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Abstract

We consider sets of strings with high Kolmogorov complexity, mainly in resource-bounded
settings but also in the traditional recursion-theoretic sense. We present efficient reductions,
showing that these sets are hard and complete for various complexity classes.

In particular, in addition to the usual Kolmogorov complexity measure K, we consider
the time-bounded Kolmogorov complexity measure KT that was introduced in [All01], as
well as a space-bounded measure KS, and Levin’s time-bounded Kolmogorov complexity Kt
[Lev84]. Let RK, RKT, RKS, RKt be the sets of strings x having complexity at least |x|/2,
according to each of these measures. Our main results are:

• RKS and RKt are complete for PSPACE and EXP, respectively, under P/poly-truth-
table reductions.

• EXP = NPRKt .

• PSPACE = ZPPRKS ⊆ PRK .

• The Discrete Log is in BPPRKT .

Our hardness results for EXP and PSPACE rely on nonrelativizing proof techniques.
Our techniques also allow us to show that all recursively-enumerable sets are reducible

to RK via P/poly-truth-table reductions.
Our hardness result for PSPACE gives rise to fairly natural problems that are complete

for PSPACE under ≤p
T reductions, but not under ≤log

m reductions.
In spite of the EXP- and PSPACE-completeness of RKt and RKS, it remains unknown

if either of these problems is in logspace.

1 Introduction

Much recent work in derandomization can be viewed as an attempt to understand and exploit
the interplay between the two common meanings of the phrase “random string”: a string picked
at random (according to some distribution), and a string with high Kolmogorov complexity (in
some sense). In this paper, we further investigate the relationship between these two notions.
We apply recent advances in derandomization to obtain fundamentally new types of complete
sets for several standard complexity classes. The sets consist of random strings with respect to
various Kolmogorov measures.
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We will focus on the set RK = {x : K(x) > |x|/2} of strings with high traditional
Kolmogorov complexity, as well as various resource-bounded variants Rµ for µ = KT,KS,Kt.
See Section 2 for the definitions of KT,KS, and Kt. The choice of |x|/2 as a quantification of
“high complexity” is rather arbitrary. Our results hold for any reasonable bound ranging from
|x|ε to ε|x|, 0 < ε < 1.

The sets Rµ of Kolmogorov random strings are good examples of sets with a lot of infor-
mation content that is difficult to access. Time- and space-bounded versions of Kolmogorov
random strings have been studied as possible examples of sets that are intractable without being
complete for any of the standard complexity classes. For instance, Buhrman and Mayordomo
[BM97] studied the time t-incompressible strings (for t(n) = 2n2

) and showed that this set is in
EXP − P, but is not complete under polynomial-time Turing reducibility.

As yet another example of this phenomenon, Cai and Kabanets [KC00] studied the Minimum
Circuit Size Problem (MCSP), which (as observed in [All01]) is closely related to KT complexity.
They present evidence that MCSP is not in P, but is also not likely to be NP-complete under
≤p

m reductions. Also, Ko [Ko91] showed for a variant of this set that there are relativized worlds
where it is neither in P nor coNP-complete with respect to polynomial-time Turing reductions.

When no resource bounds are present, the set of Kolmogorov random strings RK is easily
seen to be co-r.e. and not decidable, but the complement of the halting problem is not reducible
to RK via a many-one reduction. It was shown only recently by Kummer that a truth-table
reduction is sufficient [Kum96], although it had long been known [Mar66] that Turing reductions
can be used. It should be emphasized that Kummer’s reduction is not feasible and asks many
queries. Indeed, it is easy to see that any long string that is used as a query in a polynomial-time
truth-table reduction must have small Kolmogorov complexity, and thus one might conjecture
that reductions to the set RK must involve exponentially-many queries.

These results suggest that the sets of resource-bounded random strings are not complete
for the complexity class they naturally live in. Buhrman and Torenvliet [BT01] gave some
evidence that this is not the complete picture. They showed that for the conditional version of
space bounded Kolmogorov complexity the set of random strings is hard for PSPACE under
NP reductions. However, their result had the major drawback that it needed conditional
Kolmogorov complexity, used NP reductions, and, moreover, their proof technique could not
be used beyond PSPACE.

Using very different techniques, we provide much stronger results in the same direction: the
set of random strings can be exploited by efficient reductions. For instance, we show that the set
RKt of strings with high complexity using Levin’s time-bounded Kolmogorov notion Kt [Lev84]
is complete for EXP under truth-table reductions computable by polynomial-size circuits. Thus
we obtain natural examples that witness the difference in power of various reducibilities.

In some instances, we are also able to provide completeness results under uniform reductions.
By making use of multiple-prover interactive proofs for EXP ([BFL91]) we show that RKt is
complete for EXP under NP-Turing reductions.

Of greater interest is the fact that the set RKS of strings with high space-bounded Kol-
mogorov complexity is complete for PSPACE under ZPP-Turing reductions. Our proofs rely on
the existence of complete sets for PSPACE that are both downward-self-reducible and random-
self-reducible [TV02], and hence our proofs do not relativize. It remains unknown if the results
themselves hold relative to all oracles.

For the unbounded case we even show that PSPACE is reducible to RK under uniform
polynomial time reductions. The main tool here in addition to the previous results, is the fact
that we can construct, in polynomial time, a string of high Kolmogorov complexity using RK

as an oracle.
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1.1 The connection to derandomization

There is an obvious connection between Kolmogorov complexity and derandomization. For
any randomized algorithm A with a small probability of error and any input x, the coin flip
sequences r that result in a wrong answer are atypical, and therefore have short descriptions of
some kind.

By considering different notions of Kolmogorov complexity, less-obvious (and more-useful)
connections can be exposed. Assume that the coin flip sequences that result in wrong answers
have small µ-complexity, for some some Kolmogorov measure µ. If we can generate a coin flip
sequence r that belongs to the set Rµ of strings with high µ-complexity, then we obtain an
upper bound on the complexity of A, by running the randomized algorithm on (x, r). If we can
at least check membership in Rµ, we can reduce the error probability to zero by picking a coin
flip sequence r uniformly at random until we get one in Rµ (of which there are many), and then
running A on (x, r). The first interesting application of this approach is due to Sipser [Sip83].
His proof that BPP lies in the polynomial-time hierarchy uses µ = KDpoly, the polynomial-time
bounded distinguishing complexity. The corresponding set Rµ lies in coNP. The hardness versus
randomness tradeoffs by Babai et al. [BFNW93] and by Impagliazzo and Wigderson [IW97]
can be cast as an application with µ = KT, a time-bounded Kolmogorov measure introduced
in [All01], which essentially measures the circuit complexity of the Boolean function defined by
the string described. The observation from [KvM99] that the construction of [IW97] relativizes
with respect to any oracle A can be viewed in terms of a Kolmogorov measure which we denote
as KTA. This interpretation plays a crucial role in Trevisan’s recent construction of extractors
out of pseudo-random generators [Tre01]. Other connections are surveyed in [All01].

Our main technique is to use relativizing hardness versus randomness tradeoffs in the contra-
positive. Such results state that if there exists a computational problem in a certain complexity
class C that is hard when given oracle access to A, then there exists a pseudo-random generator
secure against A that is computable within C. However, we argue that no pseudo-random gen-
erator computable in C can be secure against Rµ. Thus we conclude that every problem in C is
easy given oracle access to Rµ, i.e., C reduces to Rµ. For our results, we exploit the nonuniform
hardness versus randomness tradeoffs in [BFNW93] and [IW97], as well as the uniform ones in
[HILL99] and [IW98].

1.2 The structure of complexity classes

The tools of reducibility and completeness (in particular NP-completeness) are responsible for
most of the success that complexity theory has had in proving (or providing evidence for)
intractability of various problems. Although it has been known since the work of Ladner
[Lad75] that, if P is not equal to NP, then there are intractable problems in NP that are not
NP-complete, there are not many interesting candidates for this status. Certainly the sets con-
structed in [Lad75] are quite artificial (constructed by putting huge empty segments inside a
standard complete problem such as SAT). Similarly, although there are a great many notions
of reducibility that have been considered, and for many of these notions it is known that more
powerful reducibilities provide more complete sets [Wat87, AAI+02] (at least for large complex-
ity classes such as EXP), almost all of the known constructions proceed by diagonalization and
do not produce very “natural” languages.

There are two notable examples that run counter to this trend, and that are relevant to the
research we report on here.

1. Buhrman and Mayordomo [BM97] study time-bounded Kolmogorov complexity Kt for
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time bounds t(n) ≥ 2n2
, and show that the set Rt = {x : Kt(x) ≥ |x|} lies in EXP − P

and is not complete for EXP under polynomial-time Turing reducibility ≤p
T.

2. Kabanets and Cai [KC00] study the set MCSP defined as {(f, s) : f is a string of length
2n interpreted as the truth-table of a Boolean function, and f is computed by a Boolean
circuit with at most s gates}. Kabanets and Cai show that if MCSP is in P/poly, then
there are no secure pseudorandom generators, thus providing evidence of intractability.
On the other hand, they show that some “natural” approaches that one might use to
show that MCSP is NP-complete would have some dramatic consequences if they were to
succeed (such as proving that EXP 6⊆ P/poly and BPP 6= EXP).

Although these examples seem to have little to do with each other, we present a framework
that shows both of these problems are variations on a single theme. Also, the techniques of
resource-bounded Kolmogorov complexity provide us with natural examples of computational
problems witnessing that certain well-studied notions of reducibility yield different classes of
PSPACE-complete sets.

1.3 Outline of the rest of the paper

In Section 2 we present background and definitions regarding resource-bounded Kolmorogov
complexity. In Section 3 we present the statement of our main results, although most of the
proofs are postponed until Sections 4 and 5. We conclude with open problems in Section 6.

2 Resource-Bounded Kolmogorov Complexity

We assume that the reader is familiar with Kolmogorov complexity: K(x) = min{|d| : U(d) = x}
(for some fixed universal multitape Turing machine U). For background, consult [LV93] (but
note that the function K(x) is called C(x) there).

Several notions of time-bounded Kolmogorov complexity have been studied. One of the
most useful was introduced by Levin [Lev84].

Definition 1 (Levin) Let U be a universal Turing machine. Define Kt(x) to be min{|d| +
log t : U(d) = x in at most t steps}.

The elements of {0, 1}∗ can be enumerated in order of increasing Kt(x), and Levin observed
that this ordering yields essentially the fastest way to search for accepting computations of
nondeterministic Turing machines.

Another notion of time-bounded Kolmogorov complexity was introduced in [All01], where it
was shown to be related to the “easy witness” method of Impagliazzo, Kabanets, and Wigderson
[Kab01, IKW01], and the “natural proofs” framework of Razborov and Rudich [RR97].

Definition 2 Let U be a universal Turing machine. Define KT(x) = min{|d| + t : for all
i ≤ |x|, U(d, i) = xi, and U(d, |x| + 1) = ∗, in at most t steps}.

The significant difference between the KT and Kt measures lies in the exponential difference in
the weight that is given to the time bound in the two measures; the fact that the description
d in KT describes the string x bit-wise is necessary in order to allow sublinear running times.
The properties of the measure Kt would be essentially unchanged if the bit-wise convention
were employed in that definition as well. Note that log |x| ≤ KT(x) ≤ |x| + O(log |x|).

Let us further define a space-bounded analog of KT complexity:
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Definition 3 Let U be a universal Turing machine. Define KS(x) = min{|d| + s : U(d) = x
in space at most s}.

Observe that the Kt, KT and KS measures can be generalized to obtain KtA, KTA and
KSA for oracles A, by giving U access to an oracle. It turns out that this is useful in clarifying
the relationship between these complexity measures. The following theorem is credited to
Ronneburger in [All01]:

Theorem 4 The following statements hold:

1. Let A be complete for E under linear-time reductions. Then there is a k ∈ IN such that
KTA(x)/k ≤ Kt(x) ≤ kKTA(x). In other words, Kt = Θ(KTA).

2. Let B be complete for DSPACE(n) under linear-time reductions. Then there is a k ′ ∈ IN
such that KTB(x)/k′ ≤ KS(x) ≤ k′KTB(x). In other words, KS = Θ(KTB).

That is, one can view Kt and KS complexities as merely variations of KT complexity; Kt
complexity is KT complexity relative to E and KS is KT relative to DSPACE(n).

If x is a string of length 2n, then x can be viewed as the truth-table of an n-ary Boolean
function. Let SIZE(x) denote the number of gates in the smallest circuit computing the Boolean
function represented by x. As observed in [All01], SIZE(x) = O(KT(x) log KT(x)) and KT(x) =
O(SIZE2(x) + log |x|). For relativized computation, the correspondence is nearly as close.

Theorem 5 SIZEA(x) = O(KTA(x)3) and KTA(x) = O(SIZEA(x)2 + log |x|).

In this paper we focus our attention mainly on sets of strings with high Kolmogorov com-
plexity.

Definition 6 For any any Kolmogorov complexity measure µ (such as K,Kt,KS,KT), define
Rµ = {x : µ(x) ≥ |x|/2}.

The bound of |x|/2 in the definition of Rµ is arbitrary; all of our results hold for any
reasonable bound in the range |x|ε to ε|x|, 0 < ε < 1.

It is obvious that RK is co-r.e. RKt ∈ E, RKS ∈ DSPACE(n), and RKT ∈ coNP. It is
observed in [All01] that none of these sets lie in AC0. No other upper or lower bounds are
known for the resource-bounded sets Rµ. As stated in the introduction, earlier results had
indicated that these sets would not be complete for the complexity classes in which they reside.
[All01] points out that RKt is not complete for EXP under ≤p

tt reductions, and essentially

identical observations show that RKS is not complete for PSPACE under ≤log
T reducibility. For

completeness, we include this argument below.

Theorem 7 RKS is not hard for PSPACE under ≤log
T reductions.

Proof. Note first of all that ≤log
T reducibility coincides with ≤log

tt reducibility [LL76].

Let T be a subset of 0∗ that is in PSPACE but not in L. Suppose T≤log
tt RKS, and let f be

the query generator of such a reduction. Note that KS(f(0n)) = O(log n). Thus each of the
strings y that the reduction queries on input 0n has KS(y) = O(log n). Hence, the only strings
y for which the query can receive a “yes” answer are of length O(log n), and for such queries
the answer is computable directly in space O(log n). Hence all of the queries can be answered
in space O(log n) and it follows that T ∈ L, contrary to our choice of T . 2
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3 Main Results

Some evidence that the set of resource bounded random strings could be useful was given
in [BT01]. There it was shown that the set of strings with high conditional linear space com-
plexity is hard for PSPACE under NP reductions. Improving greatly the results in [BT01], we
show that strings of high Kolmogorov complexity are very useful as oracles. First, we present
some hardness results in terms of nonuniform (P/poly) reductions that apply to many large
complexity classes. In the next subsection we consider some special cases where we are able to
strengthen our results to provide uniform reductions.

3.1 Nonuniform Hardness Results

It will be useful to recall the definition of PSPACE-robustness [BFNW93]. A language A is
PSPACE-robust if PSPACEA = PA. Clearly, the complete sets for many large complexity
classes (such as PSPACE, EXP, EXPSPACE, EEXPTIME, EEXPSPACE, ...) have this prop-
erty.

We will refer to the density of language L as the fraction of all strings of length n that
belong to L.

Theorem 8 Let A be any PSPACE-robust set. Let L be a set of polynomial density such that
for every x ∈ L, KTA(x) > |x|γ , for some constant 0 < γ < 1. Then A is reducible to L via

≤
P/poly
tt reductions.

Corollary 9

RKt is complete for EXP under ≤
P/poly
tt reductions.

RKS is complete for PSPACE under ≤
P/poly
tt reductions.

The hardness results apply not only to RKt and RKS, but to any dense set containing no
strings of low resource-bounded Kolmogorov complexity (including the Buhrman-Mayordomo
set and RK).

A similar proof shows that, in the recursion-theoretic setting, the (very-high-complexity)
truth-table reductions of [Kum96] can be replaced by reductions produced by small, but nonuni-
form, circuit families.

Theorem 10 Any recursively enumerable set is ≤
P/poly
tt reducible to RK, hence, r.e. ⊆ PRK/poly.

3.2 Uniform Hardness Results

For the special cases of EXP and PSPACE, we are able to show hardness results under uniform
notions of reducibility.

Theorem 11 EXP = NPRKt .

Theorem 12 PSPACE = ZPPRKS .

Again, these hardness results apply not only to RKt and RKS, but to any dense set containing
no strings of low resource-bounded Kolmogorov complexity.

It is an interesting question if the ZPP-Turing reducibility in this PSPACE-completeness
result can be improved to hardness under deterministic poly-time Turing reducibility. Although
we are not yet able to answer this question, the following theorem may be indicative.
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Theorem 13 PSPACE ⊆ PRK .

Let us mention one other consequence of our PSPACE-completeness result. Watanabe and
Tang showed in [WT92] that ≤p

T and ≤p
m reducibilities yield different classes of PSPACE-

complete sets if and only if ≤BPP
T and ≤p

m reducibilities yield different PSPACE-complete sets.
Using similar techniques, we are able to prove the following.

Theorem 14 There is a tally set T such that PSPACE = PRKS∪T , where at least one of the
following holds:

• RKS is complete for PSPACE under ≤p
tt reductions, but not under ≤log

T reductions, or

• RKS ∪ T is complete for PSPACE under ≤p
T reductions, but not under ≤p

m reductions.

Proof. By Theorem 12 there is a probabilistic Turing machine M running in time nk accepting
QBF with oracle RKS, with error probability less than 22n. Let S be the set {r : r is the
lexicographically-first sequence of length nk with the property that, for all strings x of length
n MRKS(x, r) accepts if and only if x ∈ QBF}. By standard arguments, S consists of exactly
one string of each length nk, and S ∈ PSPACE. We encode the “good” coin flip sequences of
S in the tally set T = {02nk+i : the i-th bit of the unique string of length nk in S is 1}. Note
that RKS can only contain a finite number of strings in 0∗. It is immediate that T ∈ PSPACE
and that QBF is in PRKS∪T .

If RKS ∪T is not complete for PSPACE under under ≤p
m reductions, then the second condition

of the theorem holds.

On the other hand, if QBF ≤p
mRKS ∪ T , then we can apply a standard argument of [Ber78].

Berman showed that if a length-decreasing self-reducible set A is ≤p
m-reducible to a tally set,

then A ∈ P. A similar argument applied to the ≤p
m reduction from A = QBF to RKS ∪ T

yields a ≤p
tt reduction from QBF to RKS. This, combined with Theorem 7, shows that the first

condition of the theorem holds. 2

Note that in either case, we obtain a set that is ≤p
T-complete but not ≤log

m -complete for

PSPACE. It was already known (using the techniques of [Wat87]) that ≤p
T and ≤log

m reducibil-
ities provide different classes of PSPACE-complete sets, but the preceding theorem provides
fairly “natural” examples of sets witnessing the difference.

We are not able to prove that RKT is complete for coNP under any notion of feasible
reducibility. On the other hand, we are able to show that some apparently-intractable problems
are reducible to RKT.

Theorem 15 The Discrete Logarithm problem is solvable in BPPRKT .

Corollary 16 The Discrete Logarithm problem is solvable in BPPMCSP.

4 Reductions from Complete Problems

In this and the next section we give proofs of our results from Section 3. Our main technique
is to use relativizing hardness-randomness tradeoffs in the contrapositive. In particular we will
argue that an appropriate set Rµ of Kolmogorov random strings can be used to distinguish the
output of a pseudo random generator Gf (based on a function f) from truly random strings.
This in turn will enable us to efficiently reduce f to Rµ. In this section, the function f will
always be a complete function for a standard complexity class.
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4.1 Tools

Let us first review the main technical tools we are going to use.
The authors of [BFNW93] show, for any ε > 0, how to construct from a function f a

pseudo-random generator GBFNW
f : {0, 1}nε

→ {0, 1}n such that for any x of size nε, the

function GBFNW
f (x) is computable in space O(nε) given access to f for inputs of size at most

nε. Moreover, for some constant c independent of ε, if f is PSPACE-robust, then each bit of
GBFNW

f (x) is computable in time nεc with oracle access to f .

Theorem 17 ([BFNW93, KvM99]) Let f be a function, ε > 0, and GBFNW
f : {0, 1}nε

→
{0, 1}n be the pseudo-random generator described above. Let T be a set and p(n) a polynomial.
If for all large n |Prr∈Un [r ∈ T ] − Prx∈Unε [G

BFNW
f (x) ∈ T ]| ≥ 1/p(n), then there exists a

polynomial size oracle circuit family {Cn}n∈IN with oracle T that computes f and queries T
non-adaptively.

Impagliazzo and Wigderson reexamine the approach of [BFNW93] and obtain a uniform
version of Theorem 17. Their result immediately implies:

Theorem 18 ([IW98]) Let f : {0, 1}∗ → {0, 1}∗ be a random and downward self-reducible
function, ε > 0, and GBFNW

f : {0, 1}nε
→ {0, 1}n be the pseudo-random generator described

above. Let T be a set and p(n) be a polynomial. If |Prr∈Un [r ∈ T ] − Prx∈Unε [G
BFNW
f (x) ∈

T ]| ≥ 1/p(n), for all n large enough, then there exists a probabilistic, polynomial time Turing
machine with oracle T that on input x outputs f(x) with probability at least 2/3.

The preceding two theorems provide the key derandomization techniques that are required
to prove our completeness results. They are stated in the contrapositive of their original for-
mulations since that is the way we will use them. However, some of our completeness results
(namely for EXP and PSPACE) involve uniform reductions that make use of randomness. These
reductions can then be further derandomized by applying hardness versus randomness tradeoffs
in the standard way. We will make use of the strengthening of the results of [BFNW93], as
provided by Impagliazzo and Wigderson [IW97] (see also [STV01]). Given access to a Boolean
function f , [IW97] constructs a pseudo-random generator GIW

f : {0, 1}O(log n) → {0, 1}n with
the following property (see also [KvM99]):

Theorem 19 ([IW97], [KvM99]) For any ε > 0, there exists a constant c > 0 such that
the following holds. Let A be a set and n > 1 be an integer. Let f : {0, 1}dlog ne → {0, 1} be
a Boolean function that cannot be computed by oracle circuits of size nε with oracle A. Then
GIW

f : {0, 1}cdlog ne → {0, 1}n satisfies: |Prr∈Un [CA(r) = 1] − Prx∈Ucdlog ne
[CA(GIW

f (x)) = 1]| <

1/n, for any oracle circuit CA of size at most n.

For x of size cdlog ne, function GIW
f (x) is computable in time polynomial in n given access

to function f on inputs of length dlog ne.

4.2 Proofs

The next proof illustrates our proof technique.

Proof of Theorem 8: Let A, L and γ be as in the statement of the theorem and let f
be the characteristic function of A. Consider GBFNW

f : {0, 1}nε
→ {0, 1}n, where we choose ε
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as follows. We know that every bit of GBFNW
f is computable in time nεc, for some constant c

independent of ε. We may assume that c > 1, so set ε = γ/2c. We claim that any string in
the range of GBFNW

f has small KTA complexity. Let y = GBFNW
f (x), for some x ∈ {0, 1}nε

. On

input x, every bit of GBFNW
f (x) is computable in time nγ/2 with access to oracle A. Hence,

KTA(y) ≤ 2|x| + O(nγ/2) + O(1) ≤ O(nγ/2). It follows, that L distinguishes the output of

GBFNW
f from random strings, so by Theorem 17, f is ≤

P/poly
tt reducible to L. 2

Using the fact that any recursively enumerable set can be decided with polynomial advice,
we can prove the analog in the recursion theoretic setting.

Proof of Theorem 10: The proof is similar to the proof of Theorem 8. Let f be the
characteristic function of a recursively-enumerable set. Consider GBFNW

f : {0, 1}n1/2
→ {0, 1}n.

We claim that any string in the range of GBFNW
f has small Kolmogorov complexity. Let y =

GBFNW
f (x), for some x ∈ {0, 1}n1/2

. To compute y given x, we need to query f on inputs of size

at most n1/2. If we know the number l of strings z of length at most n1/2 on which f(z) = 1,
then we can determine exactly which strings z these are (by carrying out the enumeration until

all have appeared). This number l is less than 2n1/2+1 and hence can be specified with O(n1/2)
bits. String y can be fully described by giving x, l, and programs for f and GBFNW

f , thus

K(y) ≤ O(n1/2). It follows that RK distinguishes the output of GBFNW
f from random strings.

By Theorem 17, f is ≤
P/poly
tt reducible to RK. 2

Many authors have observed that having access to the truth table of a hard function can be
used to obtain upper bounds on BPP [NW94, IW97]. Similarly, using oracle access to strings
of high Kolmogorov complexity we obtain the following derandomizations which we will use in
the proofs of Theorems 11 and 12.

Lemma 20 Let A be any oracle and L be a set such that L ∈ PA/poly and for every x ∈ L,
KTA(x) > |x|γ , for some constant 0 < γ < 1.

1. If L contains a string of every length then MAL ⊆ NPL,

2. If L is of at least polynomial density then BPPL ⊆ ZPPL.

Proof of Lemma 20:
1. The NP-machine M guesses a string χf ∈ L of length m, for m = nc, and interprets it as
the truth-table of a Boolean function f on inputs of size log m. Since χf ∈ L, KTA(χf ) ≥ mγ .
As the circuit size of a function is lower bounded by the root of the KT-complexity of its truth-
table (Theorem 5), f requires circuits of size at least Ω(mγ/2) even when the circuit has access
to the oracle A. If, instead of A, the circuit has access to L, then (because of our assumption
that L is reducible to A by circuits of size mk for some k), the size required to compute f is at
least Ω(mγ/4k).

The function f is of sufficient hardness to construct the generator GIW
f , as stated in Theo-

rem 19, to stretch O(log n) random bits into nc pseudorandom bits that are indistinguishable
from random by any polynomially bounded computation with oracle access to L. Thus we can
fully derandomize the probabilistic part of the MA-computation.

2. We use a similar argument as above. Here we randomly choose a candidate for χf . As L is
dense, the result follows immediately. 2
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Applying the previous lemma with oracles A and A′, complete for E and DSPACE(n)
respectively, Theorem 4 yields the following corollary.

Corollary 21

1. MARKt = NPRKt,

2. BPPRKS = ZPPRKS .

We can immediately apply this corollary to prove Theorem 11.

Proof of Theorem 11: The inclusion NPRKt ⊆ EXP is trivial, so we focus on the other
inclusion. A consequence of Corollary 9 is that EXP ⊆ MARKt . To see this let A be any
language in EXP. Then A is accepted by a 2-prover interactive proof system with provers
computable in EXP [BFL91]. The MARKt protocol is as follows. Merlin sends Arthur the
poly-size circuits that, when given access to the oracle RKt, compute the answers given by the
two provers for A. Arthur then executes the MIP protocol, simulating the provers’ answers by
executing the circuits and querying the oracle RKt. The theorem now follows immediately from
Corollary 21. 2

To prove a uniform hardness result for PSPACE, as stated in Theorem 12, we can use the
technique of [IW98] and the following theorem of [TV02].

Theorem 22 ([TV02]) There exists a problem for DSPACE(n) that is hard for PSPACE,
random self-reducible, and downward self-reducible.

Proof of Theorem 12: Let f ∈ DSPACE(n) be a function that is downward and random
self-reducible and hard for PSPACE, as guaranteed by Theorem 22. First, we will show that
f ∈ BPPRKS . Consider GBFNW

f : {0, 1}n1/2
→ {0, 1}n. From the properties of GBFNW

f it follows

that all the strings in the range of GBFNW
f have small space-bounded Kolmogorov complexity, in

particular, KS(y) ≤ O(|y|1/2), for any y = GBFNW
f (z), for some z. Hence, RKS distinguishes the

output of GBFNW
f from random strings and by Theorem 18, there is a probabilistic procedure

with oracle RKS that on input x outputs f(x) with probability at least 2/3.
Hence, PSPACE ⊆ BPPRKS . We can use Corollary 21 to derandomize the BPPRKS compu-

tation to obtain PSPACE ⊆ ZPPRKS . 2

We would obtain a deterministic polynomial-time reduction of PSPACE to RKS in the
preceding theorem, if there was a deterministic method to obtain a string of high KS complexity
using RKS as an oracle. We do not know if this is possible. On the other hand, if one considers
Kolmogorov complexity without resource bounds, we are able to achieve this.

Lemma 23 BPPRK = PRK.

The proof of this theorem shows how to use RK as an oracle to incrementally build up
a string z in RK. The construction works block-wise, and is inspired by a construction of
Buhrman and Vereshchagin, who use the oracle {x : K(x) ≥ |x|} to build a string x with
K(x) ≥ |x| in a bit-wise fashion. Our construction obtains a string z ∈ RK which then is used
to derandomize the BPP computation.
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Proof of Lemma 23: We prove the lemma in two steps. First, we will show that for any
m = nO(1), we can find a string f of length m such that K(f) ≥ |f |/2, via a polynomial-time
computation with access to oracle RK. Then, we will use f to derandomize BPPRK .

We use the following claim: there exists a constant c1 such that for any strings z and y,
K(zy) ≥ K(z) + K(y|z) − c1 log |zy|. This claim immediately follows from [LV93], Section 2.8.

We search for f inductively. We start with a string z, initially equal to the empty string.
Assume (inductively) that K(z) ≥ |z|/2. Try all strings y of length 2c1 log m, and use the oracle
RK to see if K(zy) ≥ |zy|/2. We are guaranteed to find such a y, since for most y it holds that
K(y|z) ≥ |y|, and for any such y K(zy) ≥ K(z) +K(y|z)− c1 log |zy| ≥ |z|/2 + |y| − c1 log |zy| ≥
|z|/2 + 2c1 log m − c1 log m = |zy|/2.

Let M be a probabilistic oracle Turing Machine that with oracle RK computes a language
from BPPRK . M takes input x and a random string r of length polynomial in |x|. For input
x of length n, we can construct in polynomial time an oracle circuit Cx such that CRK

x (r) =
MRK(x, r). Denote the size of Cx by m; (m is polynomial in n.) We claim and prove later
that any function f : {0, 1}dlog me → {0, 1} that is computable by a circuit of size m1/2 with
oracle RK has Kolmogorov complexity at most O(m1/2 log m). (We consider the Kolmogorov
complexity of a function f as the Kolmogorov complexity of its truth-table.) By the first part
of the proof, in PRK we can find a truth-table of function f : {0, 1}dlog me → {0, 1} such that
K(f) ≥ |f |/2. Since f cannot be computed by circuits of size O(m1/2), by Theorem 19, it can
be used to estimate the acceptance probability of Cx in polynomial time with oracle access to
RK. Thus, to conclude BPPRK = PRK we only need to show the previous claim.

A circuit of size at most m1/2 makes oracle queries of size at most m1/2. Since RK is a
recursively-enumerable set, to compute the characteristic function of RK for all strings of size
at most m1/2, we only need to specify how many of these strings are in RK. This can be
described by m1/2 + 1 bits. Hence, any function f : {0, 1}dlog me → {0, 1}, that is computable
by an oracle circuit of size m1/2 with oracle RK can be described by m1/2 + 1 bits plus the
description of the circuit plus some constant. Thus, for any such f , K(f) ≤ O(m1/2 log m). 2

Proof of Theorem 13: Using Theorem 12 (relative to RK instead of RKS) and Lemma 23,
we immediately obtain the desired result PSPACE ⊆ PRK . 2

5 Reductions from the Discrete Log Problem

The previous section paints an illuminating picture about completeness of sets with high
resource-bounded Kolmogorov complexity and completeness in PSPACE and EXP and larger
complexity classes. In this section we explore what these techniques have to say about KT
complexity and sets in NP and coNP.

It was already observed in [KC00] that if MCSP is in P/poly, then secure pseudorandom
generators do not exist. Although we know of no implication (in either direction) between the
hypotheses “MCSP is in P/poly” and “RKT is in P/poly,” the proof of [KC00] also suffices to
show that secure pseudorandom generators do not exist if RKT is in P/poly.

We do not know if RKT is complete for coNP or hard for any familiar subclass of coNP under
any feasible notion of reducibility. However, we are able to show that there is a probabilistic
polynomial-time Turing machine that solves the Discrete Logarithm Problem with bounded
error, when given an oracle for RKT. More precisely, when given as input a triple (p, g, z) where
p is an n-bit prime number, 0 < g < p, and 0 < z < p, the machine outputs with probability at
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least 2/3 a positive integer i such that gi ≡ z (mod p), or 0 if there is no such i. As will be
clear from the proof, RKT can be replaced by any suitably dense language containing no strings

of KT-complexity less than nε for some ε > 0. In particular, the Discrete Log is in BPPMCSP.
Kabanets and Cai observe in [KC00] that BPP ⊆ ZPPRKT , but we are not able to show that

BPPRKT is contained in ZPPRKT . (I.e., we know of no analog of Lemma 20 for KT-complexity.)
Thus we are not able to improve our reduction from a BPP-reduction to a ZPP-reduction. (We
note that, for inputs (p, g, x) such that x is in the orbit of g, which is the usual class of inputs for
which the discrete log is of interest, the algorithm we present does exhibit ZPP-like behavior,
since with high probability we obtain a number i that we can deterministically check satisfies
gi ≡ x mod p. However, when x is not in the orbit of g, we obtain no proof of this fact – merely
strong evidence.)

The hardness versus randomness tradeoff we will use to establish this result is the construc-
tion by [HILL99] of a pseudo-random generator GHILL

f : {0, 1}n → {0, 1}2n out of a (supposedly

one-way) function f : {0, 1}n → {0, 1}n. GHILL
f is computable in polynomial time given oracle

access to f .
We will apply their result with f−1 being the Discrete Log function. Since the Discrete

Log really is a family of functions parameterized by the prime p and the generator g, we
will consider functions f that are similarly parameterized. More specifically, we will con-
sider a function f(y, x) that is length-preserving for every fixed y, i.e. x 7→ f|x|(y, x) for
fn(y, ·) : {0, 1}n → {0, 1}n. The function f(y, x) will be computable uniformly in time polyno-
mial in |x| (so wlog. y is polynomially bounded in |x|). The result in [HILL99] can be stated
as follows.

Theorem 24 ([HILL99]) Let f(y, x) be computable uniformly in time polynomial in |x|. For
any oracle L, polynomial-time probabilistic oracle Turing machine M , and polynomial p, there
exists a polynomial-time probabilistic oracle Turing machine N and polynomial q such that the
following holds for any n and y: If |Prr∈U2n,s[M

L(y, r, s) = 1]−Prx∈Un,s[M
L(y,GHILL

fn(y,·)(x), s) =

1]| ≥ 1/p(n), then Prx∈Un,s[f(y,NL(y, f(y, x), s)) = f(y, x)] ≥ 1/q(n), where s denotes the
internal coin flips of M or N , respectively.

Theorem 24 states that if there exists a distinguisher with access to an oracle L that dis-
tinguishes the output of GHILL

f from the uniform distribution, then oracle access to L suffices
to invert f on a nonnegligible fraction of the inputs. We now argue that such a distinguisher
exists in case L = RKT.

Lemma 25 Let L be a language of polynomial density such that, for some c, for every x ∈ L,
KT(x) ≥ |x|1/c. Let G(y, x) be a function computable uniformly in time polynomial in |x| such
that for any y, Gn(y, ·) : {0, 1}n → {0, 1}2n. Then there is a polynomial-time probabilistic
oracle machine M and a polynomial p such that for any n and y, |Prr∈U2n,s[M

L(y, r, s) =
1] − Prx∈Un,s[M

L(y,G(y, x), s) = 1]| ≥ 1/p(n).

Proof. Similar to [RR97], we use the construction of [GGM86] to build out of G a pseudo-
random generator G′ with larger stretching. Specifically, the proof of Theorem 4.1 of [RR97]

constructs G′(y, x) such that G′
n(y, ·) : {0, 1}n → {0, 1}2k

, and shows that if z = G′(y, x), then
the circuit size SIZE(z) = (n + k)O(1). We can pick k = O(log n) such that for each x and
polynomially bounded y, KT(G′(y, x)) < |G′(y, x)|1/c. Thus L is a statistical test that accepts
almost all random strings of length |x|O(1) but rejects all pseudorandom strings. As in [RR97],
this gives us a probabilistic oracle machine using L that distinguishes G(y, ·) from the uniform
distribution. 2

12



Theorem 24 and Lemma 25 allow us to show that Discrete Log is computable in BPPRKT .

Proof of Theorem 15: On input (p, g, z), we first check (in BPP) if p is prime.
Let n be the number of bits in p, and y denote the pair (p, g). Consider the function

f(y, x) = gx mod p. Lemma 25 with L = RKT and Theorem 24 give us a polynomial-time
probabilistic oracle Turing machine N such that for some polynomial q and all p and g, with
probability at least 1/q(n) over randomly chosen x and s, N RKT(p, g, gx, s) produces an output
i such that gi = gx.

Now we make use of the self-reducibility properties of the Discrete Log. In particular, on
our input (p, g, z), we choose many more than q(n) values v and run algorithm N on input
(p, g, zgv mod p). If z is in the orbit of g, then with high probability at least one of these trials
will return a value u such that gu = zgv mod p, which means that we can pick i = u − v and
obtain z = gi mod p.

On the other hand, if none of the trials is successful, then with high probability z is not in
the orbit of g and the algorithm should return 0. 2

To summarize our knowledge about RKT, it lies in coNP, and it is at least as hard as
the discrete logarithm problem. Is it in NP ∩ coNP? If so, then it would provide a dense
combinatorial property in NP that is useful against P/poly, contrary to a conjecture of Rudich
[Rud97]. Is there any stronger evidence that RKT is not in NP?

Theorem 26 If RKT is in NP, then MA = NP.

Proof. It is shown in [IKW01] that if an NP machine can, on input of length n, find the
truth table of a function of size nO(1) with large circuit complexity, then MA = NP. Certainly
this is easy if RKT is in NP. 2

This observation (similar to observations in [IKW01]) can not be taken as evidence that
RKT 6∈ NP, since many people conjecture that MA is equal to NP.

However it does show that this would require nonrelativizing proof techniques.

6 Open Problems

KT-complexity was introduced in [All01] as a tool for summarizing some recent progress in
the field of derandomization, and for describing the theory of natural proofs from the stand-
point of Kolmogorov complexity. In this paper, we provide additional motivation for studying
KT complexity and its variants. It provides natural and interesting examples of apparently
intractable problems in NP, PSPACE, and EXP that are not complete under the more familiar
notions of reducibility and hence constitute a fundamentally new class of complete problems.
It is worth pointing out that variants of these sets (such as {x : Kt(x) ≥ |x|/3}) appear to be
incomparable to RKt under ≤p

m reductions. This deserves further investigation.
Is there some sense in which KT complexity yields NP-complete sets? For instance, what

can one say about {(x, y, i) | KT(x|y) ≤ i}? The result of [VV83] is intriguing in this light; in
[VV83] Vazirani and Vazirani presented a language in NP that is complete under probabilistic
reductions that is not known to be complete under deterministic reductions. Their problem
superficially seems to be related to time-bounded Kolmogorov complexity.

Other intriguing open questions are: Is the EXP-complete set RKt in P? Is it in L? Is
PSPACE ⊆ PRKS?
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