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Abstract

Given a k-uniform hypergraph, the Ek-Vertex-Cover problem is to find a minimum subset of
vertices that “hits” every edge. We show that for every integer k > 5, Ek-Vertex-Cover is NP-hard
to approximate within a factor of (k — 3 — ), for an arbitrarily small constant £ > 0.

This almost matches the upper bound of k for this problem, which is attained by the straight-
forward greedy approximation algorithm. The best previously known hardness result was due to
Holmerin [Hol02a], who showed the NP-hardness of approximating Ek-Vertex-Cover within a factor
of k'—¢.

We present two constructions: one with a simple purely combinatorial analysis, showing Ek-
Vertex-Cover to be NP-hard to approximate to within a factor Q(k), followed by a stronger con-
struction that obtains the (k — 3 — ¢€) inapproximability bound. The latter construction introduces
a novel way of combining ideas from Dinur and Safra’s paper [DS02] and the notion of covering
complexity introduced by Guruswami, Hastad and Sudan [GHS00]. This also allows us to prove a
hardness factor of (k — 1 — &) assuming the hardness of O(logn)-coloring a c-colorable graph for
some fixed ¢ > 3.
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1 Introduction

Given a k-uniform hypergraph, G = (V, E) with vertices V and hyperedges E C (‘]g) = {eCV|le| =k},

a vertex-cover in GG is a subset S C V that intersects each edge. An independent set in G is a subset
5 10se complement is a vertex cover, or in other words is a subset of vertices that contains no edge.
1e Ek-Vertex-Cover problem consists of finding a minimum size vertex cover in a k-uniform hyper-
graph. This problem is alternatively called the minimum hitting set problem with sets of size k (and
is equivalent to the set cover problem where each element of the universe occurs in exactly & sets).

We show that this problem is NP-hard to approximate within (kK — 3 — ¢) for an arbitrarily small
constant € > 0. The result is almost tight as this problem is approximable to within factor k& by
repeatedly selecting one arbitrary hyperedge, adding all its vertices into the cover and and removing
all the “covered” hyperedges. The best known algorithm [Hal00] gives only a slight improvement on
this greedy algorithm, achieving an approximation factor of k — o(1).
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Previous Hardness Results

This problem was suggested by Trevisan [Tre01] who initiated a study of bounded degree instances
of certain combinatorial problems. There it was shown that this problem is hard to approximate
within a factor of k'/!°. Holmerin [Hol02b] showed that E4-Vertex-Cover is NP-hard to approximate
within (2 — ¢€), and more recently [Hol02a] that Ek-Vertex-Cover is NP-hard to approximate within
k'=¢. Goldreich [Gol01] found a simple ‘FGLSS’-type [FGLT91] reduction (involving no use of the
long-code, a crucial component in most recent PCP constructions) to obtain a hardness factor of
(2 — ) for Ek-Vertex-Cover for some constant k.

Our Results

We present two constructions: one that attains a hardness factor of (k) (already improving the
best previously known result) with a simple, purely combinatorial analysis, and one that is stronger
attaining the inapproximability factor of (k — 3 — ¢).

Our “simple” construction follows that of [Hol02b] who showed that it is NP-hard to approxi-
mate E4-Vertex-Cover to within a factor (2 — ¢). Taking a new “set-theoretic” viewpoint on that
construction, we give a purely combinatorial proof of Holmerin’s theorem (in contrast to Holmerin’s
use of Fourier analysis), relying solely on one new Erdés-Ko-Rado (EKR) type combinatorial lemma
(Lemma 2.2) that bounds the maximal size of ¢-intersecting families of subsets (i.e. families in which
every pair of subsets intersect on at least ¢ elements). Taking this new ‘set-theoretic’ viewpoint results
in a direct extension of that construction to obtain an Q(k) inapproximability factor.

Our “strong” construction, achieving a hardness factor of k—3 —¢ involves a novel way of combining
ideas from Dinur and Safra’s paper [DS02] and the notion of covering complexity introduced by
Guruswami, Hastad and Sudan [GHS00].

A constraint satisfaction problem is said to have covering complexity L (see [GHSO00]) if it is NP-
hard to distinguish between the case when the CSP has a satisfying assignment and the case when,
given any L assignments, there exists a constraint that is not satisfied by any of these L assignments.
Guruswami et al [GHS00] show hardness of coloring 2-colorable 4-uniform hypergraphs with constantly
many colors. This result is equivalent to saying that the Not-All-Equal predicate on 4 binary variables
has arbitrarily high covering complexity. In our paper, we need to use a (stronger) variant of the notion
of covering complexity (see Definition 4.2).

We combine the covering complexity techniques with the methods from [DS02]. We borrow a
powerful tool used in their paper, namely the Friedgut’s Theorem about influence of variables on
Boolean functions (Theorem 4.1). Assuming that for some fixed ¢ > 3, it is hard to color an n-
vertex c-colorable graph using at most blogn for every integer b, we get a predicate on 2 variables
with the necessary covering complexity and this lets us prove a factor (k — 1 — ¢) hardness for the
Ek-Vertex-Cover problem.

Location of the gap: All our hardness results have the gap between sizes of the vertex cover at the
“right” location. Specifically, to prove a factor (B —¢) hardness we show that it is hard to distinguish
between k-uniform hypergraphs that have a vertex cover of weight % + ¢ from those whose minimum
vertex cover has weight at least (1 — ¢). This result is stronger than a gap of about B achieved, for
example, between vertex covers of weight 1/B? and 1/B. Put another way, our result shows that
for k-uniform hypergraphs, for £ > 3, there is a fixed « such that for arbitrarily small ¢ > 0, it is
NP-hard to find an independent set consisting of a fraction € of the vertices even if the hypergraph
is promised to contain an independent set comprising a fraction « of vertices. We remark that such
a result is not known for graphs and seems out of reach of current techniques. (The recent factor 4/3



hardness result for vertex cover on graphs due to Dinur and Safra [DS02], for example, shows that it
is NP-hard to distinguish between cases when the graph has an independent set of size n/3 and when
no independent set has more than n/9 vertices.)

Organization of the Paper

We begin with some preliminaries, including the starting-point PCP theorem, and some combinatorial
lemmas that are used later in the analysis of the constructions. In Section 3 we present our first
construction and prove a hardness of approximation factor of Q(k). In Section 4 we present our
stronger construction proving a (k — 3 — ¢) hardness factor. In Section 5 we explain how a hardness
assumption for graph coloring implies a factor (k — 1 — €) hardness.

Subsequent Work

Following this work, Dinur, Guruswami, Khot and Regev [DGKRO02] were able to unconditionally show
a hardness of approximation factor of (K — 1 — ). The techniques in this paper are quite different
from the ones in [DGKRO02] and could be of independent interest. Moreover, the (k) hardness factor
is probably still the best in terms of holding for super-constant values of k.

2 Preliminaries

For a universe R, let P(R) denote its power set, i.e. the family of all subsets of R. A family 7 C P(R)
is called monotone if F € F,F C F' implies F' € F.
For a “bias parameter” 0 < p < 1, the weight p,(F) of a set F' is defined as

def

pp(F) = plFl (1 — p) NI

The weight of a family F C P(R) is defined as
def
pp(F) = Z pp(F).
FeF

Note that the bias parameter defines a product distribution on P(R), where the probability of one
subset F' € P(R) is determined by independently flipping a p-biased coin to determine the membership
of each element of R in the subset. We denote this distribution by p,.

2.1 Intersecting Families of Subsets

In this section we present some combinatorial lemmas regarding intersecting families of subsets, that
will be useful later.

Definition 2.1 For a family of subsets F C P (R), let

FnFY (PnF R, FeF).

Lemma 2.2 (EKR-Core) For every ,0 > 0, there ezists some t = t(e,0) > 0 such that for every
finite R and set family F C P (R), if b1_g5(F) > €, then there exists some ’core’ subset C € FNF
2

with |C| < t.



Proof Sketch: A family of subsets is t-intersecting if for every Fy, Fy» € F, |Fy N Fy| > t. The idea is
that a family cannot be t-intersecting, for large (but constant) ¢ and still retain a non-negligible size.
Thus, if © 1 5(F) > €, there exists some ¢ for which F is not ¢ 4 1 intersecting, hence F has a ’core’
subset of size t.

For the full proof (see Section A.1), we rely on the complete intersection theorem for finite sets of
[AK97] that fully characterizes the maximal ¢-intersecting set families. |

Proposition 2.3 Let p > 0 and let F C P (R). Then b2 (FNF) > (1y(F))>2

Proof:
Pr [FEFNF]= Pr [FINFKReFNF]> Pr [FLeF]- Pr [FeF]=(1(F))?
Fel,» | ] F1,F26Mp[ ! 2 12 Flellp[ ! ] Fgeﬂp[ 2 I = ()
|
Note that when F is monotone and defined by exactly one 'minterm’, equality holds.
Proposition 2.4 Letp > 0, F C P(R). Let F* & (F 0.0 F, | F; € F}. Then,
P (FF) > (1 (F))*.
Proof: By induction on k. u

2.2 Starting Point - PCP
The Parallel Repetition Theorem

As is the case for many inapproximability results, we begin our reduction from Raz’s parallel repetition
theorem [Raz98] which is a version of the PCP theorem that is very powerful and convenient to work
with. Let ® = {¢1,...,on} be a system of local-constraints over two sets of variables, denoted X
and Y. Let Rx denote the range of the X-variables and Ry the range of the Y-variables 1. Assume
each constraint ¢ € ® depends on exactly one z € X and one y € Y, furthermore, for every value
a; € Rx assigned to x there is exactly one value ay, € Ry to y such that the constraint ¢ is satisfied.
Therefore, we can write each local constraint ¢ € ® as a function from Rx to Ry, and use notation
Yg—y : Rx — Ry (this notation is borrowed from [DS02]). Furthermore, we assume that every
X-variable appears in the same number of local-constraints in ®.

Theorem 2.5 (PCP Theorem [AS98, ALM™"98, Raz98]) Let® = {1, ..., o} be as above. There
exists a universal constant v > 0 such that for every constant |Rx|, it is NP-hard to distinguish between
the following two cases:

e YES : There is an assignment A: X UY — Rx U Ry such that all 1, ..., are satisfied by
A, ie. Ypg_y € R, ry(Az)) = Aly).

e NO : No assignment can satisfy more than a fraction ﬁ of the constraints in P. [ |

'Readers familiar with the Raz-verifier may prefer to think concretely of Rx = [7*] and Ry = [2“] for some number
u of repetitions.



3 The “Simple” Construction

In this section, we prove the factor (k) hardness result for Ek-Vertex-Cover. Our construction follows
that of [Hol02b] who showed that it is NP-hard to approximate E4-Vertex-Cover within factor (2 —¢).
Taking a new viewpoint on that construction we give a purely combinatorial proof of Holmerin’s
theorem (in contrast to Holmerin’s use of Fourier analysis), relying solely on one new Erdés-Ko-Rado
(EKR) type combinatorial lemma (Lemma 2.2) that bounds the maximal size of ¢t-intersecting families
of subsets (i.e. families in which every pair of subsets intersect on at least ¢ elements). We then show a
direct extension of that construction to obtain an (k) inapproximability result for Ek-Vertex-Cover.

The use of EKR-type bounds in the context of inapproximability results was initiated in [DS02] as
part of a more complicated construction and analysis for proving a hardness result for approximating
vertex-cover on graphs. The structure of the problem at hand allows a very modular use of EKR-type
bounds, and perhaps provides a better intuition as to why they are useful. Since EKR-type bounds are
known in many cases to be tight, we believe that similar such bounds may prove fruitful for obtaining
improved inapproximability results for other approximation problems.

As a warmup, let us first prove

Theorem 3.1 For any 6 > 0, it is NP-hard to approzimate Ej-Vertex-Cover to within 2 — §.

This result is already known (see [Hol02b]), albeit using more complex analysis techniques.

Proof: Start with a PCP instance, as given in theorem 2.5, namely a set of local constraints
® = {p1,..,on} over variables X UY, whose respective ranges are Rx,Ry. For parameters, fix
t =1(5,9), and take |Rx| > (%)1/7 where v > 0 is the universal constant from Theorem 2.5. From
®, we now construct a 4-uniform hypergraph whose minimum vertex cover has weight ~ = or ~ 1
depending on whether @ is satisfiable or not.

We present a construction of a weighted hypergraph G = (V, E, A), which can then be translated
into an unweighted hypergraph via a standard duplication of vertices. The vertex set of G is

1
2

v % x x P(Ry)

namely for each z € X we construct a block of vertices denoted V[z] = {z} x P (Rx) corresponding
to all possible subsets of Rx. The weight of each vertex (z,F) € V' is

Mo, 2 my ()

The hyperedges are defined as follows. For every pair of local-constraints ¢z, y, 9z,—y € ® sharing a
mutual variable y € Y, we add the hyperedge {(z1, F1), (z1, F]), (2, F»), (z2, F4)} if and only if there
isno m € F1 N F| and o € F5 N F; such that ¢z, 5y (71) = @g,—y(r2):

YU {{len B @ B (e B) (o2 )Y | oy (P 0 F) Doy (BN ) = 6 )

Py =y Poy—y €D

where the union is taken over all pairs of local-constraints with a mutual variable y.

Lemma 3.2 (Completeness) If & is satisfiable, then G has a vertex cover whose weight is < %—1—5.



Proof: Assume a satisfying assignment A : X UY — Rx U Ry for ®. The following set is a vertex
cover of G-
{{z,F)eVi]ze X, A(z) ¢ F} (1)

For every hyperedge e = {(z1, F1), (z1, F}), (z2, F2), (z2, F3) } either A(z1) ¢ FiNF] or A(z2) ¢ FoNF},
otherwise since A(z1), A(z2) agree on every mutual Y-variable, we have g,y (F1 N F) N @gy—yy(Fo N
F}) # ¢, and e would not have been a hyperedge.

Now note that the weight of the family {F | A(z) ¢ F} w.r.t. the bias parameter (1 —6) is (3 + ).
Hence the weight of the vertex cover in (1) is % + 6. ]

Lemma 3.3 (Soundness) If G has a vertex cover whose weight is <1 — 4§, then ® is satisfiable.

Proof: Let S C V be such a vertex cover. By an averaging argument, there must be a set X' C X,
| X'| > 8|X| such that for € X', Prye,v [v € S |v € V[z]] < (1—2). For each of these blocks, define

Fw:{FEP(RX)Hx’F)gS}

It follows immediately that Vo € X', p1_s(Fy) > g. The key observation is that due to Lemma 2.2
2

there exists some “core” subset C' € F, N F, whose size is |C| <t = t(%, d). In other words, there are
two subsets which we denote F}, F? € F,, such that ‘F; N Ff‘ <t.

We next translate these “cores” into an assignment satisfying more than ﬁ fraction of ®. Let

r1,Zy € X', and denote their cores respectively by Cy, = Fp N FZ,Cyp, = Fj, N FZ. The next
observation is that for every ¢g, 4y, Pg,—y € ® with z1,29 € X', there always exists some 7 € Cy,

and 79 € Cy, such that ¢,y (r1) = g,y (r2), or in other words, we have

‘Pw1—>y(C:c1) n 90w2—>y(0w2) £¢. (2)
Indeed, if not, then the set

{{z1, F, ), (w1, FL), (z2, F),), (2, F2) }

would be a hyperedge not hit by S, contradicting the assumption that .S is a vertex cover.
Let Y’ C Y denote the set of all Y variables that participate in some local-constraint with some

d . . . .
ze XY lef {y | pz—y € @, € X'}. Associate each such y € Y’, with one arbitrary z € X’ with

Py € @, and let Cy def 0z—y(Cz) C Ry. Now define a random assignment A by independently

selecting for each z € X',y € Y’ a random value from Cj, Cy respectively. Assign the rest of the
variables (X \ X') U (Y \ Y’') with any arbitrary value. To complete the proof, we prove:

Proposition 3.4
0
EA[#{psy is satisfied by A}) > oz - |@|

Proof: We will show that for any z € X', any ¢,,, € ® is satisfied by A with probability > t%;
% . t% > % -|®| (because every x € X
appears in the same number of local constraints). Assume Cy = @z, (Cy) for some z' € X' (note

that |Cy| < t). By Equation (2), we have

Cy N Q%ﬂy(cx) = ‘Pw%y(cz) N ‘Pz’—)y(cw’) #¢.

Therefore, there is at least one value a; € C; such that ¢, _,,(a;) € Cy. Since for every z € X/,
|Cy| < t, there is at least a t% probability of having ¢, _,,(A(z)) = A(y). |

thus the expected number of local-constrains satisfied by A is

6



Thus, there exists some assignment A that meets the expectation, which means it satisfies > % >
_1 _

Bk of the local constraints in @, hence @ is satisfiable. [ |

Thus we have proven that distinguishing between the case where the minimum vertex cover of G
has weight at most (3 + &) and the case where it has weight at least (1 — d), enables deciding whether
® is satisfiable or not, and is therefore NP-hard. [ |

3.1 Ek-Vertex-Cover is NP hard to Approximate Within £/3 = Q(k).

We extend the construction above to work for any constant value of k£ > 4. We assume without loss
of generality that k is divisible by 4, and for other values of k£ we can use the construction for the
nearest k' = 4m and add k — k' distinct vertices to each edge.

The vertex set for our hypergraph is the same as in the case for k£ = 4, but the weights are different.
We set
— oYk, (3)

P=(§

and
def 1

1X]
The hyperedges are as follows. For every ¢gy,pg'—y € ®, and every (z, F1), .., (z, Fr) € V[z] and
2

Vo= (z,F) € X x P(Rx), A(v) - iy (F)

(o', FY),...,(z',F},) € V[z'] , we add the hyperedge {(.’L‘,Fl),..,<.’L‘,Fk),((EI,FII),..,<(E,,F;C)} to E if
2 2 bl
thereisnor € FiN---NFr and 7' € F{ N--- N F} with ¢z, (r) = @g—y(r'). That is,
2 3

def
Y {{@ )@ P @ B, @ B | e (OF) N pwoy (NF) = 0}
Doy, Pal y €P

As in the case of k = 4,

Lemma 3.5 (Completeness) If ® is satisfiable, then G has a hitting set whose weight is at most
1—p.

Proof: Again we take A to be a satisfying assignment, and set S = J,x {{z,F) |F # A(z)}. The
weight of S is 1 — p. [

The proof of soundness is also quite similar to that of Lemma 3.3, with one minor twist.

Lemma 3.6 (Soundness) If G has a hitting set whose weight is <1 — 4§, then ® is satisfiable.

Proof: Let S C V be such a hitting set. Again we consider the set X’ C X for which Vz € X',
Prye,v[v €S |v e Vz]] < (1 - $). Again % > g. For each z € X' let

Fz:{FEP(RX)Hw’F)gS}

We cannot immediately apply Lemma 2.2 to find “weak-cores” for each F, because lemma 2.2 works
only when p < % — 4. Thus, we must first consider the family F. = {F1 NN Fga | F; € fm} whose
size is guaranteed to be, by Proposition 2.4,

B 5(Fp) = Hyera(F) = (p(Fo)) ¥t > (6/2)M* .



Now we can deduce the existence of a “core” subset C, C Rx, |Cy| < t = t((6/2)%/4,6), such

that there are some F}, ..,F;,If/2 € Fp so that C, = FIn---nN Ffﬂ. Again, observe that for every
Py, Par—y € Ry 0osy(Cr) Ny (Cpr) # ¢. From here we can proceed as in the proof of Lemma 3.3

above to define a random assignment that satisfies an expected fraction % of the constraints in

D. [ ]

All in all, we have proven
Theorem 3.7 It is NP-hard to approzimate Ek-Vertez-Cover to within a factor k/3.

Proof: For a k-uniform hypergraph, we have proven in Lemmas 3.5,3.6 that it is NP-hard to
distinguish between a vertex-cover of size 1 —dand 1 —p=1— (% — 6)4/ k< % The last inequality

follows from 3 1 .
_9\k/A -
(1 k) < 7 <3 )

which implies that there is no factor % approximation algorithm for vertex-cover on k-uniform hyper-
graphs, unless P=NP. [ |

4 The “Stronger” Construction

In this section we present our stronger construction, achieving a hardness of approximation factor of
(k—3—¢) for an arbitrarily small ¢ > 0. This construction is quite different from the one in Section 3.
Let us first introduce a couple of tools we use. First, Friedgut’s Theorem about influence of variables
on Boolean functions (equivalently, influence of elements on set-families) and, second, a result that
follows from Holmerin’s result [Hol02b] on the hardness of vertex cover in 4-uniform hypergraphs.

4.1 Friedgut’s “Core” Theorem
Recall that a family F C P(R) is called monotone if F' € F and F C F’ implies F' € F. For a family

F, an element ¢ € R and a bias parameter p we define the “influence of the element on the family” as

Influence, (F, o) def Prpey, [exactly one of FU{c}, F\{o} is in F]

The average sensitivity of a family is defined as the sum of the influences of all elements.
def
asp(F) = Z Influence, (F, o)
0ER

We will use the following theorem that can be obtained by combining Russo’s Theorem and
Friedgut’s Theorem. This theorem essentially says that a monotone family of subsets is, in some
sense, determined by a ‘core’, see [DS02] for details.

Theorem 4.1 ([Fri98, Rus82]) Let p be a bias parameter, £, > 0 be constants and ( be an “ac-
curacy parameter”. Let F C P(R) be a monotone family such that p,(F) > 6. Then there exists
p' € (p,p+¢) and a set C C R called the “core” with the following properties :

e The average sensitivity of the family F w.r.t the bias p' is at most %, i.e. asy (F) < %

o The size of C is a constant that depends only on p,d, ¢, (.



e If a family H C P(R\ C) is defined as
HY g |HCR\C, CUH € F},

i.e. H consists of all possible extensions of the core C into set that belongs to F, then py (H) >
1 — ¢ where py (H) is the weight of the family H under the p,y-distribution over the universe
R\ C.

4.2 Hardness of 4CSP

We define a constraint satisfaction problem on 4 variables (4CSP) which captures a notion related to
the notion of covering complexity introduced by [GHS00]. Our hypergraph construction will be based
on the hardness of this 4CSP.

Definition 4.2 A JCSP L = (X, ®) over a domain D is defined as follows : X is a set of variables
which take values from domain D. FEvery ¢ € ® is a constraint on 4 variables (which is satisfied
provided the values of the 4 variables belong to a specific subset of D*). We define YES and NO
instances of the CSP as follows.

e YES : There exists an assignment f : X — D to the variables which satisfies every constraint
¢ € ® (more formally, the values assigned by f to the 4 variables in ¢ satisfy ¢).

e NO : For any subset of variablesY C X, |Y| > v|X| and for any L assignments fi, fa,-.., frL :
Y — D, there exists a constraint ¢ € ® such that all the 4 variables of the constraint ¢ are
contained in'Y and every assignment f;,1 < i < L fails to satisfy the constraint ¢.

For convenience, we say that ¢ is inside Y if all the 4 variables of the constraint ¢ are in the set Y.

Theorem 4.3 For every integer L and every constant v > 0, it is NP-hard to distinguish whether an
instance L of a 4CSP over Boolean domain is a YES instance or a NO instance.

Proof: This follows immediately from a result of Holmerin [Hol02b]. He shows that for any constant
v ' >0, it is NP-hard to distinguish whether an n-vertex 4-uniform hypergraph is 2-colorable or it
contains no independent set of size v'n. Now let the vertices of the 4-uniform hypergraph be variables
of a 4CSP. For every edge in the hypergraph, add a Not-All-Equal constraint on its 4 vertices. When
the hypergraph is 2-colorable, it means that the 4CSP has a satisfying assignment. On the other
hand, if there are L assignments that satisfy every constraint inside a set of variables of size yn, it
means that this set of yn vertices can be colored properly with 2° colors and hence there exists an
independent set of size y'n = (y/2F)n. |

Remark : The notion of hardness between the YES and NO instances here is closely related to
the notion of covering complexity introduced by [GHS00]. The notion of covering complexity requires
that in the NO case, no L assignments can together satisfy all the constraints. We require an even
stronger condition that no L assignments can satisfy every constraint inside a set of variables Y whose
size is | X|.



4.3 The Construction of the Hypergraph
Let B be the set of all I-tuples of variables of an instance £ of a 4CSP given by Theorem 4.3. That is

d
B lef {(z1,z2,.-.,3) | m; € X}

An [-tuple B € B will be called a “block”. Let R be the set of all possible “block assignments”,

ie. R Dl is the set of all strings of length [ over the domain D. Let P(R) denote the family of all

subsets of R, i.e.

P(R)? (F| FCR}

The vertex set V' of the hypergraph is defined to be
V% Bx P(R)={(B,F)| BeB,F ¢ P(R)}

The vertices will have weights. Let p =1 — ﬁ — ¢ be the “bias parameter”. The weight of a vertex
(B,F) is pp(F) where

de
up(F) < plFI(1 — p) B\FI

To motivate the way we define the edges of the hypergraph, assume that f : X — D is an assignment
that satisfies every constraint. Let f[B] denote the restriction of this assignment to block B. Thus
fIB] € R. The edges of the hypergraph will be defined in such a way that the set of vertices Zy

Iy ={(B,F) | Be B, f[B] € F} (4)
is an independent set.

Definition 4.4 We say that 4 blocks (By, B2, Bs, By) are “overlapping” if they agree on some [ — 1
coordinates and the 4 wvariables on the remaining coordinate form a constraint in the 4CSP. More
precisely, there exist variables x1,zo,...,x;1—1 and y1,Y2,Y3,y4 and an index t,1 < t <1 such that

1. B; = (%1,T2, -y Tt—1,Yiy Tty Tp41,-- -, &1—1) fori=1,2,3,4
2. There is a constraint ¢ € ® on the variables (y1,y2,Y3,y4).

Note that the tuple ({z; ;_:11, {yi}t 1, t,¢) completely characterizes the overlapping blocks.

For a block B = (21, 22,...,2) and a block assignment o € R, let o(2;) denote the value assigned
by o to the variable z;, which is just the 4t coordinate of 0. For 1 < j <1, let Tyt D!+ D' be the
projection operator that maps a string of length [ to its substring of length [ — 1 obtained by dropping
the j*" coordinate.

Definition 4.5 For any overlapping blocks (B1, Ba, B3.By), characterized by ({xj}é-;ll, {yitt .t 9),
and block assignments o@ to the blocks B;s, we say that these block assignments are consistent if
1. 7Tt(0'(1)) = 71't(0-(2)) = 7Tt(0-(3)) = 7Tt(0'(4))

2. The values oM (y1),0@ (), 0 (y3), c® (y4) satisfy the constraint ¢.

10



In short, the first condition says that the assignments o) must “project” down to a common as-
signment to the shared (I — 1) coordinates, and the second condition says that the 4 values on the
remaining coordinate must satisfy the constraint ¢.

Note that if f : X + D is an assignment that satisfies every constraint, and f[B] is the restriction of
this assignment to a block B, then for any overlapping blocks (B, Be, Bs.By), the block assignments
f[Bi], f[Ba), f[Bs], f[Ba] are consistent.

Definition 4.6 For overlapping blocks (B1, Be, Bs, By), and k sets Fy, Fy, . JB_s, FO FG) p) C
R, we say that these k sets are consistent if there exist block assignments o® for block B;, 1 <14 < 4,
such that

1.cW e NFN...NF s
2. 0@ e FO  fori=2,3,4.
3. The assignments o' are consistent as per Definition 4.5.

Remark : Whenever we talk about consistency between sets Fy, Fy, ..., Fy_3, F® FGO F® we
have in mind a specific set of overlapping blocks (Bj, By, B3, By) which we will be clear from the
context.

Now we are ready to define edges of the hypergraph. For overlapping blocks (B1, By, B3, By), and
sets Fi, Fy, ..., F,_3, F) FG) F® which are not consistent, we define

{(B1’E7)|.7 = 1,25'",k - 3} U {(BZ’F(Z)NZ = 25374}

to be an edge of the hypergraph. Thus every edge contains exactly k vertices, i.e. this is a k-uniform
hypergraph.

Lets verify that this way of defining edges makes sense. Suppose f : X — D is an assignment
that satisfies every constraint. We will show that the set Z; (see Equation (4) ) is an independent
set. As observed before, for any overlapping blocks (B1, Be, Bs, By), the block assignments f[B;] are
consistent. Let

{(BL )i =1,2,..,k =3} |J {(Bi, FD)]i = 2,3,4}

be any k vertices in the set Zy. We will show that the sets
F11F27"' aFk73’F(2)aF(3)aF(4)

are consistent and hence these k vertices cannot form an edge, thus proving that Z; is indeed an
independent set. By definition of the set Zy, we have f[Bi] € FiNF,N...N F,_3 and f[B;] €
F®  for i = 2,3,4. Since the assignments f[B;] are consistent, taking o = f[B;] in Definition 4.6
proves the claim.

4.4 Completeness

Lemma 4.7 If the instance (X, ®) as in Definition 4.2 is an YES instance, then there ezxists an
independent set of weight p|B| in the hypergraph constructed above.

Proof: We will show that if there is a global assignment f : X — D that satisfies every constraint,
then the hypergraph constructed in Section 4.3 has a “large” independent set. As observed in the last
section, the set

I;={(B,F) | BeB, f[BJe F}

11



is an independent set. The weight of this set is

oo > wE)=>p=plB

BEB F:FCR,f[B]€F BeB

Thus in the completeness case, there exists an independent set of weight p|B|. [ |

4.5 Soundness

Lemma 4.8 If the instance (X, ®) as in Definition 4.2 is a NO instance with parameters L = |D|'~1
and y = 6/4, then the hypergraph constructed above has no independent set of weight §|B|.

Before we prove the above lemma, let us first verify that together with Lemma 4.7 it proves our
main hardness result:

Theorem 4.9 For every integer k > 5 and every € > 0, the vertex cover problem on k-uniform
hypergraphs is NP-hard to approximate within a factor of (k — 3 —¢).

Proof: By Lemmas 4.7 and 4.8, together with Theorem 4.3, we have a gap of (p|B|, §|B|) in the size
of the independent set which corresponds to a gap ((1 — p)|B|, (1 — d)|B|) in the size of the vertex

cover. This is a factor 1_—‘5 10 _ k-3 —¢ gap wheree' - 0 as e, 6 — 0. [ ]

1
14 w_3te€

It remains to prove the soundness lemma.

Proof of Lemma 4.8: We will show that if the 4CSP instance £ is a NO instance, then the
hypergraph we constructed has no independent set of size §|B|. Assume on the contrary that the
hypergraph has an independent set of size §|B|. Call this independent set Z. We will construct a
collection of [D|'~! assignments to a set of variables Y,|Y| > §|X|/4 in the 4CSP such that every
constraint inside Y is satisfied by some assignment.

For every block B, define

def

FIB)Y {F|FCR, (B,F) eI}

A simple averaging argument shows that for at least 6/2 fraction of the blocks B, we have u,(F[B]) >
d/2. Defining

B (B| B eB, u(F[B) >5/2}
we have |B'| > 6|B|/2.

Lemma 4.10 For every B € B, the family F[B] can be assumed to be a monotone family of subsets
of R.

Proof: The way we define the edges of the hypergraph, it is easy to see that if (B, F') is a vertex of
an independent set then we can also add (B, F’) to the independent set provided F C F'. Thus when
the independent set is maximal, every family F[B] is monotone. [

Using this lemma, for every B € B, the family F[B] is a monotone family with u,(F[B]) > §/2.
Let ¢ > 0 be a sufficiently small “accuracy” parameter which will be fixed later. Applying Theorem
4.1, we get

Lemma 4.11 For every block B € B', there exists a real number p[B] € (p,p+5) and a set C[B] C R
called the “core” with the following properties :

12



o as,p(FIB) < 2.

3

e The size of C[B] is at most Ay which is a constant depending only on k,e,(, 0.
e Let H[B] C R\ C[B] defined as

#[B|"Y (H |H C R\ C[B], CBJUH € F[B]}
Then we have pyp|(H[B]) > 1 — (, where the weight of the family H[B] is measured w.r.t. the
p[B]-distribution on the universe R\ C[B].

4.5.1 Incorporating All Elements With Some Influence: the Extended Core

Let 7 > 0 be a threshold parameter which will be chosen later. For every B € B ', we identify a set
of elements InflB] C R that have significant influence on the family F[B], i.e.

Infl[B] = {0 € R | Influence,z|(F[B],0) > n}

Since F[B] has average sensitivity at most % and the average sensitivity is simply the sum of influences
of all the elements, it follows that the size of Infl[B] is at most n% which is a constant. Finally define
the “extended core” Ecore[B] as

Ecore[B] “ o [B] U Infl[B]

Clearly, the extended core has size at most A = Ag + "%

4.5.2 The Preservation Property

Given two block assignments o, ¢’, and a projection 7; : D'+ D711 < j < k, we say that the two
assignments are “preserved” if 7;(c0) # mj(0’). Since 0,0’ differ in at least one coordinate, they will
be preserved with probability 1 — % when a projection 7;,1 < j <1 is picked at random.

For a block B € B, say that its extended core is preserved under projection ; if every pair of
elements in the extended core is preserved. In other words, the projection operator is one-to-one on
the extended core.

The extended core has size at most A. Choosing | = A2, tAhe probability that the extended core
is preserved under a random projection 7;, is at least 1 — Q > % Hence there exists an index
jo,1 < jo < I, such that for at least half of the the blocks in B’, their extended core is preserved.
Assume w.l.o.g. that jo = and m = m; denote the projection operator which acts simply by dropping
the last coordinate.

B {B | B € B, Ecore[B] is preserved by 7}

As noted, |B"| > |B'|/2 > §|B|/4. A simple averaging argument shows that we can fix variables
Z1,Z9,...,Z;1 € X such that for at least §/4 fraction of variables y, we have (z1,z2,...,z; 1,y) € B".
Define

y ¢ {ylyeX, (#1,20,...,2-1,y) €B"}

Thus we have |Y| > §|X|/4. Denote by B, the block (z1,z2,...,zi-1,¥).

13



4.5.3 Defining Assignments

Now we are ready to define assignments to the variables in set Y so that every constraint inside Y
is satisfied by some assignment. There will be one assignment f, : Y + D for every 7 € D', For
7€ D'"Vand a € D, let Ta € R = D' be the concatenated string.

The assignment f; : Y — D is defined as

a if Ja €D s.t. Ta € Ecore[B,]
undefined otherwise

fr(y) = {

There are two things to note here. Firstly, since the extended core is preserved, there exists at most
one o € D such that Ta € Ecore[By]. Thus the definition of f; is unambiguous. Secondly, though
the assignment f; is undefined for some (or even all) of the variables in Y, we will still show that for
every constraint ¢ inside Y, there exists an assignment f; such that it satisfies the constraint ¢. We
prove this in the next section.

4.5.4 Finishing the Proof

In this section, we will show that for every constraint ¢ inside the set of variables Y, there exists an
assignment f, that satisfies this constraint. Let ¢ be a constraint on the variables {y1,y2,¥3,vy4} and
consider the blocks

Bi = Byi = (3:1,.’1,'2, e ,ml,l,yi)

Clearly, the blocks (B, By, Bs, B4) are overlapping. We prove our claim in several steps.
Lemma 4.12 There ezist sets F{,Fy,...,F,_; C R\ C[Bi] such that

o NI F =

o F; Y CBJUF € F[B)] for 1<j<k-3.
In particular, ﬂf;i’ F; = C[By].

Proof: From Lemma 4.11, the weight of the family #[B;] w.r.t. the bias parameter p[B] is at

least 1 — ¢. Noting that p[B] < 1 — k—i:’, — 5 and applying Lemma A.4, there exist sets F]' -

R\ C[Bi],1 < j < k — 3 whose intersection is empty. By definition of the family H[B1], the sets

7 C[BUF! € FIB). n
Define

5% {0 € R | there exists o' € C[By] such that n(c) = w(c")}

That is, S is the set of all strings which share a common prefix of length | — 1 with some string in
C[Bi]. Clearly |S| = |D|- |C[B1]| < |D|- Ap. For i =2,3,4 define

T; s \ Ecore[B;]

Thus T; is a set of size at most |D|- Ag. By definition of the extended core (at the end of the Section
4.5), all elements of the set T; have influence at most 1 on the family F[B;] w.r.t. bias p[B;]. Applying
Lemma A.5, if 7 is small enough, there exists a set F() ¢ F [B;] such that FONT = ¢.

Now consider the following vertices of the hypergraph :

{(Bi, Fy) 1<j<k=3} | {(Bi,FY) | i=2,3,4}
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There vertices are in the independent set Z. Hence there cannot be an edge on these vertices.
Therefore the sets Fl,...,Fj,F(Q),F(?’),F(‘l) are consistent (see Definition 4.6). This means that
there exist block assignments () € R such that

o oV € N_} F; = C[By] (by Lemma 4.12).
e Fori=2,3,4, 0 ¢ FO.

e The block assignments o)) have the same prefix of length [ — 1, i.e. there is a string 7 € D1,
and values ; € D such that ¢ = 7q;.

e The values (a1, ag, as, ay) satisfy the constraint ¢.
Lemma 4.13 o) € Ecore[B;] for i =1,2,3,4.

Proof: We have o(!) € C[B;] C Ecore[B;]. Now consider i = 2,3,4. Since o() has the same (I — 1)-
prefix with o(!) by definition of the set S, 0() € §. Also ¢V € F() and F® NT; = ¢. Therefore
o € Ecore[B;]. |

From this lemma, and the way the assignment f, is defined, we have f,(y;) = «; for i = 1,2,3,4.
Since the values (a1, ag, a3, ay) satisfy the constraint ¢, it follows that the assignment f, satisfies the
constraint ¢. This finishes the proof of Lemma 4.8.

5 Improved Result Assuming Hardness of Graph Coloring

A closer inspection of our proof in the previous section shows that the slack of 3 in our hardness
result comes from the fact that CSP we started with had constraints that depend on 4 variables.
Consequently, we needed to split the k-sets (that comprise a hyperedge) amongst four blocks, and
had to get a small core as the intersection of (k — 3) sets belonging to any set family with substantial
weight under . This in turn limits the bias parameter p to be at most (1 — z13), leading to a factor
(k—3—¢) hardness. If we had a 2CSP (where each constraint depends only on two variables) for which
a hardness similar to Theorem 4.3 holds, then we will be able to get a hardness of approximation
factor of (k —1 —¢). This is because we will only need a small core as the intersection of (k — 1) sets,
and can therefore pick the bias parameter p to be (1 — ﬁ —¢). The rest of the analysis remains
unchanged.

Unfortunately, we still seem to be quite far from proving a result like Theorem 4.3 for 2CSPs.
However, such a result follows if a strong hardness assumption on approximate graph coloring holds.
The following lemma makes formal this connection. The proof is straightforward and uses ideas similar
to that of Theorem 4.3.

Lemma 5.1 Suppose that there exists a ¢ > 3 such that for every positive integer b it is NP-hard to
(blog n)-color a c-colorable graph on n-vertices. Then there exists d > 2 such that for every integer L
and every constant v > 0, given a 2CSP over domain size d, no polynomial time algorithm can tell if
it is an YES instance or a NO instance unless P = NP (where YES and NO instances are defined for
a particular L,7y as in Definition 4.2).

We note that the above hardness follows by a Turing reduction (unlike the many-one reductions
presented in the rest of the paper). We therefore have a strong hardness result for Ek-Vertex-Cover
based on the hardness assumption for graph coloring.
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Theorem 5.2 Suppose that there exists a ¢ > 3 such that for every positive integer b it is NP-hard to
(blogm)-color a c-colorable graph on n-vertices. Then, for every integer k > 3 and ¢ > 0, there is no
polynomial time factor (k — 1 — €) algorithm for the vertex cover problem on k-uniform hypergraphs
unless P = NP.

6 Future Work

The vertex cover in every k-uniform hypergraph can be approximated to within factor & — o(1),
[Hal00]. An obvious open problem is that of improving our (kK — 3 — ) bound and obtaining an
‘optimal’ inapproximability factor of (k — ¢€), i.e. proving NP-hardness of approximating Ek-Vertex-
Cover within a factor of (k—¢) for any constant € > 0. This problem is especially interesting for small
values of k, as the k = 2 case (i.e. Vertex-Cover on graphs) has received a good deal of attention yet
leaving the factor (2 — ¢) hardness result still out of reach.

Following this work, Dinur, Guruswami, Khot and Regev [DGKR02] were able to improve our work
and show a hardness-of-approximation factor of (k — 1 — ¢).

Another possible direction is to extend these results for larger values of k. The largest plausible
value of k is Inn since the greedy set-cover algorithm can always be used to achieve a (Inn + 1)
approximation on any hypergraph (here n is the number of edges in the hypergraph). Our hardness
result from Section 3 gives an Q(k) inapproximability factor (assuming NP ¢ DTIME(21°gO(1)")) for
k up to log” n for some absolute constant v > 0. We conclude with the following conjecture:

Conjecture 6.1 It is NP-hard to approzimate Ek-Vertez-Cover to within k- (1 —¢) for any k <lnn
and any constant € > 0.
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A Some Useful Lemmas

A.1 Combinatorial Core

Lemma 2.2 (Combinatorial Core) For every €,6 > 0, there exists some t = t(e,6) > 0 such that
for every finite R and F C P (R), if #1_s5(F) > €, then there exists some ’core’ subset C € FNF
2

with |C| < t.
Proof: We begin by stating a continuous variant of the complete intersection theorem of Ahlswede
and Khachatrian. This was already proven in [DS02] for ¢ = 2 and the extension for larger ¢ is
straightforward.

Define for every 1 > 0, ¢ > 0 and n > 2¢ + ¢,

n AR e P(In]) ||FO[Lt+2i] > t+i}.

Clearly, for any n' > n > 2i +t, #y(A%) = #y(A%,). Denoting ([Z}) def {FCn]||F|=k}, the

complete intersection theorem of Ahlswede and Khachatrian states that

Theorem A.1 ([AK97]) Let F C ([Z]) be t-intersecting (i.e. for every Fy,Fy € F, |F1 N Fy| > t).

Then,
n ~ (7
2t n ( k

|F] < max
0<ig st
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The following lemma is a continuous variant of the above theorem,

Lemma A.2 [DS02] Let F C P ([n]) be t-intersecting. For anyp < 3,
Pp(F) < max {,Up(.Ai",t)}

We define for every ¢t > 0 and p < 3, let ap; def max;(ty(A74)). In order to prove Lemma 2.2 it

suffices to prove that for a fixed p < 3, limsup,_,, a,; = 0.
Note that A7, C{F € P([n]) [|FN[1,t+ 2| > (¢t +2:)/2}. Define F;; to be the family
{F e P([t+2i]) ||F| > (¢t + 2i)/2}. We then have

Hp(AT) < Hp(Fit) - (5)

Now sets in F;; contain at least a fraction 1/2 of the universe [t + 2i], while a random set drawn
according to the product distribution y, has an expected fraction p < 1/2 of elements. By standard
Chernoff bounds the probability of a set picked according to u, landing in F;; is exponentially small
in t and thus tends to zero as t — co. Hence /4, (F; ;) tends to zero as t — oo (for every i). Together
with (5) this shows that for each fixed p < 1/2, limsup,_,, ap; = 0.

|

A.2 k-wise Intersecting Families
We will use the following theorem of Frankl.

Theorem A.3 Let F C P(R) where |R| = n and every set in the family F has size m. Assume that
every k sets in the family have nonempty intersection and n > mk/(k —1). Then

n—1
<
|f|_(m_1)

Note that a family of sets of size m containing one fixed element has size (;:;11) We will use the
above theorem to prove :

Lemma A.4 Let € > 0 be an arbitrarily small constant, k > 2 an integer and p =1 — % —¢e. Let
F C P(R) be a family such that every k sets in this family have a nonempty intersection. Then

pp(F) <p+e
provided the universe R is sufficiently large.

Proof: Let n = |R| be the size of the universe. Partition the family F according to different set-sizes.

FYF Fer P =i}

With the bias parameter p, the total weight of all sets of size more than (p + 5)n is at most § when
the universe is large enough. Hence

wF) < s+ D wp(Fa)

m<(p+§)n
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For m < (p + §)n, we have n > mk/(k — 1). Since every k sets in the family 7, have a nonempty
intersection, applying Frankl’s Theorem, we get

n-—1
<
|J:m| - (m—l)

Noting that every set in F,,, has weight p™(1 — p)” ™ we have

) < 5 Y (Z:ll)pm(l_p)nm

IN

A.3 Very Small Influence
The following lemma can be found in [DS02].

Lemma A.5 Let F C P(R) be a monotone family. Let T be a set of elements such that for every
element o € T, Influence,(F, o) < n. Assume n is small enough so that

T|-n-p T < pp(F)

Then there exists a set F' € F such that FNT = ¢.
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