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Abstract

We prove a quasi-polynomial lower bound on the size of bounded-depth Frege proofs of the pigeon-
hole principle PHPm

n where m � �
1 � 1 � polylog n � n. This lower bound qualitatively matches the known

quasi-polynomial-size bounded-depth Frege proofs for these principles. Our technique, which uses a
switching lemma argument like other lower bounds for bounded-depth Frege proofs, is novel in that the
tautology to which this switching lemma is applied remains random throughout the argument.
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1 Introduction

The propositional pigeonhole principle asserts that m pigeons cannot be placed in n holes with at most
one pigeon per hole whenever m is larger than n. It is an exceptionally simple fact that underlies many
theorems in mathematics, and is the most extensively studied combinatorial principle in proof complexity.
(See [24] for an excellent survey on the proof complexity of pigeonhole principles.) It can be formalized
as a propositional formula, denoted PHPm

n , in a standard way; by convention, this formalization rules out
relational as well as functional mappings of m pigeons to n holes.

Proving super-polynomial lower bounds on the length of propositional proofs of the pigeonhole principle
when m � n

�
1 has been a major achievement in proof complexity. The principle can be made weaker (and

hence easier to prove) by increasing the number of pigeons relative to the number of holes, or by considering
fewer of the possible mappings of pigeons to holes. Two well-studied examples of the latter weakenings,
the onto-PHP and the functional-PHP, only rule out, respectively, surjective and functional mappings from
pigeons to holes. In this paper, we will prove lower bounds that apply to all of these variations of the basic
PHP.

For all m � n, Buss [11] has given polynomial-size Frege proofs of PHPm
n . He uses families of polynomial-

size formulas that count the number of 1’s in an N-bit string and Frege proofs of their properties to show
that the number of pigeons successfully mapped injectively can be at most the number of holes.

In weaker proof systems, where such formulas cannot be represented, the proof complexity of the pi-
geonhole principle depends crucially on the number of pigeons, m, as a function of the number of holes, n.
As m increases, the principle becomes weaker (easier to prove) and in turn the proof complexity question
becomes more difficult. We review the basics of what is known for Resolution and bounded-depth Frege
systems below. Generally, the weak pigeonhole principle (WPHP) has been used to refer to PHPm

n whenever
m is at least a constant factor larger than n. We will be primarily concerned with forms of the pigeonhole
principle that are significantly weaker than the usual pigeonhole principle but somewhat stronger than these
typical weak forms.

For the Resolution proof system, the complexity of the pigeonhole principle is essentially resolved. In
1985, Haken proved the first super-polynomial lower bounds for unrestricted Resolution proofs of PHPm

n ,
for m � n

�
1 [13]. This lower bound was generalized by Buss and Turan [10] for m � n2. For the next 10

years, the resolution complexity of PHPm
n for m � n2 was completely open. A recent result due to Raz [22]

gives exponential Resolution lower bounds for the weak pigeonhole principle, and subsequently Razborov
has resolved the problem for most interesting variants of the PHP [25].

Substantially less is known about the complexity of the pigeonhole principle in bounded-depth Frege
systems, although strong lower bounds are known when the number of pigeons m is close to the number of
holes n. Ajtai proved super-polynomial lower bounds for PHPn � 1

n with an ingenious blend of combinatorics
and nonstandard model theory [3, 1]. This result was improved to exponential lower bounds in [6, 21, 17].
It was observed in [7] that the above lower bounds can in fact be applied to PHPm

n for m � n
�

nε, for some
ε that falls off exponentially in the depth of the formulas involved in the proof.

For the case of larger m (the topic of this paper), the complexity of bounded-depth Frege proofs of
PHPm

n is slowly emerging, with surprising and interconnected results. There are several deep connections
between the complexity of the weak pigeonhole principle and other important problems. First, lower bounds
for bounded-depth Frege proofs of the weak pigeonhole principles suffice to show unprovability results for
the P versus NP statement (see [24]). Secondly, the long-standing question of whether or not the existence
of infinitely many primes has an I∆0 proof is closely related to the complexity of WPHP in bounded-depth
Frege systems [20]. Thirdly, the question is closely related to the complexity of approximate counting [19].

In bounded-depth Frege systems more powerful than resolution, there are two significant prior results
concerning the proof complexity of weak pigeonhole principles: There are bounded-depth Frege proofs
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of PHPm
n for m as small as n

�
n � polylog n of quasi-polynomial size [20, 16, 18]; thus exponential lower

bounds for the weak pigeonhole principle are out of the question. In fact, this upper bound is provable in a
very restricted form of bounded-depth Frege where all lines in the proof are disjunctions of polylog n-sized
conjunctions, a proof system known as Res � polylog n � . On the other hand, [4] shows exponential lower
bounds for weak pigeonhole principles in Res � 2 � , a proof system which allows lines to be disjunctions of
size-2 conjunctions.

In this paper we prove quasi-polynomial lower bounds for the weak pigeonhole principle whenever
m � n

�
n � polylog n. More precisely, we show that given integers c and h such that c is sufficiently large

compared to h, there exists an integer a � 1 such that any depth-h proof of PHPm
n , where m � n

�
n � logc n,

requires size 2loga n. This is a substantial improvement over previous lower bounds. Our proof technique
applies a switching lemma to a weaker tautology based on certain bipartite graphs. This type of tautology
was introduced in [9]. Although we rely heavily on the simplified switching lemma arguments presented in
[5, 26], in a major difference from previous switching-lemma-based proofs, both the tautologies themselves
and the restrictions we consider remain random throughout most of the argument.

2 Overview

The high-level schema of our proof is not new. Ignoring parameters for a minute, we start with an alleged
proof of PHPm

n of small size. We then show that assigning values to some of the variables in the proof
leaves us with a sequence of formulas, each of which can be represented as a particular type of decision tree
of small height. This part of the argument is generally referred to as the switching lemma. We then prove
that the leaves of any such short tree corresponding to a formula in the proof must all be labelled 1 if the
proof is to be sound. Finally, we show that the tree corresponding to PHPm

n has leaves labelled 0, which is
a contradiction since it must appear as a formula in the alleged proof. We now overview the lower bound
components in more detail.

The lower bounds for bounded-depth Frege proofs of PHPn � 1
n [1, 6, 21, 17] used restrictions, partial

assignments of values to input variables, and iteratively applied “switching lemmas” with respect to random
choices of these restrictions. The first switching lemmas [12, 2, 14] showed that after one applies a randomly
chosen restriction that assigns values to many, but far from all, of the input variables with high probability
one can convert an arbitrary DNF formula with small terms into a CNF formula with small clauses (hence
the name). More generally, such switching lemmas allow one to convert arbitrary DNF formulas with small
terms into small height decision trees (which implies the conversion to CNF formulas with small clauses).
The basic idea is that for each level of the formulas/circuits, one proves that a randomly chosen restriction
will succeed with positive probability for all sub-formulas/gates at that level. One then fixes such a restriction
for that level and continues to the next level. To obtain a lower bound one chooses a family of restrictions
suited to the target of the analysis. In the case of PHPm

n , the natural restrictions to consider correspond to
partial matchings between pigeons and holes.

The form of the argument by which switching lemmas are proven generally depends on the property
that the ratio of the probability that an input variable remains unassigned to the probability that it is set to 0
(respectively, to 1) is sufficiently less than 1. In the case of a random partial matching that contains � 1 � p � n
edges applied to the variables of PHPm

n , there are pn unmatched holes and at least pm unmatched pigeons.
Hence, the probability that any edge-variable remains unassigned (i.e. neither used nor ruled out by the
partial matching) is at least p2. However, the partial matching restrictions set less than a 1 � m fraction of
variables to 1. Thus the proofs required that p2n � p2m � 1 and thus p � n � 1 � 2. This compares with choices
of p � n � O � 1 � h � for depth h circuit lower bounds in the best arguments for parity proven in [14]. Hence, the
best known lower bounds on the size of depth-h circuits computing parity is of the form 2nΩ � 1 	 h 


, while the
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best known lower bound on the size of depth-h proofs of PHPn � 1
n is of the form 2n2 �

O � h 

.

A problem with extending the lower bounds to PHPm
n for larger m is that, after a partial matching

restriction is applied, the absolute difference between the number pigeons and holes does not change but the
number of holes is dramatically reduced. This can qualitatively change the ratio between pigeons and holes.
If this is too large then the probability that variables remain unassigned grows dramatically and, in the next
level, the above argument does not work at all. For example, with the above argument, if the difference
between the number of pigeons and holes is as large as n3 � 4 then after only one round the above argument
will fail. The extension in [7] to lower bound proofs for PHPn � nεh

n for formulas of depth h relies on the fact
that even after h rounds of restrictions the gap is small enough that there is no such qualitative change; but
this is the limit using the probabilities as above.

We are able to resolve the above difficulties for m as large as n
�

n � polylog n. In particular, we increase
the probability that variables are set to 1 to 1 � polylog n from 1 � m by restricting the matchings to be con-
tained in bipartite graphs G of polylog n degree. Thus we can keep as many as n � polylog n of the holes
unmatched in each round. Therefore, by choosing the exponents in the polylog n carefully as a function of
the depth of the formulas, we can tolerate gaps between the number of pigeons and the number of holes that
are also n � polylog n.

A difficulty with this outline is that one must be careful throughout the argument that the restrictions one
chooses do not remove all the neighbors of a node without matching it, which would simplify the pigeonhole
principle to a triviality. It is not at all clear how one could explicitly construct low degree graphs such that
some simple additional condition on the restrictions that we choose at each stage could enforce the desired
property. It is unclear even how one might do this non-constructively because it is not clear what property
of the random graph would suffice.

Instead, unlike previous arguments, we do not fix the graph in advance; we keep the input graph random
throughout the argument, and consider for each such graph G its associated proof of the pigeonhole principle
restricted to G. Since we do not know what G is at each stage we cannot simply fix the restriction as we deal
with each level; we must keep that random as well. Having done this, we can use simple Chernoff bounds
to show that, for almost all combinations of graphs and restrictions, the degree at each level will not be
much smaller than the expected degree, so the pigeonhole principle will remain far from trivial. We adjust
parameters to reduce the probability that a restriction fails to simplify a given level so that it is much smaller
than the number of levels. Then we apply the probabilistic method to the whole experiment involving the
graph G as well as the sequence of restrictions.

There is one other technical point that is important in the argument. In order for the probabilities in the
switching lemma argument to work out it is critical that the degrees of vertices in the graph after each level
of restriction is applied are decreased significantly at each step as well as being small in the original graph
G. Using another simple Chernoff bound we show that the degrees of vertices given almost all combinations
of graphs and restrictions will not be much larger than their expected value and this suffices to yield the
decrease in degree.

Overall, our argument is expressed in much the same terms as those in [5, 26], although we find it
simpler to omit formally defining k-evaluations as separate entities. One way of looking at our technique is
that we apply two very different kinds of random restrictions to a proof of PHPm

n : first, one that sets many
variables to 0, corresponding to the restriction of the problem to the graph G, and then, one that sets partial
matchings for use with the switching lemma.
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3 Frege proofs and WPHP
�
G �

A formula is a tree whose internal nodes are labelled by either � (fanin 2) or � (fanin 1) and whose leaves are
labelled by variables. Given a node in this tree, the full tree rooted at that node is called a (not necessarily
proper) subformula of the original formula. If a formula contains no connectives, then it has depth 0.
Otherwise, the depth of a (sub)formula A is the maximum number of alternations of connectives along any
path from the root to leaf, plus one. The merged form of a formula A is the tree such that all � ’s labelling
adjacent vertices of A are identified into a single node of unbounded fanin, also labelled � .

A Frege proof system is specified by a finite set of sound and complete inference rules, rules for deriving
new propositional formulas from existing ones by consistent substitution of formulas for variables in the
rule. A typical example is the following, due to Schoenfield, in which p � q � r are variables that stand for
formulas and p � q � r denotes that p and q yield r in one step:
Excluded Middle: ��� p � p, Expansion Rule: p � q � p, Contraction Rule: p � p � p, Associative Rule:
p � � q � r ��� � p � q ��� r, Cut Rule: p � q �	� p � r � q � r.

We will say that the size of a Frege rule is the number of distinct subformulas mentioned in the rule. For
example, the size of the cut rule above is 7; the subformulas mentioned are: p � q � r�
� p � p � q �
� p � r� q � r.

DEFINITION 3.1. A proof of a formula A in Frege system F is a sequence of formulas A1 �������
� Ar � A such
that � A1 and for all i � 1 there is some (possibly empty) subset A ��� A1 ��������� Ai � 1 � such that A � Ai is a
substitution instance of a rule of F .

DEFINITION 3.2. For a Frege proof Π, let cl � Π � denote the closure of the set of formulas in Π under
subformulas. The size of a Frege proof Π is � cl � Π ��� , the total number of distinct subformulas that appear in
the proof. The depth of a proof is the maximum depth of the formulas in the proof.

Let G � � V1 � V2 � E � be a bipartite graph where �V2 � � n and �V1 � � m � n. We use L � G � to denote the
language built from the set of propositional variables � Xe : e � E � , the connectives �����
� � and the constants
0 and 1.

The following is a formulation of the onto and functional weak pigeonhole principle on the graph G.
Note that if G is not the complete graph Km � n, then this principle is weaker than the standard onto and
functional weak pigeonhole principle.

DEFINITION 3.3. W PHP � G � is the OR of the following four (merged forms of) formulas in L � G � . In
general, i � j � k represent vertices in G and Γ � i � represents the set of neighbors of i in G.

1. � � e � e � ��� I � ��� Xe ��� Xe � � for I � � � e � e ! � : e � e !"� E;e � � i � k � � e ! �#� j � k � ; i � j � V1; i $� j;k � V2 � : two
different pigeons go to the same hole.

2. � � e � e � ��� I � ��� Xe ��� Xe � � for I �#� � e � e ! � : e � e !"� E;e �#� k � i � � e ! � � k � j � ; i � j � V2; i $� j;k � V1 � : one
pigeon goes to two different holes.

3. � i � V1
�%� j � Γ � i � X & i � j ' : some pigeon has no hole.

4. � j � V2
� � i � Γ � j � X & i � j ' : some hole remains empty.

In fact, we consider an arbitrary orientation of the above formula whereby each � is binary.

4 Representing matchings by trees

In this section we make minor modifications to standard definitions from [5, 26] to apply to the edge vari-
ables given by bipartite graphs and not just complete bipartite graphs.
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Let G be a bipartite graph as in the last section and let D denote the set of Boolean variables Xe in L � G � .
Assume there is an ordering on the nodes of G.

DEFINITION 4.1. Two edges of G are said to be inconsistent if they share exactly one endpoint. Two partial
matchings ρ1 � ρ2 on the graph G are said to be consistent if no edge in ρ1 is inconsistent with an edge in ρ2.
For a partial matching ρ, let Im � ρ � denote the set of nodes of V2 that are matched by ρ.

DEFINITION 4.2. For ρ a partial matching on the graph G that matches nodes V !1 � V1 to nodes V !2 � V2, we
define G � ρ as the bipartite graph � � V1 � V !1 � � � V2 � V !2 � � E � � V !1 � V2 � V1 � V !2 � � .

DEFINITION 4.3. A matching decision tree T for G is a tree where each internal node u is labelled by a node
of G, v, and each edge from a node u is labelled by an edge of G that touches v. Furthermore, given any path
in the tree from the root to a node u, the labels of the edges along the path constitute a partial matching on
G, called path � u � . Let path � T � � � path � u � : u is a leaf of T � . If v is a node of G that appears as a label of
some node in T , then T is said to mention v.

Furthermore, each leaf of T is labelled by 0 or 1 (if a tree satisfies the above conditions but its leaves
remain unlabelled, we will call it a leaf-unlabelled matching decision tree). Let T c be the same as T except
with the value of each leaf-label flipped. If U is the set of leaves of T labelled 1, let dis j � T � be the DNF
formula �

u � U
�

e � path � u �
Xe.

DEFINITION 4.4. A complete (leaf-unlabelled) matching decision tree for G is one in which, for each in-
ternal node u labelled v, the set � path � u ! � : u ! a child of u � constitutes all matchings in G of the form
path � u � � � � v � v ! � � for all v ! such that � v� v ! � � E .

DEFINITION 4.5. Let K be a subset of the nodes in G. The full matching tree for K over G is a leaf-unlabelled
matching decision tree for G defined inductively: if K � � k � , then the root of the tree is labelled by k and,
for each edge e in G that touches k, there is an edge from the root of the tree labelled e. If K contains more
than one node, let k be its largest node under the ordering of nodes and assume we have a full matching
tree for K � � k � . For each (unlabelled) leaf u of this tree, let p be the path from the root to u. The labels of
the edges along p constitute a partial matching on G. If this partial matching touches k, leave u unlabelled.
Otherwise, label u by k and and attach an edge to u for each edge in G that touches k and that extends the
partial matching.

Note that the full matching tree for any subset K is complete. If the degree of each node in K is at least
�K � , then the full matching tree for K is guaranteed to mention all nodes in K. Otherwise, it might not.

Lemma 1. Let T be a complete matching tree for G and let ρ be any partial matching on G. Let d be the
minimal degree of any node in G mentioned by T . If d � max ��� ρ � � height � T � � � then there is a matching in
path � T � that is consistent with ρ.

Proof. Assume we have found an internal node u in T labelled by v in G such that path � u � is consistent
with ρ. We will find a child u ! of u such that path � u ! � is still consistent with ρ. Since the degree of v is
greater than the size of ρ, there is an edge � v� v ! � in G such that � v� v ! � is either included in ρ (if ρ touches v)
or extends ρ (if ρ does not touch v). Since T is complete and the degree of v is greater than height � T � , the
edge � v� v ! � appears as a label of an edge from u in T .

DEFINITION 4.6. We call F a matching disjunction if it is one of the constants 0 or 1, or it is a DNF formula
with no negations over the variables D such that the edges of G corresponding to the variables in any one
term constitute a partial matching. In the latter case, order the terms lexicographically based on the nodes
they touch and the order of the nodes in G.
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DEFINITION 4.7. For F a matching disjunction, the restriction F � ρ for ρ a partial matching is another
matching disjunction generated from F as follows: set any variable in F corresponding to an edge of ρ to 1
and set any variable corresponding to an edge not in ρ but incident to one of ρ’s nodes to 0. If a variable in
term t is set to 0, remove t from F . Otherwise, if a variable in term t is set to 1, remove that variable from t.

The DNF dis j � T � for a matching decision tree T is always a matching disjunction.

DEFINITION 4.8. A matching decision tree T is said to represent a matching disjunction F if, for every leaf
l of T , F � path � l ��� 1 when l is labelled 1 and F � path � l ��� 0 when l is labelled 0.

A matching decision tree T always represents dis j � T � . Furthermore, if ρ extends some matching path � l �
for l a leaf of T , then dis j � T ��� ρ � 0 (1, respectively) if l is labelled 0 (1).

DEFINITION 4.9. Let F be a matching disjunction. We define a tree TreeG � F � called the canonical decision
tree for F over G: if F is constant, then TreeG � F � is one node labelled by that constant. Otherwise, let C
be the first term of F . Let K be the nodes of G touched by variables in C. The top of TreeG � F � is the full
matching tree on K over G. We replace each leaf u of that tree, with the tree TreeG � path � u 
 � F � path � u � � .

The tree TreeG � F � will have all of its leaves labelled. It is designed to represent F and to be complete.

DEFINITION 4.10. For T a matching decision tree and ρ a matching, T restricted by ρ, written T � ρ, is
a matching decision tree obtained from T by first removing all edges of T that are inconsistent with ρ,
and retaining only those nodes of T that remain connected to the root of T . Each remaining edge that
corresponds to an element of ρ is then contracted (its endpoints are identified and labelled by the label of
the lower endpoint).

Lemma 2. ([26], Lemma 4.8) For T a matching decision tree and ρ a matching:

(a) dis j � T ��� ρ � dis j � T � ρ � .

(b) � T � ρ � c � T c � ρ.

(c) If T represents a matching disjunction F, then T � ρ represents F � ρ.

5 The lower bound

Let m � n
�

n � logc n for some integer c � 0 and let h � 0 be an integer. We assume for simplicity that n is
large compared to c and that all subsequent expressions are integers. We will show that for any a such that
8h � a �

3 � � c, any proof of PHPm
n � WPHP � Km � n � of depth h is of size greater than 2loga n. To do this we do

not work directly with proofs of WPHP � Km � n � but rather we work with proofs of WPHP � G � for randomly
chosen subgraphs G of Km � n.

More precisely, let b � 8h � a �
3 � , define d � logb n and observe that a � b � c.

Let G � m � n � d � n � be the uniform distribution on all bipartite graphs from m nodes to n nodes where each
edge is present independently with probability d � n.

DEFINITION 5.1. Let H � � V1 � V2 � E � be a fixed bipartite graph. Define M � � H � to be the set of all partial
matchings of size � in H and for I � V2 with � I � ��� let M �I � H � be the set of all ρ � M � � H � with Im � ρ � � I.
Define a partial distribution M � � H � on M � � H � by first choosing a set I � V2 uniformly at random among
all subsets of V2 of size � , then choosing a ρ � M �I � H � uniformly at random; if M �I � H � is empty then no
matching is chosen and the experiment fails.
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We now define several sequences of parameters for a probabilistic experiment. The meanings of these
parameters will be explained after the definition of the experiment. For initial values, let

m0 � m � n0 � n � b0 � b �
and

k0 � 7b0 � 8 ��� 0 � n0 � n0 � logk0 n �
Then, for 1 � i � h, we define recursively:

mi � mi � 1 � � i � 1 � ni � ni � 1 � � i � 1 � bi � bi � 1 � ki � 1 �
and

ki � 7bi � 8 ��� i � ni � ni � logki n �
In closed form,

ni � n � � log n � ∑i
�

1
j � 0 k j � n � � log n � b � b � 8i � mi � ni

� � m � n � � bi � b �
i � 1

∑
j � 0

k j � b � 8i �

and
ki � 7b � 8i � 1 ��� i � � 1 � 1 � logki n � � n � � log n � b � b � 8i � �

Now we are ready to define the experiment: let G0 � G be a graph chosen randomly from the distribution
G � m � n � d � n � . For 0 � i � h � 1, let ρi

� M � i � Gi � and define Gi � 1 � Gi � ρi . (We say that the experiment fails
during stage i

�
1 if the partial distribution M � i � Gi � fails to return an element ρi.) Observing that the choice

of ρi depends only on the edges of Gi that are incident to Im � ρi � and these are among the edges of Gi that
are removed to produce Gi � 1 we have:

Proposition 3. If this experiment succeeds up to stage i then the distribution induced on G i is G � mi � ni � d � n � .

Thus, the expected degree of any pigeon in Gi is nid � n � logbi n. The expected degree of any hole in Gi

is mid � n, which is between logbi n and 2logbi n since ni � mi � 2ni (because c � b).
We make several observations about “bad” events in this experiment.

Lemma 4. For 0 � i � h, the probability, given that the experiment succeeds up to stage i, that any node in

Gi has degree greater than ∆i
de f� 6logbi n is at most � mi

�
ni � 2 � logbi n � 2 � logbi �

1 n.

Proof. The expected degree of any hole at stage i will be mid � n. The expected degree of any pigeon will
be nid � n. By the conditions on m and n, the former quantity is at most twice the latter, which is equal to
logbi n. Fix a node in the graph and let X be the random variable that represents its degree. This is a sum
of Bernoulli trials since the edges occur independently with the same probability. Chernoff’s bound tells us
that Pr � X � 3µ � X � � � � e2 � 27 � µ � X � � � 1 � 2 � µ � X � . We know that logbi n � µ � X � � 2logbi n and bi � 2, so we
have the bound.

Lemma 5. For 0 � i � h and sufficiently large n, the probability, given that the experiment succeeds up to
stage i, that any node in Gi has degree less than 1

2 logbi n is at most � mi
�

ni � 2 � 1
16 logbi n � 2 � logbi �

1 n.

Proof. The expected degree of any particular node in Gi is at least logbi n. Applying a Chernoff bound in
the form Pr � X � 1

2 µ � X � � � exp � � 1
8 µ � X � � , we have the result.

Lemma 6. For 0 � i � h � 1, the probability that the experiment fails at stage i
�

1, given that it has
succeeded up to stage i is at most 2 � logbi �

2 n.
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Proof. This is less than the probability that a random graph from G � mi � ni � d � n � does not contain a perfect
matching which by Hall’s theorem is less than the probability that there is a proper subset S of the holes that
has at least ni � � S � non-neighbors among the first ni holes. This is at most

ni � 1

∑
j � 1

�
ni

j � 2

� 1 � d � n � j � ni � j � � ∑
1 � j � ni � 2

�
ni

j � 2

� 1 � d � n � j � ni � j � � ∑
ni � 2 � j � ni � 1

�
ni

ni � j � 2

� 1 � d � n � j � ni � j �

� ∑
1 � j � ni � 2 � n2

i � 1 � d � n � ni � j � j � ∑
ni � 2 � j � ni � 1 � n2

i � 1 � d � n � j � ni � j

� ∑
1 � j � ni � 2 � n2

i e � d � ni � j � � n � j � ∑
ni � 2 � j � ni � 1 � n2

i e � d j � n � ni � j

� ∑
1 � j � ni � 2 � n2

i e � dni � � 2n � � j � ∑
ni � 2 � j � ni � 1 � n2

i e � dni � � 2n � � ni � j

By construction dni � � 2n � � 1
2 logbi n and ni � n so the failure probability is at most 2 � logbi �

2 n.

We now develop the switching lemma argument. The overall structure uses the simplified counting tech-
niques of [23] and [5], however the statement and proof are both complicated by the need to use probabilistic
properties of the formulas themselves as well as the relationship of those properties to the restrictions under
consideration. We first need some definitions:

DEFINITION 5.2. For a bipartite graph H � � V1 � V2 � E � and integers � and ∆, let N � � ∆ � H � be the set of all ρ
in M � � H � such that all nodes of H � ρ have degree at most ∆. For a set I � V2 with � I � � � let N � � ∆I � H � be the
set of elements ρ � N � � ∆ � H � with Im � ρ � � I.

Lemma 7. Let 0 � i � h and suppose that the experiment succeeds up to stage i
�

1. Then the probability

that
�N � i � ∆i � 1

Im � ρi 
 � Gi � �
�M � i

Im � ρi 
 � Gi � � � 1 � 2 � logbi � 1 �
2 n is at most 1 � n.

Proof. Observe that the expectation of
�N � i � ∆i � 1

Im � ρi 
 � Gi � �
�M � i

Im � ρi 
 � Gi � � conditional on success up to stage i
�

1 is precisely the

probability that ρi � N � i � ∆i � 1 � Gi � conditional on success up to stage i
�

1 which is � 1 � 2 � logbi � 1 �
1 n by

Lemma 4. Now, since
�N � i � ∆i � 1

Im � ρi 
 � Gi � �
�M � i

Im � ρi 
 � Gi � � is bounded above by 1, we can apply Markov’s inequality to yield that the

probability, conditional on success up to stage i
�

1, that
�N � i � ∆i � 1

Im � ρi 
 � Gi � �
�M � i

Im � ρi 
 � Gi � � � 1 � n 	 2 � logbi � 1 �
1 n is at most 1 � n. The

result follows by observing that n 	 2 � logbi � 1 �
1 n � 2 � logbi � 1 �

2 n.

We are now ready to state the switching lemma.

Lemma 8 (Switching Lemma). Let i � s � r be any integers such that 0 � i � h, 0 � s � ∆i � 1 � log3 n and r � 0.
Suppose that the experiment above succeeds up to stage i

�
1, consider G and ρ0 �������
� ρi resulting from this

experiment, and suppose that Gi has maximum degree at most ∆i. Finally, let F be any matching disjunction
with conjunctions of size � r over the edge-variables of Gi. The probability that TreeGi � 1 � F � ρi � has height

� s conditioned on the events
 ρi � N � i � ∆i � 1 � Gi �


 �N � i � ∆i � 1
Im � ρi 
 � Gi � �
�M � i

Im � ρi 
 � Gi � � � 1 � 2 � logbi � 1 �
2 n
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is at most 2 � 720r � logbi � 2 n � s � 2
.

DEFINITION 5.3. Let stars � r� j � be the set of all sequences β � � β1 �������
� βk � such that for each i, βi � ����� � � r �� � � r and the total number of � ’s in β is j.

Lemma 9 ([5]). � stars � r� j ��� � � r � ln 2 � j .

Lemma 10. For H a fixed bipartite graph with an ordering on its nodes, let F be a matching disjunction
with conjunctions of size � r over the edge-variables of H and let S be the set of matchings ρ � N � � ∆ � H �
such that TreeH � ρ � F � ρ � has height � s. There is an injection from the set S to the set

�
s � 2 � j � s

M � � j � H � � stars � r� j � � � ∆ � s �

Furthermore, the first component of the image of ρ � S is an extension of ρ.

Proof. Let F � C1 � C2 � ����� . If ρ � S, then let π be the partial matching labelling the first path in TreeH � ρ � F � ρ �
of length � s (actually, we consider only the first s edges in π, starting from the root, and hence we assume
� π � � s). Let Cν1 be the first term in F not set to 0 by ρ and let K1 be the variables of Cν1 not set by ρ. Let σ1

be the unique partial matching over K1 that satisfies Cν1 � ρ and let π1 be the portion of π that touches K1.
Now define β1 � ����� � � �K1 � � � � � �K1 � � so that the p-th component of β1 is a � if and only if the p-th

variable in Cν1 is set by σ1.
Continue this process to define πi, σi, Ki, etc. (replacing ρ with ρπ1 ����� πi � 1 and π with π � π1 ����� πi � 1

until some stage k when we’ve exhausted all of π. Let σ be the matching σ1 ����� σk, and β be the vector
� β1 �������
� βk � . Let j � �σ � be the number of edges in σ. Note that s � 2 � j � s. Observe that β � stars � r� s � and
ρσ � M � � j � ∆ � H � and is an extension of ρ.

We now encode the differences between all the corresponding πi and σi pairs in a single vector δ con-
sisting of � π � � s components, each in � 1 ��������� ∆ � . Let u1 be the smallest numbered node in K1 and suppose
that π (in particular π1) matches u1 with some node v1. Then the first component of δ is the natural number x
such that v1 is the x-th neighbor (under the ordering of nodes) of u1 in the graph H � ρσ2σ3 � � � σk . More generally,
until the mates of all nodes in K1 under π1 have been determined, we determine the p-th component of δ by
finding the smallest numbered node up of K1 � � u1 �������
� up � 1 � v1 �������
� vp � 1 � and then we find its mate vp under
π1 and encode the position x of vp in the order of the neighbors of up in H � ρσ2σ3 � � � σk . Once K1 (and thus π1)
has been exhausted the next component is based on the mates of the smallest numbered nodes in K2 under
π2, until that is exhausted, etc. where the ordering about each vertex when dealing with Ki is with respect to
the graph H � ρσi � 1σi � 2 � � � σk .

Finally, we define the image of ρ � S under the injection to be � ρσ � β � δ � . To prove that this is indeed an
injection, we show how to invert it: Given ρσ1 ����� σk, we can identify ν1 as the index of the first term of F
that is not set to 0 by it. Then, using β1 we can reconstruct σ1 and K1. Next, reading the components of δ
and the graph H � ρσ2 � � � σk , until all of K1 is matched, we can reconstruct π1. Then we can derive ρπ1σ2 ����� σk.

At a general stage i of the inversion, we will know π1 ��������� πi � 1 and σ1 �������
� σi � 1 and K1 �������
� Ki � 1. We use
ρπ1 ����� πi � 1σi ����� σk to identify νi and, hence, σi and Ki (using β). Then we get πi from δ, Ki, and ρσi � 1 ����� σk.
After k stages, we know all of σ and can recover ρ.

Proof of Lemma 8. Let Ri be the set of ρi � N � i � ∆i � 1 � Gi � such that
�N � i � ∆i � 1

Im � ρi 
 � Gi � �
�M � i

Im � ρi 
 � Gi � � � 1 � 2 � logbi � 1 �
2 n. By Lemma 7,

the total probability of Ri under distribution M � i � Gi � is at least � 1 � 1 � n � � 1 � 2 � logbi � 1 �
2 n � � 1 � 2 � n.

By Lemma 10 with H � Gi, ��� � i, and ∆ � ∆i � 1, a bad ρi � Ri, for which TreeGi � 1 � F � ρi � has height at
least s, can be mapped uniquely to a triple � ρ ! � β � δ � � M � i � j � Gi � � stars � r� j � � � ∆i � 1

� s where ρ ! extends ρi,
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for some integer j � � s � 2 � s � . We compute the probability of such ρi � Ri associated with a given j and then
sum up the probabilities and divide by the probability of Ri to compute the desired probability.

We analyze the total probability of bad ρi � Ri associated with a given j by comparing the probability of
ρi under M � i � Gi � and the probability of ρ ! under M � i � j � Gi � . Since the total probability of all ρ ! � M � i � j � Gi �
under M � i � j � Gi � is at most 1 this will allow us to compute the desired bound.

Let I � Im � ρi � and I ! � Im � ρ ! � . By definition, I � I ! . Also, by definition, the ratio of the probability of
ρi under M � i � Gi � to that of ρ ! under M � i � j � Gi � is precisely�

ni

� i � j � �M � i � j
I � � Gi ����

ni

� i � �M � iI � Gi ��� �

Now any matching τ ! � M � i � j
I � � Gi � is an extension of some unique matching τ � M � iI � Gi � . If τ � N � i � ∆i � 1

I � Gi �
then the degrees of all nodes in Gi � τ are at most ∆i � 1 and so at there are at most ∆ j

i � 1 matchings τ ! � M � i � j
I � � Gi �

extending τ. If τ �� N � i � ∆i � 1
I � Gi � then the degrees of all nodes in Gi � τ are at most ∆i because that is true of

Gi itself by assumption. Therefore there are at most ∆ j
i extensions τ ! � M � i � j

I � � Gi � of τ. Since ρi � Ri,

�N � i � ∆i � 1
I � Gi ��� � �M � iI � Gi ��� is at least 1 � 2 � logbi � 1 �

2 n so the probability ratio is at most�
ni

� i � j ��
ni

� i � � ∆ j
i � 1

�
2 � logbi � 1 �

2 n∆ j
i

� �
�
1

�
21 � logbi � 1 �

2 n

�
∆i

∆i � 1 � j � �
∆i � 1 � ni � � i �

� i � j

� � 1 �
21 � ∆i � 1 � � 6log2 n � � logn � kis � �

∆i � 1ni

� i logki n � j

(1)

� � 1 �
21 � ∆i � 1 � � 6log2 n � � logn � ki∆i � 1 � log3 n � �

∆i � 1ni

� i logki n � j

(2)

�
�

2∆i � 1

logki n � j

(3)

�
�

12logbi � 1 n

logki n � j

�

Inequalities (1) and (2) follow from j � s � ∆i � 1 � log3 n and the definitions of ∆i and ∆i � 1. Inequality (3)
follows since 12ki log logn � logn for n sufficiently large and the fact that ni � � i � 1 � � 1 � 1 � logki n � which
is close to 1. Therefore the total probability of bad ρi � Ri associated with a given j is at most

� 12logbi � 1 � ki n � j � � r � ln2 � j � ∆s
i � 1 � � 20r logbi � 1 � ki n � j � � 6logbi � 1 n � s �

Thus the total probability in question is at most

� 1 � 2 � n � � 1 � 6logbi � 1 n � s � ∑
s � 2 � j � s

� 20r logbi � 1 � ki n � j �

Since bi � 1 � bi � ki and without loss of generality 20r logbi � 2ki n � 1 � 3 (otherwise the probability bound in
the lemma statement is meaningless), this quantity is at most 2 � 720r log3bi � 4ki n � s � 2 � 2 � 720r � logbi � 2 n � s � 2

since 3bi � 4ki � � bi � 2.

DEFINITION 5.4. Let SG be a set of formulas of depth at most h that is closed under subformulas and defined
over the graph G. For ρ � ρ0 ����� ρh � 1, we define, for every 0 � i � h, Tρ0 � � � ρi , a mapping from formulas with
depth � i

�
1 in SG to matching decision trees. It is defined inductively as follows:
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For a variable Xe, Tρ0 � Xe � is TreeG � Xe ��� ρ0 . Furthermore, Tρ0 ��� Xe � is � Tρ0 � Xe � � c. For A a depth-1 formula
with merged form � e � I Xe, Tρ0 � A � is TreeG1 � � � e � I Xe ��� ρ0 � .

For 0 � i � h, for all formulas A of depth � i
�

1, Tρ0 � � � ρi � A � is Tρ0 � � � ρi
�

1 � A ��� ρi . For a formula A of
depth i

�
1, if A � � B, then Tρ0 � � � ρi � A � is � Tρ0 � � � ρi � B � � c, and otherwise, if the merged form of A is � j � J B j,

let F be the matching disjunction � j � J dis j � Tρ0 � � � ρi
�

1 � B j � � and let Tρ0 � � � ρi � A � be the canonical matching tree
TreeGi � 1 � F � ρi � .

From the definition of Tρ, we have that if � A is a formula in SG, then Tρ ��� A � � � Tρ � A � � c. Also, by
lemma 2, if � i � I Ai is the merged form of some formula A in SG, then Tρ � A � represents � i � I dis j � Tρ � Ai � � .

Lemma 11. Let a and h be positive integers. For each graph G, let SG be a set of formulas closed under
subformulas defined on the variables of G such that � SG � � 2loga n and each formula A � SG has depth at
most h. For n sufficiently large in a and h, there exists a choice of G and ρ � ρ0 �������
� ρh � 1 as defined above
such that the following conditions hold:

1. Tρ � A � has height at most loga n for all A � SG, and

2. every node in Gh has degree at least loga � 1 n.

Proof. We proceed using the probabilistic method and the experiment above. For 0 � i � h, define the fol-
lowing events:

Ei: The experiment succeeds up to stage i.

Ai: Every node in Gi has degree at most ∆i � 6logbi n.

Bi: Every node in Gi has degree at least � 1 � 2 � logbi n.

Ci:
�N � i � ∆i � 1 � Gi � �
�M � i � Gi � � � 1 � 2 � logbi � 1 �

2 n. Here i � h.

Di � A � : Tρ0 � � � ρi
�

1 � A � has height at most loga n for some formula A � SG of depth at most i. Here i � 1.

Di: for all formulas A � SG of depth at most i, Di � A � holds. Here i � 1.

We compute an upper bound on the probability that any of these events fails to be true and prove that
this probability is strictly less than 1. Since bh � a

�
3, if both Eh and Bh occur and Di � A � occurs for each

i � 1 �������
� h and each A � SG of depth i then the claims of the lemma are satisfied for that � G � ρ � , so this
probability bound suffices.

Now by Lemma 6, Pr � � Ei � 1 � Ei
� � 2 � logbi �

2 n, Lemma 4, Pr � � Ai � Ei
� � 2 � logbi �

1 n and by Lemma 5,
Pr � � Bi � Ei

� � 2 � logbi �
1 n. Furthermore, by Lemma 7, Pr � � Ci � Ei � 1

� � 1 � n. Let A � SG be of depth i � h
with the merged form of A equal to � j � J Q j and let F be the matching disjunction � j � J dis j � Tρ0 � � � ρi

�
1 � Q j � � .

Observing that bh � b � 8h � � a �
3 � , by Lemma 8 applied to F with r � s � loga n � ∆h � log3 n, we have

Pr � � Di � 1 � A � � Ei � 1 � Ai � Di � Ai � 1 � Ci
� � 2 � 720 � logbi � 2 � a n � � loga n � � 2

� 2 � 720 � logbh
�

1 � 2 � a n � � loga n � � 2

� 2 � 720 � log3a � 3 n � � loga n � � 2 � 2 � loga n � n

for n sufficiently large. Therefore, Pr � � Di � 1 � Ei � 1 � Ai � Di � Ai � 1 � Ci
� � 1 � n since each SG contains at

most 2loga n disjunctions of depth i
�

1.
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Therefore the total probability that some Ei, Ai, Bi, Ci, or Di fails is at most:

h � 1

∑
i � 0

Pr � � Ei � 1 � Ei
� � h

∑
i � 0

Pr � � Ai � Ei
� � h

∑
i � 0

Pr � � Bi � Ei
� � h � 1

∑
i � 0

Pr � � Ci � Ei � 1
�

�
Pr � � D1 � E1 � A0 � A1 � C0

�
�

Pr � � D2 � E2 � A1 � D1 � A2 � C1
� � 	 	 	

�
Pr � � Dh � Eh � Ah � 1 � Dh � 1 � Ah � Ch � 1

� �
In total there are 5h

�
2 terms in this sum, each of which is at most 1 � n, and thus the whole probability is

� 1.

From now on, we fix a graph G and a restriction ρ � ρ0 �������
� ρh � 1 obeying the conditions of Lemma 11
when applied to the sets of formulas in SG � cl � ΠG � where each ΠG is a proof of WPHP � G � in a proof
system F whose largest rule has size f .

The following three lemmas are adapted from [26].

Lemma 12. Let C be a line in a Frege proof Π. Let A be the immediate ancestors of C in the proof (if
there are any), so that A � C. Let B be the subformulas of A and C mentioned in the application of the
rule which derives C from A . Let Γ � A � B � � C � . Note that by our bound on the size of rules in F ,
�Γ � �

1 � f . Finally, let σ be a matching which extends soundly some σA � path � Tρ � A � � for each A � A ,
some σB � path � Tρ � B � � for each B � B , and some σC � path � Tρ � C � � . If dis j � Tρ � A � ��� σ � 1 for all A � A ,
then dis j � Tρ � C � ��� σ � 1.

Proof. First note the following facts, where α � β � Γ and D � α � is an abbreviation for dis j � Tρ � α � � :
 D � α ��� σ � 0 or D � α ��� σ � 1
 If � α � Γ, then D ��� α ��� σ � 1 iff D � α ��� σ � 0.
 If � α � β � � Γ, then D � α � β ��� σ � 1 iff D � α ��� σ � 1 or D � β ��� σ � 1.

Now consider the rule R used to derive C formulated as in the examples from section 3. The application
of R substitutes subformulas Ap � Aq � Ar ������� in Γ for each of the atoms p � q � r������� in R and there is a derived
correspondence mapping subformulas F appearing in R to formulas AF � Γ. Define a function τ on the atoms
of R by τ � p � � D � Ap ��� σ for each such atom p. By the first property, τ is a truth assignment to these atoms.
Furthermore, by the other two properties, the truth assignment τ extends to all subformulas F in R so that
τ � F � � D � AF ��� σ. Since R is sound, if τ satisfies all formulas in A it will satisfy C and thus D � C ��� σ � 1.

Lemma 13. Let F be a Frege system with maximum rule size f . Let n be sufficiently large w.r.t. f . Let
a � h � 0. For each G, assume that ΠG is a proof in F of WPHP � G � of size at most 2loga n and depth at most
h. Let ρ and G be as defined in Lemma 11 applied with SG � cl � ΠG � . If C is an arbitrary line in proof ΠG

then all leaves of Tρ � C � are labelled by 1.

Proof. We proceed by (complete) induction on the lines in the proof. Assume every leaf of Tρ for any line
preceding C is labelled 1. Let A , B , Γ be as in Lemma 12. For any leaf l of Tρ � C � , we use Lemma 1 to find σ
that extends path � l � and extends a matching in each of the sets path � Tρ � A � � for all A � A and path � Tρ � B � �
for all B � B . This is possible since there are at most f trees to consider and by Lemma 11 the sum of their
heights is at most f loga n � loga � 1 n which is the degree of Gh.

By assumption, dis j � Tρ � A � ��� σ � 1 for all A in A . Hence, by Lemma 12, dis j � Tρ � C � ��� σ � 1, so l must
be labelled 1.
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Lemma 14. All leaves of Tρ � WPHP � G � � have label 0.

Proof. It suffices to show that Tρ applied to each of the following types of formulas has all leaves labelled
0:

1. � ��� Xe � � Xe � � for e � e ! � E;e � � i � k � � e ! � � j � k � ; i � j � V1; i $� j;k � V2 �
2. � ��� Xe � � Xe � � for e � e ! � E;e � � k � i � � e ! � � k � j � ; i � j � V2; i $� j;k � V1 �
3. �%� j � Γ � i � X & i � j ' for i � V1 �
4. � � i � Γ � j � X & i � j ' for j � V2 �

In fact, we will show that Tρ applied to the complement of each of these formulas has all leaves labelled 1.
For a formula of the first type, T � Tρ ��� Xe � � Xe � � must represent dis j � Tρ ��� Xe � � � dis j � Tρ ��� Xe � � � . If ρ

sets the value of either Xe or Xe � then it must set one of � Xe or � Xe � to 1 and thus all leaves of Tρ ��� Xe � � Xe � �
are certainly labelled 1. Otherwise, for l a leaf of T , path � l � cannot contain both e and e ! . Without loss of
generality it does not contain e. By Lemma 1 applied to graph Gh we can find σ that extends path � l � and
is an extension of some matching in Tρ ��� Xe � . But then dis j � Tρ ��� Xe � ��� σ � 1, so l must be labelled 1. The
argument is the same for formulas of the second type.

For a formula of the third type, T � Tρ � � j � Γ � i � X & i � j ' � must represent � j � Γ � i � dis j � Tρ � X & i � j ' � � . Hence, if
ρ sets X & i � j ' to 1 for some j � Γ � i � , then all leaves of T are certainly labelled 1. Otherwise, for a leaf l of T ,
if path � l � touches node i, then � j � Γ � i � dis j � Tρ � X & i � j ' � ��� path � l � � 1. Finally, if path � l � does not touch node i,
extend it to σ � path � l � � � i � j � for some j such that X & i � j ' is not set by ρ. Then dis j � Tρ � X & i � j ' � ��� σ � 1, so l
is labelled 1. Formulas of the fourth type follow in the same way.

Theorem 15. Given any c sufficiently large, there exists a bipartite graph G from m � n
�

n � logc n pigeons
to n holes such that there is no depth-h, 2loga n-size F -proof of WPHP � G � provided that 8h � a �

3 � � c.

Proof. Assume that for all such G, there is a proof ΠG of the required depth and size. For the G in Lemma 11
and its corresponding proof ΠG of WPHP � G � , there exists a ρ such that Tρ � A � has all leaves labelled 1 for
any A � cl � ΠG � , but Tρ � W PHP � G � � has all leaves labelled 0. If ΠG is to be a proof of WPHP � G � , then
WPHP � G � must appear in ΠG, so we have a contradiction.

Corollary 16. Given any c sufficiently large, there is no depth-h, 2loga n-size F -proof of WPHP � WPHP � Km � n �
from m � n

�
n � logc n pigeons to n holes, provided that 8h � a �

3 � � c.

6 Open questions

Among the many unresolved proof complexity questions regarding the pigeonhole principle (see [24]) the
most important open problem is to resolve the complexity of the weak pigeonhole principle with 2n or more
pigeons, and n holes. This would have many implications for: the metamathematics of the P versus NP
statement, the complexity of approximate counting, and the proof-theoretic strength underlying elementary
number theory.

In the proof presented here, we derived a switching-lemma using simple restrictions that limit the space
of truth assignments to a subcube where certain variables are set to 0 or to 1. While this fails with 2n pigeons,
a more general class of restrictions may suffice. Possible generalizations include the projections suggested
in [27], which also allow identification of variables, or restrictions given by linear equations. Two important
results ([15] and [8]) for bounded-depth Frege systems already employ such generalized switching lemmas
in cases where direct restrictions fail (although the latter use is implicit). Bounded-depth Frege reductions,
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such as those in [8] may also be useful for resolving the 2n to n case; conversely, via reductions, generalizing
our weak pigeonhole principle bounds to a class of graphs with more pigeons and smaller degree would yield
lower bounds for random CNFs.

A potentially simpler problem that still gets to the heart of the matter is to prove quasipolynomial lower
bounds for Res � polylog n � proofs of the weak pigeonhole principle which would match the upper bounds in
[18]. It is conceivable that this could be achieved by proving lower bounds for Res � k � proofs of the weak
pigeonhole principle for larger and larger k, extending the exponential lower bound for Res � 2 � in [4]; but
new techniques seem to be needed.
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