Electronic Colloquium on Computational Complexity, Report No. 24 (2002)

List-decoding in Linear Time

Piotr Indyk
April 24, 2002

Abstract

Spielman [S96] showed that one can construct error-correcting codes capable of
correcting a constant fraction § << 1/2 of errors, and that are encodable/decodable
in linear time. Guruswami and Sudan [S97, GS99] showed that it is possible to correct
more than 50% of errors (and thus exceed the “half of the minimum distance barrier”),
with polynomial-time encoding and decoding. In this paper we show that it is possible
to achieve these two properties simultanously. Specifically, we give a construction of
constant rate, linear-time encodable codes that are capable of correcting any § < 2/3
fraction of errors in linear time. Unlike in [S97, GS99], our codes are constructed using
high-quality expander graphs, along the lines of [ABNT92, GI01, GI02]).

1 Introduction

Constructing efficiently encodable and decodable codes with high error-correction capability
is the central problem in coding theory, and is of tremendous practical importance as well.
Since the concept of error-correcting codes was conceived in 40’s, there has been an amazing
progress towards this goal. In particular, it is now known how to construct efficient codes
which can correct a constant fraction of errors, and which can be decoded an encoded in
linear time [S96]. In fact, this goal can be achieved even for codes with minimum distance
arbitrarily close to the length n of the code [GIO1, GI02]; this allows one to identify the
original message uniquely, even when the fraction of errors is arbitrarily close to 50%. Note
that if the fraction of errors exceeds 50%, unique decoding of the corrupted codeword is
impossible.

In a recent breakthrough, it was shown [ALRS92, S97, GS99] that one can exceed the
50% barrier (and, in fact, correct a fraction of errors arbitrarily close to 100%), if one
allows to output a list of potential codewords. This approach (called list-decoding) has been
introduced in the late 50’s by Elias [E157] and Wozencraft [Woz58]. Until recently, however,
no efficient algorithm for list-decoding was known. In [S97, GS99] the authors presented
the first polynomial time algorithms for decoding Reed-Solomon codes from any fraction of
errors smaller than 1. Their algorithms have been subsequently improved (e.g., in [RR00],
see [G01a] for a detailed survey) leading to near-quadratic time decoding algorithms.

The improvements in the efficiency of algorithms for list-decodable codes suggested that
it might be possible to repeat the progress of unique decoding algorithms and construct

ISSN 1433-8092

linear time encodable and list-decodable codes. Unfortunately, this does not seem possible
(or at least seems very hard) using current list-decoding techniques. This is due to the fact
that all codes for which polynomial time list-decoding algorithms were known so far (i.e.,
Reed-Solomon codes and their Algebraic Geometry-based generalizations) are algebraic in
nature!. Even the algorithm for unique decoding of Reed-Solomon codes has running time
O(nlog®n).2 At the same time, the codes of [S96] cannot be easily modified to correct more
than n/2 errors, since their minimum distance is much smaller than this bound.

In this paper we depart from the approach used in the aforementioned papers. Instead,
we show how to list-decode codes constructed using ezpanders [ABNT92, GI01]. Our main
result is a construction of constant rate, linear-time encodable codes that are capable of
correcting up to 6 < 2/3 fraction of errors in linear time. The construction of the code is
combinatorial and non-algebraic (given the expander).

To describe our results in more detail, we need to define a generalization of list-decodability
called list-recoverability. We say that a code is («, [, L)-recoverable, if we can decode the cor-
rupted codeword given n lists L; ... L, of size [, such that at least « fraction of the lists
contain the correct codeword symbol; the decoding procedure is allowed to output L candi-
date codewords. See Preliminaries for the formal definition. Here we mention that the case
of I = 1 corresponds to list-decodability. List-recoverability in the general setting has been
investigated before, e.g., in [ALRS92, BN00, TZ01, GI01].

Our first construction gives a code with constant rate and alphabet, which is encodable
and (1,[, L)-recoverable in linear time, for [, L = O(1). The code is constructed using high
quality expander graphs (similarly as in [ABN192, GI01]). The decoding procedure uses the
results of [AC88] on fault-tolerant properties of expanders.

Although the aforementioned code can recover a codeword from lists of arbitrary (con-
stant) size, the fact that alllists contain a correct symbol is crucial for the decoding algorithm.
Our second result overcomes this difficulty. In particular, we give a construction of a code
which can be encoded in linear time, and is (1 — ¢, 2, 2)-recoverable for some small € > 0.
Given the input lists, the codewords can be recovered in near-quadratic time. The recovering
algorithm uses the Semidefinite Programming-based algorithm for satisfying a set of linear
constraints modulo 2 [GW95, Zwick98|, and in particular its near-quadratic implementation
of [KH96]. The constructed code has constant rate and alphabet size.

In the next step, we show how to reduce the time needed to decode the above code.
This is done by via a novel reduction of the decoding problem to the problem of finding a
sparse-cut in a certain graph of linear size. We show that the latter problem can be solved
using spectral partitioning, which results in decoding time of O(nlogn).

Finally, we show that a concatenation of the latter code with a carefully chosen inner
code results in a code which can be encoded and list-decoded (from up to 2/3 fraction of
errors) in O(n) time. The code has constant rate and alphabet size.

1This holds even for the “extractor codes” of [TZ01], since the algorithms for list decoding of those codes
use the algorithms of [S97, GS99] as a black-box. The same comment applies to the codes of [GI01].
2Here and in the remainder of this paper n is used to denote code blocklength.

2 Preliminaries

In this section we define formally the concepts and notation used later on.

Model of computation. The model of computation used in this paper is the unit cost
RAM. In this model, we allow the algorithm to perform any “reasonable” operation, on
O(log n)-bit long words, in unit time. All such operations used in this paper are computable
by constant-depth circuits of size polynomial in logn. In addition, we allow the algorithm
to use indirect addressing (i.e., table lookup); we charge the algorithm for any preprocessing
cost needed to compute the lookup table.

The unit-cost RAM is a standard and widely used model of computation. However, other
(more restrictive) models of computation are known. In particular, the results of [S96] hold
even in so-called logarithmic-cost RAM, i.e., where the cost of an operation is linear in the
bit-length of its arguments. Our algorithms do not achieve O(n) time in the latter model,
although it is plausible that they can be modified to achieve such a bound.

Notation. For any alphabet set ¥, and any two vectors z,y € X", we use D(z,y) to
denote the Hamming distance between x and y (i.e., the number of positions on which z and
y differ).

For a sequence L of lists L;...L, of symbols, and a vector x of n symbols, define
COMP(z, L) to be the number of indices j such that z; € L;.

A code C of block-length n over alphabet ¥ is («, [, L)-recoverable, if for any sequence
L of nlists Ly ...L,, where L; C ¥, |L;| <[, there are at most L codewords ¢ € C such
that COM P(c, L) > an. We say that C is («, 1, L)-recoverable in time T'(n), if there is a
procedure which finds such < L codewords in time T'(n) given the lists Ly, ..., Ly,.

A code C of block-length n over alphabet X is («, L)-decodable, if for any vector z € X"
there are at most L codewords ¢ € C such that D(c,z) < (1 — a)n. We say that C is
(o, L)-decodable in time T'(n), if there is a procedure which finds such < L codewords in
time T'(n) given z. In the context of a fixed codeword ¢ € C, we say that the list L; (or the
j-th position) is corrupted, if ¢; ¢ L;. Otherwise, we say L; (or the j-th position) is correct.

We will use |z|, to denote the I, norm of a vector z. Also, for a square matrix A, we use
|Al, to denote the I, norm of A, i.e., max|y|,—1 |Az/p.

3 A (1,l,L)-recoverable code with linear time encod-
ing/decoding algorithms

In this section we show how to construct codes C’ which are (1,1, L)-recoverable in linear
time for any [> 0. The codes have blocklength n, constant rate » > 0 and finite alphabet gq.
Construction: For the purpose of the construction we need:

1. A code C of block-length n, constant rate r; > 0 and constant alphabet size ¢;. The
codes should be encodable/decodable in linear time from (1 — €) fraction of erasures
for a parameter € > 0. Such codes (with 71 = Q(¢€)) can be explicitly constructed (e.g.,
as in [AEL95]).

2. A bipartite graph G = (A, B, E) of degree d, |A| = |B| = n, with the following
property:

If we delete (1 — d)nd edges of G for any 6 > 0, then the resulting graph
contains a connected component containing at least en vertices of A

The latter graph G can be constructed from a Ramanujan graph [LPS88]. Specifically, let
Gr = (V, Eg) be a graph with n nodes, degree d = O(1/6*), and second eigenvalue O(v/d).
We convert G into a bipartite graph such that A= B =V and E = {(3,)), (j,¢) : {4,j} €
ERr}. The square G? of the graph G has degree d?. Consider a subgraph G% of G? induced
by A. The graph G% is also a Ramanujan graph, i.e., its second largest eigenvalue is O(\/c?)
Moreover, if we remove (1 — ¢) fraction of edges from G (forming G'), then the graph G"2
contains (6?) fraction of edges of G%. The result of [AC88] states that any Ramanujan
graph of degree O(1/n?) contains a connected component of size Q(nn) even if we remove
(1 —n) fraction of its edges. Thus, G'5 contains a connected component of size (§%n), and
we can set € = Q(6?).

Given the two building blocks C' and G, we construct the code C' in the following way.
For any x € {0...q — 1}", define G(x) to be a vector y € ({0...q, — 1}¢)" created as
follows. For j € B let I'x(j) be the k-th neighbor of j in A, for £ = 1...d. The j-th symbol
y; of y is defined as < zr,(j),...,Zr ;) >- In other words, we “send” a copy of each symbol
x; along all edges outgoing of the vertex ¢, and the symbol y; is obtained by concatenating
all symbols received by j.

The code C' is now defined as a set of all vectors G(c) for ¢ € C.

Encoding: It is immediate that the code can be encoded in linear time.

Decoding: It remains to show the decoding procedure. For this purpose, assume that
L; is an ordered sequence of symbols (as opposed to a set). Let L ... L, be a message, and
let ¢’ € C' be the codeword such that ¢; € L; for j = 1...n. Let ¢ be a codeword in C
corresponding to ¢’. We will show how to recover c¢ in linear time.

First we start with some notation. For every edge (i,7) € E, define L(3,j) to be the
concatenation, over all @ =< ay,...,a4 >€ L;, of symbols a; s.t. [y(j) = ¢. Intuitively,
L(t,7) is an ordered list of symbols that L; “suggests” as possible candidates for ¢;. Define
[a = b] to be equal to 1 if « = b and to be equal to 0 otherwise. Let L(i,5) =< by, ..., b >.
Define sgn(i,j) =< [b1 = ¢, ..., [bi = ¢;] > (note that sgn is defined with respect to a fixed
codeword c). Let s be a sgn(i,j) vector which occurs most often among all (i,7) € E. Let
E, be the set of all (i,5) € E such that sgn(i,j) = s. Clearly |E,| > |E|/2'. Let § = 1/2%
Consider the graph G5 = (A, B, E;). By the properties of G there exists A’ C A of size
Q(nd?) which is connected in G,. Let G, denote the connected subgraph of G, induced by
A

The following decoding algorithm uses a superset of the graph G, (note that the graph
is unknown to the algorithm) to recover a large fraction of the sumbols of the codeword c.

Decoding algorithm:

1. Initialize all n entries in a vector x to “empty”

4

2. Guess i € A’ (this can be done with > 1/2! probability of success, by choosing a
random i € A)

3. Guess the value of ¢; (out of [candidates in L(4, j) for any j. This can be done with
the probability 1/I of success). Set z; = ¢;.

4. Repeat the following steps whenever applicable:

(a) If a value z; is fixed, then for all (4, j) € E remove from L; all symbols which are
not compatible with x;, i.e., in which the symbol corresponding to z; is different
from z;

(b) If, with respect to current lists L;, we have L(i, j) =<b,...,b > (i.e., all symbols
in L(i,j) are equal), then then set z; to b

5. Decode ¢ from z, using the decoding algorithm for C

The correctness of the algorithm now follows from the following claims, which hold as-
suming that the initial guesses of the algorithm were correct.

Claim 1 All symbols in = set by the algorithm are correct (i.e., x; = ¢; unless z; is empty).
Claim 2 All ¢; fori € A" are set to some value by the algorithm.

Proof: Let 1 € A’ such that z; = ¢; has been already set. Consider any neighbor j € B

of i in G’, and any neighbor ¢ € A of j. Consider symbols ¢ =< ay,...,q; >€ L;. Our
algorithm removes all symbols a from L; which are incompatible with ¢;, i.e., such that
ar # ¢; where I'y(j) = i. After the removal, we have L(i,j) =< ¢;,...,¢; >. However,

we known that sgn(i,j) = sgn(i',j). This implies that L(i',j) =< ¢y, ...,cy >. Thus the
algorithm will at some point set zy to ¢y. Since the set A’ is connected, the claim follows.
a.

The above arguments show that the decoding procedure outputs a fixed codeword com-
patible with the input lists with probablity 1/ 200 Tt remains to show that the number of
such codewords is bounded. To this end, we observe that since the code C' has fractional
minimum distance 1 —©(§?), and the graph G is regular, the code C" has also fractional min-
imum distance 1 —©(4?) (in fact the distance is even larger, due to the expanding properties
of G). From this property we conclude that the code is (1,1, O(l))-recoverable, by employing
the following Lemma (which is a yet another variant of the Johnson bound, but which can
proved using a very simple argument).

Lemma 1 Let C be a code with minimum distance 1 — €, where ¢ = 1/bl. Then for any
constant B satisfying B(1 — B/b) > 1, the code C is (1,1, Bl — 1)-recoverable.

Proof: Let L = Bl. Assume to the contrary that there are L codewords c!,...,c" € C,
and lists £ = Ly,...L, of length [such that COMP(c*,L) = n for all i = 1...L. Define
W(t),t =1...n, to be the cardinality of the set {ci:4=1...L}. If we choose ¢ uniformly
at random, then

E{W(t)] > L(1— L/bl)

Observe that if E((W(t)) > [, then there is a position ¢ such that W (t) > [and thus all
codewords c!, . ..c" cannot be compatible with £, which leads to a contradiction. To ensure
this, it suffices that L(1 — L/bl) > [, which is equivalent to the condition in the statement
of the lemma. O.

Theorem 1 For any | > 0, and any n > 0, there is a code with blocklength n and finite
alphabet of size 22° | with rate 2-°O. The code is encodable and (1,1, 0(l))-recoverable in
n2°0 randomized time, with constant probability of success.

Proof: Let b and B be constants satisfying conditions of Lemma 1. We can adjust the
constants defining ¢ so that C’ has minimum fractional distance 1 — 1/bl (note that this
distance is 1 — 279, By aforementioned lemma it follows that the code is (1,1, Bl — 1)-
recoverable.

In order to show the algorithmic part, observe that by the preceeding discussion we
have an algorithm which for any fixed codeword ¢’ € C' compatible with £ outputs ¢’ with
probability 27°®). Thus, after 2°() iterations, the algorithm outputs all O(I) compatible
codewords with (arbitrarily large) constant probability. Thus the running time of the de-
coding algorithm is as stated. Q.

4 A (1 —¢2,2)-recoverable code with linear encoding
and quadratic decoding algorithm

In this section present a (1 — €,2, L)-recoverable code (for certain ¢ > 0), constructed using

a method similar to the one described in the previous section, with linear-time encoding and

roughly quadratic-time decoding algorithms. The code has finite rate and alphabet.
Construction: In order to construct the code, we need two components:

e A linear-time encodable (and quadratic-time decodable) code C' with blocklength n,
finite rate and alphabet ¢, which can decode from up to p = (1 — 7)/2 fraction of
errors for v > 0 arbitrarily close to 0 (and defined later). Such code, with linear time
encoding and decoding, is provided e.g., in [GIO1].

e A bipartite graph G = (A, B, E), |A| = |B| = n such that
1. For any X C A, | X| = p, the number of neighbors of X in B is at least (1 —7)|B|

for small n > 0 (n is defined later)

2. For any Y C B, |Y| < ¢|B|, the fraction of nodes i € A with at least 1/3 fraction
of neighbors in Y is at most €

As before, the graph G can be constructed from Ramanujan graphs with large enough degree
d. In particular, it is well-known that for bipartite graphs G = (A4, B, F) constructed from
such graphs, the following isoperimetric property holds: for any X C A, Y C B

B iy 2T
d| X]| 1Bl ~ d\ |X]

where E(X :Y) is the cardinality of the cut between X and Y, and A < 2v/d. Thus, setting
d to large enough constant (independent from e), satisfies the second condition. At the same
time, setting d = ©(1/n - 1/u) so that \/d < ,/nu satisfies the first condition. Thus the
setting d = ©(1/n - 1/) satisfies both conditions.

The code C' is again defined as a set of all vectors G(c) for ¢ € C. Let X be the alphabet
of C'.

Encoding: Clearly, the code is encodable in linear time.

Decoding: The basic idea for the decoding procedure is as follows. We observe that
if no list was corrupted (i.e., if there was a codeword ¢’ such that c; € L; for all j), then
we could find ¢ by solving a constraint satisfaction problem induced by the graph G. In
particular, we would need to find a vector x (corresponding to the codeword in C) and y
(corresponding to the codeword in C”) such that z is “compatible” with y. More specifically,
we would like to find binary vectors x and y such that if we define vectors

e v € X" such that v; is the (y; + 1)-th element of the list L;

e u€{0,...,qg— 1}" such that u; is equal to the k-th symbol of the (z; + 1)-th element
in the list L;, where T'y(j) = 4, for a fixed j such that (i,j) € E

then G(u) = v. Note that the latter equality can be expressed as a set of binary con-
straints. If we have such a pair u, v, then either u is a codeword in C' (and so we are done),
or it can be used to retrieve a codeword in C.

In our case, € fraction of the lists are corrupted. Therefore, instead of trying to satisfy all
constraints, we will try to satisfy (say) 99% of them. To find such vectors x and y we will use
the Goemans-Williamson SDP-based approximation algorithm for maximum satisfiability of
a set of binary linear equations modulo 2. Although the resulting vectors u and v are not
exact, we use error-correcting properties of the code C' to decode the right codeword.

The details of the decoding algorithm are as follows. Let L;...L, be lists of length 2.
For each 7 € A let {a),a;} be the two most popular symbols among symbols in L(i, j),
(1,7) € E; ties are broken arbitrarily. Then, for each (7, j) € E we create a linear equation
(involving z; and y;) expressing compatibility between the symbol represented by z; and y;.
The interpretation of x; is that u; = aj*. The interpretation of y; is that v; is the (y; +1)-th
symbol from the list L;.

The linear equations are constructed as follows. Let < 8% b' >= L(4, 7). Consider the
following cases:

1. B° = b' and a® = a': if b° = a® then create 0 + 0 = 0; otherwise create 0+ 0 = 1

2. b° £ b' and a® = a': if B = @° create y; +0 = 0; if b' = a° create y;+0 = 1; otherwise,
create 0 +1=20

3. b° =b! and a® # a': symmetric with respect to the previous case

4. b° # b' and a® # a': consider the following subcases:

(a) {b°,b'} = {a’,a'}: due to a symmetry, we can consider only the case b° = a°,

b' = a'. In this case we create z; +y; = 0

(b) {8%,0'} N {a® a'} = {b}: due to a symmetry, we can consider only the case
b’ = a® = b. In this case we create z; + 0 = 0 and y; + 0 = 0, both with weights
1/2

(c) {0°,0'} n{a’,a'} = 0: we create 0 +0=1
Observe that the total weight of all constraints is equal to dn.

Claim 3 If there exists ¢ € C" such that COMP(c', L) > (1 — €)n, then there exists x and
y satisfying at least (1 — d2e) weighted fraction of constraints.

Proof: Let ¢ € C be the codeword corresponding to ¢’. Let Y = {j : ¢ ¢ L;}, and recall
that |Y| < en. Observe that if ¢; ¢ {a?, a} }, then at least 1/3 fraction of edges going out of
1 lead to Y. By properties of G, the fraction of such ¢’s is at most €. Let X be the set of
such 7’s.

Let z;, i ¢ X, be such that ¢; = a;", and let y;, for j ¢ Y, be such that the (y; + 1)-th
element of L; agrees with the values of ¢; for i ¢ X. The other entries of z and y are set
arbitrarily. It is not difficult to verify that all linear constraints corresponding to (i, j), 1 ¢ X,

j ¢ Y, are satisfied. Thus = and y satisfies at least a (1 — 2de) fraction of all constraints. O.

In order to find approximate z and y, we use the Goemans-Williamson algorithm for finding
the maximum cut in a graph. More specifically, we use its implementation running in near
quadratic time [KH96], i.e., in time O(n21log®® n). As observed in [Zwick98], that algorithm
reports a partition which cuts at least 1 — O(y/a), assuming there ezists a cut which cuts
1 — « fraction of edges; we call it an (a, O(y/))-approximation scheme.

Unfortunately, we cannot use the fast MAXCUT algorithm directly for our constraint
satisfaction problem, since MAXCUT corresponds to satisfying constraints of the form = +
y = 1, while our set of constraints also contain constraints x + y = 0. However, since the
constraints are binary, we can implement the latter type of constraints as well, using the
following reduction, shown to us by Venkat Guruswami.

Lemma 2 If there is an (o, B)-approzimation scheme for the weighted MAXCUT problem
with running time T'(n,m) (where n is the number of vertices and m the number of edges),
then there is an (o, 28)-approzimation scheme for mazimizing the (weighted) number of
satisfied binary linear equations modulo 2, with running time T'(n + 2m, m).

Proof: For simplicity we consider the unweighted binary linear constraints; since the
weights in our set of linear constrains are only 1 and 1/2 (or alternately 2 and 1), we
simulate weights 2 by duplicating the constraint.

The reduction is as follows. For each equation of the form z+y = 1, an identical equation
is generated. For each equation of the form x + y = 0, we generate two equations: z+ 2z =1

and y + 2z = 1, where z is a new variable occuring only in these two equations. The new
equations are assigned weight 1/2 each.

Let S be the set of original (general) linear equations, and let S’ be the set of the created
equations. The correctness of the reduction follows from the following two claims.

Claim 4 If there is an assignment satisfying 1 — « fraction of constraints in S, then the
same assignment satisfies 1 — o weighted fraction of constraints in S'.

Claim 5 If there is an assignment satisfying 1 — 8 weighted fraction of constraints in S,
then the same asignment satisfies 1 — 23 fraction of constraints in S.

O.

By using the above reduction, we can solve our linear constraint satisfaction problem in
near quadratic time as in [KH96]. Since we know that there is an assignment satisfying 1—2de
fraction of the original constraints, it follows that the algorithm will report an assignment
to vectors = and y satisfying 1 — § fraction of constraints, for § = O(\/CE) The vector z
induces a vector u € {0,...,q — 1}" such that COMP(G(u), L) > (1 — dd)n.

It is tempting to assume that v can be now decoded using the code C'. Unfortunately,
this does not have to be the case. In fact, in addition to a codeword G(c), the lists L; can
represent G(w) for an arbitrary vector w. However, as we will see soon, the vector u is very
useful in discovering a codeword c.

Let v’ = G(u). Define v to be only other element of L; — {u’} (if {uj} € L;) and to
be equal to ué otherwise. In addition, let v; be the symbol that occurs most often in the
set of symbols “voting” for v; (i.e., in the set {a), :< a1,...,aq >= v} and ['x(j) = i}). Our
algorithm decodes both v and v using the code C, and reports the result.

In the following we provide a proof of correctness of the above procedure. First, we show
that (combinatorially) the code is indeed (1 — €, 2, 2)-recoverable for small ¢ > 0. We will
assume that € > d§ >> ¢, thus the code is also (1 — ¢, 2, 2)-recoverable.

Lemma 3 Let W be a set of vectors w € {0,...,q — 1}" such that for any distinct vectors
w,w' € W we have D(w,w') > un, and COMP(G(w),L) >1—¢€ for ¢ =1/3—mn. Then
W <2.

Proof: Assume there are 3 distinct vectors w, w’, w” € W. From the expansion properties
of G we have D(G(w), G(w")) > (1—n)n. Moreover, G(w") differs from both G(w) and G (w")
in at least (1 — 2n)n positions. Thus, there are (1 — 37) positions in which G(w), G(w') and
G(w") are pairwise different. Since each of the above vectors disagrees with £ on less than
¢’ fraction of positions, it follows that 1 — 3n < 3¢, which yields contradiction. a

The above lemma implies that if the minimum distance (1 — y)n of C is greater than
un, then there are at most two codewords G(c'), G(c?) which agree with £ in at least 1 — ¢’
fraction of positions. We consider two cases: (A) when there is only one such codeword
¢! = ¢, and (B) when there are two such codewords.

Case A. We can assume that COM P(G(c), L) > (1—¢)n, since otherwise there is nothing to
recover. Consider the first recovered vector u. If D(u,c) < un, then we can recover ¢ from u

and we are done. Assume now that D(u,c) > un. Recall that COM P(G(u), L) > (1—dd)n.
Thus, a fraction of (1 — dé — €) of lists are compatible with both G(u) and G(¢). Since
D(u,c) > pn, we have D(G(u),G(c)) > (1 — n)n. Thus, a fraction of (1 — dd — e — n) of
lists are compatible with both G(u) and G(c¢) and contain two distinct elements. On those
positions, v' and G(c) will be equal. Thus D(v',G(c)) < (dd + € + n)n. By a counting
argument it follows that D(v,c) < (dd + € + n)n. Thus if (dd + € +n) < p, we can decode ¢
from v.

Case B. Observe that D(c', ¢?) > un. Recall that COM P(G(c'), L) > (1—€)n, COMP(G(c?), L) >
(1 — €)n. In addition, COMP(G(u),L) > (1 — €)n. By Lemma 3 it follows that either
D(ct,u) < pn or D(c? u) < pn. Without loss of generality assume the first case. Then we

decode ¢! from u by using the decoding algorithm for the code C. In order to decode c?,
observe that D(c%,u) > D(c?,c') — D(ct,u) > pn. Therefore, if we set ¢ = ¢2, we can apply

the same argument as in Case A.

Theorem 2 There exists € > 0 for which there is a constant rate code which is linear time
encodable and (1 — €,2,2)-recoverable in near quadratic time.

Proof: By the earlier arguments, it suffices to find constants 1 > €, €, u,y,n,d > 0 and
d > 1, such that the following constraints are satisfied, for a certain (fixed) constant b > 1
(defined by the algorithm of [Zwick98] and isoperimetric inequality):

po= (1-7)/2 (1)
d = b-1/n-1/p (2)
§ = b-Vde (3)
€ > db (4)
do > € (5)
¢ = 1/3-n (6)
u > di+e+n (7)

This constraints can be satisfied as follows. Set v = 1/2, which implies p = 1/4. Also,
set 7 = 1/4, which gives ¢ = 1/3 —1/4 = 1/12. This also implies d = 16b. It remains to
specify €, 5. However, as € tends to 0, 6 (which is a function of € specified by (3)) tends to 0
as well. In addition, the (strict) inequalities (4), (5) and (7) are satisfied when ¢ = § = 0.
Thus, by taking € small enough, one can satisfy all constraints. O

5 Decoding the (1—¢,2,2)-recoverable code via spectral
partitioning

In this section we give another algorithm for decoding the code essentially as described in the

previous section. We will assume that the graph G is constructed from a Ramanujan graph

Gr as in Section 3. In addition we also assume that C can be uniquely decoded from up to
de fraction of errors and 1 — « fraction of erasures, for certain «, in linear time. Also, we

10

assume that C' can be decoded from p fraction of errors. Note that by the results of [GI01]
it is feasible as long as 1 —a+ 2de < 1 and p < 1/2.

The algorithm is based on the concept of spectral partitioning. The latter technique is
a method for partitioning a graph into relatively dense components (in our case k = 2 of
them), such that the ratio of the number of edges between the clusters to the number of
edges inside the clusters is fairly small. This is done by computing the first k£ eigenvectors
of the adjacency matrix of the graph, and then assigning vertices to the clusters based on
the respective eigenvalues. The advantage of this approach is that, under certain natural
assumptions, it can be implemented to run in O(knlogn) time, by using iterative algorithms
for eigenvector computation. See [KVVO01] and references therein for analysis of spectral
partitioning algorithms.

In order to use the graph partitioning procedure, we need to reduce the list-recovering

problem to the problem of finding “sparse” cut in a graph. Recall that in the previous
section we show that list-recovering can be implemented by solving (approximately) the
maximum satisfiability problem for a set of “almost” satisfiable linear equations. Another
way to solve the same problem is as follows. Fix the lists £ = L;...L,, which induces
the lists L(i,7). As before, let {a?,a}} be the two most often occurring symbols in the
multiset M; = U j)erL(4, j), with a being the most frequent one (if M; contains only one
symbol repeated multiple times, we set a; to a dummy symbol). We use M;(b) to denote the
multiplicity of b in M;. For simplicity, we also define n) = M;(a?) and n} = M;(a}). Let ¢ be
one of the codewords of the code C to decode, i.e., such that COMP(G(c),L) > (1 — €)n.
We consider the following two cases.
Case A: The fraction of i’s such that n? > n} is at least . In this case, for all 4 such that
nd > n} we set z; to aj. Clearly, at least a fraction « of z;’s is set to a symbol. Moreover, at
most a fraction of de of them have edges (7, j) such that j is a corrupted position. Consider
one of the other n(a — de) indices i. Since there is no edge from ¢ to a corrupted position
j, we have M;(c;) > d. Clearly, >, M;(b) < 2d, which implies that for any b # ¢; we
have M;(b) < M;(c;). Moreover, this inequality cannot be tight, since n® > n'. Thus,
M;(b) < M;(c;) for any b # ¢;, which means a) is the correct symbol ¢;.

Thus we can recover one codeword from x by unique decoding of x. The second codeword
can be recovered as in the previous section.

Case B: The fraction of i’s such that nY > n} is at most «.

We construct a graph H over the set U = {0,1} x {z,y} x [n]. For each (i,j) € E we
construct the edges in H as follows. Let L(z,7) = {#°,b'}. If {a%,al} = {°,0'} (note that
this implies 8° # b'), then

o If a° = b°, then construct edges (0,x,4) — (0,,7) and (1,,4) — (1,9,)
e If ¢° = b', then construct edges (0,x,47) — (1,y,7) and (1,z,%) — (0,9, 7)

Otherwise, do not construct any edges.

Observe that if we did construct the edges for every (i,7j), and there was at least one
codeword G(c) € C' such that COM P(G(c), L) = n, then the resulting graph would consist
of two connected components. The first of them would contain vertices (¢, z,) for af = ¢;, and
(s,y,7) for G(c); is the (s+1)-th element in the list L;. The second component would contain
the remaining nodes. Thus, we could recover ¢ by computing the connected components.

11

In general, some of the positions j are corrupted, and for some pairs (i,j) we do not
construct any edges in H. Thus, there will be some (although very few) edges between the
components, and some edges within the components will be missing. However, finding a
sparse cut in the graph will allow us to approximate the “original” components, which in
turn will enable us to discover the codewords. The rest of this section will be devoted to
completing this task.

For technical reasons it will be easier to work with the square of the graph H (denoted
by H?) instead of the graph H itself. Note that H? might contain loops and multiple edges.
Let U, = {(t,z,i) € U}. Let V(c) C U, be a set constructed as follows: for each i =1...n,
if ¢; = a! and ¢; # a; " for some ¢, then include (z,t,7) in V(c); otherwise, include any one
of the vertices (z,0,1), (z,1,7). Let W(c) = U, — V(c). Let D = d?.

In the following we show how to partition the set U into V' and W', such that V' (and
W', resp.) differs from V(c) (and W (c), resp.) at only p fraction of positions, where we can
make p arbitrarily small by properly adjusting o and e. Once we have V', the decoding is
easy. Let u € [¢]" be a vector such that u; = a} iff (¢, z,7) € V'. It follows that D(u,c) < un.
Therefore, computing such v is sufficient for decoding ¢ (by applying the decoding algorithm
for C).

It remains to show how to compute V' and W’'. Before that, however, we need some
additional notation. Firstly, we order the elements in U, in such a way that (a) the elements
in V(c) come before elements of W(c) and (b) within the two subsequences, we sort all
elements (¢,z,4) in the increasing order of i’s. Let A be the adjacency matrix of the graph
H|2Ux (i.e., the subgraph of H? induced by U,), constructed using the above ordering.

Let By, By be two copies of the adjacency matrix of the graph G%, and let B be a block
diagonal matrix with blocks By and Bs.

Claim 6 There are two non-negative integer 2n X 2n matrices E' and E", such that the total
sum of their entries is at most dnD for § = 4(a+de), with the property that A= B+E'—E".

Proof: We will show that the graph corresponding to A can be transformed into the
graph corresponding to B by changing very few edges - the changes will induce the matrices
E" and E".

Firstly, observe that for any i, if nY = n}, and there is no edge (7, j) leading to a corrupted
position j, then n{ = n} =d and L(i,j) = {a), a} } for all j’s. Denote the set of such 7’s by
I(c). The size of the set I(c) is at least (1 — a — de)n.

Consider any triple of vertices 4,4, j in Gg, such that {i,j}, {#', j} are edges in Gg. Note
that each such triple corresponds to an edge {7,i'} in G%. Let (¢,x,1%), (¢, z,4') € V(c); this
implies that (1 —¢,z,4), (1 — ¢, z,7") € W(c). Consider the case when 7,7' € I(c). Since j
is not corrupted and L(i,j) = {a,a;}, it follows that H includes edges (¢,z,7) — (s,v,])
and (1 —t,z,i) — (1 — s,y,7j) for some s € {0,1}. By the same argument, H includes edges
(', z,i") — (s',y,j) and (1 —t',z,i") — (1 — §',y, j) for some s' € {0,1}. However, it must be
the case that s = s’. This holds due to the fact that both af and af are compatible with
exactly one symbol in L;, and both of them are compatible with G(c);, which means that
they are compatible with the same element from L;, which is equivalent to s’ = s.

12

Since s = &', the triple i,4', j induces edges (¢, z,7) — (¢, z,i') and (1 —t,z,i)— (1 —t', z,7')
in the graph H2. This directly corresponds to the two edges (i,7') in the adjacency matrices
B; and B,. Note that different j’s can induce multiple edges.

Thus, all differences between A and B occur for triples 4,4, j such that not both 7,4 are
in I(c). The total number of such triples is at most 2 - 2 - n(a + de)D.

O

Observe that A is a real, symmetric matrix. Therefore, all of its eigenvalues are non-
negative (note that some of them could be equal to 0 if A does not have full rank). Let
A1 ...\, be the eigenvalues of A sorted in a non-increasing order. Moreover, let v;...v,
denote the eigenvectors of A corresponding to the eigenvalues. Recall that the eigenvectors
are orthogonal; we will assume that |v;| =1 fori=1...n.

The partitioning algorithm consists of the following steps:

1. Compute the two eigenvectors vy, v9 of the matrix A.

2. Let 1 be a unit vector with all coordinates equal to 1/y/n. Compute a projection 1 of
1 onto span(vy,ve) (i.e., the space spanned by the vectos v;,v3) and normalize it.

3. Compute a unit vector § € span(vy,vy) which is orthogonal to 1.
4. Compute a vector s' = 1/4/n - sgn(3)

5. Compute the set V' consisting of all elements whose corresponding coordinates in s
are negative, and W' = U — V'. Output the pair {V', W'}.

The intuition behind the above (perhaps somewhat unintuitive) algorithm is as follows.
Let s be a vector with entries —1//n for coordinates in V'(¢), and entries 1/4/n for coordi-
nates in W(c). Also, let E = E' — E". Clearly |As|y > |Bs|y — |Es|s. In the following we
will show that the 2-norm of FE is quite small (less than 8D for small 3). On the other hand,
|Bs|y = D. Thus, |As|s > (1 — §)D. At the same time, s is orthogonal to 1. For the latter
vector, we also know that |Al|y > |Bl|s — |El|s > (1 — 8)D. Thus, 1 and s are “close” to
(resp.) the first and second eigenvectors of A. If we were lucky, v; would be close to 1, v,
would be close to s and then we could partition the set U according to vs.

Unfortunately, the difference between \; and Ay could be very small (in fact, as far as
we know, these two values could be equal). In this case, we are only ensured that the span
of v; and v, is close to the span of 1 and s. However, since we know vy, v9 and 1, we can
approximate s via the “orthogonalization” procedure described above.

In the following we provide a formal proof of correctness of the above procedure. For
now we assume that |F|y < 8D for a (small) constant 5 > 0, we will prove this fact later.

Let A\;(A) denote the ith largest eigenvalue of the matrix A. It follows from the above
discussion that A;(A) > D(1 — §). In addition, from standard linear algebra we know that
A2(A) > Ay(B) — A (F) > D(1 — B). Since the spectrum of B is a union of spectra of B
and Bs, we can also conclude that A\3(B) = \o(Bi). Since B is an adjacency matrix of G2,
we know that A3(B) < 4v/D. Therefore, A\3(4) < 4v/D + A\ (F) < 4V/D + D = §'D.

Let 1 =3, p;v; and s = >, g;v;. We know that

[Ally = | Y Mi(A)pivila > (1 - B)D

13

Since \;(A) < B'D for i > 3, we know that

(1 B)D < [A(A)pavils < N (A)p? + N3(A)pE + 8'D < D1+ B)/p} +p} + B'D

Thus we can conclude that \/p? +p3 > (1—-8-38)/(1+8)=1- 5"

In a similar way we obtain that \/¢? + g2 > 1 — ". Thus, we are in the following setting.
We have a pair of orthonormal vectors vy, vy, and a pair of orthonormal vectors 1 and s, the
latter from {—1/y/n,1/y/n}". Moreover, we know that the norm of the projections of both
1 and s on span(vy, v9) is at least 1 — 8”. Our task is: given v;,v9 and 1, find s’ such that
s-8 >1— fp", for some constant f (independent from 3”). In the following, we show that
the above algorithms completes this task.

We start from expressing the relation between 1, 1, s, s and § in terms of angles rather
than dot products. Then we will use the fact that the angle between vectors satisfies triangle
inequality. We will denote the angle between vectors v and v' by /(v,v").

By the previous discussion, we know that (for certain absolute constant f’) we have
[(1,5) = /2, £(1,1) < arccos(1 — B") < f'y/B" This implies that /(1,s) > 7/2 — 2f'\/B".
Since /(5,1) = w/2, it follows that either Z(s, §) < 2f'\/B" or L(s,—5) < 2f'\/B"; we will
assume the first case.

Recall that s € {—1/y/n,1//n}". If weset s = 1/y/n-sgn(8), then s'-3 = maxyci_1//m,1/ /m}n 5"
§. Thus, s’ - § > s- 8. In other words, /(s',3) < /(s,8) < 2f'\/B". Therefore, /(s',s) <
/(s',8) + £(s,8) < 4f'\/B", which can be expressed as s'- s > 1 — f/3" for certain constant f.
If we set u = f"”, it implies that the retrieved set V' differs from V' (¢) in at most p fraction
of positions.

It remains to show that the 2-norm of F is small. We will show that the 2-norm of E’
is small (E” can be handled in the same way). To this end, we use the fact that F’ is an
adjacency matrix of a sparse subgraph of an expander graph (note that sparsity alone is not
sufficient). We first prove the neccessary lemma for a non-bipartite case, and show how to
proceed with the bipartite expanders.

Lemma 4 Let J be a A-reqular graph over n vertices with second eigenvalue \. Let F' be a
subgraph of J containing An edges of J. Then the 2-norm of F is at most VoAb + A1+
2/b) +2A/b, for any b > 2.

Proof: We will use the same notation for a graph and its adjacency matrix. Let x be the
first eigenvector of F'; without loss of generality we can assume that x > 0 coordinate-wise.

Let z' be a vector obtained from z by rounding all coordinates in x which are smaller
than b/y/n to b/y/n. Let y be a binary vector, having 1s at the positions where 2’ is equal
to b/\/n. Moreover, let z = 2’ — v/b/n -y. Clearly |z] < 1,2 > 0.

We need to bound |Fz|y from the above. Since |Fz|s < |Fa'|s < |Fz|s + |F(b/\/1 - y)la,
it is sufficient to upper bound |F'z|s and |F(b/\/n - y)|a.

Bound for b/\/n-|Fyl|s. Recall that all coordinates in y are at most 1. Moreover, recall
that the graph F' has at most dnA edges. Let d; be the degree of node ¢ in F. Clearly

14

We know that

F(b/v/ml3 < Y(d; - b/v/m)? = B fn Y d?

Since Y ;d; < 20An, it follows that the above expression achives the maximal value of
V2 /n - 26nA? = 26b°A2. Thus, |F(b/\/n)ylz < V26bA.

Bound for |Fz|,. Since z > 0, we know that |F'z|o < |Jz|e. Thus, it is sufficient to
bound |Jz|o. Observe that at most k¥ < n/b® positions in z are nonzero. These positions

correspond precisely to the positions which are equal to 0 in y. Thus, |z[; < {/n/b%. Let

t = ﬂf_ll—k < % Finally, define 2z’ = z — ty. From the definition it follows that 2’ -1 = 0.

Thus [J2']s < Al2']2 < A(|z|2 + tlyl2) < A1+ % n) < A(1 + 2/b). Therefore

\/n/b?
|zl < | T2 o] (ty) |2 < A(A42/b)+t| |2 [yl2 < A(1+2/b)+ n//2 |J|ov/n < M(142/b)+2A/b

By combining the bounds the theorem follows.

O

In our case, the matrix E’ can be decomposed into a sum of two matrices of subgraphs of
G?% (which can be directly handled using the above theorem) and a matrix F3 of a subgraph
of a bipartite graph (call it G'?) with all edges between V(c) and W(c). To handle E3, one
can observe that G is a double cover of G%. We say that a bipartite graph K = (V,V,9) is
a double cover of K’ = (V,S") if S contains all edges (i, j), (j, ¢) for {i,j} € S’. By increasing
the number of edges in E3 by at most a factor of 2, we can ensure that the graph Fj is a
double cover of a subgraph (say E) of G%. By applying Lemma 4 to E and G%, it follows
that |E|, < 2Dbv/26 + M(1 +2/b) + 2D /b. By standard arguments it follows that |Es, is at
most twice that bound.

Thus, |E|y < f(DbvV/§ + A(1 +2/b) +2D/b), for a constant f”.

Running time. To estimate the running time, observe that we can use the Orthogonal
Iteration method to compute eigenvectors vy, v, and the corresponding eigenvalues. The
running time of that method is upper bounded by the time needed to multiply the matrix
A by a vector (which is O(n)) times the number of iterations. The latter quantity is upper
bounded by logn times the eigenvalue gap between the kth and (k + 1)th eigenvalues of
A. Since \y(A4) > D(1 — B), while A\3(A) = O(V/'D) + BD, it follows that the number of
iterations is O(logn). Thus, the total running time is O(nlogn).

Theorem 3 There exists € > 0 such that for any block-length n there is a constant rate code
which is linear time encodable and (1 — €, 2, 2)-recoverable in time O(nlogn).

Proof: By the previous discussion, it suffices to fix the values of constants 1 > €,6, o, 5, 8", 8", u >
0, b > 2, d > 3, such that for a certain (fixed) values of constants f, f’, f” the following con-
strains are satisfied:

l—a+2de < 1
<

1 1/2
6 = 4da+ 4ded

15

D = ¢

4D+BD = B'D
1-p" = (1-8-5)/0+5)
po= fp

BD < f"[DbV§+VD(1+2/b)+2D/b]

It is not difficult to verify that by setting d to be sufficiently large and then «, € to be
sufficiently small, one can satisfy all constraints. OI.

6 A (1/3+4¢,0(1))-decodable code with linear encoding
and decoding time

In this section we show that by concatenating a (1 —¢, 2, 2)-recoverable code described in the
previous section with a carefully chosen inner code, we can obtain a (1/3+¢, O(1))-decodable
code, with constant rate and alphabet size, which can be encoded and decoded in O(n) time.
To this end, we first observe that the O(nlogn) running time of the spectral partitioning
algorithm is preserved even if the alphabet size ¢ of the “left” code C' is non-constant, but
e.g. O©(n) (note that the finiteness of ¢ was not assumed anywhere). Thus, if we take C to
be a code of block-length n with alphabet size n® for some a > 0, then the resulting code
C' has alphabet size qn; = (n®)® for certain constant b. Such a code C, with O(n) encoding
and (unique) decoding time, can be constructed as in [GI01].

The inner code Cj, is chosen to be a (1/3 + €/2,2)-decodable code, with constant rate
Tin and constant alphabet size ¢;,. The number of bits needed to reprent each codeword is
equal to ablog g, logn/ri,,. We set a such that the latter quantity is less than logn. As a
result, we can decode Cj, in unit time by performing a table lookup, and the table size is
at most n. Also, given the list of all codewords of Cj,, one can prepare the lookup table in
O(n) time.

The code Cj, itself is chosen to be a random “pseudolinear” code. By Lemma 9.2 ([GO01a],
p. 194), one can adjust g;, and € so that r;, > 0. Such a code can be constructed proba-
bilistically in O(log®" n) time.

The final component of the construction is bipartite graph G. Specifically, let G' be a
bipartite graph G = (A, B, E), |A| = n, with left degree d and right degree d’. The left
degree d is equal to the block-length n;, of Cy,. The graph G should have the following
properties:

e (' is a constant independent from n

e for any S C B, |S| > (1/3+¢)|B], the fraction of i € A which have less than 1/3+¢/2
fraction of neighbors in S, is at most €

The graph can be again constructured from Ramanujan graphs. In particular, let G' =
(A, B, E'") be a Ramanujan graph with degree d’, such that |A’| = |B|. We construct G
by splitting A’ into sets of size d/d', and collapsing each set into one vertex. The resulting

16

graph G satisfies the aforementioned properties for proper value of the degree d'. Indeed,
assume that there exists S C B, |S| > (1/3 + €)|B| such that the set

S" = {i € A:ihas less than 1/3 + ¢/2 fraction of neighbors in S}

is of size at least €| A|. In this case let the set S” C A’ contain all vertices collapsed into
any vertex of S’. It follows that ng;,if) < 1/3 4 €¢/2, while % > 1/3 4+ €. By isoperimetric
inequality, it follows that setting d’ = ©(1/¢?) is sufficient for this scenario not to occur.

We define G¢,, : [qout]” — [[qm]“l']‘B| in the following way. For any z € [gou]", We
first create a vector z' € [g;,]% by replacing each symbol z; by Cj,(x;). Then we set
Ge,, (z) = G(2).

The set of all vectors Gg,, (c), ¢ € C, forms our final code C'. The code has block-
length ©(nlogn), finite rate and alphabet size. We mention that this “graph-concatenation”
operation on C, Cj, and G has been introduced in [AEL95]| and further explored in [GI02].

It is easy to verify that the code C can be encoded in O(n) time. Assume we are given a
“corrupted” codeword z and we want to decode a codeword ¢ such that D(z,c) > (1—¢)|B|.
In the first step, each node i constructs a vector y; by concatenating all symbols z;, (¢, j) € E.
Then it applies the list-decoding algorithm for code Cy, on y; and outputs a list L; (of length
2). From the properties of G it follows that the fraction of i’s that have less than (1/3+¢/2)d
neighbors in the set of symbols in x that agree with c, is less than e. For all other ¢’s, the
list L; contains ¢;. Thus, we can decode ¢ from the lists L, ... L, by using the decoding
algorithm for C.

The total running time of the algorithm is O(nlogn). Since the block-length of the code
C' is equal to |B| = ©(nlogn), the running time is linear in the block-length of C’. Thus,
we obtain the following theorem.

Theorem 4 For any € > 0 and block-length n, there is a code which is encodable and
(1/3 + €, 2)-decodable in time O(n). The code can be constructed in randomized O(log®™® n)
time. The code has constant rate and alphabet size. The big-Oh notation in the running time
hides factors not depending on n.

We also mention that we can improve the above theorem even further, and make the
codes explicit, while keeping the running times unchanged. To this end we construct a code
C" in the same way as C', but we use a modification of the code from Theorem 4 as the
inner code. The modified code has still block length O(logn), but is constructed from a
“left” code with constant alphabet size (and thus no further concatenation with a random
code is needed). Thus, the inner code is explicit, and the lookup table for its decoding can
be constructed in O(n) time. The latter bound is subsumed by the encoding time.

Theorem 5 For any € > 0 and block-length n, there is an explicit code which is encodable
and (1/3 + €,2)-decodable in time O(n). The code has constant rate and alphabet size.

17

7 Conclusions

In this paper we presented several constructions of list-decodable or recoverable codes. All
our codes have linear-time encoding algorithms, and linear or near-quadratic time decoding
procedures.

The main open problem left out by this work is: is it possible to correct up to 1 — ¢
fraction of errors in linear time, for any € > 0, while preserving the constant rate of the code
? Very recently, Venkat Guruswami and the author discovered a code construction which
indeed enables us to achieve such a result. The construction follows by a generalization of
the approach used in this paper. We will include this result in the full version of this paper.

Acknowledgements. The author would like to thank Venkat Guruswami, Jon Feldman
and Mihai Badoiu, for very helpful comments on a preliminary version of this paper.

References

[ABN'92] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ronny Roth. Con-
struction of asymptotically good low-rate error-correcting codes through pseudo-random
graphs. IEEE Transactions on Information Theory, 38:509-516, 1992.

[AC88] Noga Alon and Fan R. K. Chung. Explicit construction of linear sized tolerant
networks. Discrete Math. 72 (1988), pp. 15-19.

[AEL95] Noga Alon, Jeff Edmonds and Michael Luby. Linear time erasure codes with nearly
optimal recovery. Proceedings of FOCS’95.

[ALRS92] Sigal Ar, Richard J. Lipton, Ronitt Rubinfeld and Madhu Sudan. Reconstructing
Algebraic Functions from Mixed Data. Proceedings of FOCS’92.

[BNOO] Daniel Bleichenbacher and P. Nguyen, Noisy Polynomial Interpolation and Noisy
Chinese Remaindering. Proceedings of EUROCRYPT ’2000, LNCS vol. 1807, Springer-
Verlag, pp. 53-69, 2000.

[E157] Peter Elias. List decoding for noisy channels. Wescon Convention Record, Part 2,
Institute of Radio Engineers (now IEEE), pp. 94-104, 1957.

[G0la] Venkatesan Guruswami. List Decoding of Error-Correcting Codes. Ph.D thesis, Mas-
sachusetts Institute of Technology, August 2001.

[GI01] Venkatesan Guruswami and Piotr Indyk. Expander-based constructions of efficiently
decodable codes. Proceedings of the 42nd Annual Symposium on Foundations of Com-
puter Science, Las Vegas, NV, October 2001.

[GI02] Venkatesan Guruswami and Piotr Indyk. Near-optimal Linear-Time Codes for Unique
Decoding and New List-Decodable Codes Over Smaller Alphabets. Proceedings of
STOC02.

18

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-Solomon and
algebraic-geometric codes. IEEE Transactions on Information Theory, 45:1757-1767,
1999.

[GW95] Michel X. Goemans and David P. Williamson. Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming. Journal
of the ACM, 42(6):1115-1145, November 1995.

[KH96] Philip N. Klein and Hsueh-I Lu. Efficient Approximation Algorithms for Semidefinite
Programs Arising from MAX CUT and COLORING. Proceedings of STOC’96, pp. 338-
347.

[KVV01] Ravi Kannan, Santosh Vempala and Adrian Vetta. On clusterings: good, bad and
spectral. Proceedings of FOCS’00.

[LPS88] Alex Lubotzky, R. Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica,
8(3):261-277, 1988.

[RRO0] Ronny Roth and Gitit Ruckenstein. Efficient decoding of Reed-Solomon codes be-
yond half the minimum distance. IEEE Transactions on Information Theory, 46(1):246—
257, January 2000.

[S95] Daniel Spielman. Computationally Efficient Error-Correcting Codes and Holographic
Proofs. Ph.D thesis, Massachusetts Institute of Technology, June 1995.

[S96] Daniel Spielman. Linear-time encodable and decodable error-correcting codes. IEEE
Transactions on Information Theory, 42(6):1723-1732, 1996.

[S97] Madhu Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound.
Journal of Complezity, 13(1):180-193, 1997.

[TZ01] Amnon Ta-Shma and David Zuckerman. Extractor Codes. Proceedings of STOC’01.

[Woz58] J. M. Wozencraft. List Decoding. Quarterly Progress Report, Research Laboratory
of Electronics, MIT, Vol. 48 (1958), pp- 90-95.

[Zwick98] Uri Zwick. Finding almost satisfying assignments. Proceedings of STOC 98, pp.
551-560.

19

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/pub/eccc

[ECCC ISSN 1433-809

2
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

