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Abstract

An equation over a finite group G is an expression of form wyws ... wg = 1g, where
each w; is a variable, an inverted variable, or a constant from G; such an equation
is satisfiable if there is a setting of the variables to values in G so that the equality
is realized. We study the problem of simultaneously satisfying a family of equations
over a finite group G and show that it is NP-hard to approximate the number of
simultaneously satisfiable equations to within |G| — € for any € > 0. This generalizes
results of Hastad (2001, J. ACM, 48 (4)), who established similar bounds under the
added condition that the group G is Abelian.
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1 Introduction

Many fundamental computational problems can be naturally posed as ques-
tions concerning the simultaneous solvability of families of equations over finite
groups. This connection has been exploited to achieve a variety of strong in-
approximability results for problems such as Max Cut, Max Di-Cut, Exact
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Satisfiability, and Vertex Cover [8,10,11,15-17,21,27|. A chief technical ingre-
dient in these hardness results is a tight lower bound on the approximability of
the problem of simultaneously satisfying equations over a finite Abelian group;
in this article we extend these results to cover all finite groups.

An equation in variables xi,...,x, over a group G is an expression of form
wi ... wr = 1lg, where each wj; is either a variable, an inverted variable, or a
group constant and 15 denotes the identity element. A solution is an assign-
ment of the variables to values in G that realizes the equality. A collection of
equations £ over the same variables induces a natural optimization problem,
the problem of determining the maximum number of simultaneously satisfi-
able equations in £. We let EQ; denote this optimization problem. The special
case where a variable may only appear once in each equation is denoted EQ};;
when each equation has single occurrences of exactly k£ variables, the problem
is denoted EQg[k]. Our main theorem asserts that for any finite group G it is
NP-hard to approximate EQg[3] (and hence EQg and EQg) to within |G| —e¢
for any € > 0; this is tight.

As mentioned above, EQ; is tightly related to a variety of familiar optimiza-
tion problems. When G' = Z,, for example, instances of EQ, where exactly
two variables occur in each clause, i.e., EQIZ2 [2], correspond precisely to the fa-
miliar optimization problem Max Cut, the problem of determining the largest
number of edges which cross some bipartition of an undirected graph. If, for
example, G = Ss, the (non-Abelian) symmetric group on three letters, then
the problem of maximizing the number of bichromatic edges in a three coloring
of a given graph can be reduced to EQ [14]; other examples are described by
Hastad [16] and Zwick [27]. The general problem has also been studied due to
applications to the fine structure of NC' [3,14] specializing the framework of
Barrington et al. [4,5]. Finally, the problem naturally gives rise to a number of
well-studied combinatorial enumeration problems: see, e.g., [6,13,25] and [24,
pp. 110ff.].

If G is Abelian and £ is a collection of equations over GG, each of which can in-
dividually be satisfied, the trivial randomized approximation algorithm which
independently assigns to each variable a uniformly selected value in G satisfies
an expected fraction |G|~! of the equations. This algorithm can be efficiently
derandomized by the method of conditional expectation [1, §15.1] and it in
fact also applies to EQg, for any finite group G. In 1997, Hastad [16] showed
that if P # NP and G is Abelian, then no polynomial time approximation
algorithm can approximate EQg[3] to within |G| — € for any € > 0. The main
theorem of this paper shows that this same lower bound holds for all finite
groups.

Theorem 1 For any finite group G and any constant € > 0, it is NP-hard
to approzimate EQg[3] to within |G| — e.



The paper is organized as follows: After an overview of our contribution in
Sec. 2 we briefly describe the representation theory of finite groups and the
generalization of the so called long code to non-Abelian groups in Sections 3
and 4. The main theorem then appears in Section 5.

2 Overview of our results

A burst of activity focusing on the power of various types of interactive proof
systems in the 80s and early 90s culminated in the so called PCP theorem,
described briefly below. A probabilistically checkable proof system (PCP) for a
language L consists of a probabilistic polynomial time verifier which, given an
input x and oracle access to a purported proof that z € L, probabilistically
verifies the validity of the proof. In this paper, we only consider PCPs where
the number of random bits used by the verifier is logarithmic in the input
size and the number of “positions” of the proof examined by the verifier is a
constant. The verifier is also nonadaptive in the sense that the queries may
not depend on the values of previously queried positions in the proof. A PCP
is said to have completeness ¢ and soundness s if a correct proof that z € L
is accepted with probability at least ¢ and, when = ¢ L, no proof is accepted
with probability exceeding s.

The PCP theorem [2] asserts the startling fact that any NP-language has
a PCP with completeness 1 and soundness 1/2 where the verifier uses log-
arithmic randomness and examines a constant number of bits of the proof.
To prove our inapproximability results for certain families of equations over
finite groups we use the PCP theorem to construct, for any finite group G' and
any positive constants ¢ and ¢, a PCP with completeness 1 — ¢ and soundness
|G|~! + 0 where the verifier uses logarithmic randomness and examines three
positions in the proof. Each “position” in our setting holds a value from the
group G; this corresponds to reading [log|G|| adjacent bits if the proof is
written in binary.

There is an approximation-preserving reduction from conjunctive normal form
Boolean formulas containing exactly three literals per clause (E3-Sat) to E3-
Sat formulas where each variable occurs in exactly five clauses [12,19]. Cou-
pling the PCP theorem and this reduction shows that for every language L
in NP, an arbitrary instance x can be transformed in polynomial time into
an E3-Sat formula ¢, ; with the following property: if © € L, then ¢, is
satisfiable, and if ¢ L then at most a fraction u < 1 of the clauses can be
satisfied. Here p is a universal constant, independent of the language and the
instance.

In his seminal paper [16], Hastad introduced a methodology for proving lower



bounds for constraint satisfaction problems. At a high level, the method can
be viewed as a simulation of the well-known two-prover one-round (2P1R)
protocol for E3-Sat where the verifier sends a variable to one prover and a
clause containing that variable to the other prover, accepting if the returned
assignments are consistent and satisfy the clause. It follows from Raz’s parallel
repetition theorem [20] that if the 2P1R, protocol is repeated u times in parallel
and applied to the formula ¢, ; above then the verifier always accepts an
unsatisfiable formula with probability at most ¢j; where ¢, <1 is independent
of u.

To prove his inapproximability result for equations over finite Abelian groups,
Hastad constructed a PCP where the verifier tests a given assignment of vari-
ables x4, ..., x, to group values to determine if it satisfies an equation selected
at random from a certain family of equations. As each such equation involves
three variables, this can be tested with three oracle queries. He then, in essence,
reduced the problem of finding a strategy for the 2P1R protocol for E3-Sat
to the problem of finding an assignment which satisfies many of the group
equations by showing that if the verifier in the PCP accepts with high proba-
bility, there is a strategy for the provers in the 2P1R protocol that makes the
verifier of that protocol accept with high probability. The inapproximability
result follows since it is known that the verifier in the latter protocol cannot
accept an unsatisfiable instance of E3-Sat with high probability.

To adapt Hastad’s method to equations over arbitrary finite groups we need to
overcome a couple of technical difficulties. The first one regards the coding of
the proof in Hastad’s proof system. Our second two contributions regard the
analysis of the probability that the verifier accepts an incorrect proof. These
are surveyed briefly in §2.1 and §2.2, below.

2.1 The non-Abelian long code

To encode the proof, Hastad used a proof with several different tables, each
coded with the so called long code. For any finite group G, the long G-code
of a binary string = of length n consists of the values of all functions from n-
bit strings to G' evaluated on x. In his proofs, Hastad has to assume that the
alleged proofs that the verifier examines have a certain structure. For instance,
the positions corresponding to some function f and the function gf for any
g € G must be consistent. This can be enforced by employing certain access
conventions in the verifier, which we describe in detail later. Our first technical
contribution in this paper is to formulate the Fourier transform of the long
G-code for all finite groups G' and to prove that certain access conventions,
slightly different from those used by Hastad, imply that we can assume that
the Fourier coefficients of the alleged proofs examined by our verifier have



certain desirable properties.

2.2  Analysis of the verifier

Our main technical contributions are from the part of the analysis where we
establish the connection between the proof system that tests a group equation
and the 2P1R protocol for E3-Sat. The first step in this analysis is to “arith-
metize” the acceptance probability of the former protocol. For the case of an
Abelian finite group G, this is straightforward: The acceptance probability can
be written as a sum of |G| terms. If the acceptance probability is large, there
has to be at least one large term in the sum. Hastad then proceeds by expand-
ing this allegedly large term in its Fourier expansion and then uses the Fourier
coefficients to devise a strategy for the provers in the 2P1R game for E3-Sat.
Specifically, the probability distribution induced by the Fourier coefficients is
used to construct a probabilistic strategy for the provers in the 2P1R game.
Roughly speaking, the acceptance probability of the verifier in the 2P1R game
is large because some pair of related Fourier coefficients is large.

For non-Abelian groups, the way to arithmetize the test turns out to require
a sum of the traces of products of certain matrices given by the representa-
tion theory of the group in question. As in Hastad’s case, we find that if the
acceptance probability of the linear test is large, there has to be one product
of matrices with a large trace. Our next step is to expand this matrix prod-
uct in its Fourier series. Unfortunately, the Fourier expansion of each entry
in those matrices contains matrices that could be very large; consequently,
the Fourier expansion of the entire trace contains a product of matrices with
potentially huge dimension. Thus, the fact that this trace is large does not
necessarily mean that the individual entries in the matrices are large and di-
rectly using the entries in the matrices to construct the probabilistic strategy
for the provers in the 2P1R game does not appear to work. Instead, and this
is our first main technical contribution, we prove that the terms in the Fourier
expansion corresponding to matrices with large dimension cannot contribute
much to the value of the trace. Having done that, we know that the terms
corresponding to matrices with reasonably small dimension actually sum up
to a significantly large value and we use those terms to construct a strategy for
the provers in the 2P1R game; this is our second main technical contribution.

3 Representation theory and the Fourier transform

In this section, we give a short account of the representation theory needed
to state and prove our results. For more details, we refer the reader to the



excellent accounts by Serre [23| and Terras [26].

The traditional Fourier transform, as appearing in, say, signal processing [9],
algorithm design [22], or PCPs [16], focuses on decomposing functions f: G —
C defined over an Abelian group G. This “decomposition” proceeds by writ-
ing f as a linear combination of characters of the group G. Unfortunately, this
same procedure cannot work over a non-Abelian group since in this case there
are not enough characters to span the space of all functions from G into C;
the theory of group representations fills this gap, being the natural framework
for Fourier analysis over non-Abelian groups and shall be the primary tool
utilized in the analysis the “non-Abelian PCPs” introduced in Section 4.

Group representation theory studies realizations of groups as collections of
matrices: specifically, a representation of a group G associates a matrix with
each group element so that the group multiplication operation corresponds
to normal matrix multiplication. Such an association gives an embedding of
the group into GL(V), the group of invertible linear operators on a finite
dimensional C-vector space V. (Note that if V' is one-dimensional, then this
is exactly the familiar notion of character used in the Fourier analysis over
Abelian groups.)

Definition 2 Let G be a finite group. A representation of G is a homomor-
phism v: G — GL(V); the dimension of V is denoted by d, and called the
dimension of the representation.

Two representations are immediate: the trivial representation has dimension 1
and maps everything to 1. The permutation action of a group on itself gives rise
to the left reqular representation. Concretely, let V be a |G|-dimensional vector
space with an orthogonal basis B = {e, : ¢ € G} indexed by elements of G.
Then the left reqular representation reg: G — GL(V') is given by reg(g): e; —
egn; the matrix associated with reg(g) is simply the permutation matrix given
by mapping each element h of G' to gh.

If v is a representation, then for each group element g, v(g) is a linear oper-
ator and, as mentioned above, can be identified with a matrix. We denote by
(7(g)ij) the matrix corresponding to v(g). Two representations v and 6 of G
are isomorphic if they have the same dimension and there is a change of basis
U so that Uy(g)U ! = 6(g) for all g. A representation non-isomorphic to the
trivial representation is said to be nontrivial.

If v: G — GL(V) is a representation and W C V is a subspace of V', we say
that W is invariant if v(g)(W) C W for all g. If the only invariant subspaces
are {0} and V, we say that «y is irreducible. Otherwise, v does have a nontrivial
invariant subspace Wy and notice that by restricting each v(g) to W, we obtain
a new representation. When this happens, it turns out that there is always
another invariant subspace W; so that V' = W, & W, and in this case we write



Y = v @ 71, where 7y and 7, are the representations obtained by restricting
to Wy and W;. This is equivalent to the existence of a basis in which the y(g)
are all block diagonal, where the matrix of v(g) consists of vy(g) on the first
block and 7;(g) on the second block. In this way, any representation can be
decomposed into a sum of irreducible representations. The matrix entries of
irreducible representations of a finite group G' are “orthogonal” with respect
to the pairing function

(| fo = 155 X il (1)

g9eG

for functions from G to C:

Proposition 3 Let v and 6 be two non-isomorphic irreducible representa-
tions of G. Suppose that they are represented by the matrices (7;;) and (Oke),
respectively. Then (Vi;j | Oke)e = 0 for all i, 7, k,1 and d,(vij | Yee)a = diedjk-

Corollary 4 Let v: G — GL(V) be a nontrivial irreducible representation
of G. Then ¥ e v(g) = 0.

For a finite group G, there are only a finite number of irreducible represen-
tations up to isomorphism; we let G denote the set of distinct irreducible
representations of G. It is not hard to show that any irreducible representa-
tion is isomorphic to a representation where each (g) is unitary, and we will
always work under this assumption.

We remark that if R(G) denotes the collection of all representations of a finite
group G upto isomorphism, then the transformation G — R(G) is “functorial”
in the sense that if ¢: G — H is a group homomorphism, then there is a
natural map

¢": R(H) = R(G) (2)
given by ¢*(p) = p o ¢. Note that ¢*(p) need not be irreducible even if p is.

There is a natural product of representations, the tensor product. We define
the tensor product A ® B of two matrices A = (a;;) and B = (bg) to be
the matrix indexed by pairs (4, k); (4, £) so that (A ® B)qkyj,e) = @ijbre. We
will use the so called inner trace of a tensor product: For a matrix M in-
dexed by pairs (i, k); (7,¢) the inner trace, denoted by Tr M, is defined by
(Tr M)i; = X Mik),(jk)- We let tr denote the normal trace. The inner trace
is the “opposite” of the tensor product in the sense that Tr(A® B) = (tr B) A.
If v: G — GL(V) and #: H — GL(W) are representations of G and H, re-
spectively, we define y® 6: G x H — GL(V ® W) to be the representation of
G x H given by (y® 0)(g,h) = v(9) ® 6(h).

Proposition 5 Let G and H be finite groups. Then the irreducible represen-
tations of G x H are precisely {y® 60 : v € G,0 e H} Furthermore, each of



these representations is distinct up to isomorphism.

For a representation 7, the function g — try(g) is called the character corre-
sponding to v and is denoted by x,. Note that x, takes values in C even if
v has dimension larger than one. Our principal use of the character relies on
the following fact:

Proposition 6 Let G be a finite group. Then

'Y '7 -

e 0 otherwise.

As y(1¢) is always an identity matrix, x,(1l¢) = d, and we conclude the
following:

Corollary 7 Y =|G|.

ve@ 7
Note that the pairing function defined in (1) is not an inner product on the
space of functions from G to C, as it is not semilinear in f,. It does, however,
coincide with the usual inner product

<f1|f2 |G|Zf1 f2

on the class of functions for which f(¢™') = f(g)*, which will play a dis-
tinguished role in the proofs below. In fact, the functions corresponding to
the entries in the irreducible representations of G are indeed orthogonal with
respect to the inner product (- | -). Since there are |G| such functions by
Corollary 7, there are sufficiently many to span the space of functions from G
to C.

3.1 The Fourier transform

We now proceed to describe the Fourier transform of functions from an ar-
bitrary finite group G to C. Let f be a function from G to C and 7 be an
irreducible representation of GG. Then

flg (3)
-G 0
is the Fourier coefficient of f at . Moreover, f can be written as a Fourier

9) = dytr(£y(g7")) (4)

ve@



In our analysis, we need the following version of Plancherel’s equality:

Lemma 8 Suppose that f is a function from G to C. Then

> Y Y 4wl = |G|Z|f (5)

veG 1<i<dy 1<j<d, 9eG

iof the representations v € G are represented in unitary bases.

PROOF. We expand the expression above using the definition of (- | -)¢:

‘(f | %J ‘ ‘G|2 Z Z f ’YZJ f (h)(%'j(h_l))*

9€G heG

Since 7 is a unitary representation, y(h™') = v7'(h) = 7*(h), and hence
Yij(h™') = (7i(h))*. Therefore,

> XY (el

NeG 1<i<d, 1<j<d7

= |2 Z d Z Z Z Z f 'YZJ( )’in(h)

’YEG 1<i<dy 1<j<dy g€G heG

W > X F@)f () X dy (g™ ()

ge€G heG ’YEG
= a3 X X @0 L du(r(7h) = = X 1)
‘ | 9€G heG veG | ‘gEG

where the last equality follows from Proposition 6. (See also Serre’s account
|23, §6.2, Exercise 6.2], which discusses this in different language.)

3.2 The Fourier transform of matriz-valued functions

We also need to use the Fourier transform on functions f: G — End(V),
where End (V) is the set of linear maps from the vector space V to itself;
here we identify End (V') with the space of all dim V' x dim V' matrices over C.
Although we have not found any treatment of such transforms in the literature,
it is straightforward to generalize the concepts from the previous section to
matrix-valued functions. For a representation v of G, we define

Treating the f(g) as matrices, this is nothing more than the component-wise
Fourier transform of the function f. The reason for grouping them together



into these tensor products is the following: Let f, h: G — End(V') be two such
functions, and define their convolution as

(F = h)(g |G‘Zf

teG

this product being the ring product in End(V) (that is, function composition).
Then it turns out that (f * h) fvhy, this product being matrix multiplica-
tion:

(f¥h), |G|Zf*h ®(0)

\GP 3, L UnE ) @0ty
|G|2 Xé XC:;( v(®)) (h(tg) ® vt 9))
:fvﬁv

In this case, the Fourier series is

9= aT(f(Terg ™)) (7)

76@

where Tr M is the inner trace. This also gives rise to a Plancherel equality: for
two functions f, h: G — End(V),

@Zf(g)h(g) (f *h) (1) = Y d, Tr(f,h,). (8)

geG 7EG

As we noted above, the representations of a finite group can always be ex-
pressed in a unitary basis. When a function from a finite group G to End(V)
behaves like a unitary matrix in a certain sense and the representations of G
are expressed in a unitary basis, the Fourier coefficients are Hermitian. This
turns out to be important in our analysis.

Definition 9 Let G be a finite group, V be a finite-dimensional vector space,
and f be a function from G to End(V). Then f is skew-symmetric if f(g7') =
f*(g) for all g € G.

Lemma 10 Let G be a finite group, V' be a finite-dimensional vector space,
and f be a skew-symmetric function from G to End(V'). Then f, is Hermitian
if v is expressed in a unitary basis.

10



PROOF. Recall that a matrix M is Hermitian if M = M*. By equation (6),

;( 9+ 1) @)
Z( 9+ (0 ®7(),

geqG

fi= g SI@®10 =54

geG
26

where the last equality follows since f is skew-symmetric and 7 is expressed
in a unitary basis. Now, f(g) ® v(g) + f*(g9) ® v*(g) is clearly Hermitian, and
since a sum of Hermitian matrices is Hermitian, f, is Hermitian.

4 The non-Abelian long code and its Fourier transform

The long code was introduced by Bellare, Goldreich and Sudan |7] and adapted
by Héastad [16] to prove approximability bounds for linear equations over
Abelian groups. In this section, we once more generalize the long code for
use in our proof system, that must work for all finite groups.

Let K be a finite set and denote by GX the set of all functions from K to G.
The long G-code of some z € K is the function A, from G¥X to G such
that A,(f) = f(z). The proof in our PCP consists of several separate tables,
each of which is a purported long code. In the analysis of the soundness of the
verifier, we study the Fourier transform of such purported long codes composed
with a representation of G, i.e., the Fourier transform of functions from G¥
to End(V), where V is the underlying vector space of a representation p.

4.1 Folding

We first note that the concept of folding that has been used extensively for
ordinary long codes extends to the long G-code.

Definition 11 Let G be a finite group, v € G be arbitrary, V' be the space
corresponding to vy, K be a finite set, and A be a function from G¥ to End(V).
Then A is y-homogeneous if A(gf) = v(g)A(f) for all g € G and all f € G¥.

In the above definition, gf is interpreted in the natural way: it is the function
defined by = — gf(z).

Lemma 12 Let G be a finite group, v be an arbitrary nontrivial representation
of G, V' be the space corresponding to v, K be a finite set, and A be a -
homogeneous function from G¥X to End(V'). Then fl,, = 0 when p is the trivial
representation of G¥.

11



PROOF. Since p(f) =1 for all f when p is the trivial representation, (6) im-
mediately yields

> A |G||K\+1 > > Algf)

feGK geG feGK

- e (5 w) a0 =0

feGgx

o= T

where the last equality follows from Corollary 4.

By employing a certain access convention in the verifier, we can ensure that
tables correspond to y-homogeneous functions.

Definition 13 Let G be a finite group, K be a finite set, and A be a function
from G¥ to G. Partition G¥ into equivalence classes by the relation =, where
f = h if there is g € G such that f = gh. Write [f] for the equivalence class
of f. Define Ag, A left-folded over G by choosing a representative for each
equivalence class and defining Ag(h) = gA(f), if h = gf and f is the chosen
representative for [h].

Lemma 14 Let G be a finite group, K be a finite set, and A be a function
from GX to G. Then o Ag is y-homogeneous for every v € G.

PROOF. Note that Ag(gf) = gAg(f) for all g € G and all f € GK. Hence
(7o Ac)(9f) = v(9)(v 0 Ac)(f)-

It turns out that our analysis only requires some of the tables in the proof to be
folded, while the other tables must correspond to skew-symmetric functions as
per Definition 9. Again, this can be accomplished by proper access conventions
in the verifier. In this case, we achieve our goal by, when accessing A(f), with
probability 1/2 using the value A(f~1)~! instead.

Lemma 15 Let G be a finite group, K be a finite set, A be a function from G¥

to G, v € G be unitary, and B(f) = Epe(1 1}[((fyoA)(fb)) |. Then B is skew-
symmetric.

12



PROOF. By the above definition of B,

B(f) = Buea [ (o ()]

_ %(fyo A)(f) + %((7 oA

= Sro AN +5 (e AUT)

where the last equality holds since 7 is unitary. Hence B(f™!) = 1(y0A)(f 1)+
s((yo A)(f))* = (B(f))*, and B is skew-symmetric by Definition 9.

We remark, that if A is a long G-code, Ag is identical to A, and A(f 1) =
A(f).

4.2 Projection

To state the final long G-code property that we need, we have to develop
a more precise and detailed description of the Fourier transform. Since we
can represent a function f: K — G by a table containing f(z) for every
r € K, we can identify G¥ with G/XI. In order to reason about the Fourier
transform of a function from G¥ to End(V), we need an understanding of
the irreducible representations of powers of G. It follows from Proposition 5
that the irreducible representations of G¥ are precisely those representations
obtained by taking tensor products of |K| irreducible representations of G:
when p, € G for each z € K this is the representation given by

p= ® Pz where p(f) = ® pz(f())-

reK zeK

We treat the tensor product of two matrices as a matrix indexed by pairs.
Analogously, we treat the tensor product of | K| matrices as a matrix indexed
by |K|-tuples. In order to reason about single entries in the tensor product
that forms a representation p = @, cx p» We define the set of indices 1(p).
An element i € i(p) is a vector indexed by elements of K so that for all
z € K,1 <1, <d, ; we refer to such an element 7 as an indez. Then for two
indices 7, j € ¢(p) we define

pi(5) = I (pe (@)

rzeK 2 7j:1:

We also define the weight |p| of an irreducible representation p of GX to be
the number of x € K such that p, is nontrivial.

The verifier in our PCP checks positions in tables corresponding to two related
long codes. The precise details of how these tables are related is described

13



below; for now it is enough to know that the tables correspond to functions
from F = GX to G and from H = G to G, respectively, where there is
an onto function 7: L — K. Such a function 7: L — K gives rise to the
“dual” function 7*: F — H given by n*(f) = f om; the 7* defined in this way
is in fact a homomorphism. Applying now the functorial property noted in
Section 3 (equation 2) to the homomorphism 7*, a representation p € H may
be transformed into the representation p™ of F' given by p™(f) = p(f o). In
particular, this transforms the components of the representation p € H into
functions on F. Recall that for ,j € «(p), the components p;; are functions
from H to C. We denote the new, associated, functions by pf;: F' — C; they
are given by the rule f — p;;(f o). Using our definition of the index sets,

pZ}(f) = pij(fom) = H H (py(f(x)))

zeK yen—1(x) by sy
We are now ready to formulate the following projection lemma:

Lemma 16 Let K and L be finite sets and m: L — K be an onto functwn
Let F = GK and H = G". Define the relation ~ on F x H so that for 7 € F
and p € H 7~ p if for all x € K such that T, is nontrivial, there is some
y € ™ () such that p, is nontrivial. Then

(1) 7~p = |7] < |pl.
(2) T4 p = Vi, j € p),Vk, L€ (1), ((pf] | The)F = 0)-

PROOF. The first implication follows directly from the definition of the re-
lation ~. To prove the second implication, assume that 7 % p; then there is
some z' € K such that 7, is nontrivial but p, is trivial for all y € 7=*(z’).
Recall that we can write

A0=1 I (a(@))  ad )= (=(f@))

zeK yer—1(z) iy:Jy zeK kala

by our definition of the index sets; hence

(pij | Te)w |F\ > ( II 1II (py(f(x))>iy,jy> <xg(<%<f_l(x))>kz,em>

fEF \zeK yer—1(z)
|F|Z H(Tw( i )) 11 (py(f(x))>

Jerack hole yer=1(a) iy
-1
- =(97) py(9)). )
xg(<|G| gezg( )kz,ex yEﬂHl(x)( y )z,,,,y

where the last equality holds since a sum over all functions f € F can be
viewed as |K | nested sums over the possible values of f(x) for z € K. We can
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then change the sums of a product into a product of |K| sums, i.e., a product
of sums over all g € G.

Since p, is trivial for all y € 7~!(2'), the factor corresponding to z' in the

above product is
1 _
G (e ™), =0

kydy

where the equality follows from Corollary 4.

5 The main result

In his paper [16], Hastad introduced a methodology for proving lower bounds
for constraint satisfaction problems. At a high level, the method can be viewed
as a simulation of the well-known two-prover one-round (2P1R) protocol for
E3-Sat where the verifier sends a clause to one prover and a variable contained
in that clause to the other prover, accepting if the returned assignments are
consistent and satisfy the clause.

5.1 The two-prover one-round protocol

The starting point for our PCPs will be the standard 2P1R. protocol for NP
which we will now describe. We begin by discussing the decision problem p-gap
E3-Sat(5).

Definition 17 A Boolean formula ¢ in conjunctive normal form is p-promised
if either ¢ is satisfiable or no more than a u-fraction of the clauses of ¢ are
simultaneously satisfiable. u-gap E3-Sat(5) is the problem of determining sat-
isfiability of a p-promised Boolean formula, where each clause contains exactly
three literals and each literal occurs exactly five times.

Recall that it is possible to reduce any problem in NP to an instance of u-
gap E3-Sat(5) [2,12,19]. This gives rise to a natural 2P1R protocol consisting
of two provers, P, and P,, and one verifier. Given an instance, i.e., an E3-
Sat formula ¢, the verifier picks a clause C' and variable x in C' uniformly at
random from the instance and sends C to P; and x to P». It then receives an
assignment to the variables in C' from P, and an assignment to x from P, and
accepts if these assignments are consistent and satisfy C. If the provers are
honest, the verifier always accepts with probability 1 when ¢ is satisfiable, i.e.,
the proof system has completeness 1, or perfect completeness. It can be shown
that the provers can fool the verifier with probability at most (2 + x)/3 when
¢ is not satisfiable, i.e., that the above proof system has soundness (2 + i) /3.
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The soundness can be lowered to ((2+41)/3)* by repeating the protocol u times
independently, but it is also possible to construct a one-round proof system
with lower soundness by repeating u times in parallel as follows: The ver-
ifier picks u clauses (Cy,...,C,) uniformly at random from the instance.
For each C}, it also picks a variable x; from C; uniformly at random. The
verifier then sends (C,...,C,) to P and (z1,...,x,) to P,. It receives an
assignment to the variables in (Cy,...,C,) from P; and an assignment to
(x1,...,2,) from P,, and accepts if these assignments are consistent and sat-
isfy C1 A --- A Cy. As above, the completeness of this proof system is 1, and
it can be shown [20] that the soundness is at most c};, where ¢, < 1 is some
constant depending on g but not on u or the size of the instance.

5.2 The protocol

The proof in our PCP contains a purported encoding of a pair of strategies
for the provers in the above u-parallel game. For a multiset U of variables,
we denote by {—1,1}Y the set of all assignments to the variables in U. For a
multiset T of clauses, we denote by SAT" the set of all satisfying assignments
to the clauses in W. A satisfying assignment to the clauses in W can be viewed
as a string of length u consisting of the numbers 1 to 7. Each number represents
one of the satisfying assignments to an E3-SAT clause according to some
arbitrary, but fixed, convention. Of course, it may happen that U contains
the same variable more than once or that W contains clauses with common
variables. For technical reasons, we do not require the assignments in {—1, 1}V
and SAT" to be internally consistent. When z is an assignment to all the
variables in an instance and V' is a multiset of variables or a multiset of clauses,
we denote by z|y the assignment to the variables in V. If V' is a multiset of
clauses z|y is therefore an assignment to the variables that constitute the
clauses in V.

Definition 18 A Standard Written G-Proof with parameter u for a for-
mula ¢ consists of a table Ay : G- L @ for each multiset U of u variables
from ¢ and a table Ay : GSATY @ for each multiset W of u clauses from ¢.

Definition 19 A Standard Written G-Proof with parameter u is a correct
proof for a formula ¢ if there is an assignment x, satisfying ¢, such that Ay is
the long G-code of x|y for any multiset V' containing either u variables from ¢
or u clauses from ¢.

The protocol itself is similar to that used by Hastad [16] to prove inapproxima-
bility of equations over Abelian groups; the only difference is in the coding of
the proof. The tables corresponding to sets of variables are left-folded over G
and the tables corresponding to sets of clauses are folded over inverse. The
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Input: A p-gap E3-Sat(5) formula ¢ and oracle access to a Stan-
dard Written G-Proof with parameter .
(1) Select uniformly at random a multiset W = {C;,,...,C;,}
of u clauses.
(2) Construct a multiset U by choosing a variable uniformly at
random from each Cj, .
(3) Let 7 be the function that creates an assignment in {—1,1}Y
from an assignment in SAT" .
(4) Select uniformly at random f: {—1,1}V — G.
(5) Select uniformly at random h: SATY — G.
(6) Choose e: SATY — G, such that, independently for each
y € SATY,
(a) With probability 1 — ¢, e(y) = 1g.
(b) With probability €, e(y) is chosen uniformly at random
from G.
(7) Choose b; and by independently and uniformly at random
from {—1,1}.
(8) I Apa(f)(Aw(h™))" (Aw (A~ (f o m)7"e)))* = 1 then
accept, else reject.

Fig. 1. The above PCP is parameterized by the positive integer u and the positive
real € and tests if a p-gap E3-Sat(5) formula ¢ is satisfiable by querying three
positions in a Standard Written G-Proof with parameter u.

verifier is given in Figure 1. It is straightforward to bound the number of
random bits used by the verifier and the completeness of the PCP:

Lemma 20 The verifier needs at most u log(5n)+2%log |G|+7%log(|G|?*/€)+2
random bits.

PROOF. Since every variable occurs exactly five times in the u-gap E3-
Sat(5) formula ¢, at most ulog(5n/3) random bits are needed to sample the
set W. Once W has been selected, ulog 3 bits suffice to select U. It is enough
to use (2 4 7*) log |G| random bits to select the functions f and h. To sample
the error function e, we need to use log(|G|/€) random bits for every possible
assignment to the variables it depends on. Thus, 7*log(|G|/€) random bits
suffice to sample the entire error function. Finally, the sampling of b; and by
requires 2 bits.

Lemma 21 The verifier in Figure 1 has completeness at least 1 —(1—|G|™})e.

PROOF. Let x be the assignment corresponding to a correct Standard Writ-
ten G-Proof with parameter u for a formula ¢. Then, by the definition of the
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long G-code, Aya(f) = f(z|y) for all f and (Aw(h®))® = h(z|w) for all h;
hence

Av (F) (Aw (h™)™ (Aw (R (f o m)e)™))"
= f@lp)h(@lw)h (@lw)f  (@lv)e(zlw) = e(zlw).

Considering how e is selected by the verifier, e(x|yw) = 1¢ with probability
1 — (1 —|G|™)e and hence the verifier accepts a correctly encoded proof of a
satisfying assignment with probability 1 — (1 — |G|™})e.

5.8 Analysis of the soundness

The analysis follows the now standard approach. We assume that the verifier
accepts a proof corresponding to an unsatisfiable formula with probability
|G|7' + § and prove that it is then possible to construct strategies for the
provers in the 2P1R game that make the verifier of that game accept with
high probability. Since it is known that this cannot be the case, there cannot
exist a proof corresponding to an unsatisfiable formula that the PCP verifier
accepts with probability |G|~! + 4.

To this end, we first apply Proposition 6 to arrive at an expression for the
acceptance probability. Since

GI7H Y dyx, (AU,GU) (Aw ()" (Aw (W (f o w)-ler)?))’”)

ye@

is an indicator of the event that the verifier accepts, the acceptance probability
can be written as:

G Y dy s (Aua () (Aw(h)” (Aw (b7 (f o) ~le)™)) )| =

yeG

GG d Bl (Aue() (4w (7)) (Aw((H (fom) )" )|

7€G\{1}

where the expectations are over the choice of U, W, f, h, e, by, and by. With
the aid of Corollary 7, we deduce that if the verifier in Figure 1 accepts with
probability |G|~™' + §, there must be some nontrivial irreducible representa-
tion v of G such that

‘E[X7 (Ava(F) (Aw ()" (Aw (b7 (7 o w)—le)bz)”z)H >ds (9)

We now proceed by applying Fourier-inversion to v o Ay, and v o Ay. More
precisely, we first apply Fourier-inversion to 7y o Ay, resulting in:
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Lemma 22 Suppose that the verifier in Figure 1 accepts with probability |G|+
0. Then there exists a nontrivial representation v of G such that

B (A0 S 41 - 0" (B (1, 01017 0m)) )

pcH

> d, 0.

where A =yo Ayg, H=G"" and B(h) = Epe(_1,1y[((7 0 Aw)(h*))?].

PROOF. Since the verifier in Figure 1 accepts with probability |G|t + §
there exists a nontrivial representation v of G such that the inequality (9)
holds; we now fix that v and select a basis such that it is unitary. We pro-
ceed by expanding the expectation in (9) in a Fourier series. Since 7 is a
homomorphism, the expectation in (9) is equal to

trE gm0 Au) (1) En [((ro w)(12)
B[ ((r0 Am(n (7 om) 1)

To shorten the notation, we introduce the shorthands A = yo Ay ¢ and B(h) =
Epei—1,13[((7 © Aw)(h?))’]. With these shorthands the above expectation is
equal to

trEppeuw A(F)BR) B (fom)™e)]
= tr Epouw | A(f) Eue[BB( ' (fom) o)] | (10)

We now expand the inner expectation in its Fourier series. Since Ej, .[B(h)B(h ! (fo
m)"te)] = Ee[(B x B)((f o m) 'e)], this is immediate:

BB B)(f om) 0] = T d, T8I @ (o7 om) Eulote M) ).
To compute E,[p(e™!)], note that

Ee[p<e1>]:Ee[ R (py(e(y)l))] _

yeSATW

® Fuo |pu(e®) )],

yeSATW

where the second equality follows since e(y) is selected independently for ev-
ery y. Now, Ecy)[py(e(y)™")] = I, if py is trivial; otherwise

B [pu(ev) )] = (1L~ Ay (16) + eBcslanl0)] = (1~ )L,
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where the last equality follows from Corollary 4. Hence E.[p(e ')] = (1 —
6)|p|Idp; when this is substituted into the above expression, (10) becomes

trE[A(f)B(h)B(h™' (f o) "e)| =

tr(A(f) > d,(1— €)” Tr(ég (Id7 ® p(fo W))))] . (11)

pEH

Ef

We will now see that for any fixed f, the terms in the resulting sum corre-
sponding to p with |p| > ¢ contribute very little.

Lemma 23 Let G be a finite group, V be a d,-dimensional vector space,
A(f) € End(V) be unitary, H be a power of G, and B: H — End(V) be
a skew-symmetric function such that for all h € H, B(h) is a convex combi-
nation of unitary matrices. Then

<d(1-¢°  (12)

tr(A(f) Z d,(1 — €)l Tr(l?ﬁ (Id7 ®p(fo W))))
iz

for any positive real € and any positive integer ¢ > 0.

Corollary 24 Suppose that the veriﬁgr i Figure 1 accepts with probability
|G|t + 6. Then, for any unitary v € G and any ¢ > [(logd — 1)/ log(1l —€)],
where logs are taken base 2,

d,6

<
2

B 2409 X 41 - 07 (B3R @915 0m)) )

pEfI
lp|>c

where A =y o Ayg, H=G"" and B(h) = Epe—1,13[((7 0 Aw) ()]

A

PROOF of Lemma 23. Note that, since B is skew-symmetric, B, is Her-
mitian by Lemma 10 and thus Bﬁ is a positive semidefinite matrix. Hence, a

direct application of Lemma 34 bounds the left-hand side of (12) from above
by

S d,(1—¢)f tr Eg

pel
lp|>c

By Lemma 33, the above expression can be bounded from above by

(1= Y d,tr B2 = (1 —e)%r(z deng).

pEH pEH
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By Plancherel’s equality (8), 3= ¢ 5 d, Tt Bz = (B B)(1g). Since the product
of unitary matrices is also a unitary matrix, B(h)B(h ') is a convex combi-

nation of unitary matrices for every h € H. Hence
1

> B(h)B(h)

heH

is itself a convex combination of unitary matrices and thus has elements with
at most unit magnitude by Corollary 29. Consequently, tr((B * B)(1g)) is at
most d, and therefore

(1—e€)° Y dytr B2 <d,(1—e),

peH

which completes the proof.

While we bound the terms corresponding to p with |p| > ¢ by a purely algebraic
argument, we bound the terms corresponding to p with |p| < ¢ by using them
to devise a strategy for the provers in the 2P1R game for p-gap E3-Sat(5).
Since this strategy has a success probability that is independent of u, the
number of repetitions in the 2P1R game, we can then select u in such a way
that also the terms corresponding to p with |p| < ¢ have to be upper bounded
by d,d/2.

Lemma 25 Suppose that for any nontrivial v € C;',

>n (13

By o ltr<A(f) S d,(1— e Tr(B§ (s, @ p(f o 7T))))

pEH
lpl<c

where A: GV — End(V) is unitary and B: GSAT" — End (V) is a conver
combination of unitary matrices, both A and B are known to both provers
in the 2P1R game from §5.1, V 1is the vector space corresponding to vy, and
H = G5 Then there is a strategy for the provers in the 2P1R protocol
with success probability at least n*c™"|G|~*d °.

Corollary 26 Let Ay and Ay be the tables in a Standard Written G-Proof
with parameter u corresponding to an unsatisfiable formula. Then, for any
unitary v € G,

‘Ef,U,W ltr (A(f) pg{ d)(1 - ¢) Tr (Bz(I% ®p(fo m))) < 6%5 (14)
lpl<c

where A = 0 Ayg, H = G and B(R) = Epeq (7  Aw) ()]
provided that u > [(2logd~" + logc + clog |G| + 4logd, + 2)/logc, | where
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cy s the constant from §5.1.

PROOF of Lemma 25. Expand A(f) using Fourier inversion (7). Then the
left hand side of (13) becomes

o 5 () (5]

reF peH
lpl<c

where F' = G- If this expression is larger than 7, then there must be
some index t such that

el ot
fi<e tt

IS

(15)
We now fix this value of ¢. By our notation for the index sets «+(7) and «(p)
and the “projected” representation pj, from §4.2,

(1(i(t 07G™))) = X (4), , sonls ™),

tk m,neur)

(Tr(Bg(Id7®p(f07T)))> = Y (Bﬁ)ko,tppﬁp(f)

kt  o,p€u(p)

= Z Z »)koyra( )Tq,tppgp(f)-

o,p€L(p) g€L(p)
1<r<dy

Inserting these expressions into the right hand side of (15), we get
l<l T EmIr ¥

1<k<d, reF peH mmey(T)
1<r<d, |p|<c 0,p,q€L(p)

dep(AT)tn,km(Bp)ko,rq(Bp)rq,tp Ef [Tmn (f ppo ‘ U W ] ‘ (16)

Focus now on the innermost expectation

Ef [Tmn(f ppo ‘ U, W] <p;o | 7—mn>F-

By Lemma 16, this is zero unless 7 ~ p, where ~ is the relation defined in
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Lemma 16. Hence (16) becomes

n

d_ > Euw| Y, D Z
1<k<d, peH ek mneur)
1<r<d, lp|<c T~P 0,p,q€L(p)

dep(Af)tn,km(Ep)ko,rq(Bp)rq,t;D(Pgo | 7'mn)F] . (17)

We now apply Cauchy-Schwartz twice, first to the sum over k,r and then to
the remaining sums, to simplify the above expression further:

| 3,

oy va[zz >

4
vy 1<k<d, pEH e F mmneEy(T)
1<r<d, lp/<cT~P 0,p,q€L(p)

U

d-d, (Af)tn,km (Bp)ko,rq(Bp)rq,tp@go | Ton) P

|

2> (18)

BP)’CO,T(I

> EU,W[(ZZ > dedy|(Ar)un,

<k< peH recF mneur)
1<r<d, \p|<c TP 0,p,q€L(p)

By)easn|” (67 | Tmn>F\2)]

<pEH ref mneu(r)
lp|<c T~P o,p,q€L(p)

We proceed by bounding the second factor above, i.e.,

- 2
Z Z T(J:tp‘ ‘(ppo | Tmn)F‘
pEH ref mmneur)
lp|<c T~P 0,p,q€L(p)
Bo)rasw| ( %o | Tonn) ) (19)
pEfI P,q€L(p) reF mneu(r)
|p|<e TP 0€L(p)

By equation (5) in Lemma 8,

> 7o | b = |F|Z 2 lppolfom)P?

ref mneu(r) FEF o€u(p)
o€(p)

where the last equality follows since p is written in a unitary basis and the
inner sum is therefore exactly one for every f by Lemma 28. Regarding the

rest of (19), note that (Bp)rq,tp = [H|™ Chen Bre(h)pgp(h) = (Byt | P;p1>H§
another application of Lemma 8 therefore shows that

Z Z d B 'rq,tp‘ —Z Z d‘(B'rt|p H‘ _|H‘Z|Brt ‘2<1

pC H p,a€u(p) pC H p,a€(p) heH
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where the inequality follows since B is a convex combination of unitary ma-
trices and therefore has entries with at most unit magnitude by Corollary 29.
Using the above bounds in (18) transforms that bound into

77 ~ 2], A 2
< X EUW[Z > Y dedy|(A)mpm| |(Bororg ]
Y 1<k<dy =y peH mnEL( )
1STSd'Y T™p ‘p‘<0 o,p,qEL(p)
~ 2 A 2
S ‘G|c Z EU,W[Z Z Z dep|(AT)tn,km‘ |(Bp)k0,7'q ]
1<k<dy reF peH m,neuT)
1<r<dy TP [pl<c 0,9€L(p)

where the second inequality follows by summing over p in the innermost sum.
To conclude, there must be some k,r € {1,...,d,} such that

2 n?

EUW[ZZ Z dd‘ tnkm| ‘ korq

pEH TeF mne(T)
|pl<c TP 0,q€u(p)

We now describe the strategies for the provers in the 2P1R protocol. The
index t is independent of U and W and can be calculated by the provers in
advance. Also the values of £ and r mentioned above can be calculated in
advance.

Upon receiving W, P; first picks p € H with probability proportional to
Y o.qcu(p) Apl(Bp)korq|*- This is a well-defined procedure since

S 5 bl

peH 0,9€L(p

1
ﬁ > |Be(h)]* < 1.

heH

Having selected p, P; then returns a random y such that p, is nontrivial. If
no such y exists—this happens only if p is trivial—P; gives up.

Upon receiving U, P, picks 7 € F with probability 3, . dr \( inem]| -
This is a well-defined procedure since

2

ref nméeyr)

1
A)inn| = = Aw()P < L.
| |feF

Then P, picks a random z such that 7, is nontrivial and returns this x as its
answers. This is always possible since A, is nonzero only for nontrivial 7 by
Lemma 12.

To give a lower bound on the success rate of this strategy, we argue that there
are many choices of the provers that make the verifier accept: Specifically,
suppose that P; picks p and P, picks 7 such that 7 ~ p. If P, returns z/, then
there must be some y' € 7!(2') such that p, is nontrivial. The probability of
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P, picking this ' is at least |p| '. Summing over all 7 and p such that 7 ~ p,
we get that the probability of success is at least

2

~ 2 ~
dep‘ (AT)tn,km‘ (Bp)ko,rq 7’}2
Buw|2> > X 2 T CTeds
o | clGld
peH TeF mmneL(T) ¥
lp|<c T~p 0,q€L(p)

where the inequality follows from the bound (20).

Finally, we put together these two parts and establish the soundness of the
verifier.

Lemma 27 For any constants 6 > 0 and 0 < € < 1, there is a choice of the
parameters ¢ and u such that the soundness of the PCP in Fig. 1 is at most

|G|7t + 6.

PROOF. Suppose for contradiction that ¢ is not satisfiable and there is a
proof which the verifier accepts with probability |G|~ + 6. By Lemma 22, for
this proof, there is a nontrivial irreducible representation v of G' such that

> d.0.

Efuw ltl“ (A(f) > dp(1— el Tr (B’Q’ (Id” @[ W))))

pcH

where A = yo Ayg, H = G**™" and B(h) = Ese_1,13[((v0 Aw)(h))?]. How-
ever, by selecting constants ¢ > [(logd —1)/log(1 —¢)] and u > [(2logd~" +
log ¢ + clog |G| + 4logd, +2)/logc; '], Corollaries 24 and 26 show that

By |r(40) X a0 - 92 (B (1, @011 o)) )| <

pEH
lp|>c

By |n(40) X a0 - 92 (B8, 0011 o)) )| <

pEH
lpl<c

which is a contradiction.

5.4 Hardness of approzimating EQg,[3]

We now apply this PCP to obtain hardness results for approximating systems
of equations over G.
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PROOF of Theorem 1. Let G be a finite group and let 0 < ¢ < 1 and
0 < ¢ < 1 be two constants satisfying the inequality |G| +§ < 1 — €. By
Lemma 21 and Lemma 27 it is possible to choose the parameters of the verifier
in Figure 1 such that

(1) the constant u is chosen so that |G| 2" < §/6, and

(2) it is NP-hard to distinguish between the case that there is a proof which
the verifier accepts with probability 1 — €/2, and the case that there is
no proof which is accepted with probability more than |G|™! + /2.

Now we create a system of equations £ in the natural way: the variables
correspond to the positions in the proofs, and an equation is added for each
random string corresponding to the test made for this random string. By a
discussion similar to that in Lemma 20, it can be shown that the instance so
obtained contains m = 4(5n)*|G|*"(2|G|?/e)™ equations, which is polynomial
in n as u, |G|, and € are constants. One may think that the equations would
always be of the form zy’z/ = 14, but this is not the case due to folding
over (G; in general an equation is of the form gry’z/ = 14, where g is a group
constant and ¢, € {1,—1}.

There is a technicality in that when h® = (h™'(f o 7)~'e)? in the protocol,
the resulting equation contains two occurrences of the same variable. Observe,
however, that h® = (b }(fon) te)”? <= (fom) =eh 21 and, as 7 is
onto, the probability n that (f on) takes this particular value is no more than
|G|7%" < §/6. Thus, removing nm equations from & results in a new family
of equations &' of size m’ = (1 —n)m > (1 — §/6)m which is indeed a proper
instance of EQg[3]. Moreover, if it is possible to satisfy at least (1 — ¢/2)m
equations in &£, then it is possible to satisfy at least

(1_6/2_77) ! € ! !
i-n :<1_2(1—n)>m Z{mam

equations of £’ where the last inequality follows since < §/6 < 1/2. Simi-
larly, if it possible to satisfy no more than (|G| +4§/2)m equations of £, then
it is possible to satisfy no more than

) Gt +46/2 o
(|G|_1 + —)m = %m' < <|G|_1 + 5) (1+2n)m'

(1—€¢/2)m —nm =

2 1-—

0 0
< <|G|‘1 + 5) (1 + §>m' < (|G|‘1 + 5)m'

equations of &', where the first inequality follows since (1 —n)™!' < 1 + 2n.
Furthermore, by appealing to condition (2) above, distinguishing these two
cases is NP-hard, as desired.
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6 Open questions

An interesting question is that of satisfiable instances. Some problems, such
as E3-Sat, retain their inapproximability properties even when restricted to
satisfiable instances. This is not the case for EQg[k] when G is a finite Abelian
group, since if such a system is satisfiable a solution may be found essentially
by Gaussian elimination. However, when G is non-Abelian, deciding whether
a system of equations over G is satisfiable is NP-complete [14], so it seems
reasonable that the problem over non-Abelian groups retains some hardness
of approximation for satisfiable instances. However, the following simple ar-
gument, shows that we can not hope, even for the non-Abelian groups, for
a lower bound of |G|™! + §: Given an instance o of EQg[k] over some non-
Abelian group G, we construct an instance o’ over EQ};[k], where H = G/G’
and G' is the commutator subgroup of G, i.e., the subgroup generated by the
elements {g " 'h 'gh: g, h € G}. The instance ¢’ is the same as o, except that
all group constants are replaced by their equivalence class in G/G’. Now since
H is an Abelian group, we can solve over H. The solution is an assignment
of cosets to the variables. We then construct a random solution of x by for
each variable choosing a random element in the corresponding coset. Now the
value of the left hand side of each equation will be uniformly distributed in
the coset of the right hand side, and thus we will satisfy an expected fraction
|G'|7! of all equations.
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A Identities from linear and multilinear algebra

This appendix contains the identities and bounds that are needed in the proof
of Lemma 23. They all follow in a straightforward manner from standard linear
and multilinear algebra. As a service to the reader, we also include a very short
summary of the less known background results from linear algebra that we use
in this paper; for more information on linear algebra, the reader is referred to
Lang’s book [18].
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A.1  Complex numbers and matrices

We first recall that a complex matrix A = (a;;) is unitary if A7' = A*,
where the matrix A* has a}; at position (i,j) and the latter asterisk denotes
complex conjugation: For a complex number z = z 4+ 1y, 2* = z — 1y and
|z|? = 22 + y? = zz*. Then recall that a matrix is Hermitian if A = A* and
that Hermitian matrices have only real eigenvalues. Since the eigenvalues of A?
are the squares of the eigenvalues of A, the square of a Hermitian matrix has
only non-negative real eigenvalues, i.e., it is positive semidefinite.

Lemma 28 Let A = (a;;) be a unitary n x n matriz. Then 3, |a;;|> =1 for
alll < i< n.
PROOF. Let A be unitary. Then AA* is the identity matrix. Since for all

1<i<n, (AA%)y = ¥; aiia3; = X |aij|*, the lemma follows.

Corollary 29 Let {Ax} be a family of unitary nxn matrices and let {\;} be a
sequence of non-negative real numbers such that >, A\, = 1. Let B = >, A\ Ayg.
Then the elements of B have at most unit magnitude.

PROOF. By Jensen’s inequality |(B)19| = |Zk )\k(Ak)ij| S Ek )‘k|(Ak)zy|
Lemma 28 implies that |(Ag)i;| < 1; hence |(B);;| < > A = 1.

Lemma 30 For any complex numbers {ai,...,a,} and {by,...,b,},

As a special case, corresponding to b; =1,

n
> _aib;
=1

n

P

2 n
<n Z \ai|2.
i=1 i=1

PROOF. This is the Cauchy-Schwartz inequality; we provide a proof for the
sake of completeness. If a; = 0 for all 4, the inequality clearly holds. Otherwise,
let a =30, |a;|% b=2| 3", a;b;|, and ¢ = 3 | |b;|*. Now,

> ltai + 6517 = 3 (Rlaif® + t(aid; + a;b}) + [bif?) = t2a+ b+ c

i=1 i=1

for any real ¢. Since the above sum is non-negative, t?a + tb + ¢ > 0, or,
equivalently, 4ac > b2.
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A.2  Tensor products and traces

Given two matrices A = (a;;) and B = (by), the tensor product A ® B is the
matrix indexed by pairs (4, k); (4, £) so that (A® B)(ik)j,e) = Gi;bre- Note that
(A1 ®Ay)(B1®Bs) = (A1B;) ®(A2Bs) and that the tensor product is bilinear.
For a matrix M indexed by pairs (4, k); (4, £) the inner trace, denoted by Tr M,
is defined by (Tr M);; = Xx M(i k), jk)- We let tr denote the normal trace, i.e.,
the sum of the diagonal elements. The trace is invariant under similarity, i.e.,
tr A = tr(U* AU) for any unitary matrix U. Furthermore, the trace of a matrix
is equal to the sum of its eigenvalues.

Lemma 31 Let A be a tensor product of an n x n matriz and a k X k matrix
and let B be an n x n matriz. Then (Tr A)B = Tr(A(B ® I})).

PROOF. Suppose that A = A; ® A,. Using the identity (4;®A2)(B1®Bs) =
(A1B1) ® (A3Bs) we obtain that A(B® Iy) = (A1 B) ® A,. Since Tr((4;B) ®
AQ) = (tI‘Az)AlB it follows that TI'(A(B X Ik)) = (tl" AQ)AlB = (TI' A)B

Lemma 32 Let A be a positive semidefinite matriz and U be a unitary matrix.
Then |tr(AU)| < tr A.

PROOF. As A is positive semidefinite, it may be written V DV* where V is
unitary and D is diagonal with non-negative entries on the diagonal. Since the
trace is invariant under similarity, tr A = Y, D;; and we may rewrite

tr(AU) = tr(VDV*U) = tr(VDV*UVV*) = tr(DV*UV) = tr(DW),

where W = V*UV is a product of unitary matrices and therefore unitary. All
entries of a unitary matrix have absolute value less than or equal to one; hence

| tr(AU)| =

Z Dy Wi;

<> |DuWi| <> Dy = tr A,

as desired.
A.3 Bounds used in Lemma 23

Lemma 33 Lete € [0,1], S, be a family of positive semidefinite matrices and
d, and n, be positive integers. Then

Yo d(1—e)™trS, < (1—¢€)°) d,trsS,.
o

pinp>c
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PROOF. Since the S, is positive semidefinite 3, . d,(1 — €)™ tr S, is a
sum of non-negative numbers and thus non-negative. Therefore

Yo d(1—€e)"trS, < (1—e)° > dotrS, <(1—¢€)°> d,trS,.

pinp>c pinp>c p

Lemma 34 Let U be an n x n unitary matriz, {S,} be a family of positive
semidefinite matrices that are tensor products of n X n matrices and k X k
matrices, {V,} be a family of unitary matrices that are tensor products of
n x n matrices and k X k matrices, and {a,} be a family of non-negative real
numbers. Then

tr (U > a, Tr(S,,Vp)) <> a,trsS,
P P

where the inner trace is with respect to the tensor products forming S, and V,.

PROOF. Since tr(AB) = tr(BA) for any matrices A and B,

r (U Sa Tr(Spr)) ‘ tx (; a Tr(S,,V,,)U) ‘

(S o (500 010)))

where the last equality follows from Lemma 31. Since the a, are non-negative,

tr (Z ap Tr(Spr(U ® Ik))) ‘ <> a,,‘tr Tr(S,,V},(U ® I’“))‘
= Zap‘tr(Spr(U ® Ik))‘

< Zaptr Sy,
p

where the last inequality follows from Lemma 32.
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