping subformulas F appearing in Rto formulasAg € I'. De-
fineafunction T on the atoms of R by 1(p) = D(Ap)|s for each such atom p. By thefirst property,
T isatruth assignment to these atoms. Furthermore, by the other two properties, the truth assign-
ment T extendsto all subformulasF in Rso that T(F) = D(Ag)|s. Since Rissound, if T satisfies all
formulasin 4 it will satisfy C and thusD(C)|s=1. O

Lemma 11: Let ¥ be a Frege system with maximum rule size f. Let n be sufficiently large
w.rt. f. Let a,h> 0. For each G, assume that Mg is aproof in F of WPHP(G) of size at most
299N and depth at most h. Let p and G be as defined in Lemma 9 applied with Sg = cl(Mg). IfC
isan arbitrary linein proof Mg then al leaves of 7,(C) are labelled by 1.

Proof: We proceed by (complete) induction on thelinesin the proof. Assume every leaf of 7,
for any line preceding Cislabelled 1. Let 4, B, I beasin Lemma 10. For any leaf | of 7,(C), we
use Lemma1tofind o that extends path(l) and extends amatching in each of the sets path(Zy(A))
for al A € 4 and path(Z,(B)) for all B € B. Thisis possible since there are at most f trees to
consider and by Lemma9 the sum of their heightsisat most f log?n < log?* ! nwhich isthe degree
of Gy,

By assumption, disj(Zp(A))|q = 1for al Ain 4. Hence, by Lemma 10, disj(Z,(C))|s = 1, SO
| must belabelled1l. O

Lemma 12: All leaves of 7,(WPHP(G)) arelabelled by O.

Proof: It suffices to show that 7, applied to each of the following types of formulas has all
leaves |abelled O:

1. =(=XeV—Xy)fore € € E;e={i,k}, & ={j,k};i,j € Vi;i # j;ke Vo
2. ~(~XeV—Xy)fore € cE;e={k,i}, € ={k,j};i,j €Voi# j;keVs.
3. = Vieri Xi,iy fori € Vy.
4. ~Vier(jXqi,jy for j € Va.

In fact, we will show that 7, applied to the complement of each of these formulas has all leaves
labelled 1.

For aformulaof thefirsttype, T = Zp(—XeV = Xg ) must represent disj (Zp(—Xe) ) vV disj (Zp(—Xg ).
If p sets the value of either Xe or Xy then it must set one of =Xe or =Xy to 1 and thus all leaves
of To(—Xe V ~Xg) are certainly labelled 1. Otherwise, for | aleaf of T, path(l) cannot contain
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both e and €. Without loss of generality it does not contain e. By Lemma 1 applied to graph Gy,
we can find o that extends path(l) and is an extension of some matching in Zp(—Xe). But then
disj(Zp(—Xe))|lo = 1, so | must be labelled 1. The argument isthe same for formulas of the second
type.

For aformulaof the third type T= %(vjer(l) X{H}) must represent Vjer(i) dlS] ({ZE)(X{H}))
Hence, if p sets X;; j; to 1 for some j € I'(i), then all leaves of T are certainly labelled 1. Other-
wise, for aleaf | of T, if path(l) touches nodei, then \/ jer ;) disj (Zo(Xi 3 )| parngy = 1. Finally,
if path(l) does not touch nodei, extend it to o = path(| )U{l j} for some j such that X{i,jy isnot
set by p. Then disj(Zp(X(i j3))lo = 1, ol islabelled 1. Formulas of the fourth typefollow in the
sameway. O

Theorem 13: Given any c sufficiently large, there exists a bipartite graph G fromm= n+
n/log®n pigeons to n holes such that there is no depth-h, 2'°9°M-size F-proof of WPH P(G) pro-
vided that 8"(a+ 3) < c.

Proof: Assumethat for all such G, thereisaproof N of the required depth and size. For the
G in Lemma 9 and its corresponding proof Mg of WPHP(G), there exists a p such that 7,(A) has
al leaves labelled 1 for any A € cl(Mg), but Zo(WPHP(G)) has al leaves labelled 0. If Mg isto
be a proof of WPHP(G), then WPHP(G) must appear in Mg, S0 we have acontradiction. O

Corollary 14: Givenany csufficiently large, thereisno depth-h, 2!°9"n-size -proof of WPHP =
WPHP(Kmp) fromm= n+n/log°n pigeonsto n holes, provided that 8"(a+3) < c.
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