Electronic Collogquium on Computational Complexity, Report No. 25 (2002)

Polynomial Time Approximation Schemes for Metric
Min-Sum Clustering

W. Fernandez de la Vega *  Marek Karpinski | Claire Kenyon?
Yuval Rabani?

Abstract

We give polynomial time approximation schemes for the problem of partitioning an
input set of n points into a fixed number k of clusters so as to minimize the sum over all
clusters of the total pairwise distances in a cluster. Our algorithms work for arbitrary
metric spaces as well as for points in R? where the distance between two points z, y is
measured by ||z — y||? (notice that (R% || -[|3) is not a metric space). Our algorithms
can be modified to handle other objective functions, such as minimizing the sum over
all clusters of the total distance to the best choice for cluster center.
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1 Introduction

Problem statement and motivation. The partition of a data set into a small number
of clusters, each containing a set of seemingly related items, plays an increasingly crucial
role in emerging applications such as web search and classification [12, 50|, interpretation of
experimental data in molecular biology and astrophysics [41, 57, 48], or market segmenta-
tion [45]. This task raises several fundamental questions about representing data, measuring
affinity, estimating clustering quality, and designing efficient algorithms. For example, when
searching or mining massive unstructured data sets, data items are often processed and rep-
resented as points in a high dimensional ! space R, where some standard distance function
measures affinity (see, for example, [20, 58, 26, 12]).

This paper deals with the question of designing good algorithms for an attractive criterion
for clustering quality in such a setting. More specifically, we consider a set V' of n points
endowed with a distance function 6§ : V x V — R. These points have to be partitioned
into a fixed number k of subsets Cy,Cy, ...,k so as to minimize the cost of the partition,
which is defined to be the sum over all clusters of the total pairwise distances in a cluster.
We refer to this problem as the Min-Sum All-Pairs k-Clustering problem. Our algorithms
deal with the case that § is an arbitrary metric (including, in particular, points in R? with
distances induced by some norm). We also handle the non-metric case of points in R where
the distance between two points z,y is measured by é(z,y) = ||z — y||3. In the latter case,
our algorithms can be modified to deal with other objective functions, including the problem
of Min-Sum Median k-Clustering, where the cost of a clustering is the sum over all clusters
of the total distances between cluster points and the best choice for a cluster center. All
optimization problems that we consider are N P-hard to solve exactly even for k = 2.

Our results. For the Min-Sum All-Pairs objective function, we present algorithms for
every k and for every € > 0 that compute a partition into k clusters Cy,Csy, ..., C} of cost
at most 1 4 € times the cost of an optimum partition. In the metric case the algorithm is
randomized and its running time is O(n?* + n**t1200/<* ™)) 1 the case of the square of
Euclidean distance, the algorithms are deterministic, and their running time is nC®) | Our
algorithms can be modified to output, for all ( > 0, a clustering that excludes at most (n
outliers and has cost at most 1 + ¢ times the optimum cost. In the case of the square of
Euclidean distance, we can do this in probabilistic time O(f(k,¢,()-n’logn), where f grows
(rapidly) with &, L, and %

The Min-Sum Median objective function can be optimized in polynomial time for fixed
k in finite metrics, because the number of choices for centers is polynomial. However, if the
points are located in a larger space, such as R? and the centers can be picked from this larger
space, the problem may become hard. For points in R? with distances measured by the square
of Euclidean distance, we give Min-Sum Median algorithms that partition all points into &
clusters of cost at most 1+ ¢ of the optimum cost in probabilistic time O(g(k, ¢)-n - (log n)*),
where ¢ grows (rapidly) with k& and % Some of our ideas can be modified trivially to derive
polynomial time approximation schemes for other objective functions, such as minimizing

!By “high dimensional” we mean that the dimension d should be treated as part of the input and not as
a constant.



the maximum radius of a cluster. We do not elaborate on these modifications.

Related work. Schulman [56] initiated the study of approximation algorithms for Min-
Sum All-Pairs k-Clustering. He gave probabilistic algorithms for clustering points in R¢ with
distance measured by the square of Euclidean distance. (Thus he also handled other inter-
esting cases of metrics that embed isometrically into this distance space, such as Euclidean
metrics or L' metrics.) His algorithms find a clustering such that either its cost is within a
factor of 1 4 € of the optimum cost, or it can be converted into an optimum clustering by
changing the assignment of at most an € fraction of the points. The running time is linear
if d = o(logn/loglogn) and otherwise the running time is n®(°81°8») " Thus our results
improve and extend Schulman’s result, giving a true polynomial time approximation scheme
for arbitrary dimension.

Earlier, Fernandez de la Vega and Kenyon [24] presented a polynomial time approxima-
tion scheme for Metric Max Cut, an objective function that is the complement of Metric
Min-Sum All-Pairs 2-clustering. Indyk [35] later used this algorithm to derive a polynomial
time approximation scheme for the latter problem. Thus our results extend Indyk’s result
to the case of arbitrary fixed k. Bartal, Charikar, and Raz [11] gave a polynomial time
approximation algorithm with polylogarithmic performance guarantees for Metric Min-Sum
All-Pairs k-Clustering where k is arbitrary (i.e., part of the input).

As mentioned above, instances of Min-Sum Median k-Clustering in finite metrics with
fixed k are trivially solvable in polynomial time. (For arbitrary k, the problem is APX-
hard [33] and has elicited much work and progress [8, 16, 37, 15].) This is not the case in
geometric settings, including the square of Euclidean distance discussed in this paper. This
case was considered by Drineas, Frieze, Kannan, Vempala, and Vinay [25], who gave a 2-
approximation algorithm. Ostrovsky and Rabani [52] gave a polynomial time approximation
scheme for this case and other geometric settings. Our results improve significantly the
running time for the square of Euclidean distance case. Recently and independently of our
work, Badoiu, Har-Peled, and Indyk [10] gave a polynomial time approximation scheme for
points in Euclidean space with much improved running time (as well as results on other
clustering objectives). Their algorithm and analysis are in some respects similar to our
algorithm (though it handles a different distance function).

It is interesting to note that both Schulman’s algorithm for Min-Sum All-Pairs Clustering
and the algorithm of Fernandez de la Vega and Kenyon for Mertic Max Cut use a similar
idea of sampling data points at random from a biased distribution that depends on the
pairwise distances. In recent research on clustering problems, sampling has been the core
idea in the design of provably good algorithms for various objective functions. Examples

include [5, 3, 51].

2 Preliminaries

In this section we introduce some notation and some tools that will be used to derive and
analyze our algorithms.
Throughout the paper we use V' to denote the input set of points and 0 to denote the



distance function over pairs of points in V. The function § can be given explicitly or implicitly
(for example, if V C R? and § is derived from a norm on R?). Our time bounds count
arithmetic operations and assume that computing §(z,y) is a single operation. The reader
may assume that the input is rational to avoid having to deal with unrealistic computational
models. We use k, a fixed constant, to denote the desired number of clusters. We omit
the ceiling notation from expressions such as E-‘ Our claims and proofs can be modified
trivially to account for taking the ceiling of non-integers wherever needed.

Let XY C V and # € V. With a slight abuse of notation, we use §(z,Y) to denote
> ey 0(7,y), and we use §(X,Y) to denote Y . d(z,Y) (notice that i(,-) is a symmetric
bilinear form but is not a distance in the power set of V). We use §(X) to denote §( X, X).
We put W = §(V) and w, = §(z, V). Finally, we denote the diameter of X by diam(X) =
max; yex 0(z,y).

Let C'y, Cy, ..., Cy be a partition of V into k disjoint clusters. Then, forall: =1,2,... k,
we use cost(C;) to denote the cost of C;. For most of the paper, we are concerned with the
all-pairs cost of a cluster, putting cost(C;) = 26(C;). In some cases, our algorithms can
be modified to apply to hard cases of the median cost of a cluster, putting cost(C;) =
mingepa{d(z, C;)}. In both cases, the cost of the clustering is ¢ = cost(Cy,Ca,...,Ck) =
Ele cost(C;). We use Ct,C5,...,C} to denote a clustering of V' of minimum cost ¢* =
cost(CF,C5, ..., CF).

Our polynomial time approximation schemes handle the case where ¢ induces an arbitrary
metric on V, as well as the non-metric case of V C R? and d(z,y) = ||z — y||2. The former
case obviously includes instances where V C R? and d(z,y) = ||z — y||, for p € [1,00) or
p = oo. Instances of points in R? are computationally hard if d is part of the input.

2.1 Properties of Metric Spaces

The main property of metrics that we use is the following proposition, which follows easily
from the triangle inequality.

Proposition 1. TLet X,Y, 7 C V. Then,
ZI8(X,Y) < [X[8(Y, 7) + [V |8(7, ).

Proof: For every z,y, z, we have 6(z,y) < 6(y,2) +(2z,y). Summing over X x Y X 7 gives
the desired result. 0
Here are some corollaries which are used in our proofs in metric space.

Corollary 2. diam(V) < 2W/n.

Proof: Let z,y be such that diam(V) = §(z,y), and apply Proposition 1 to X = {z},
Y ={y},and 7 =V. O

Corollary 3. Let € C V. For every vertex v € (' we have

| 3(C)
é(v,C) > m



Proof: Apply Proposition 1 to X =C, Y =C and 7 = {v}. O

Our approximation scheme for min-sum all-pairs clustering in metric spaces uses as a
tool an approximation scheme for Metric Max-k-Cut.

Definition: The Metric Max-k-Cut problem takes as input a set V' of n points from an
arbitrary metric space, and outputs a partition of V into k clusters Cy,C5,...,Cy so as to
maximize total distance between pairs of points in different clusters, i.e.

k-1 k
maxz Z 3(C;, Cy).

i=1 j=1+1

For any partition, the sum of the Max-k-Cut value and of the min-sum all-pairs clustering
value equals W. Thus the same partition is optimal for both objectives.

Theorem 4 ([24, 23]). There is a polynomial time approximation scheme for Metric Max-
k-Cut.

Theorem 4 is actually an easy extension of the MaxCut approximation scheme of [24].
The same reduction which is used for MaxCut also applies to Max-k-Cut, and the resulting
weighted dense graph is only a variant of dense graphs in the usual sense, so that the Max-
k-Cut approximation schemes for dense graphs (see [32, 7]) apply. An alternate algorithm
can be found in [23].

.

2.2 Properties of || - ||2

Unless otherwise specified, all subsets and multi-subsets of R? that we discuss are, for sim-
plicity, finite. For a finite set X C R? we denote by conv(X) the convez hull of X, i.e.,
conv(X) = {y € R? | 3o € R¥lsuch that a > 0 and |jal[; = L and y = }°__y aza}. We
associate with every y in conv(X) such that y =} _. a,x with rational coefficients a, a
multi-subset Y of X as follows. For every z € X, the number n, of copies of z in Y is
defined by a, = n,/|Y|, where n, is the number of times x appears in Y. We often use Y’
to denote the center of gravity of Y.

The following proposition characterizes the all-pairs cost of a cluster for the case that

§(z,y) = llz = yl3.
Proposition 5. For every cluster C' C V, cost(C) = |C|5(C, C).

Proof:
_ 1 1
8.0 = 0 (2= Su) (- X
zel yel yel
1 2 - :

= |C|Z (HxH%—}-WZZyz— mz;vy) by bilinearity

rzeC yeC zeC yeC
. 1

= |C]- Z |z|l3 — Tl Z Zx -y by renaming and grouping

z€eC | |x€OyEO
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3" (2]l + lyll — 2 - y) by renaming
eC

2:
2>

l\)lb—ﬂ [\')lr—

|z —yll3

eC
= cost(

yeC
). m
The following simple propositions will come in handy.

Proposition 6. For every multi-subset Y of R9, the center of gravity of Y is such that
Y = arg min,cgpa {§(Y, 2)}.

Proof: Let z € R? be the point that minimizes the above expression. As §(Y,z) =
ZZ > er( y; — z;)*, we can determine z by minimizing each coordinate separately. We have

W =2, ev(yi — z). The right hand side has a single zero at z; = Dl’_l > yey Ui
2 ) — 24 2 . . . . . .
As % = 2|Y| > 0, this point is the unique global minimum. O

Proposition 7. For every z,y,z € R? §(z,2) < §(z,y) + 6(y, 2) + 24/8(z,y) - 6(y, 2).

Proof: By the triangle inequality for Euclidean distance, \/3(z,2) < /d(z,y) + /d(y, 2).

Squaring this inequality gives the desired result. O
Proposition 8. For every z € R% for every multi-subset Y of R?, §(z,Y) < Dl,—|5(;c, Y).

Proof:

§(z,Y) = 17—|17|Zy

IN
(]
E\ -
- =
5
<
=

} |Y|ZZ

yeY i=1

= |Z5$y

yeYy

where (1) follows from the Cauchy-Schwarz inequality. O
The following lemma is attributed to Maurey [53, 14, 6]. We provide a proof for com-
pleteness.



Lemma 9 (Maurey). For every positive integer d, for every Y C R¢, for every e > 0, and
for every x € conv(Y'), there exists a multi-subset Z of Y containing |7| = % points such

that &(z, 7) < e (diam(Y)).

Proof: Put ¢t = % As z € conv(Y), it can be expressed as a convex combination z =
Zer a,y, where the coefficients ay, are non-negative reals that sum up to 1. Pick a multiset
7 = {z},2% ... 2!} at random, where the zi-s are independent, identically distributed,

random points with Pr[z; = y] = . Now,

E[5(:U,Z)] = K SE—% 2
_1 t | )
= F ;iZI (.CE—Z) 2
- A (Pl el o) o
i=1 i

< —diam(Y),

where (2) follows from the linearity of expectation, and (3) follows from the fact that for every

i # j, 2" and 27 are independent, so E [(z — 2*) - (z — 27)] = Z?:l El(zi— ) E [(z — Zl])] =
0. As E [§(z,2)] < Ldiam(Y), there exists a choice of Z such that d(z,Z) < ldiam(Y).
0

Lemma 9 can be used to derive a high-probability argument as follows.

Lemma 10. There exists a universal constant k such that for every integer d, for every
Y C RY, for every € > 0, and for every p > 0, a multi-subset Z of Y that is generated by

taking a sample of & - }2 . log% independent, uniformly distributed, points from Y satisfies

Pr[§(Y,Z) > ¢ diam(Y)] < p.

Proof: Put s = £-1.log(1/p) and t = 2. Consider Z as s samples Z;, Z,, ..., Zs of size
each. By Proposition 8, 8(Y,Z) < 1.5 6(Y, Z;). Therefore, Pr [5(17, Z)>€- diam(Y)] <
Pr [2;1 (Y, 7Z;) > ies - diam(Y)]. Put x; = (Y, Z;)/diam(Y) for all i = 1,2,...5. The
Y; are independent, identically distributed, random variables taking values in the range
[0,1]. By Lemma 9, E[y;] < e for all i. Using standard Chernoff bounds we get that

Prd>_ xi >es] < (3)63/2. Putting k = 4/log(4/e), the right hand side is equal to p. m|



3 A PTAS for Metric Instances

In this section we present our algorithm for clustering metric spaces. We first describe a
streamlined version of Indyk’s algorithm [35] that solves the case of & = 2. It will help to
motivate our approximation scheme for arbitrary fixed k.

Let (L, R) denote an optimal partition into 2 clusters. Run the following three algorithms,
constructing three partitions into 2 clusters. Output the best of the three partitions.

1. First algorithm: Use the metric MaxCut approximation scheme of de la Vega and
Kenyon with relative error €.

2. Balanced clusters algorithm: By exhaustive search, guess |L| € (en,n]and |R| = n—|L|.
Repeat O(1) times the following. Pick a random element £ € V' uniformly at random,
and a random element r € V uniformly at random. For each vertex v € V, let
5('0, L)y=|L|-4(v,f)and 5('0, R) =|R|-d(v,r). Construct a partition (L', R') of V by
placing v in L' if 5(1}, L)< 5('1), R), and placing v in R’ otherwise.

3. Unbalanced clusters algorithm: By exhaustive search, guess |L| € (0,¢en] and |R| =
n — |L|. Repeat O(1) times the following. Pick a random sample r € R uniformly
at random. For each vertex v € V, let §(v, R) = |R| - (v,r). Construct a partition
(L', R") of V by placing in L' the |L| vertices of V' with largest value of 5('1), R).

We now present our approximation scheme for arbitrary fixed k.
Definition: Given ¢ > 0, two disjoint sets of points A and B are said to be well-separated
if §(A) + 6(B) < F+15(A U B).

Our algorithm consists of taking the best of all partitions that are generated as follows.

1. By exhaustive search, guess the optimal cluster sizes |Cy| > |Cy| > -+ > |Ck|. Let
igp be the largest i such that |C;| > €¢|C;_¢| for ¢+ = 2,3,...,79. Clusters C; through
C;, are called large clusters, and the others are called small clusters. By exhaustive
search, for each pair of large clusters C; and C};, guess whether clusters C; and C; are
well-separated. Define groups of large clusters by taking the transitive closure of the
relation “C; and C; are not well-separated”.

2. Choose, uniformly at random, an element ¢; in each large cluster C;. (i.e. take iy
points uniformly at random, and with constant probability the ith element will be in

C;). For each point x and for each large cluster C;, define 5(;17, C:) = |Cild(z, ;).

3. For each z, consider the large cluster C; which minimizes S(a:, C;). Place z in C;’s group
and define its contribution to the group as f(x) = é(x, ;). This defines a partition of
V into groups.

4. By exhaustive search, for each group G thus constructed and for each small cluster
C;, guess |G N C;], and remove from G the |G N C;| elements with largest contribution
f(z). Recursively partition the removed elements into (k — ig) clusters.

5. Partition each group of A large clusters with A > 1 using Max-h-Cut with error pa-
rameter € = ¢¥+2 /2,



4 Analysis of the Metric Algorithm

Lemma 11. Let C C V and r € C be such that §(r,C) < 25(C)/|C|. Let (z,C) =
|C| - d(x,r), for x € V. Then |§(z,C) —d(z,C)| < 26(C)/|C|.

Proof: Apply Proposition 1 to X = {2}, Y = C and Z = {r}, and to X = {z}, Y = {r}
and 7 = |C]. m

The following lemma is useful for analyzing balanced well-separated clusters.

Lemma 12. Consider two sets of points R and L which are both of size at least ¢|L U R,
and such that §(R) 4+ 6(L) < €¢26(RU L). Let r be such that d(r, R) < 25(R)/|R| and
similarly ¢ be such that §(¢,L) < 26(L)/|L|. For any =, define é(x, R) = |R| - é(z,r) and
§(x,L) = |L|-8(x,0). Let F = {z € R|§(z,L) < §(z, R)}. Then,

o |F|=0O(c*)|RU L|; moreover, if §(R) 4+ 0(L) < ¢“6(R U L), then |F| = O(c®)|R U L.
e §(F) < 0O(€)d(R), and
o O(L,F) = (R, F) < O(c)(3(R) + 6(L)).
Proof: If x € F then 5(1:, L)- 5(1:, R) <0. Thus any point z in F' must verify:
5(337[’) - 5(IJR)
= 6(z,L) = 8(x, L) + 8(z, L) — 8(z, R) + §(z, R) — 8(z, R)
< 23(R)/|R| +25(L)/|L|

2(0(R) +6(L))
(RUL| 7

IN

where the first inequality comes from Lemma 11 and the second one follows from |R|, |L| >
elRUL|.
We bound |F| as follows.

|F|% ;5(;17, RU L) from Corollary 3 applied to z in RU L
= > (26(z, R) + (8(, L) = §(z, R)))
F
< 2§(F,R)+ |F|2(5(f}%$2(|[/)) from Equation 4
€
2(5(R) + (L))
< 26 F
s BRFIFT RUT)
e26(RU L)

< 20(RU L) +2AF I

Thus |F| = O(e*)|R U L|, which proves the first statement of the Lemma.



Applying Proposition 1 to X =Y = F and Z = R, we get

F
3(F) < 2P ) < 03
since |F| = O(e*)|RUL| and |R| > ¢|RUL|. This proves the second statement of the Lemma.
Finally, summing Equation (4) over every = € F' gives

3L, ) = 88, ) < 22 (6(R) 4 8(1) < O)(3(R) + 3(1)

since |F'| < O(e*)|RU L|. This proves the last statement of the Lemma. 0

The following lemma is useful to the analysis of unbalanced clusters.

Lemma 13. Consider two sets of points R and L such that |L| < ¢|R| and such that
§(R)+0(L) < 6(RU L). Let r € R be such that §(r, R) < 26(R)/|R|. For z € RU L, let

A

d(z,R) = |R| - d(x,r). Let C! denote the |R| points of RU L with largest value of 4(., R),
and C? = RUL\C}. Let FF' = RNC} ={vy,...,v}and E = LNC] = {v{,...,v; }. Then,

o 8(R,E)—8(R,F) = O(c)5(R).
o« S, 8(vpvp) < O(VS(R)/|R.
o [0(L,F)—4(L, E)| < O(e)6(R),
o 5(F) < O(e)3(R), and

o 5(F) < O(c)d(R).

Proof: We pair up vertex v, with vertex v/.

N A

Sy, R) = 8(1, R) = (3(vps R) — 8(ops R)) + (0p, B) = S R)) + (50, B) — 5(01, B).
iFrom Lemma 11 we have §(v,, R)—g(vp, R) < 26(R)/|R| and 5(1}2’,, R)—(S(‘U;, R) < 26(R)/|R|.
By definition, the elements of C] (and hence of ) all have larger value of 5(., R) than the
elements of C'! (and hence of ). In particular, d(v,, R)—d(v;, R) < 0. Together, this implies
that d(v,, R) — d(v;, R) < 40(R)/|R|. Summing over p, we get

S(E,R)—§(F,R) < 4%5(3)

|E]|
|R|
L]
—O0(R
7 (R)

= O0(e)d(R),

= 425(R)

< 4

hence the first statement of the Lemma.



Applying Proposition 1 to v,, v, and R and summing over p, we get:

R 6(vyv) < O(F,R)+3(E,R)

= §(E,R)— §(F,R)) + 25(F, R)
< O(€)d(R) +26(R)
= O(1)§(R),

hence the second statement of the Lemma.
Applying Proposition 1 to v,, v; and L and to v/, v, and L, we get

|6(vp, L) = 8(vy, L)| <|L- 6(vp, vy)-

Summing over p, we get
6(L, F) = 6(L, E)]| <

hence the third statement of the Lemma.
Applying Proposition 1 to F, F and R, we get

s(ry < 2L < 2O < s,

hence the fourth statement of the Lemma.

Now, write §(vy,v7) < 6(v),vp) + 6(vy,vy) + d(vg,v7). When we sum over p and ¢, we

obtain

S(E) < 2) vy, v))|E|+8(F)

< 2zjo >% 1 0()3(R)

= O0()d(R),

hence the last statement of the Lemma. O

Now, let us analyze the 2-clustering algorithm.
Case 1: Assume that ¢* > ¢2W. Then the MaxCut algorithm with error €* produces a
partition whose Cut value is at least OPT-Max-Cut(1 — €*) > OPT-Max-Cut — W. The
2-cluster value of this partition is thus at most W — OPT-Max-Cut + W, which is ¢* 4+ W,
hence at most (1 + ¢) - ¢*

Case 2: Assume that ¢* < ¢V and that the optimal partition (L, R) is such that |L|, |R| >
en. We analyze the Balanced Clusters algorithm.
With probability at least ¢/2, the algorithm has picked £ € L and r € R. For ¢ picked

uniformly at random in L, we have on average F(d(¢, L)) = §(L)/|L|. By Markov’s inequality,
with probability at least 1/2, it holds that §(¢, L) < 26(L)/|L|. Similarly, with probability

10



at least 1/2, it holds that §(r, R) < 25(R)/|R|. Moreover, the two events are independent.
Thus, with probability at least ¢(1 — ¢)/4, we have:

te L,6(0,L) <25(L)/|L|,r € R, and &(r, R) < 26(R)/|R).

We assume that ¢ and r satisfy these properties and that |L| and |R| have been guessed
correctly.

Let L'=L+F —F and RR = R+ E — F. Then,

O(L) + 6(R') = 6(L) — o(R)

= (L+F-FE,L+F—-FE)+§R+E—-F R+ FE—-F)—6(L,L)—4R,R)
= 2(6(L,F)=6(R,F))+2(6(R,E)—6(L,E)) 4+ 20(F)+26(F)—46(E, F)
= 0O(e)c”,

by Lemma 12.

Case 3: assume that ¢* < W and that the optimal partition (L, R) is such that |L| < en.
Then |L| < €/(1 — €)|R|. We analyze the Unbalanced Clusters algorithm.

With probability at least (1 — €)/2, we have r € R and d(r, R) < 26(R)/|R|. We assume
that this holds and that |L| has been guessed correctly.

Let E = LN R and F = RN L'. The difference between the value of the cut constructed
by the algorithm and the value of the optimal cut is

5(L+F—E)+ S(R+E—F)—=46(L)—6(R)
= 2(0(L,F)—=6(L,E))+2(0(R,E)—6(R, F))+20(F)+ 26(F)—46(E, F)
= O(c)d(R),

by Lemma 13.

Thus in all cases, one of the algorithms will output a near-optimal solution. This con-
cludes the analysis of 2-clustering.

We now proceed with the analysis of the k-clustering algorithm.

We first analyze the mistakes made in step 3. For that, we focus on the large clusters.
Consider two large clusters C; and C; which belong to different groups. let F;; be the set of
element of C; which are mistakenly classified as belonging to ;. Consider the intermediate

k-cluster such that
o = C; if1> 19
¢ C; — U; B + U By if 7 < 1.
We have:

Z 5(Cl) — Z 5(C
< 2) (8(Ci Bii) = 6(Ch Bji)) + ) 8(EBy)

i3
+2 Z 5(Eﬁ, Ej;i) + 2 Z 5(EZ‘]', EZ']‘I).

2,5,5" 2,5,3"
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The first sum has only O(k?) terms, which are all small (i.e. O(e)c*) by Lemma 12. The
second sum also has only O(k?) terms, which are also all small by Lemma 12.

The third sum has only O(k%) terms. Consider one of them. Applying Proposition 1 to
X = Eﬂ, Y = E] 4 and Z = CZ', we get |Oz| . 5(Eji, Ej/i) S |E]Z|(S(E]Z, Cz) + |Ej/i|5(Ej/i, Oz)
We analyze the first of the two terms of this sum (by symmetry, our analysis will also hold

for the second term of the sum). We have:

2
e
<

6(Eji, Ci)

| Ejil
|Cil
< ||CJ|| (8(C;) + 0(e)(8(Cy) +6(C5))) by Lemma 12
O(M)|C; U ¢
— O(c*
1 (")
= 0O(e)c”,

(6(Eji, C) + 0(Eji, Ci) = 6(Eji, Cf))

where the previous-to-last equality follows from the definition of well-separated clusters, and
the last equality follows from the definition of large clusters, which implies |C;| > ¢*n.
The last sum is analyzed similarly:

6(Esj, Eijr)
| Eyj| | Eji
< Gy, Eyyr) + (s, By
|Eij| + | B
< 1 5(C
il (Cs)
< 0(e)3(Ch).

Thus the partition (C!) is a near-optimal k-clustering:
Z 5(CH < (1 +0(K%))e.

Unfortunately some mistakes are made in step 4 as well. We now need to bound the effect
of those mistakes. For each large cluster C; and each small cluster C;, let F}; denote the
points of C! which mistakenly go into C;, and Fj; denote the points of C'; which mistakenly
go into C;’s group. By the guess made in step 4, we have |F;;| = |F};|, and so we can pair
up the vertices as in the analysis of the Unbalanced clustering algorithm. Let

C// _ C/ + E]>zo Ji Ej>i0 Fz'j 1f@ < LO
Ci+ Z]<20 T Z]‘go Fi; o if v > 1.

200N -2 4
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= 25 C’-I—ZFN ZF,J,C -I—ZFN ZFH 3(C5, CY)
= ZZ - (CZ, i) +

225 i +ZZ5(FZ-]-)+

ZZ Fiiy Fyri) — 8(Fyi, Fign)) +

ZZ Fij Fypr) — 6(Fjiy Fijr)).

Remember that F,;, is non-empty only if a refers to a small cluster and b to a large cluster,
or if a refers to a large cluster and b to a small cluster.

The first term has O(k?) terms which are all small by Lemma 13. The next two terms
also have O(k?) terms which are also all small by Lemma 13.

For the next term, remembering that Fj; is paired up with Fj; and using §(z,y) —
6(z,y') < d(y,y'), we get

O(Fji, Fyri) — 0(Fji, Fiyr) < |Fji > 8y, y).

(v.v') pair of F;,xF,

If C; is large and C;, C;jr are small, then by Lemma 13 this is bounded by |C;|O(1)4(C;)/|Cl,
which is O(€)d(C;) because of the gap between sizes of large and small clusters.

If C; is small and C;, C; are large, then by Lemma 13 this is bounded by |C;|O(1)6(C;1)/|Cj],
which is O(€)d(C;:). Thus in all cases, this term, like the previous terms, is O(e)c*. The last
term can be dealt with similarly. Thus the partition (C¥) is a near-optimal k-clustering:

25 (c <25 )+ O(k2e)e* < (1+ O(k%e))e™.

Finally, we need to analyze the use of Max-h-Cut in the last step of the algorithm; we
will present the analysis as if the group was perfect, i.e. consisted of the clusters C;. (It
is easy to see that the proof also goes through when replacing the C; by C7, at the cost of
some bookkeeping of the small errors introduced at every step of the calculation.) In the
groups of large clusters, the clusters are not well-separated. From this, we can deduce that
c* is Q(W) as follows.

Consider a group ¢y U Cy U --- U Cp. We have:

S(CLU-—-UC) = 8(C)+ ) 8(Ci,Cy). (4)

i
For 1« # 7, by definition of group, there exists a sequence of length m < h,

Ci=0C,Cify...,Cy o =C},

13



such that two consecutive clusters in that sequence are not well separated. Writing

5(*%'07 xil) < 5('172'0’ xil) + 5(.?2-1,%-2) +-- 5(xim—17$im)

and summing over C;; x --- x C;_, we get
8(Ciy, Ci) o 8(Ci, Ciy) | 8(C3,Cip) o 0(Ciss Cim)
|Cio| % |Cip| = [Cig| x |Ciy | [Ci| x| Cy | |Cis | X1

Since the size of any two large clusters differ by a factor of ¢* at most, we deduce

1

5(CH CJ) < é_k(g(cioa il) +o 5(Cim—17 Ci ))
By definition of well-separated clusters, we then obtain
1 2,
5(027 CJ) < 3k+1 ((5(020) + 5(021)) +oe (5(Cim—1) + (S(sz)) < 63k+1c :
Plugging this into Equation (4) yields
2h(h — 1),

Now, doing Max-h-Cut on C;U- - -UC}, with error parameter ©(e**+1 /%) will yield a partition
whose cut value is within an additive ©(¢***! /h?)§(C U --UC}) of optimal. Hence the value
of the clustering will be off by

O RN)S(CL U --- U C) = O(e)e”

by Equation (5).

The algorithm then recursively finds a clustering of the removed elements. There are at
most k levels of recursion, each inducing a mistake of order 1 + O(k%¢), for a total relative
error of O(k%e).

Now, let us turn to the running time of the algorithm. The exhaustive search of the first
step takes time O(n*2*%). Sampling and computing é in the second step takes time O(n+k) =
O(n). The minimization in the third step takes time O(nk). The fourth step takes time
O(n*), excluding the recursive call. The final step uses Max-k-cut, which is a randomized
algorithm and takes time O(n? + nk2°(/<*)) (in the version inspired from [32]). Overall,
running the algorithm for ¢ = (¢/k*)3**!/k?, the algorithm thus becomes a (1 4+ O(e))-
approximation and has running time

O(n*2%(n + nk + n* 4+ n* + nkQO(l/EIS)) x k= O(k2Fn* 4 k‘22knk+126(1/5'3)).
The above discussion proves the following theorem.

Theorem 14. For every fixed positive integer k& and for every ¢ > 0 there exists an algo-
rithm for Metric Min-Sum All-Pairs k-clustering that computes a solution of cost within a
factor of 1 + € of the optimum cost in time O(nzlC + nk+120(1/53k+1)).
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5 The Basic Algorithm for Squared Euclidean Distance

In this section we consider a finite input set V' C R? and distance function §(z,y) = ||z —y||.
We give, for every € > 0, an nC®/<) time algorithm that produces a partition of the input
space into k clusters with cost within a factor of 1 + ¢ of the cost of an optimum partition.
Our algorithm can be modified to solve the min-sum median case. We indicate the changes
needed at the end of the section.

We first present the algorithm, and then proceed to motivate and analyze it.

1. By exhaustive search, guess the optimal cluster sizes |C;| = n;, ny +ny + - - + ng = n.

By exhaustive search, for each ¢t = 1,. .., k, consider all possible multisets A; containing

(16—6)4 points.?

2. Consider the following weighted complete n x n bipartite graph (. The left side has n
vertices, of which n; are labelled A;, and the right side has n vertices which correspond
to the points of V. The edge between a vertex labelled A; and a vertex z of V' has
weight 8(z, C;) = n; - 8(x, Aj).

3. Compute a minimum cost perfect matching in the graph GG. This defines the following
clustering Cy,Cy, ..., Cy: C; is the set of points matched to the copies of A;.

4. Output the best such clustering over all choicesof A = (Ay,..., Ax)and N = (ny,...,ng).
Our algorithm is motivated by the following bound.

Lemma 15. Let Y be any multi-subset of V. Then, for every e such that 0 < € < 1, there
exists a multi-subset Z of Y of size | 7| = (16—6)4 and such that

|6(Y,Z) = 6(Y,Y)| <e-8(Y,Y).

§(x,Y) denote the average distance between a point € Y and

Proof: Let u = |Y| p—

2
Y. Let Y, = {z € Y | §(2,Y) < 64u/e*}. By Proposition 7, diam(Y;) < (2 64,u/62) =

2564/€*. By Lemma 9, there exists a multi-subset Z of Y, such that |Z] = (16/¢)* and
§5(7.Y.) < etdiam(Y,)/16* < €*u/256. We complete the proof by proving the following
claim.

Claim 16. If Z is a multiset such that §(7Z,Y.) < €21/256, then
6(Y,Z) = 8(Y,Y)| <e- (Y, Y).
Proof: We want to bound

3(Y,Z) = 6(V, Vo) =) (8(2, Z) = 8(x,Y2)).

reY

2The constant 16* = 65536 was chosen to simplify our calculations. It can be improved significantly.
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We bound each term of the right hand side separately using Proposition 7. This gives
§(2,2) = 6(x,Y.) < 8(Z, V) + 20/8(Z,Y.) - 8(x,Y2). Let Yy = {z € Y | §(z,Y.) < p}. Tf
z €Y, then

_ _ 1 1
— < — ).y
If z €Y\ VY, then §(Z,Y.) < 2u/256 < 25(z,Y.)/256. Therefore,
L 1 _
§(z, Z) = d(z,Y,) < <§6 + 5ee ) é(z,Ye). (7)

By Proposition 6, 3 ., (=, Y.) < Y ey, O, Y). By Proposition 8,

DIV -l

= Y
| | yeYe
i, (8)

where (8) follows from the definition of Y. If z € Y\ Y., then 6(z,Y) > 64/c?. Therefore,
using Proposition 7 and (8) we get:

(Y. Ye)

IN

Y b, Z) = > bz, 2)+ Y bz, 7)

reY z€Y] zeY\Y;
< N0, V) + et ok Vil + (14 <+ o PRRIERS
z,Y. — —t) - —e4+ —€?) - x, Y.
= L. 8T 56 ) K1 3T 256
z€eY; €Y\

VAN
N
—
+

|
)
+
2|
e~
oW
\_/
/\\
—
+
o0 | =
o™
+
- |-
ot
D
W
\_/
0,.
E~3
~<
/—'\
oL
+
2|
ot
=}
o™
(%]
N—
=

17 3
< (142t — €+ 5(x
= ( T3t s T 16384 ) Z

< (146)-) §(a,Y).

reY

On the other hand, by Proposition 6, 3
proof of Claim 16 and of Lemma 15. i
We are now ready for the analysis of our algorithm.

§(z,7) > 3,y 6(2,Y). This completes the

Theorem 17. The above algorithm computes a solution whose cost is within a factor of
(1 + ¢) of the optimum cost in time n®*/<").
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Proof: By Lemma 15, for every 1 = 1,2,...,k, there exists a multi-subset Z; of C7 of size
|Z:| = (16/6)4 and such that

16(Cr, Zi) — 8(C2,Cr)| < e+ 8(CF, Cr).

Consider the iteration of the algorithm where A; = Z; and n; = |C?| for every i = 1,2,... k.
Let C; be the set of points matched to the nodes marked A; in this iteration, for all : =
1,2,...,k. Then,

cost(Cy, Cay ..., Ch)

Z|C’| > (x, C)

zeC;
< Zn, Z(SxA
z€eC;
< Zm Z5UA
z€C}
< Z|C* > 8z, Cp).

z€CY

The performance guarantee follows because the algorithm finds a partition whose cost is at
least as good as cost(Cy,Cy, ..., C).

As for the running time of the algorithm, there are less than n* possible representations
of n as a sum ny + ny + --- + ni. There are less than p65536k/¢* possible choices for A.
Computing a minimum cost perfect matching in G takes O(n®logn) time. O

To solve the min-sum median case, we modify the algorithm as follows. We remove the
enumeration over the cluster sizes, and the multiplication of edges weights in G by those
sizes. Instead of computing a minimum cost perfect matching in (G, we assign each point to

the closest set to it.

6 Outliers

In this section we present a much faster randomized algorithm that clusters at least (1 —()n
points from V into k clusters Cy, Cy, ..., Cy, such that cost(Cy, Cy, ..., Cy) is within a factor
of 1 4 ¢ of the optimum cost to cluster all the points into k clusters (in fact, of the cost to
cluster the points the algorithm chooses into k clusters), with probability at least 1 — p.
The algorithm differs from the previous algorithm in the way it enumerates over the
choice of A and N. This is done as follows. Pick a sample Z of 3 - % -log(k/p) points,
each chosen independently and uniformly at random from X (where v is a sufficiently large
constant). Enumerate over all choices for a list A of t < k disjoint subsets Ay, A,,..., A; of
7, each containing % - log(k/p) points. For each choice of A enumerate over all ch01ces for

a list N of integers ny,ns,...,n; such that forall: =1,2,...,¢, n; = (1 + ) 2k’ for some

non-negative integer j;, and furthermore (1 — g) n < 2;1 n; < n. Proceed to compute a
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clustering using the graph G(A, N) as in the previous algorithm. (Notice that the two sides
of the graph need not be equal, so a minimum cost maximum matching may fail to assign
some of the points to clusters.) Output the best clustering computed over all choices of A

and N.

Theorem 18. With probability at least 1 — p, the above algorithm computes a solu-
tion containing at least (1 — ()n points, whose cost is within a factor of 1 4+ ¢ of the
optimum cost. The algorithm runs in time O (g(k, ¢, (,p) - n®logn), where g(k,¢,(,p) =

exp (& - k- log(k/p) - (log k + log(1/¢) + log(1/¢) + loglog(1/p))).

Proof: If there are any clusters among C7,C7, ..., C} that contain less than g - 7 points,
then by removing them we remove at most % - n points and we do not increase the cost of

clustering the remaining points into k clusters. So, consider a cluster C'7 that contains at

least % - 7 points. Let p; = ﬁzxecj oz, C*), and let Y; = {z € C7 | §(z,CF) < 64u;/€*}.

By Markov’s inequality, |Y;| > (1 — %) 5 7 Therefore, for every sufficiently large A there

exists 4 > 0 such that

Pr {|Z NnY:| < ilog(k‘/p) (10)

3

Zk

(In the above expression we consider the intersection Z NY; as a multiset.)
Conditioned on the event |Z NY;| > 2 log(k/p), the multiset Z; containing the first

%8 log(k/p) points in Z NY; is a sample of |Z;| points picked independently and uniformly at

random from Y;. By Lemma 10, assuming A is sufficiently large,

<L (11)

2k

Pe|9(Z:¥) > () - diam()

If 6(7;,Y;) < (%)4 - diam(Y;), then by Claim 16

Y 62, Z) =Y 62,0 <er > 82, C). (12)

reC¥ zeC¥ reC¥

Let I C {1,2,...,k} be the set of indices ¢ such that C* > %% Without loss of generality,
let I = {1,2,...,|I|}. Consider the event & that for every i € I we have [ZNY;| > 3 log(k/p)

and furthermore §(Z;,Y;) < (16) -diam(Y;). Summing (10) and (11) over all ¢ € I, Pr[£] >
1 — p. Assuming & holds, consider the iteration of the algorithm where ¢t = |I|, for all 7 € I,
A; = Z;, and (1 — %) |CF| < n; < |CF|. Let C1,Cy, ..., Cy be the clustering produced by the
algorithm in this iteration. Then,

cost(Cy,Cyy ..., Cy) < an Z5:UA

zeC}

< (1+4e¢)- Z|C* Z5$C

zeC}

< (1 —I—e)-cost(Cf,C;,...,Ck).
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Furthermore, the number of points clustered is

Zni > (1—g>'Z|C¢*|
=1 ;

> (1=¢) n.

It remains to analyze the time complexity of the algorithm. The number of possible

choices for A is
20(éig-k~log(k/p)-(logk+log(1/e)+log(1/()+loglog(1/p))).

The number of possible choices for N is

9O (k-(log k+log(1/¢)))

Each iteration requires the computation of a minimum cost maximum bipartite matching.
O

7 A Faster Min-Sum Median Algorithm

In this section we present an improved polynomial time approximation scheme for min-sum
median k-clustering, building on the ideas of the previous section. We give a randomized
polynomial time approximation scheme for min-sum median clustering of a finite input set
V C R? with distance function §(z,y) = ||z — y||2. The running time of our algorithms, for
fixed k, €, and p, is just O(npolylogn) (p is the failure probability).

The approximation scheme works as follows. Enumerate over all possible monotonically

non-increasing integer sequences ny,ny, ..., n; such that for all i = 1,2,...,k, n; = (1 + €)%
for a non-negative integer j;, and n < Zle n; < (14 €)-n.2 Partition {1,2,...,k} into
segments By, By, ..., B; as follows. The first segment begins with 1 and every consecutive

segment begins with the index following the last index of the previous segment. A segment
B; that starts with a; ends with the first s = b;, s > a;, such that s = k or ngyy < (ﬁ)Q ‘M.
Compute a set of candidate clusterings using a depth-¢ recursion. It is convenient to think of
the recursion as a depth-¢ rooted tree T', where every node of T is labelled by a clustering of
a subset of X into at most k£ clusters. The candidate clusterings are the labels of the leaves
of T'. Output the best candidate clustering.

To proceed with our description, we need some notation. Put m; = n,,, for all 1 =
1,2,...,t. Put myyqy = 0. For every ¢ = 1,2,...,¢, every depth-: node of T' corresponds to
166]“2 mit1 points. (The root of T corresponds to an
empty clustering.) The label on a node of T' is an extension of the label on its parent. lLe.,
it is a clustering that adds points and clusters to the label of its parent, but does not change

the assignment of points already clustered.

a clustering into b; clusters, excluding

31n fact, a coarser approximation by a factor of 2 would suffice.

19



Let C;—; be a label on a depth-(z — 1) node of T', where 1 < i < t¢. We describe how to
compute the labels of the children of this node. Denote by R;_; the set of points that are

not clustered in C;,_;. Pick a sample Z of R;_; of (%)% - 75 In £ points drawn independently
and uniformly at random, where v > 0 is a constant. Enumerate over all choices for an
ordered list of |B;| disjoint subsets A,, ..., A;, of Z, each containing E%lnk points, where
A > 0 is a constant. (Both 4 and A are determined in the analysis below.) Every such
choice generates a child of C;_;. (In the analysis it will be convenient to assume that every
depth-z node of T' includes, in addition to its label, the list Ay, A,, ..., As,, where its prefix
Ay, Ay, ..., Ay, is inherited from its parent.) Augment C;,_; by finding a minimum cost

. 2
assignment of |R;_;| — &

i—1

- myyy points* from R;_; to Cy,Cy,...,Cy,, where the cost of
assigning € R;_; to C; is §(x, A;). This completes the specification of the algorithm. We
now proceed with its analysis.

Claim 19. Forall:=1,2,... ¢, np > (ﬁ)z(k_l) m;.

Proof: By construction, for every j € {a; + 1,...,b;}, n; > (1g—k)2 n;_y. Therefore, putting

s =b; —a;, ny, > (ﬁ)25 Ng,. As s < k, the claim follows. O

Claim 20. Among the sequences ny,ns,...,n; that the algorithm enumerates over there
exists one such that for every j = 1,2,... k, ‘CJ* <n; < (1+e)- ‘CJ*

Proof: Clearly for every j there is a valid choice of n; that satisfies the bounds in the claim.
Because for these values n < Ele n; < (1 4 €)-n, there is an iteration where the whole
sequence is considered. O

Thus, from now on we analyze the iteration of the algorithm for which the bounds
in Claim 20 hold. Consider a depth-(¢ — 1) node u of T with label Cy,Cy, ..., Cs,_,, list
Ay, Ay, ..., Ay,_,, and set of unclustered points R;_;. To generate a child v of u, we add to
the list sets A;, for 7 = a;,...,b;. We are interested in a particular choice of those sets. Let
Ko, ..., Ky, C R;y be mutually disjoint sets such that K; = R,y N CT if ‘Ri—l ncx =

3 ) . ) . )
(f—G) -nj, and otherwise K is an arbitrary set of size n;. (Notice that as |R;_{| = # -my; >

k-m; > Eje& nj, such a choice of sets exists.)

Claim 21. For every p > 0 and for every sufficiently large A > 0, there exists v > 0 such
that with probability at least 1 — £, the sample Z from R;_; has the following property. For
every j € B, |ZNK;| > E%lnk‘.

Proof: The sets K;, j € B;, are disjoint. There are at most £ such sets, and each set has
size at least (%)Bnbi > % (£ )% |R;—1]. Then, |Z N K;| is the sum of (1?—’“)% e Ink

16k
Bernouli trials with success probability % . (ﬁ)%. Thus, by standard Chernoff bounds,
for v sufficiently large, the probability that |Z N K;| < E% Ink is at most J%. Summing this
probability for y € B; completes the proof. O

4Notice that this is a positive number of points, and in fact, almost all the points in R;_; get assigned at
depth .
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Claim 22. For every p > 0 there exist A > 0 and v > 0 such that with probability at least
1 — %, u has a child v with list Ay, Ay, ..., Ay, such that for every j € B;,

Proof: Following the proof of Theorem 18 put, for every j € B;, u; = Ifﬁl—l erKj 5z, K;),
J

and Y; = {z € K; | §(z, K;) < 64u;/e*}. Set ) so that the following property holds. For
every j € B;, a multi-subset Z; of % In £ independent, uniformly distributed, points of Y;

satisfies Pr {5(Z],Y]) (128) -diam(Yj)} < 7z (This is possible by Lemma 10.) Set v so
that with probability at least 1 — 7 the bound in Claim 21 holds. Conditioned on this
event, for every j € B; Z contains a sample of E%lnk independent, uniformly distributed,
points from K;. Notice that Y, contains more than two-thirds of the points in K;. If A
is sufficiently large, then the probability that Z; = Z NY; has at least %lnk points is at

least 1 — 37. Conditioned on this assumption, Z; is a sample of independent, uniformly

distributed, points of Y; as discussed above. If §(Z;,Y;) < (1;—8)4 - diam(Y}), then, by
Claim 16, erKj §(x, 7;) — erKj S(x, K;)| < 5 erKj §(x, K;). The probability that all

our assumptions are true is at least 1 — 2. In this case, v is the child of u corresponding to

the choice A; = Z;, for all j € B;. a

Claim 23. With constant probability, T' contains a depth-t node [ with label Cy,C,, ..., C;
and list Aq, Ay, ..., A; such that the directed path p in T' from its root to [ has the property
that every parent-child pair along p satisfies the bound in Claim 22.

Proof: By a trivial induction on the level 1. O

Assume from now that the event in Claim 23 occurs. Denote, for every x € X, by j. the
index of the cluster that x gets assigned to by the algorithm, and denote by ;! the index
for which z € C7,. Let J be the set of indices j such that K; C C7. Fori =1,2,...,¢, let
Ji={3€J|j < b;}. Foriv = 1,2,...,t, let D; be the set of pomts a551gned to clusters
at the depth-i node of p. A point z € D; is premature iff 35 > b;,. Let P; denote the set of
premature points in D;. A point x € D; is leftover iff Kjx € C% and j; < b;. Notice that in
this case, almost all points from (7, must be premature at some depth less than 7. Let L;
denote the set of leftover points in D;.

Let j & J. Let L’ denote the set of leftover points from C'*. By definition, L] < ( ')3 n;.
Sort the points in C*\LJ by non-decreasing order of w(z) = max{5(x C*) 5(17 A} (These
are all premature points.) Assign these points to the points in L7 in round—robin fashion.
Let Q(z) be the set of points assigned to z € L7. Let g(z) be a point in Q(x) with smallest
w(z). (Notice that {g(z) | z € L} is a set of |L/| points with smallest w(-) value in C¥\ L7.)
For every z € X let

undefined if x € P
o) = ]q( 2) if z is leftover;
Jn otherwise.
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Claim 24. For every j ¢ J,
_ €
> dla A < (145) - D 3G+ g Z w(
el r€LJ z€LI yeQ(z

Proof: Let z € L7. By the triangle inequality,

\/6 ”L‘A¢ \/5560* +\/5 ]*)-I-\/(S(q(:v)A

By definition, j = 5% = j* o) If w(g(z)) < ( ) -o(x, C-*) we get that

16

S Aage) < (mx,c;)wa(q( ) +¢5 Ao

VAN
/\\/ ~
=
H
Q
_|_
N
Q
cn|”*
b\
\f/

§(1+) Cx).

Otherwise, for every y € Q(z), w(y) > (%) -o(z, C ). Moreover,

|C7\ L]
| L7
(1—¢)n;—(5)n

3
€ .
<16) n;

>1 16\°
2 \ €

Q=) =

v

Therefore, in this case,

and

Thus, we get

§(x, Ag(r)) < <\/5(x,0;)+\/5(q(:c), ;)+\/5(q(m),A¢<x)>>2
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Summing these bounds over all 2 € L’ completes the proof. O

Put Q;, ={z € X | j: € J; and = € R;}. Let S; be a set of | P;| points in @; with smallest
5($,A¢:(x)) value (notice that by definition @; cannot contain premature points, so ¢(z) is
defined for every z € ;).

Claim 25.

3N b(e, Ag) < g-z Y b(e Agw).

i=1 z€S; =1 zeD;\F;

Proof: Fix: € {1,2,...,t}. The set P; is a subset of | )., C and therefore |P;| < k- my,.
On the other hand, |Q;| > |R;| — k- m;y1 = (16]“2 — k‘) Sy > % - m;y1. Thus,

€

Doveq; 02 Agy) T 1Q: Qi T 8

Moreover, ; C X\ (U Pir), s0 X, co. 8z, Apy) < 2o erDi’\Pi’ §(z, Ag(z)). Summing

over 1, which takes ¢t < k values, completes the proof. O

Claim 26.

Y Y b A < (1 + g) 3N 82.65).

=1 zeD;\P;\L; j€J z€EK;

Proof: Notice that the lhs sums precisely over the points in UjeJ K;. Moreover, for j € J,
€ K;, ¢(x) = 55 = j. As we are assuming that the bound in Claim 22 holds, the proof is
complete. O

Theorem 27. With constant probability the above algorithm computes a solution whose
cost i1s within a factor of 1 4 € of the optimum cost. The running time of the algorithm is

O(g(k,¢) - n - (logn)*), where g(k, ¢) = exp (}8 EInk- (ln% +In k))
Proof: With constant probability the recurrence 7' will contain a computation path p as
per Claim 23. Assuming this occurs, consider the clustering C, Cs, ..., C) computed at the
leaf [ reached by the path p.

For every 1 = 1,2,...,1, the set D;|JS; \ P; is a subset of R,_y of size |R;_1| — |R;l.
Therefore, assigning every z € D;|JS; \ P; to C4(z) 1s a feasible augmentation of C;_1, so its
cost ZI‘EDiUSi\Pi 6(x, Ay(z)) cannot be smaller than the cost of the augmentation that the

algorithm chooses which is » . d(z, A;,). Therefore,

Soda A = 0D Ay

reX i=1 z€D;

YooY b Ay

1=1 zeD; |J S;\F;

IN
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J=1 zels =1 z€S; =1 zeD\P;\L;
J=1 zels 1=1 zeD\P,\L;
(4D () ST Y Y
J¢J rels J€J zelI yeQ(x)
+ (1 + é)z SN b, C)
jeJ z€K;
< (1+§>'Z5($,C* ZZ(SxAh
z€X =1 z€P;

Moving terms around, we get

S 6(a,Ar) < ii?; Yz,

reX reX

< (L+e¢)- Z 8z, C).

reX

On the other hand,

k
cost(Cy,Cay ..., Cr) = ZZ(S(;B,C—']-)

= Z 5z, A;).

reX

As the algorithm outputs a clustering which is at least as good as Cy,C,, ..., Ck, this estab-
lishes the performance guarantee of the algorithm.
As for the running time of the algorithm, the number of sequences ny, ng, ..., n; that the

algorithms has to enumerate over is O ((log1+E n) k) The size of T' is at most
o F nk-(In L4Ink))

Computing the augmentation at each node of T requires O(n) distance computations, where
the hidden constant depends mildly on & and e. O
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