Vertex Cover on k-Uniform Hypergraphs is Hard to Approximate within Factor $(k-3-\varepsilon)$

Irit Dinur* Venkatesan Guruswami † Subhash Khot ‡ April, 2002

Abstract

Given a k-uniform hypergraph, the Ek-Vertex-Cover problem is to find a minimum subset of vertices that "hits" every edge. We show that for every integer $k \geq 5$, Ek-Vertex-Cover is NP-hard to approximate within a factor of $(k-3-\varepsilon)$, for an arbitrarily small constant $\varepsilon > 0$.

This almost matches the upper bound of k for this problem, which is attained by the straightforward greedy approximation algorithm. The best previously known hardness result was due to Holmerin [Hol02a], who showed the NP-hardness of approximating Ek-Vertex-Cover within a factor of $k^{1-\varepsilon}$.

We present two constructions: one with a simple purely combinatorial analysis, showing Ek-Vertex-Cover to be NP-hard to approximate to within a factor $\Omega(k)$, followed by a stronger construction that obtains the $(k-3-\varepsilon)$ inapproximability bound. The latter construction introduces a novel way of combining ideas from Dinur and Safra's paper [DS02] and the notion of covering complexity introduced by Guruswami, Håstad and Sudan [GHS00]. This also allows us to prove a hardness factor of $(k-1-\varepsilon)$ assuming the hardness of $O(\log n)$ -coloring a c-colorable graph for some fixed $c \geq 3$.

1 Introduction

Given a k-uniform hypergraph, G = (V, E) with vertices V and hyperedges $E \subseteq \binom{V}{k} \stackrel{def}{=} \{e \subseteq V \mid |e| = k\}$, a vertex-cover in G is a subset $S \subseteq V$ that intersects each edge. An independent set in G is a subset nose complement is a vertex cover, or in other words is a subset of vertices that contains no edge. The Ek-Vertex-Cover problem consists of finding a minimum size vertex cover in a k-uniform hypergraph. This problem is alternatively called the minimum hitting set problem with sets of size k (and is equivalent to the set cover problem where each element of the universe occurs in exactly k sets).

We show that this problem is NP-hard to approximate within $(k-3-\varepsilon)$ for an arbitrarily small constant $\varepsilon > 0$. The result is almost tight as this problem is approximable to within factor k by repeatedly selecting one arbitrary hyperedge, adding all its vertices into the cover and and removing all the "covered" hyperedges. The best known algorithm [Hal00] gives only a slight improvement on this greedy algorithm, achieving an approximation factor of k - o(1).

^{*}School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540. iritd@ias.edu

[†]University of California at Berkeley, Miller Institute for Basic Research in Science, Berkeley, CA 94720. venkat@lcs.mit.edu

[‡]Department of Computer Science, Princeton University, Princeton, NJ 08544. khot@cs.princeton.edu

Previous Hardness Results

This problem was suggested by Trevisan [Tre01] who initiated a study of bounded degree instances of certain combinatorial problems. There it was shown that this problem is hard to approximate within a factor of $k^{1/19}$. Holmerin [Hol02b] showed that E4-Vertex-Cover is NP-hard to approximate within $(2 - \varepsilon)$, and more recently [Hol02a] that Ek-Vertex-Cover is NP-hard to approximate within $k^{1-\varepsilon}$. Goldreich [Gol01] found a simple 'FGLSS'-type [FGL⁺91] reduction (involving no use of the long-code, a crucial component in most recent PCP constructions) to obtain a hardness factor of $(2 - \varepsilon)$ for Ek-Vertex-Cover for some constant k.

Our Results

We present two constructions: one that attains a hardness factor of $\Omega(k)$ (already improving the best previously known result) with a simple, purely combinatorial analysis, and one that is stronger attaining the inapproximability factor of $(k-3-\varepsilon)$.

Our "simple" construction follows that of [Hol02b] who showed that it is NP-hard to approximate E4-Vertex-Cover to within a factor $(2 - \varepsilon)$. Taking a new "set-theoretic" viewpoint on that construction, we give a purely combinatorial proof of Holmerin's theorem (in contrast to Holmerin's use of Fourier analysis), relying solely on one new Erdős-Ko-Rado (EKR) type combinatorial lemma (Lemma 2.2) that bounds the maximal size of t-intersecting families of subsets (i.e. families in which every pair of subsets intersect on at least t elements). Taking this new 'set-theoretic' viewpoint results in a direct extension of that construction to obtain an $\Omega(k)$ inapproximability factor.

Our "strong" construction, achieving a hardness factor of $k-3-\varepsilon$ involves a novel way of combining ideas from Dinur and Safra's paper [DS02] and the notion of covering complexity introduced by Guruswami, Håstad and Sudan [GHS00].

A constraint satisfaction problem is said to have covering complexity L (see [GHS00]) if it is NP-hard to distinguish between the case when the CSP has a satisfying assignment and the case when, given any L assignments, there exists a constraint that is not satisfied by any of these L assignments. Guruswami et al [GHS00] show hardness of coloring 2-colorable 4-uniform hypergraphs with constantly many colors. This result is equivalent to saying that the Not-All-Equal predicate on 4 binary variables has arbitrarily high covering complexity. In our paper, we need to use a (stronger) variant of the notion of covering complexity (see Definition 4.2).

We combine the covering complexity techniques with the methods from [DS02]. We borrow a powerful tool used in their paper, namely the Friedgut's Theorem about influence of variables on Boolean functions (Theorem 4.1). Assuming that for some fixed $c \geq 3$, it is hard to color an n-vertex c-colorable graph using at most $b \log n$ for every integer b, we get a predicate on 2 variables with the necessary covering complexity and this lets us prove a factor $(k-1-\varepsilon)$ hardness for the Ek-Vertex-Cover problem.

Location of the gap: All our hardness results have the gap between sizes of the vertex cover at the "right" location. Specifically, to prove a factor $(B - \varepsilon)$ hardness we show that it is hard to distinguish between k-uniform hypergraphs that have a vertex cover of weight $\frac{1}{B} + \varepsilon$ from those whose minimum vertex cover has weight at least $(1 - \varepsilon)$. This result is stronger than a gap of about B achieved, for example, between vertex covers of weight $1/B^2$ and 1/B. Put another way, our result shows that for k-uniform hypergraphs, for $k \geq 3$, there is a fixed α such that for arbitrarily small $\varepsilon > 0$, it is NP-hard to find an independent set consisting of a fraction ε of the vertices even if the hypergraph is promised to contain an independent set comprising a fraction α of vertices. We remark that such a result is not known for graphs and seems out of reach of current techniques. (The recent factor 4/3

hardness result for vertex cover on graphs due to Dinur and Safra [DS02], for example, shows that it is NP-hard to distinguish between cases when the graph has an independent set of size n/3 and when no independent set has more than n/9 vertices.)

Organization of the Paper

We begin with some preliminaries, including the starting-point PCP theorem, and some combinatorial lemmas that are used later in the analysis of the constructions. In Section 3 we present our first construction and prove a hardness of approximation factor of $\Omega(k)$. In Section 4 we present our stronger construction proving a $(k-3-\varepsilon)$ hardness factor. In Section 5 we explain how a hardness assumption for graph coloring implies a factor $(k-1-\varepsilon)$ hardness.

Subsequent Work

Following this work, Dinur, Guruswami, Khot and Regev [DGKR02] were able to unconditionally show a hardness of approximation factor of $(k-1-\varepsilon)$. The techniques in this paper are quite different from the ones in [DGKR02] and could be of independent interest. Moreover, the $\Omega(k)$ hardness factor is probably still the best in terms of holding for super-constant values of k.

2 Preliminaries

For a universe R, let P(R) denote its power set, i.e. the family of all subsets of R. A family $\mathcal{F} \subseteq P(R)$ is called *monotone* if $F \in \mathcal{F}$, $F \subseteq F'$ implies $F' \in \mathcal{F}$.

For a "bias parameter" $0 , the weight <math>\mu_p(F)$ of a set F is defined as

$$\mu_p(F) \stackrel{def}{=} p^{|F|} (1-p)^{|R\setminus F|}$$
.

The weight of a family $\mathcal{F} \subseteq P(R)$ is defined as

$$\mu_p(\mathcal{F}) \stackrel{def}{=} \sum_{F \in \mathcal{F}} \mu_p(F).$$

Note that the bias parameter defines a product distribution on P(R), where the probability of one subset $F \in P(R)$ is determined by independently flipping a p-biased coin to determine the membership of each element of R in the subset. We denote this distribution by μ_p .

2.1 Intersecting Families of Subsets

In this section we present some combinatorial lemmas regarding intersecting families of subsets, that will be useful later.

Definition 2.1 For a family of subsets $\mathcal{F} \subset P(R)$, let

$$\mathcal{F} \cap \mathcal{F} \stackrel{def}{=} \{ F_1 \cap F_2 \mid F_1, F_2 \in \mathcal{F} \}.$$

Lemma 2.2 (EKR-Core) For every $\varepsilon, \delta > 0$, there exists some $t = t(\varepsilon, \delta) > 0$ such that for every finite R and set family $\mathcal{F} \subset P(R)$, if $\mu_{\frac{1}{2}-\delta}(\mathcal{F}) > \varepsilon$, then there exists some 'core' subset $C \in \mathcal{F} \cap \mathcal{F}$ with |C| < t.

Proof Sketch: A family of subsets is *t-intersecting* if for every $F_1, F_2 \in \mathcal{F}$, $|F_1 \cap F_2| \geq t$. The idea is that a family cannot be *t*-intersecting, for large (but constant) t and still retain a non-negligible size. Thus, if $\mu_{\frac{1}{2}-\delta}(\mathcal{F}) > \varepsilon$, there exists some t for which \mathcal{F} is not t+1 intersecting, hence \mathcal{F} has a 'core' subset of size t.

For the full proof (see Section A.1), we rely on the complete intersection theorem for finite sets of [AK97] that fully characterizes the maximal t-intersecting set families.

Proposition 2.3 Let p > 0 and let $\mathcal{F} \subseteq P(R)$. Then $\mu_{p^2}(\mathcal{F} \cap \mathcal{F}) \geq (\mu_p(\mathcal{F}))^2$.

Proof:

$$\Pr_{F \in \mu_{n^2}} \left[F \in \mathcal{F} \cap \mathcal{F} \right] = \Pr_{F_1, F_2 \in \mu_p} \left[F_1 \cap F_2 \in \mathcal{F} \cap \mathcal{F} \right] \ge \Pr_{F_1 \in \mu_p} \left[F_1 \in \mathcal{F} \right] \cdot \Pr_{F_2 \in \mu_p} \left[F_2 \in \mathcal{F} \right] = (\mu_p(\mathcal{F}))^2$$

Note that when \mathcal{F} is monotone and defined by exactly one 'minterm', equality holds.

Proposition 2.4 Let p > 0, $\mathcal{F} \subseteq P(R)$. Let $\mathcal{F}^k \stackrel{def}{=} \{ F_1 \cap \cdots \cap F_k \mid F_i \in \mathcal{F} \}$. Then, $\mu_{n^k}(\mathcal{F}^k) \geq (\mu_p(\mathcal{F}))^k$.

Proof: By induction on k.

2.2 Starting Point - PCP

The Parallel Repetition Theorem

As is the case for many inapproximability results, we begin our reduction from Raz's parallel repetition theorem [Raz98] which is a version of the PCP theorem that is very powerful and convenient to work with. Let $\Phi = \{\varphi_1, ..., \varphi_n\}$ be a system of local-constraints over two sets of variables, denoted X and Y. Let R_X denote the range of the X-variables and R_Y the range of the Y-variables 1 . Assume each constraint $\varphi \in \Phi$ depends on exactly one $x \in X$ and one $y \in Y$, furthermore, for every value $a_x \in R_X$ assigned to x there is exactly one value $a_y \in R_Y$ to y such that the constraint φ is satisfied. Therefore, we can write each local constraint $\varphi \in \Phi$ as a function from R_X to R_Y , and use notation $\varphi_{x \to y} : R_X \to R_Y$ (this notation is borrowed from [DS02]). Furthermore, we assume that every X-variable appears in the same number of local-constraints in Φ .

Theorem 2.5 (PCP Theorem [AS98, ALM⁺**98, Raz98])** Let $\Phi = \{\varphi_1, ..., \varphi_n\}$ be as above. There exists a universal constant $\gamma > 0$ such that for every constant $|R_X|$, it is NP-hard to distinguish between the following two cases:

- **YES**: There is an assignment $A: X \cup Y \to R_X \cup R_Y$ such that all $\varphi_1, ..., \varphi_n$ are satisfied by $A, i.e. \ \forall \varphi_{x \to y} \in \Phi, \ \varphi_{x \to y}(A(x)) = A(y).$
- NO: No assignment can satisfy more than a fraction $\frac{1}{|R_X|^{\gamma}}$ of the constraints in Φ .

¹Readers familiar with the Raz-verifier may prefer to think concretely of $R_X = [7^u]$ and $R_Y = [2^u]$ for some number u of repetitions.

3 The "Simple" Construction

In this section, we prove the factor $\Omega(k)$ hardness result for Ek-Vertex-Cover. Our construction follows that of [Hol02b] who showed that it is NP-hard to approximate E4-Vertex-Cover within factor $(2-\varepsilon)$. Taking a new viewpoint on that construction we give a purely combinatorial proof of Holmerin's theorem (in contrast to Holmerin's use of Fourier analysis), relying solely on one new Erdős-Ko-Rado (EKR) type combinatorial lemma (Lemma 2.2) that bounds the maximal size of t-intersecting families of subsets (i.e. families in which every pair of subsets intersect on at least t elements). We then show a direct extension of that construction to obtain an $\Omega(k)$ inapproximability result for Ek-Vertex-Cover.

The use of EKR-type bounds in the context of inapproximability results was initiated in [DS02] as part of a more complicated construction and analysis for proving a hardness result for approximating vertex-cover on graphs. The structure of the problem at hand allows a very modular use of EKR-type bounds, and perhaps provides a better intuition as to why they are useful. Since EKR-type bounds are known in many cases to be tight, we believe that similar such bounds may prove fruitful for obtaining improved inapproximability results for other approximation problems.

As a warmup, let us first prove

Theorem 3.1 For any $\delta > 0$, it is NP-hard to approximate E4-Vertex-Cover to within $2 - \delta$.

This result is already known (see [Hol02b]), albeit using more complex analysis techniques.

Proof: Start with a PCP instance, as given in theorem 2.5, namely a set of local constraints $\Phi = \{\varphi_1, ..., \varphi_n\}$ over variables $X \cup Y$, whose respective ranges are R_X, R_Y . For parameters, fix $t = t(\frac{\varepsilon}{2}, \delta)$, and take $|R_X| > (\frac{2t^2}{\delta})^{1/\gamma}$ where $\gamma > 0$ is the universal constant from Theorem 2.5. From Φ , we now construct a 4-uniform hypergraph whose minimum vertex cover has weight $\approx \frac{1}{2}$ or ≈ 1 depending on whether Φ is satisfiable or not.

We present a construction of a weighted hypergraph $G = \langle V, E, \Lambda \rangle$, which can then be translated into an unweighted hypergraph via a standard duplication of vertices. The vertex set of G is

$$V \stackrel{def}{=} X \times P\left(R_X\right)$$

namely for each $x \in X$ we construct a block of vertices denoted $V[x] = \{x\} \times P(R_X)$ corresponding to all possible subsets of R_X . The weight of each vertex $\langle x, F \rangle \in V$ is

$$\Lambda(\langle x, F \rangle) \stackrel{def}{=} \frac{1}{|X|} \cdot \mu_{\frac{1}{2} - \delta}(F)$$

The hyperedges are defined as follows. For every pair of local-constraints $\varphi_{x_1 \to y}, \varphi_{x_2 \to y} \in \Phi$ sharing a mutual variable $y \in Y$, we add the hyperedge $\{\langle x_1, F_1 \rangle, \langle x_1, F_1' \rangle, \langle x_2, F_2 \rangle, \langle x_2, F_2' \rangle\}$ if and only if there is no $r_1 \in F_1 \cap F_1'$ and $r_2 \in F_2 \cap F_2'$ such that $\varphi_{x_1 \to y}(r_1) = \varphi_{x_2 \to y}(r_2)$:

$$E \stackrel{def}{=} \bigcup_{\varphi_{x_1 \to y}, \varphi_{x_2 \to y} \in \Phi} \left\{ \left. \left\{ \langle x_1, F_1 \rangle, \langle x_1, F_1' \rangle, \langle x_2, F_2 \rangle, \langle x_2, F_2' \rangle \right\} \; \right| \; \varphi_{x_1 \to y}(F_1 \cap F_1') \cap \varphi_{x_2 \to y}(F_2 \cap F_2') = \phi \; \right\}$$

where the union is taken over all pairs of local-constraints with a mutual variable y.

Lemma 3.2 (Completeness) If Φ is satisfiable, then G has a vertex cover whose weight is $\leq \frac{1}{2} + \delta$.

Proof: Assume a satisfying assignment $A: X \cup Y \to R_X \cup R_Y$ for Φ . The following set is a vertex cover of G:

$$\{\langle x, F \rangle \in V \mid x \in X, \ A(x) \notin F\}$$

For every hyperedge $e = \{\langle x_1, F_1 \rangle, \langle x_1, F_1' \rangle, \langle x_2, F_2 \rangle, \langle x_2, F_2' \rangle\}$ either $A(x_1) \notin F_1 \cap F_1'$ or $A(x_2) \notin F_2 \cap F_2'$, otherwise since $A(x_1), A(x_2)$ agree on every mutual Y-variable, we have $\varphi_{x_1 \to y}(F_1 \cap F_1') \cap \varphi_{x_2 \to y}(F_2 \cap F_2') \neq \phi$, and e would not have been a hyperedge.

Now note that the weight of the family $\{F \mid A(x) \notin F\}$ w.r.t. the bias parameter $(\frac{1}{2} - \delta)$ is $(\frac{1}{2} + \delta)$. Hence the weight of the vertex cover in (1) is $\frac{1}{2} + \delta$.

Lemma 3.3 (Soundness) If G has a vertex cover whose weight is $\leq 1 - \delta$, then Φ is satisfiable.

Proof: Let $S \subset V$ be such a vertex cover. By an averaging argument, there must be a set $X' \subseteq X$, $|X'| \ge \frac{\delta}{2}|X|$ such that for $x \in X'$, $\Pr_{v \in \Lambda^{V}}[v \in S \mid v \in V[x]] \le (1 - \frac{\delta}{2})$. For each of these blocks, define

$$\mathcal{F}_{x} = \{ F \in P(R_{X}) \mid \langle x, F \rangle \notin S \}$$

It follows immediately that $\forall x \in X', \ \mu_{\frac{1}{2}-\delta}(\mathcal{F}_x) \geq \frac{\delta}{2}$. The key observation is that due to Lemma 2.2 there exists some "core" subset $C \in \mathcal{F}_x \cap \mathcal{F}_x$ whose size is $|C| \leq t = t(\frac{\delta}{2}, \delta)$. In other words, there are two subsets which we denote $F_x^1, F_x^2 \in \mathcal{F}_x$, such that $|F_x^1 \cap F_x^2| \leq t$.

We next translate these "cores" into an assignment satisfying more than $\frac{1}{|R_X|^{\gamma}}$ fraction of Φ . Let $x_1, x_2 \in X'$, and denote their cores respectively by $C_{x_1} = F_{x_1}^1 \cap F_{x_1}^2$, $C_{x_2} = F_{x_2}^1 \cap F_{x_2}^2$. The next observation is that for every $\varphi_{x_1 \to y}, \varphi_{x_2 \to y} \in \Phi$ with $x_1, x_2 \in X'$, there always exists some $r_1 \in C_{x_1}$ and $r_2 \in C_{x_2}$ such that $\varphi_{x_1 \to y}(r_1) = \varphi_{x_2 \to y}(r_2)$, or in other words, we have

$$\varphi_{x_1 \to y}(C_{x_1}) \cap \varphi_{x_2 \to y}(C_{x_2}) \neq \phi . \tag{2}$$

Indeed, if not, then the set

$$\left\{\langle x_1,F_{x_1}^1\rangle,\langle x_1,F_{x_1}^2\rangle,\langle x_2,F_{x_2}^1\rangle,\langle x_2,F_{x_2}^2\rangle\right\}$$

would be a hyperedge not hit by S, contradicting the assumption that S is a vertex cover.

Let $Y' \subseteq Y$ denote the set of all Y variables that participate in some local-constraint with some $x \in X'$, $Y' \stackrel{def}{=} \{y \mid \varphi_{x \to y} \in \Phi, x \in X'\}$. Associate each such $y \in Y'$, with one arbitrary $x \in X'$ with $\varphi_{x \to y} \in \Phi$, and let $C_y \stackrel{def}{=} \varphi_{x \to y}(C_x) \subset R_Y$. Now define a random assignment A by independently selecting for each $x \in X'$, $y \in Y'$ a random value from C_x , C_y respectively. Assign the rest of the variables $(X \setminus X') \cup (Y \setminus Y')$ with any arbitrary value. To complete the proof, we prove:

Proposition 3.4

$$E_A[\#\{arphi_{x o y} \; ext{ is satisfied by } A\}] \geq rac{\delta}{2t^2} \cdot |\Phi|$$

Proof: We will show that for any $x \in X'$, any $\varphi_{x \to y} \in \Phi$ is satisfied by A with probability $\geq \frac{1}{t^2}$; thus the expected number of local-constraints satisfied by A is $\frac{|X'|}{|X|} \cdot \frac{1}{t^2} \geq \frac{\delta}{2t^2} \cdot |\Phi|$ (because every $x \in X$ appears in the same number of local constraints). Assume $C_y = \varphi_{x' \to y}(C_{x'})$ for some $x' \in X'$ (note that $|C_y| \leq t$). By Equation (2), we have

$$C_y \cap \varphi_{x \to y}(C_x) = \varphi_{x \to y}(C_x) \cap \varphi_{x' \to y}(C_{x'}) \neq \phi \ .$$

Therefore, there is at least one value $a_x \in C_x$ such that $\varphi_{x \to y}(a_x) \in C_y$. Since for every $x \in X'$, $|C_x| \le t$, there is at least a $\frac{1}{t^2}$ probability of having $\varphi_{x \to y}(A(x)) = A(y)$.

Thus, there exists some assignment A that meets the expectation, which means it satisfies $\geq \frac{\delta}{2t^2} > \frac{1}{|R_X|^{\gamma}}$ of the local constraints in Φ , hence Φ is satisfiable.

Thus we have proven that distinguishing between the case where the minimum vertex cover of G has weight at most $(\frac{1}{2} + \delta)$ and the case where it has weight at least $(1 - \delta)$, enables deciding whether Φ is satisfiable or not, and is therefore NP-hard.

3.1 Ek-Vertex-Cover is NP hard to Approximate Within $k/3 = \Omega(k)$.

We extend the construction above to work for any constant value of $k \ge 4$. We assume without loss of generality that k is divisible by 4, and for other values of k we can use the construction for the nearest k' = 4m and add k - k' distinct vertices to each edge.

The vertex set for our hypergraph is the same as in the case for k = 4, but the weights are different. We set

$$p = (\frac{1}{2} - \delta)^{4/k} , (3)$$

and

$$\forall v = \langle x, F \rangle \in X \times P(R_X), \qquad \Lambda(v) \stackrel{def}{=} \frac{1}{|X|} \cdot \mu_p(F)$$

The hyperedges are as follows. For every $\varphi_{x \to y}, \varphi_{x' \to y} \in \Phi$, and every $\langle x, F_1 \rangle, ..., \langle x, F_{\frac{k}{2}} \rangle \in V[x]$ and $\langle x', F_1' \rangle, ..., \langle x', F_{\frac{k}{2}}' \rangle \in V[x']$, we add the hyperedge $\left\{ \langle x, F_1 \rangle, ..., \langle x, F_{\frac{k}{2}} \rangle, \langle x', F_1' \rangle, ..., \langle x', F_{\frac{k}{2}}' \rangle \right\}$ to E if there is no $r \in F_1 \cap \cdots \cap F_{\frac{k}{2}}$ and $r' \in F_1' \cap \cdots \cap F_{\frac{k}{2}}'$ with $\varphi_{x \to y}(r) = \varphi_{x' \to y}(r')$. That is,

$$E \stackrel{def}{=} \bigcup_{\varphi_{x \to y}, \varphi_{x' \to y} \in \Phi} \left\{ \left\{ \langle x, F_1 \rangle, ..., \langle x, F_{\frac{k}{2}} \rangle, \langle x', F_1' \rangle, ..., \langle x', F_{\frac{k}{2}}' \rangle \right\} \mid \varphi_{x \to y}(\cap F_i) \cap \varphi_{x' \to y}(\cap F_i') = \phi \right\}$$

As in the case of k = 4,

Lemma 3.5 (Completeness) If Φ is satisfiable, then G has a hitting set whose weight is at most 1-p.

Proof: Again we take A to be a satisfying assignment, and set $S = \bigcup_{x \in X} \{ \langle x, F \rangle \mid F \not\ni A(x) \}$. The weight of S is 1 - p.

The proof of soundness is also quite similar to that of Lemma 3.3, with one minor twist.

Lemma 3.6 (Soundness) If G has a hitting set whose weight is $\leq 1 - \delta$, then Φ is satisfiable.

Proof: Let $S \subset V$ be such a hitting set. Again we consider the set $X' \subseteq X$ for which $\forall x \in X'$, $\Pr_{v \in_{\Lambda} V} [v \in S \mid v \in V[x]] \leq (1 - \frac{\delta}{2})$. Again $\frac{|X'|}{|X|} \geq \frac{\delta}{2}$. For each $x \in X'$ let

$$\mathcal{F}_x = \{ F \in P(R_X) \mid \langle x, F \rangle \notin S \}$$

We cannot immediately apply Lemma 2.2 to find "weak-cores" for each \mathcal{F}_x because lemma 2.2 works only when $p < \frac{1}{2} - \delta$. Thus, we must first consider the family $\mathcal{F}'_x = \{F_1 \cap \cdots \cap F_{k/4} \mid F_i \in \mathcal{F}_x\}$ whose size is guaranteed to be, by Proposition 2.4,

$$\mu_{\frac{1}{2}-\delta}(\mathcal{F}'_x) = \mu_{p^{k/4}}(\mathcal{F}'_x) \ge (\mu_p(\mathcal{F}_x))^{k/4} \ge (\delta/2)^{k/4}$$
.

Now we can deduce the existence of a "core" subset $C_x \subset R_X$, $|C_x| \leq t = t((\delta/2)^{k/4}, \delta)$, such that there are some $F_x^1, ..., F_x^{k/2} \in \mathcal{F}_x$ so that $C_x = F_x^1 \cap \cdots \cap F_x^{k/2}$. Again, observe that for every $\varphi_{x \to y}, \varphi_{x' \to y} \in \Phi$, $\varphi_{x \to y}(C_x) \cap \varphi_{x' \to y}(C_{x'}) \neq \phi$. From here we can proceed as in the proof of Lemma 3.3 above to define a random assignment that satisfies an expected fraction $\frac{\delta}{2t^2}$ of the constraints in Φ .

All in all, we have proven

Theorem 3.7 It is NP-hard to approximate Ek-Vertex-Cover to within a factor k/3.

Proof: For a k-uniform hypergraph, we have proven in Lemmas 3.5,3.6 that it is NP-hard to distinguish between a vertex-cover of size $1 - \delta$ and $1 - p = 1 - (\frac{1}{2} - \delta)^{4/k} < \frac{3}{k}$. The last inequality follows from

 $(1-rac{3}{k})^{k/4} < rac{1}{e^{3/4}} < rac{1}{2} - \delta$

which implies that there is no factor $\frac{k}{3}$ approximation algorithm for vertex-cover on k-uniform hypergraphs, unless P=NP.

4 The "Stronger" Construction

In this section we present our stronger construction, achieving a hardness of approximation factor of $(k-3-\varepsilon)$ for an arbitrarily small $\varepsilon>0$. This construction is quite different from the one in Section 3. Let us first introduce a couple of tools we use. First, Friedgut's Theorem about influence of variables on Boolean functions (equivalently, influence of elements on set-families) and, second, a result that follows from Holmerin's result [Hol02b] on the hardness of vertex cover in 4-uniform hypergraphs.

4.1 Friedgut's "Core" Theorem

Recall that a family $\mathcal{F} \subseteq P(R)$ is called monotone if $F \in \mathcal{F}$ and $F \subseteq F'$ implies $F' \in \mathcal{F}$. For a family \mathcal{F} , an element $\sigma \in R$ and a bias parameter p we define the "influence of the element on the family" as

Influence_p
$$(\mathcal{F}, \sigma) \stackrel{def}{=} \Pr_{F \in \mu_p} [\text{exactly one of } F \cup \{\sigma\}, \ F \setminus \{\sigma\} \text{ is in } \mathcal{F}]$$

The average sensitivity of a family is defined as the sum of the influences of all elements.

$$\operatorname{as}_p(\mathcal{F}) \stackrel{def}{=} \sum_{\sigma \in R} \operatorname{Influence}_p(\mathcal{F}, \sigma)$$

We will use the following theorem that can be obtained by combining Russo's Theorem and Friedgut's Theorem. This theorem essentially says that a monotone family of subsets is, in some sense, determined by a 'core', see [DS02] for details.

Theorem 4.1 ([Fri98, Rus82]) Let p be a bias parameter, $\varepsilon, \delta > 0$ be constants and ζ be an "accuracy parameter". Let $\mathcal{F} \subseteq P(R)$ be a monotone family such that $\mu_p(\mathcal{F}) \geq \delta$. Then there exists $p' \in (p, p + \varepsilon)$ and a set $C \subseteq R$ called the "core" with the following properties:

- The average sensitivity of the family $\mathcal F$ w.r.t the bias p' is at most $\frac{1}{\varepsilon}$, i.e. $as_{p'}(\mathcal F) \leq \frac{1}{\varepsilon}$.
- The size of C is a constant that depends only on $p, \delta, \varepsilon, \zeta$.

• If a family $\mathcal{H} \subseteq P(R \setminus C)$ is defined as

$$\mathcal{H} \stackrel{def}{=} \{ H \mid H \subseteq R \setminus C, \ C \cup H \in \mathcal{F} \} ,$$

i.e. \mathcal{H} consists of all possible extensions of the core C into set that belongs to \mathcal{F} , then $\mu_{p'}(\mathcal{H}) \geq 1 - \zeta$ where $\mu_{p'}(\mathcal{H})$ is the weight of the family \mathcal{H} under the $\mu_{p'}$ -distribution over the universe $R \setminus C$.

4.2 Hardness of 4CSP

We define a constraint satisfaction problem on 4 variables (4CSP) which captures a notion related to the notion of covering complexity introduced by [GHS00]. Our hypergraph construction will be based on the hardness of this 4CSP.

Definition 4.2 A 4CSP $\mathcal{L} = (X, \Phi)$ over a domain D is defined as follows: X is a set of variables which take values from domain D. Every $\phi \in \Phi$ is a constraint on 4 variables (which is satisfied provided the values of the 4 variables belong to a specific subset of D^4). We define YES and NO instances of the CSP as follows.

- **YES**: There exists an assignment $f: X \mapsto D$ to the variables which satisfies every constraint $\phi \in \Phi$ (more formally, the values assigned by f to the 4 variables in ϕ satisfy ϕ).
- NO: For any subset of variables $Y \subseteq X$, $|Y| \ge \gamma |X|$ and for any L assignments $f_1, f_2, \ldots, f_L : Y \mapsto D$, there exists a constraint $\phi \in \Phi$ such that all the 4 variables of the constraint ϕ are contained in Y and every assignment $f_i, 1 \le i \le L$ fails to satisfy the constraint ϕ .

For convenience, we say that ϕ is inside Y if all the 4 variables of the constraint ϕ are in the set Y.

Theorem 4.3 For every integer L and every constant $\gamma > 0$, it is NP-hard to distinguish whether an instance \mathcal{L} of a 4CSP over Boolean domain is a YES instance or a NO instance.

Proof: This follows immediately from a result of Holmerin [Hol02b]. He shows that for any constant $\gamma' > 0$, it is NP-hard to distinguish whether an n-vertex 4-uniform hypergraph is 2-colorable or it contains no independent set of size $\gamma' n$. Now let the vertices of the 4-uniform hypergraph be variables of a 4CSP. For every edge in the hypergraph, add a Not-All-Equal constraint on its 4 vertices. When the hypergraph is 2-colorable, it means that the 4CSP has a satisfying assignment. On the other hand, if there are L assignments that satisfy every constraint inside a set of variables of size γn , it means that this set of γn vertices can be colored properly with 2^L colors and hence there exists an independent set of size $\gamma' n = (\gamma/2^L)n$.

Remark: The notion of hardness between the YES and NO instances here is closely related to the notion of covering complexity introduced by [GHS00]. The notion of covering complexity requires that in the NO case, no L assignments can together satisfy all the constraints. We require an even stronger condition that no L assignments can satisfy every constraint inside a set of variables Y whose size is $\gamma |X|$.

4.3 The Construction of the Hypergraph

Let \mathcal{B} be the set of all l-tuples of variables of an instance \mathcal{L} of a 4CSP given by Theorem 4.3. That is

$$\mathcal{B} \stackrel{def}{=} \{ (x_1, x_2, \dots, x_l) \mid x_i \in X \}$$

An l-tuple $B \in \mathcal{B}$ will be called a "block". Let R be the set of all possible "block assignments", i.e. $R \stackrel{def}{=} D^l$ is the set of all strings of length l over the domain D. Let P(R) denote the family of all subsets of R, i.e.

$$P(R) \stackrel{def}{=} \{F \mid F \subseteq R\}$$

The vertex set V of the hypergraph is defined to be

$$V \stackrel{def}{=} \mathcal{B} \times P(R) = \{(B, F) \mid B \in \mathcal{B}, F \in P(R)\}$$

The vertices will have weights. Let $p=1-\frac{1}{k-3}-\varepsilon$ be the "bias parameter". The weight of a vertex (B,F) is $\mu_p(F)$ where

$$\mu_p(F) \stackrel{def}{=} p^{|F|} (1-p)^{|R\setminus F|}$$

To motivate the way we define the edges of the hypergraph, assume that $f: X \mapsto D$ is an assignment that satisfies every constraint. Let f[B] denote the restriction of this assignment to block B. Thus $f[B] \in R$. The edges of the hypergraph will be defined in such a way that the set of vertices \mathcal{I}_f

$$\mathcal{I}_f = \{ (B, F) \mid B \in \mathcal{B}, \ f[B] \in F \}$$

$$\tag{4}$$

is an independent set.

Definition 4.4 We say that 4 blocks (B_1, B_2, B_3, B_4) are "overlapping" if they agree on some l-1 coordinates and the 4 variables on the remaining coordinate form a constraint in the 4CSP. More precisely, there exist variables $x_1, x_2, \ldots, x_{l-1}$ and y_1, y_2, y_3, y_4 and an index $t, 1 \le t \le l$ such that

- 1. $B_i = (x_1, x_2, \dots, x_{t-1}, y_i, x_t, x_{t+1}, \dots, x_{l-1})$ for i = 1, 2, 3, 4
- 2. There is a constraint $\phi \in \Phi$ on the variables (y_1, y_2, y_3, y_4) .

Note that the tuple $(\{x_j\}_{j=1}^{l-1}, \{y_i\}_{i=1}^4, t, \phi)$ completely characterizes the overlapping blocks.

For a block $B = (z_1, z_2, ..., z_l)$ and a block assignment $\sigma \in R$, let $\sigma(z_j)$ denote the value assigned by σ to the variable z_j , which is just the j^{th} coordinate of σ . For $1 \le j \le l$, let $\pi_j : D^l \mapsto D^{l-1}$ be the projection operator that maps a string of length l to its substring of length l-1 obtained by dropping the j^{th} coordinate.

Definition 4.5 For any overlapping blocks (B_1, B_2, B_3, B_4) , characterized by $(\{x_j\}_{j=1}^{l-1}, \{y_i\}_{i=1}^4, t, \phi)$, and block assignments $\sigma^{(i)}$ to the blocks B_i s, we say that these block assignments are consistent if

- 1. $\pi_t(\sigma^{(1)}) = \pi_t(\sigma^{(2)}) = \pi_t(\sigma^{(3)}) = \pi_t(\sigma^{(4)})$
- 2. The values $\sigma^{(1)}(y_1), \sigma^{(2)}(y_2), \sigma^{(3)}(y_3), \sigma^{(4)}(y_4)$ satisfy the constraint ϕ .

In short, the first condition says that the assignments $\sigma^{(i)}$ must "project" down to a common assignment to the shared (l-1) coordinates, and the second condition says that the 4 values on the remaining coordinate must satisfy the constraint ϕ .

Note that if $f: X \mapsto D$ is an assignment that satisfies every constraint, and f[B] is the restriction of this assignment to a block B, then for any overlapping blocks $(B_1, B_2, B_3.B_4)$, the block assignments $f[B_1], f[B_2], f[B_3], f[B_4]$ are consistent.

Definition 4.6 For overlapping blocks (B_1, B_2, B_3, B_4) , and k sets $F_1, F_2, \ldots, F_{k-3}, F^{(2)}, F^{(3)}, F^{(4)} \subseteq R$, we say that these k sets are consistent if there exist block assignments $\sigma^{(i)}$ for block B_i , $1 \le i \le 4$, such that

- 1. $\sigma^{(1)} \in F_1 \cap F_2 \cap \ldots \cap F_{k-3}$
- 2. $\sigma^{(i)} \in F^{(i)}$ for i = 2, 3, 4.
- 3. The assignments $\sigma^{(i)}$ are consistent as per Definition 4.5.

Remark: Whenever we talk about consistency between sets $F_1, F_2, \ldots, F_{k-3}, F^{(2)}, F^{(3)}, F^{(4)}$, we have in mind a specific set of overlapping blocks (B_1, B_2, B_3, B_4) which we will be clear from the context.

Now we are ready to define edges of the hypergraph. For overlapping blocks (B_1, B_2, B_3, B_4) , and sets $F_1, F_2, \ldots, F_{k-3}, F^{(2)}, F^{(3)}, F^{(4)}$ which are **not consistent**, we define

$$\{(B_1, F_j)|j=1, 2, ..., k-3\} \bigcup \{(B_i, F^{(i)})|i=2, 3, 4\}$$

to be an edge of the hypergraph. Thus every edge contains exactly k vertices, i.e. this is a k-uniform hypergraph.

Lets verify that this way of defining edges makes sense. Suppose $f: X \mapsto D$ is an assignment that satisfies every constraint. We will show that the set \mathcal{I}_f (see Equation (4)) is an independent set. As observed before, for any overlapping blocks (B_1, B_2, B_3, B_4) , the block assignments $f[B_i]$ are consistent. Let

$$\{(B_1, F_j)|j=1, 2, ..., k-3\} \ \ \ \ \ \ \ \ \ \ \ \ \{(B_i, F^{(i)})|i=2, 3, 4\}$$

be any k vertices in the set \mathcal{I}_f . We will show that the sets

$$F_1, F_2, \dots, F_{k-3}, F^{(2)}, F^{(3)}, F^{(4)}$$

are consistent and hence these k vertices **cannot** form an edge, thus proving that \mathcal{I}_f is indeed an independent set. By definition of the set \mathcal{I}_f , we have $f[B_1] \in F_1 \cap F_2 \cap \ldots \cap F_{k-3}$ and $f[B_i] \in F^{(i)}$ for i=2,3,4. Since the assignments $f[B_i]$ are consistent, taking $\sigma^{(i)}=f[B_i]$ in Definition 4.6 proves the claim.

4.4 Completeness

Lemma 4.7 If the instance (X, Φ) as in Definition 4.2 is an YES instance, then there exists an independent set of weight $p|\mathcal{B}|$ in the hypergraph constructed above.

Proof: We will show that if there is a global assignment $f: X \mapsto D$ that satisfies every constraint, then the hypergraph constructed in Section 4.3 has a "large" independent set. As observed in the last section, the set

$$\mathcal{I}_f = \{ (B, F) \mid B \in \mathcal{B}, \ f[B] \in F \ \}$$

is an independent set. The weight of this set is

$$\sum_{B \in \mathcal{B}} \sum_{F: F \subseteq R, f[B] \in F} \mu_p(F) = \sum_{B \in \mathcal{B}} p = p|\mathcal{B}|$$

Thus in the completeness case, there exists an independent set of weight $p|\mathcal{B}|$.

4.5 Soundness

Lemma 4.8 If the instance (X, Φ) as in Definition 4.2 is a NO instance with parameters $L = |D|^{l-1}$ and $\gamma = \delta/4$, then the hypergraph constructed above has no independent set of weight $\delta |\mathcal{B}|$.

Before we prove the above lemma, let us first verify that together with Lemma 4.7 it proves our main hardness result:

Theorem 4.9 For every integer $k \geq 5$ and every $\varepsilon > 0$, the vertex cover problem on k-uniform hypergraphs is NP-hard to approximate within a factor of $(k-3-\varepsilon)$.

Proof: By Lemmas 4.7 and 4.8, together with Theorem 4.3, we have a gap of $(p|\mathcal{B}|, \delta|\mathcal{B}|)$ in the size of the independent set which corresponds to a gap $((1-p)|\mathcal{B}|, (1-\delta)|\mathcal{B}|)$ in the size of the vertex cover. This is a factor $\frac{1-\delta}{1-p} = \frac{1-\delta}{\frac{1}{k-3}+\varepsilon} = k-3-\varepsilon'$ gap where $\varepsilon' \to 0$ as $\varepsilon, \delta \to 0$.

It remains to prove the soundness lemma.

Proof of Lemma 4.8: We will show that if the 4CSP instance \mathcal{L} is a NO instance, then the hypergraph we constructed has no independent set of size $\delta |\mathcal{B}|$. Assume on the contrary that the hypergraph has an independent set of size $\delta |\mathcal{B}|$. Call this independent set \mathcal{I} . We will construct a collection of $|D|^{l-1}$ assignments to a set of variables $Y, |Y| \geq \delta |X|/4$ in the 4CSP such that every constraint inside Y is satisfied by some assignment.

For every block B, define

$$\mathcal{F}[B] \stackrel{def}{=} \{ F \mid F \subseteq R, \ (B, F) \in \mathcal{I} \ \}$$

A simple averaging argument shows that for at least $\delta/2$ fraction of the blocks B, we have $\mu_p(\mathcal{F}[B]) \ge \delta/2$. Defining

$$\mathcal{B}' \stackrel{def}{=} \{B \mid B \in \mathcal{B}, \ \mu_p(\mathcal{F}[B]) \geq \delta/2\}$$

we have $|\mathcal{B}'| \geq \delta |\mathcal{B}|/2$.

Lemma 4.10 For every $B \in \mathcal{B}$, the family $\mathcal{F}[B]$ can be assumed to be a monotone family of subsets of R.

Proof: The way we define the edges of the hypergraph, it is easy to see that if (B, F) is a vertex of an independent set then we can also add (B, F') to the independent set provided $F \subseteq F'$. Thus when the independent set is maximal, every family $\mathcal{F}[B]$ is monotone.

Using this lemma, for every $B \in \mathcal{B}''$, the family $\mathcal{F}[B]$ is a monotone family with $\mu_p(\mathcal{F}[B]) \geq \delta/2$. Let $\zeta > 0$ be a sufficiently small "accuracy" parameter which will be fixed later. Applying Theorem 4.1, we get

Lemma 4.11 For every block $B \in \mathcal{B}'$, there exists a real number $p[B] \in (p, p + \frac{\varepsilon}{2})$ and a set $C[B] \subseteq R$ called the "core" with the following properties:

- $\operatorname{as}_{p[B]}(\mathcal{F}[B]) \leq \frac{2}{\varepsilon}$.
- The size of C[B] is at most Δ_0 which is a constant depending only on $k, \varepsilon, \zeta, \delta$.
- Let $\mathcal{H}[B] \subseteq R \setminus C[B]$ defined as

$$\mathcal{H}[B] \stackrel{def}{=} \{ H \mid H \subseteq R \setminus C[B], \ C[B] \cup H \ \in \ \mathcal{F}[B] \}$$

Then we have $\mu_{p[B]}(\mathcal{H}[B]) \geq 1 - \zeta$, where the weight of the family $\mathcal{H}[B]$ is measured w.r.t. the p[B]-distribution on the universe $R \setminus C[B]$.

4.5.1 Incorporating All Elements With Some Influence: the Extended Core

Let $\eta > 0$ be a threshold parameter which will be chosen later. For every $B \in \mathcal{B}'$, we identify a set of elements $\text{Infl}[B] \subseteq R$ that have significant influence on the family $\mathcal{F}[B]$, i.e.

$$Infl[B] = \{ \sigma \in R \mid Influence_{p[B]}(\mathcal{F}[B], \sigma) \geq \eta \}$$

Since $\mathcal{F}[B]$ has average sensitivity at most $\frac{2}{\varepsilon}$ and the average sensitivity is simply the sum of influences of all the elements, it follows that the size of $\mathrm{Infl}[B]$ is at most $\frac{2}{\eta\varepsilon}$ which is a constant. Finally define the "extended core" $\mathrm{Ecore}[B]$ as

$$\mathrm{Ecore}[B] \stackrel{def}{=} C[B] \ \cup \ \mathrm{Infl}[B]$$

Clearly, the extended core has size at most $\Delta = \Delta_0 + \frac{2}{\eta \varepsilon}$.

4.5.2 The Preservation Property

Given two block assignments σ, σ' , and a projection $\pi_j : D^l \to D^{l-1}, 1 \leq j \leq k$, we say that the two assignments are "preserved" if $\pi_j(\sigma) \neq \pi_j(\sigma')$. Since σ, σ' differ in at least one coordinate, they will be preserved with probability $1 - \frac{1}{l}$ when a projection $\pi_j, 1 \leq j \leq l$ is picked at random.

For a block $B \in \mathcal{B}'$, say that its extended core is preserved under projection π_j if every pair of elements in the extended core is preserved. In other words, the projection operator is one-to-one on the extended core.

The extended core has size at most Δ . Choosing $l=\Delta^2$, the probability that the extended core is preserved under a random projection π_j , is at least $1-\frac{\binom{\Delta}{2}}{l}\geq \frac{1}{2}$. Hence there exists an index $j_0, 1\leq j_0\leq l$, such that for at least half of the blocks in \mathcal{B}' , their extended core is preserved. Assume w.l.o.g. that $j_0=l$ and $\pi=\pi_l$ denote the projection operator which acts simply by dropping the last coordinate.

$$\mathcal{B}'' \stackrel{def}{=} \{B \mid B \in \mathcal{B}', \text{ Ecore}[B] \text{ is preserved by } \pi\}$$

As noted, $|\mathcal{B}''| \geq |\mathcal{B}'|/2 \geq \delta |\mathcal{B}|/4$. A simple averaging argument shows that we can fix variables $x_1, x_2, \ldots, x_{l-1} \in X$ such that for at least $\delta/4$ fraction of variables y, we have $(x_1, x_2, \ldots, x_{l-1}, y) \in \mathcal{B}''$. Define

$$Y \stackrel{def}{=} \{ y \mid y \in X, \ (x_1, x_2, \dots, x_{l-1}, y) \in \mathcal{B}'' \}$$

Thus we have $|Y| \geq \delta |X|/4$. Denote by B_y the block $(x_1, x_2, \dots, x_{l-1}, y)$.

4.5.3 Defining Assignments

Now we are ready to define assignments to the variables in set Y so that every constraint inside Y is satisfied by some assignment. There will be one assignment $f_{\tau}: Y \mapsto D$ for every $\tau \in D^{l-1}$. For $\tau \in D^{l-1}$ and $\alpha \in D$, let $\tau \alpha \in R = D^l$ be the concatenated string.

The assignment $f_{\tau}: Y \mapsto D$ is defined as

$$f_{\tau}(y) = \left\{ \begin{array}{ll} \alpha \ \ \text{if} \quad \exists \ \alpha \ \in D \ \text{s.t.} \ \tau\alpha \in \mathrm{Ecore}[B_y] \\ \text{undefined} \ \ \text{otherwise} \end{array} \right.$$

There are two things to note here. Firstly, since the extended core is preserved, there exists at most one $\alpha \in D$ such that $\tau \alpha \in \text{Ecore}[B_y]$. Thus the definition of f_{τ} is unambiguous. Secondly, though the assignment f_{τ} is undefined for some (or even all) of the variables in Y, we will still show that for every constraint ϕ inside Y, there exists an assignment f_{τ} such that it satisfies the constraint ϕ . We prove this in the next section.

4.5.4 Finishing the Proof

In this section, we will show that for every constraint ϕ inside the set of variables Y, there exists an assignment f_{τ} that satisfies this constraint. Let ϕ be a constraint on the variables $\{y_1, y_2, y_3, y_4\}$ and consider the blocks

$$B_i = B_{y_i} = (x_1, x_2, \dots, x_{l-1}, y_i)$$

Clearly, the blocks (B_1, B_2, B_3, B_4) are overlapping. We prove our claim in several steps.

Lemma 4.12 There exist sets $F'_1, F'_2, \ldots, F'_{k-3} \subseteq R \setminus C[B_1]$ such that

- $\bullet \ \bigcap_{j=1}^{k-3} F_j' = \phi$
- $F_j \stackrel{def}{=} C[B_1] \cup F_j' \in \mathcal{F}[B_1]$ for $1 \le j \le k-3$.

In particular, $\bigcap_{j=1}^{k-3} F_j = C[B_1]$.

Proof: From Lemma 4.11, the weight of the family $\mathcal{H}[B_1]$ w.r.t. the bias parameter p[B] is at least $1-\zeta$. Noting that $p[B] \leq 1-\frac{1}{k-3}-\frac{\varepsilon}{2}$ and applying Lemma A.4, there exist sets $F_j' \subseteq R \setminus C[B_1], 1 \leq j \leq k-3$ whose intersection is empty. By definition of the family $\mathcal{H}[B_1]$, the sets $F_j \stackrel{def}{=} C[B_1] \cup F_j' \in \mathcal{F}[B_1]$.

Define

$$S \stackrel{def}{=} \{ \sigma \in R \mid \text{there exists } \sigma' \in C[B_1] \text{ such that } \pi(\sigma) = \pi(\sigma') \}$$

That is, S is the set of all strings which share a common prefix of length l-1 with some string in $C[B_1]$. Clearly $|S| = |D| \cdot |C[B_1]| \le |D| \cdot \Delta_0$. For i = 2, 3, 4 define

$$T_i \stackrel{def}{=} S \setminus \text{Ecore}[B_i]$$

Thus T_i is a set of size at most $|D| \cdot \Delta_0$. By definition of the extended core (at the end of the Section 4.5), all elements of the set T_i have influence at most η on the family $\mathcal{F}[B_i]$ w.r.t. bias $p[B_i]$. Applying Lemma A.5, if η is small enough, there exists a set $F^{(i)} \in \mathcal{F}[B_i]$ such that $F^{(i)} \cap T_i = \phi$.

Now consider the following vertices of the hypergraph:

$$\{(B_1, F_j) \mid 1 \le j \le k - 3\} \setminus \{(B_i, F^{(i)}) \mid i = 2, 3, 4\}$$

There vertices are in the independent set \mathcal{I} . Hence there **cannot** be an edge on these vertices. Therefore the sets $F_1, \ldots, F_j, F^{(2)}, F^{(3)}, F^{(4)}$ are consistent (see Definition 4.6). This means that there exist block assignments $\sigma^{(i)} \in R$ such that

- $\sigma^{(1)} \in \bigcap_{i=1}^{k-3} F_i = C[B_1]$ (by Lemma 4.12).
- For $i = 2, 3, 4, \ \sigma^{(i)} \in F^{(i)}$.
- The block assignments $\sigma^{(i)}$ have the same prefix of length l-1, i.e. there is a string $\tau \in D^{l-1}$, and values $\alpha_i \in D$ such that $\sigma^{(i)} = \tau \alpha_i$.
- The values $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ satisfy the constraint ϕ .

Lemma 4.13 $\sigma^{(i)} \in \text{Ecore}[B_i]$ for i = 1, 2, 3, 4.

Proof: We have $\sigma^{(1)} \in C[B_1] \subseteq \text{Ecore}[B_1]$. Now consider i = 2, 3, 4. Since $\sigma^{(i)}$ has the same (l-1)-prefix with $\sigma^{(1)}$, by definition of the set S, $\sigma^{(i)} \in S$. Also $\sigma^{(i)} \in F^{(i)}$ and $F^{(i)} \cap T_i = \phi$. Therefore $\sigma^{(i)} \in \text{Ecore}[B_i]$.

From this lemma, and the way the assignment f_{τ} is defined, we have $f_{\tau}(y_i) = \alpha_i$ for i = 1, 2, 3, 4. Since the values $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ satisfy the constraint ϕ , it follows that the assignment f_{τ} satisfies the constraint ϕ . This finishes the proof of Lemma 4.8.

5 Improved Result Assuming Hardness of Graph Coloring

A closer inspection of our proof in the previous section shows that the slack of 3 in our hardness result comes from the fact that CSP we started with had constraints that depend on 4 variables. Consequently, we needed to split the k-sets (that comprise a hyperedge) amongst four blocks, and had to get a small core as the intersection of (k-3) sets belonging to any set family with substantial weight under μ_p . This in turn limits the bias parameter p to be at most $(1-\frac{1}{k-3})$, leading to a factor $(k-3-\varepsilon)$ hardness. If we had a 2CSP (where each constraint depends only on two variables) for which a hardness similar to Theorem 4.3 holds, then we will be able to get a hardness of approximation factor of $(k-1-\varepsilon)$. This is because we will only need a small core as the intersection of (k-1) sets, and can therefore pick the bias parameter p to be $(1-\frac{1}{k-1}-\varepsilon)$. The rest of the analysis remains unchanged.

Unfortunately, we still seem to be quite far from proving a result like Theorem 4.3 for 2CSPs. However, such a result follows if a strong hardness assumption on approximate graph coloring holds. The following lemma makes formal this connection. The proof is straightforward and uses ideas similar to that of Theorem 4.3.

Lemma 5.1 Suppose that there exists a $c \geq 3$ such that for every positive integer b it is NP-hard to $(b \log n)$ -color a c-colorable graph on n-vertices. Then there exists $d \geq 2$ such that for every integer L and every constant $\gamma > 0$, given a 2CSP over domain size d, no polynomial time algorithm can tell if it is an YES instance or a NO instance unless P = NP (where YES and NO instances are defined for a particular L, γ as in Definition 4.2).

We note that the above hardness follows by a Turing reduction (unlike the many-one reductions presented in the rest of the paper). We therefore have a strong hardness result for Ek-Vertex-Cover based on the hardness assumption for graph coloring.

Theorem 5.2 Suppose that there exists a $c \geq 3$ such that for every positive integer b it is NP-hard to $(b \log n)$ -color a c-colorable graph on n-vertices. Then, for every integer $k \geq 3$ and $\varepsilon > 0$, there is no polynomial time factor $(k-1-\varepsilon)$ algorithm for the vertex cover problem on k-uniform hypergraphs unless P = NP.

6 Future Work

The vertex cover in every k-uniform hypergraph can be approximated to within factor k - o(1), [Hal00]. An obvious open problem is that of improving our $(k - 3 - \varepsilon)$ bound and obtaining an 'optimal' inapproximability factor of $(k - \varepsilon)$, i.e. proving NP-hardness of approximating Ek-Vertex-Cover within a factor of $(k - \varepsilon)$ for any constant $\varepsilon > 0$. This problem is especially interesting for small values of k, as the k = 2 case (i.e. Vertex-Cover on graphs) has received a good deal of attention yet leaving the factor $(2 - \varepsilon)$ hardness result still out of reach.

Following this work, Dinur, Guruswami, Khot and Regev [DGKR02] were able to improve our work and show a hardness-of-approximation factor of $(k-1-\varepsilon)$.

Another possible direction is to extend these results for larger values of k. The largest plausible value of k is $\ln n$ since the greedy set-cover algorithm can always be used to achieve a $(\ln n + 1)$ approximation on any hypergraph (here n is the number of edges in the hypergraph). Our hardness result from Section 3 gives an $\Omega(k)$ inapproximability factor (assuming NP $\not\subseteq$ DTIME($2^{\log^{O(1)} n}$)) for k up to $\log^{\gamma} n$ for some absolute constant $\gamma > 0$. We conclude with the following conjecture:

Conjecture 6.1 It is NP-hard to approximate Ek-Vertex-Cover to within $k \cdot (1 - \varepsilon)$ for any $k \leq \ln n$ and any constant $\varepsilon > 0$.

References

- [AK97] Rudolf Ahlswede and Levon H. Khachatrian. The complete intersection theorem for systems of finite sets. *European J. Combin.*, 18(2):125–136, 1997.
- [ALM⁺98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification and the hardness of approximation problems. *Journal of the ACM*, 45(3):501–555, May 1998.
- [AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characterization of NP. *Journal of the ACM*, 45(1):70–122, January 1998.
- [DGKR02] Irit Dinur, Venkatesan Guruswami, Subhash Khot, and Oded Regev. Manuscript in preparation, 2002.
- [DS02] Irit Dinur and Shmuel Safra. On the importance of being biased. In *Proc. 34th ACM Symp. on Theory of Computing*, 2002.
- [FGL⁺91] Uriel Feige, Shafi Goldwasser, Láslzo Lovász, Shmuel Safra, and Mario Szegedy. Approximating clique is almost NP-complete. In *Proc. 32nd IEEE Symp. on Foundations of Computer Science*, pages 2–12, 1991.
- [Fri98] Ehud Friedgut. Boolean functions with low average sensitivity depend on few coordinates. Combinatorica, 18(1):27–35, 1998.

- [GHS00] Venkatesan Guruswami, Johan Håstad, and Madhu Sudan. Hardness of approximate hypergraph coloring. In *Proc. 41st IEEE Symp. on Foundations of Computer Science*, pages 149–158. IEEE Computer Society Press, 2000.
- [Gol01] Oded Goldreich. Using the FGLSS-reduction to prove inapproximability results for minimum vertex cover in hypergraphs. ECCC Technical Report TR01-102, 2001.
- [Hal00] Eran Halperin. Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs. In *Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 329–337, N.Y., January 9–11 2000. ACM Press.
- [Hol02a] Jonas Holmerin. Improved inapproximability results for vertex cover on k-regular hypergraphs. Proceedings of the 29th International Colloquium on Automata, Languages, and Programming (ICALP), July 2002.
- [Hol02b] Jonas Holmerin. Vertex cover on 4-regular hypergraphs is hard to approximate within 2 ε . In *Proc. 34th ACM Symp. on Theory of Computing*, 2002.
- [Raz98] Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–803, June 1998.
- [Rus82] Lucio Russo. An approximate zero-one law. Z. Wahrsch. Verw. Gebiete, 61(1):129–139, 1982.
- [Tre01] Luca Trevisan. Non-approximability results for optimization problems on bounded degree instances. In *Proc. 33rd ACM Symp. on Theory of Computing*, 2001.

A Some Useful Lemmas

A.1 Combinatorial Core

Lemma 2.2 (Combinatorial Core) For every $\varepsilon, \delta > 0$, there exists some $t = t(\varepsilon, \delta) > 0$ such that for every finite R and $\mathcal{F} \subset P(R)$, if $\mu_{\frac{1}{2} - \delta}(\mathcal{F}) > \varepsilon$, then there exists some 'core' subset $C \in \mathcal{F} \cap \mathcal{F}$ with $|C| \leq t$.

Proof: We begin by stating a continuous variant of the complete intersection theorem of Ahlswede and Khachatrian. This was already proven in [DS02] for t = 2 and the extension for larger t is straightforward.

Define for every $i \geq 0$, t > 0 and $n \geq 2i + t$,

$$\mathcal{A}_{i,t}^{n} \stackrel{def}{=} \left\{ F \in P\left([n]\right) \mid |F \cap [1, t+2i]| \ge t+i \right\}.$$

Clearly, for any $n'>n\geq 2i+t,\ \mu_p(\mathcal{A}_{i,t}^{n'})=\mu_p(\mathcal{A}_{i,t}^n).$ Denoting $\binom{[n]}{k}\stackrel{def}{=}\{F\subset [n]\mid |F|=k\}$, the complete intersection theorem of Ahlswede and Khachatrian states that

Theorem A.1 ([AK97]) Let $\mathcal{F} \subseteq {[n] \choose k}$ be t-intersecting (i.e. for every $F_1, F_2 \in \mathcal{F}$, $|F_1 \cap F_2| \ge t$). Then,

 $|\mathcal{F}| \leq \max_{0 \leq i < rac{n-t}{2}} \left| \mathcal{A}_{i,t}^n \cap inom{[n]}{k}
ight|$

The following lemma is a continuous variant of the above theorem,

Lemma A.2 [DS02] Let $\mathcal{F} \subset P([n])$ be t-intersecting. For any $p < \frac{1}{2}$,

$$\mu_p(\mathcal{F}) \le \max_i \left\{ \mu_p(\mathcal{A}_{i,t}^n) \right\}$$

We define for every t>0 and $p<\frac{1}{2}$, let $a_{p,t}\stackrel{def}{=}\max_i(\mu_p(\mathcal{A}^n_{i,t}))$. In order to prove Lemma 2.2 it suffices to prove that for a fixed $p<\frac{1}{2}$, $\limsup_{t\to\infty}a_{p,t}=0$.

Note that $\mathcal{A}_{i,t}^n \subseteq \{F \in P([n]) \mid |F \cap [1, t+2i]| \ge (t+2i)/2\}$. Define $\mathcal{F}_{i,t}$ to be the family $\{F \in P([t+2i]) \mid |F| \ge (t+2i)/2\}$. We then have

$$\mu_p(\mathcal{A}_{i,t}^n) \le \mu_p(\mathcal{F}_{i,t}) \ . \tag{5}$$

Now sets in $\mathcal{F}_{i,t}$ contain at least a fraction 1/2 of the universe [t+2i], while a random set drawn according to the product distribution μ_p has an expected fraction p < 1/2 of elements. By standard Chernoff bounds the probability of a set picked according to μ_p landing in $\mathcal{F}_{i,t}$ is exponentially small in t and thus tends to zero as $t \to \infty$. Hence $\mu_p(\mathcal{F}_{i,t})$ tends to zero as $t \to \infty$ (for every i). Together with (5) this shows that for each fixed p < 1/2, $\limsup_{t \to \infty} a_{p,t} = 0$.

A.2 k-wise Intersecting Families

We will use the following theorem of Frankl.

Theorem A.3 Let $\mathcal{F} \subseteq P(R)$ where |R| = n and every set in the family \mathcal{F} has size m. Assume that every k sets in the family have nonempty intersection and n > mk/(k-1). Then

$$|\mathcal{F}| \le \binom{n-1}{m-1}$$

Note that a family of sets of size m containing one fixed element has size $\binom{n-1}{m-1}$. We will use the above theorem to prove :

Lemma A.4 Let $\varepsilon > 0$ be an arbitrarily small constant, $k \geq 2$ an integer and $p = 1 - \frac{1}{k} - \varepsilon$. Let $\mathcal{F} \subseteq P(R)$ be a family such that every k sets in this family have a nonempty intersection. Then

$$\mu_p(\mathcal{F})$$

provided the universe R is sufficiently large.

Proof: Let n = |R| be the size of the universe. Partition the family \mathcal{F} according to different set-sizes.

$$\mathcal{F}_i \stackrel{def}{=} \{ F \mid F \in \mathcal{F}, \ |F| = i \}$$

With the bias parameter p, the total weight of all sets of size more than $(p + \frac{\varepsilon}{2})n$ is at most $\frac{\varepsilon}{2}$ when the universe is large enough. Hence

$$\mu_p(\mathcal{F}) \leq \frac{\varepsilon}{2} + \sum_{m \leq (p + \frac{\varepsilon}{2})n} \mu_p(\mathcal{F}_m)$$

For $m \leq (p + \frac{\varepsilon}{2})n$, we have n > mk/(k-1). Since every k sets in the family \mathcal{F}_m have a nonempty intersection, applying Frankl's Theorem, we get

$$|\mathcal{F}_m| \leq \binom{n-1}{m-1}$$

Noting that every set in \mathcal{F}_m has weight $p^m(1-p)^{n-m}$ we have

$$\mu_{p}(\mathcal{F}) \leq \frac{\varepsilon}{2} + \sum_{m \leq (p + \frac{\varepsilon}{2})n} {n-1 \choose m-1} p^{m} (1-p)^{n-m}$$

$$\leq \frac{\varepsilon}{2} + p \left(\sum_{m} {n-1 \choose m-1} p^{m-1} (1-p)^{(n-1)-(m-1)} \right)$$

$$= \frac{\varepsilon}{2} + p$$

A.3 Very Small Influence

The following lemma can be found in [DS02].

Lemma A.5 Let $\mathcal{F} \subseteq P(R)$ be a monotone family. Let T be a set of elements such that for every element $\sigma \in T$, Influence_p $(\mathcal{F}, \sigma) < \eta$. Assume η is small enough so that

$$|T| \cdot \eta \cdot p^{-|T|} < \mu_p(\mathcal{F})$$

Then there exists a set $F \in \mathcal{F}$ such that $F \cap T = \phi$.