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Parallel Construction of Minimum
Redundancy Length-Limited Codes

Marek Karpinski * Yakov Nekrich

Abstract. This paper presents new results on parallel constructions of the
length-limited prefix-free codes with the minimum redundancy. We describe
an algorithm for the construction of length-limited codes that works in O(L)
time with n processors for I the maximal codeword length. We also describe
an algorithm for a construction of almost optimal length-limited codes that
works in O(logn) time with n processors. This is an optimal parallelization
of the best known up to date sequential algorithm.

1 Introduction

Consider a list of items ey, eq,...,€, with weights p = py, pe, ..., pn respec-
tively. We say that an integer list £ = [y,l5,...,1,, is a prefiz-free code if
227l < 1. A (prefix-free) code is length-limited for some integer L if [; < I
for all 1 <7< n.

A code is called a minimum redundancy code or Huffman code for the set
of items with weights p = py,pg,...,pn if Length(L,p) = Y I;p; is minimal
among all prefix-free codes. A code £ is a minimum redundancy length-limited
code if Length(L, p) is minimal among all length-limited prefix-free codes. The
problem of length-limited coding is motivated by practical implementations of
coding algorithms since every codeword must fit into a machine register of
fixed width.

A Huffman code can be constructed in O(nlogn) time or in O(n) time if
elements are sorted by weight (see, for instance [vL76] ). However the con-
struction of a length-limited minimum redundancy code requires more time.
Garey [G74] has described an algorithm for constructing length-limited codes
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that runs in O(n*L) time. Larmore and Hirschberg [[.87] described an al-
gorithm that requires O(n*2Llog'/?n) time. Tn [LH90] the same authors
presented a O(nlL) time sequential algorithm. Based on the problem reduc-
tion due to Larmore and Przytycka (see [LP95]) Schieber [S95] has given an
O (n20WlegLloglogn)y alo6rithm for this problem.

The fastest n-processor algorithm for the construction of Huffman codes
is due to Larmore and Przytycka [LP95]. Their algorithm, based on reduction
of Huffman tree construction problem to the concave least weight subsequence
problem runs in O(y/nlogn) time. Kirkpatrick and Przytycka [KP96] intro-
duced a problem of constructing, so called, almost optimal codes, i.e. the
problem of finding a tree 7" that is related to the Huffman tree 17" according to
the formula wpl(T") < wpl(T) + n~* for a fixed error parameter k (assuming
Y- w; = 1). They presented efficient parallel algorithms for the construction of
almost optimal codes, that work in O(klognlog® n) time and with n proces-
sors on a CREW PRAM and an O(k?logn) time algorithm that works with
n? processors on a CREW PRAM. These results were recently improved in
[BKNO02].

A problem related to the problem discussed in this paper is the construc-
tion of optimal alphabetic codes. In case of the alphabetic codes we have an
additional limitation that the codeword for e; precedes the codeword for e;
in lexicographic order for all 2 < j . The best known NC' algorithm con-
structs an optimal alphabetic code in time O(log®n) with n? logn processors
(see [LPWO3]).

In this paper we consider a parallel algorithm for the construction of
minimum-redundancy length-limited codes that is based on the Package-
Merge algorithm of Larmore and Hirschberg [LH90]. Our algorithm con-
structs a length-limited code in O(L) time with n processors on a CREW
PRAM. We also describe an algorithm for the construction of length-limited
codes that works with an error 1/n* in O(klogn) time with n processors on
a CREW PRAM. The last algorithm gives us an optimal speed-up compared
to the best known sequential algorithm.

In the Package-Merge algorithm I lists of trees S* are constructed. A
list ST consists of n leaves with weights p1, ps, ..., pn, sorted according to their
weight. ‘

The list /%! is created from the list S7 by forming new trees tf'l'l =
meld(téi,tg“_l) and merging the list of new trees with the copy of the list

S!. Here t! denotes the i-th item in the list S7. An operation meld(t,t,)
creates a new tree t with two sons ¢; and ¢35 such that the weight of ¢ equals
to the sum of weights of its sons. By merging two sorted lists 57 and Sy we
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Figure 1: Example of Package-Merge for L =4

mean constructing a sorted list S3 that consists of all elements from S; and
S9. The depth of the element p; equals to the number of occurrences of p; in
the first 2n — 2 trees of the list S*. On Figure 1 we show how the algorithm
Package-Merge works on the set of items with weights p = 1,1,3,7,11, 15for
L = 4. The resulting code consists of codewords with lengths £ = 4,4,3,2,2,2
respectively.

When the list S is constructed we can easily compute depths of all ele-
ments in an optimal code. Indeed S” consists of 2n — 1 trees and these trees
have a total number of n leaves on every tree level. These leaves correspond
to elements pi,...,p,. We can mark all nodes in the biggest tree in S and
then compute all occurrences of p; in the 2n — 2 smallest trees in time O(L).

In the rest of this paper we describe parallel algorithms for the construction
of S”. We will see in the next section that the most time-consuming operation
is merging of two lists. We show how after a certain pre-processing stage a
logarithmic number of merge operations can be performed in a logarithmic
time. During this pre-processing stage we compute the predecessor values
pred(e, i) for every element e and every list S*. These values can be efficiently
re-computed after a meld operation and they will also allow us to merge arrays
in a constant time.

2 Parallelization of the Package-Merge

We divide elements of S7 into classes le, such that an element e € Wl] iff
weight(e) € [2!71,2"). We will say that elements t,t, from S/ are siblings if
at the j-th stage of the algorithm t; will be melded with t.



1: for [ := 1 to m pardo

excl[l] ;= NULL

if (sibling(first(W{)) < 2!=1) AND
(sibling(first(W})) + first(W]) < 2!)
4 exc[l] := meld(first(le), sibling(first(le)))
5: first(W]) == next(first(W}))

6: if (exc[l] # NULL)
7
8
9

w N

length(W}) == length(W{) — 1
length(lVl];l_l) = length(Wl];i_l) -1
: for i :== 1 to length(W})/2 pardo
10: tf .= meld(t],, t

. 2%) té_i-}-l) .
11: Wf_:’ll = merge(W/ [1, .., length(W}) /2], W/,,)
12: Wit .= merge(W] ™" exc[l])

Figure 2: Parallel Implementation of Package-Merge

Suppose that two elements, 1, 5 from le are siblings. Then t = meld(tq,t2)
will belong to le_:'ll Therefore after melding elements of W} will be merged
with elements of W/l]+1- The only exception may be an element from W} whose

sibling belongs to W;_,. However there is at most one such exception in every

class le and this exception can be inserted into a class W in a constant time
with |W/lj| Processors.

The pseudocode description of the parallel algorithm is shown on Figure
2. For simplicity we say e < a for an element e and a number @ whenever
weight(e) < a. An array exc[l] contains pointers to “exceptions” i.e. to
elements e € W, such that sibling(e) € Wi_, and meld(e, sibling(e)) < 2'.
We denote by length(W]) the number of elements in W}, m is the maximum
number of classes W;.

The bottleneck of this algorithm is the merge operation shown on the line
12 of the Figure 2. This operation merges W] (the sorted list of elements
from W sequentially melded in order of their weight) with the sorted list of
elements from W/ll_l_l. All other operations can be implemented in a constant
time. We will show below how arrays can be merged efficiently in an average
constant time per iteration. First we will show how this algorithm can be



implemented to work in O(L) time with nlogn processors. Then we will
reduce the number of processors to n.

We will use the following notation. Relative weight r(¢) of an element
t € W} is weight(t) - 27'. We observe that if elements ¢; and ¢, belong to le
and ¢ is the result of melding two elements ¢ and ¢y , such that r(¢1) > r(e)
and r(tz2) > r(e) (r(t1) < r(e) and r(t2) < r(e)), where € is an element from
Wll_l_l, then the weight of ¢ is bigger (smaller) than the weight of e.

We also compute for every item e € le and every 7, [ <1 <[4 logn the
value of pred(e,i) = W'k], s.t. r(W}![k]) < r(e) < r(W}[k+ 1]). In other
words, pred(e, i) is the biggest element in a class W/, whose relative weight is
smaller than or equal to r(e).

Obviously, if pred(t;,i) = pred(ty,i) = W}[j] and t,,t, € W/_,, then
t = meld(t,,t,) must be placed between W}[j] and W [j + 1] in W/TL. Also if
t; € W!and pred(t1,1) =tz then ¢; must be placed on the next position after
ty in WY.

Now we will show how pred(e, i) can be computed and updated after each
iteration.

Statement 1 The values of pred(e,i) for e € S7 can be computed in O(logn)
time with n processors

Proof: First we construct arrays R; = Wflogn+1u14/flogn+2u. . .UlVl]logn+lognU
Wlllogn-l-l U Wlllogn+2 U...u VVlllogn-l-Zlogn for/=0,...,m/logn — 1 and sort
elements of R; according to their relative weights. Next we construct arrays
Cig, k =1,...,2logn so that elements of ('} correspond to elements of R;
and Cpili] = 1if Rpiognli] € Wlllogn+k and Cjx[i] = 0 otherwise. We compute
prefix sums Py i, for all arrays C7z[7]. One such prefix sum can be computed in
O(logn) time with |R;|/ logn processors. Therefore we can allocate processors
in appropriate way in a logarithmic time and then compute all prefix sums
also in a logarithmic time.

The values of pred(e,i) can be computed from Cjy as follows. Suppose
e € W/. Let ' =1/logn and k' =i — l'"logn Let s be the index of e in Ry
and let v be Py i[s]. Then pred(e, i) equals to W}[v].
O

We will also need values of pred’(e, ) for all e € S* and all [ € [i — log n, i)
if e € W}, where pred'(e, ) is the biggest element in W] whose relative weight
is smaller than that of e. These values can also be computed in O(logn) time
with n processors.

Next we show how the values of pred(e, i) can be updated after the oper-
ation meld. We will denote by pos(t) position of an element ¢ in its class ¥} .



1: for a < m, b < |W/}| pardo

2: s := W2b]

3: fora < I < a+logn pardo

4: temp![s] := [pos(pred'(s,1))/2]
5: for i < m, ¢ < |W/|/2 pardo

6: s 1= meld(W][2¢ — 1], W/ [2c])

7: pos(s) :=c¢

8: Wile] :=s

9: for a < m, b < |W/}| pardo

10: s 1= Wb

11: for a <1 < a+logn pardo

12: ¢ := temp'[s]

12: if r(W/[c]) > r(Wi[b])

13: c:=c—1

14: if r(Wib+1]) > r(Wi[c+1])
15: pred(Wilc+1],a) :=s
16: pred'(s,1) := Wl] [c]

Figure 3: Melding operation

For simplicity we will say that ¢y > t; when weight(t,) > weight(ts).

First we store the tentative new value of pred'(e, i) for all e € S' in an
array temp (lines 1-4 of Figure 3). The values stored in temp[] differ from the
correct values by at most 1.

Next we meld the elements and change the values of weight(s) and pos(s)
for all s € W; (lines 5-8 of Figure 3).

Then we check whether the values of pred'(s,i) for s € S! are the correct
ones. In order to achieve this we compare the relative weight of the tentative
predecessor with the relative weight of s. If the relative weight of s is smaller,
pred(s, i) is assigned to the previous element of W;. (lines 9-14 of Figure 3).
In lines 15 and 16 we check whether the predecessors of elements in W/ have
changed.

If the number of elements in Wij is odd then the last element of W, must



be inserted into W/Z-j. With |W/Z-j| processors we can perform this operation in
a constant time. We can also correct values of pred(e, ) in a constant time
with a linear number of processors.

When the elements of W/Z-j are melded and predecessor values pred(e, i) are
recomputed pos(pred(W;[t], i — 1)) equals to the number of elements in W',
that are smaller than or equal to W/Z-j[t]. Analogically pos(pred (WL ,[t],1))

equals to the number of elements in W/ that are smaller than or equal to
WL [t]. Therefore indices of all elements in the merged array can be computed
in a constant time.

After melding of elements from S? every element of W,' has two predeces-
sors in classes i = [+ 1,...,l 4+ logn. We can find the new predecessors of an
element e by comparing pred’(e, ) and pred'(e,i — 1).

In this way we can perform logn iterations of Package-Merge in a con-
stant time per iteration. After this we have to compute pred(e, ) and pred’(e, 1)
for S' and S'°8” as described in Statement 1. Then we will be able to perform
the next log n iterations in the same way. Therefore every logn iterations of
Package-Merge can be performed in O(logn) time with nlogn processors
and we have

Theorem 1 The algorithm Package-Merge can be implemented in O(L)
time with nlogn processors.

3 An nL work algorithm

The algorithm described in the previous section requires nlog n processors to
work in O(L) time, because at every step 2nlogn values of pred and pred
may be modified. In this section we show how the total work can by reduced
by a logarithmic factor.

The main idea of our modified algorithm is that not all values pred and
pred’ are necessary at each iteration. In fact, if we know values of pred(e, i)
for the next class W}, if e € W/_, for all e € S7 and values of pred’(e, i) for the

previous class W/, if e € Wil-l-l for all e € S! then merging can be performed
in a constant time. Therefore we will use functions pred and pred’ instead of
pred and pred’ such that this information is available at each iteration, but
the total number of values in pred and pred’ is limited by O(n). We must also
be able to recompute values of pred and pred’ in a constant time after each

iteration.

For an array R we will denote by sampley(R) a subarray of R that consists
of every 2F-th element of R. We define pred(e, i) for e € W/ as the biggest




element € in sample;_;_y (W}'), such that r(&) < r(e). Besides that we main-
tain the values of pred(e, 1) only for e € sample;_;_1 (W}). In other words for
every 2/=*=1_th element of le we know its predecessor up to 2'='~! elements.
pred(e, 1) is defined in the same way. Obviously the total number of values in
pred and pred' is O(n).

Now we will show how pred and pred’ can be recomputed after elements
in W/lj are melded. The number of pairs (e,7) for which values pred(e, i)
and pred'(e, ) must be computed is O(n) therefore we can presume that one
processor is assigned to every such pair. ‘

Consider an arbitrary pair (e,7), e € W/. First the value pred(e,i) is
known, but the value of pred(s,i), where s = sibling(e) may be unknown.
Let e, be the element preceding e and e, be the element following e in

samplel_i(le). If s follows e then correct value of pred(s,i) is between
pred(e,i) and pred(e,,i). If s precedes e in Wl] then the correct value of
s is between pred(ep, i) and pred(e,i). Correct values of pred(s,i) can be
computed in a constant time with |sample,_;(W,')| processors. '
When elements from W} are melded, the new elements will belong to WZJ_:II
Now we have to compute pred(e, ) in sample;_j_o(W}) for every 2°=!=2-th ele-
ment of le—+11 Suppose pred(e,i) = W[k-2i=1=1]. We can find the new value
of pred(e, i) by comparing r(e) with r(W}[k-2°='=142¢=1=2]). When the correct
values of pred(e,i) e € sa,mplei_l_l(le) are known we can compute pred(e, i)

for all e from sample;_;_(W}]). Let e be a new element in sample;_;_o(W})
and let e, and e, be the next and previous elements in sample;_;—2(W). Ob-
viously e, and e, are in sample;_;_1 (W}) and pred(e, i) is between pred(e,, i)

and pred(ey,,1). Therefore new correct values of pred(e,i) for all e € W/

can be found in a constant time with |sample;—j_o(W})| processors. Since
Y i<m,j<itlogn |Samplei_1_a(W})| = O(n), pred(e,i) can be recomputed in

time O(1) with n processors. New values of pred’(e, i) can be computed in the
same way.

Using the values of pred and pred’ we can merge S' and S7 in a constant
time.

Since all other operations can also be done in a constant time we can
perform log n iterations of Package-Merge in a logarithmic time. Combining

this fact with Statement 1 we get

Theorem 2 The algorithm Package-Merge can be implemented in O(L)
time with n processors.



4  Almost-optimal length-limited codes

In this section we assume that element weights p; are normalized, i.e. Y p; =
1. We say that a length-limited code £ is almost-optimal with an error e if
Length(L,p) < Length(L', p) + € for all length-limited codes £’. An almost-
optimal length-limited code with an error nLk can be sequentially constructed
in time O(nlogn).
To achieve this goal we construct an optimal code for the set of items
new new new

P = phew phew e where pt% = [p;n*n~F. Let L£* denote an
optimal code for weights p;,...,p,. Since pP* < p; + n~F,

YoPEl <Y pili+ YT <Y pili+mPn

because all /; are smaller than n. Hence Length(L*,p™7) < Length(L,p) +

n=k*+2. Let L4 denote the ( optimal) Huffman code for weights p**. Then
Length(L4,p) < Length(L4,p"®") < Length(L*,p"®") and
Length(L*, ") < Length(L*,p) + n~F+?

Therefore we can construct an optimal code for weights p”®, than replace
pre with p; and the resulting code will have an error of at most n=*+2.

The construction of a length-limited code with maximum codeword length
L can be reduced to minimum-weight L-link path in a graph with the concave
Monge property (see [LLP95] ). The last problem can be solved in O(nlogU)
time, where U is the maximum absolute value of the edge weights in a graph
([AST94]). If element weights in the code construction problem are polynomi-
ally limited then edge weights in the corresponding graph will be also polyno-
mially limited. Hence we can construct an almost optimal code in O(nlogn)
time.

We can also construct an almost-optimal length-limited code in parallel in
a logarithmic time with nlogn operations. Supposed we want to construct a
code with the maximum codeword length L and an error 1/n*. If L < klogn
we can construct an almost-optimal code by applying Package-Merge to the
set of weights p¢? defined above. If I > klogn, we can construct an optimal
( not length-limited ) code for weights p™®. It was shown in [BKN02] that
the maximal codeword length in such a code is at most klogn < L, therefore
this code is also an optimal length-limited code. Since an optimal code can
be constructed in time O(klogn) with n processors (see [BKNO02]), we can
construct an almost-optimal length-limited code in O(klogn) time with n
processors.



We can also conclude from the last two paragraphs that an almost-optimal
length-limited code with error 1/n*, such that k < L/logn, can be sequentially
constructed in linear time or in parallel time O(klogn) with n processors.

5 Conclusion

We have described a parallel algorithm for the construction of length-limited
Huffman codes. This algorithm yields an optimal parallelization of the Package-
Merge algorithm of Larmore and Hirschberg[LLH90] , the problem that was
open for some time now.

We also describe an algorithm for the construction of almost-optimal length-
limited codes that works in O(nlogn) time. We show that this algorithm can
be implemented in time O(logn) with nlogn operations. This is an optimal
speed-up of the best known algorithm for the construction of almost-optimal
length-limited codes.
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