Electronic Colloquium on Computational Complexity, Report No. 32 (2002)

Tractable Constraint Satisfaction Problems on a
3-element set

Andrei A. Bulatov
Computing Laboratory
University of Oxford, Oxford, UK
e-mail: Andrei. Bulatov@comlab.oz.ac.uk

Abstract

The Constraint Satisfaction Problem (CSP) provides a common
framework for many combinatorial problems. The general CSP is
known to be NP-complete; however, certain restrictions on a possible
form of constraints may affect the complexity, and lead to tractable
problem classes. There is, therefore, a fundamental research direction,
aiming to separate those subclasses of the CSP which are tractable,
and those which remain NP-complete.

Schaefer gave an exhaustive solution of this problem for the CSP
on a 2-element domain. In this paper we generalise this result to a
classification of the complexity of CSPs on a 3-element domain. The
main result states that every subclass of the CSP is either tractable
or NP-complete, and the criterion separating them is that conjectured
in [3, 7]. We also exhibit a polynomial time algorithm which, for
a given set of allowed constraints, outputs if this set gives rise to a
tractable problem class. To obtain the main result and the algorithm
we extensively use the algebraic technique for the CSP developed in
[17] and [3, 7].

1 Introduction

In the Constraint Satisfaction Problem (CSP) [24] we aim to find an assign-
ment to a set of variables subject specified constraints. Many combinatorial
problems appearing in computer science and artificial intelligence can be
expressed as particular subclasses of the CSP. The standard examples in-
clude the propositional satisfiability problem, in which the variables must
be assigned Boolean values [13], graph colorability, scheduling problems,
linear systems and many others. One advantage of considering a common
framework for all of these diverse problems is that it makes it possible to
obtain generic structural results concerning the computational complexity
of constraint satisfaction problems that can be applied in many different
areas such as database theory [21, 31], temporal and spatial reasoning [29],
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machine vision [24], belief maintenance [9], technical design [26], natural
language comprehension [1], programming language analysis [25], etc.

The general CSP is NP-complete; however, certain restrictions on the
allowed form of the constraints involved may ensure tractability. There-
fore, one of the main approaches in study of the CSP is identifying tractable
subclasses of the general CSP obtained in this way [12, 14, 15, 17, 28]. Devel-
opments in this direction provide an efficient algorithm solving a particular
problem, if the problem falls in one of the known tractable subclasses, or
assist in speeding up of general superpolynomial algorithms [10, 11, 22]. To
formalise the idea of restricting the allowed constraints, we make use of the
notion of a constraint language [16], which is simply a set of possible rela-
tions that can be used to specify constraints in a problem. The ultimate
goal of this research direction is to find the precise border between tractable
and intractable constraint languages.

This goal was achieved by Schaefer [28] in the important case of Boolean
constraints; he has characterised tractable constraint languages, and proved
that the rest are NP-complete. Schaefer’s result is known as Dichotomy
Theorem for Boolean constraints. Dichotomy theorems are of particular
interest in study of the CSP, because, on the one hand, they determine the
precise complexity of constraint languages, and on the other hand, the a
priori existence of a dichotomy result cannot be taken for granted. For more
dichotomy results for Boolean CSPs, and a short survey of dichotomy results
for other cases the reader is referred to [15].

The analogous problem for the CSP in which the variables can be as-
signed more than 2 values remains open since 1978, in spite of intensive
efforts. For instance, Feder and Vardi, in [12], used database technique and
group theory to identify some large tractable families of constraints; Jeavons
and co-authors have characterised many tractable and NP-complete con-
straint languages using invariance properties of constraints [17, 18, 19]; in
[7], a possible form of a dichotomy result for the CSP on finite domains
was conjectured; in [6], a dichotomy result was proved for certain type of
constraint languages on a 3-element domain. In this paper we generalise
the results of [28] and [6], and prove the dichotomy conjecture from [7] for
the constraint satisfaction problem on a 3-element domain. In particular,
we completely characterise tractable constraint languages in this case, and
prove that the rest are NP-complete. The main result will be precisely stated
at the end of Section 2.

The dichotomy problem for a domain containing more than 2 elements,
even for a 3-element domain, turns out to be much harder than that for 2-
element case. Besides the obvious reason that Boolean CSPs closely relates
to various problems from propositional logic, and therefore, are much better
investigated, there is another deep reason. As is showed in [19, 20, 17], when
studying the complexity of constraint languages we may restrict ourselves
with a certain class of languages, so called relational clones. There are only



countably many relational clones on a 2-element set, and all of them are
known [27]. However, already the class of relational clones on a 3-element set
contains continuum many elements, and is believed to be incomprehensible.
Another problem tackled here is referred to, in [15], as the meta-problem:
given constraint language determine if it gives rise to a tractable problem
class. Making use of the dichotomy theorem obtained we exhibit an effective
algorithm solving the meta-problem for the CSP on a 3-element domain.
The technique used in this paper relies upon the idea that was developed
in [7, 3, 17] (and also mentioned in [12] as a possible direction for future re-
search), that algebraic invariance properties of constraints can be used for
studying the complexity of the corresponding constraint satisfaction prob-
lems. The main advantage of this technique is that it allows us to employ
structural results from universal algebra. The algebraic approach has proved
to be very fruitful in identifying tractable classes of the CSP [2, 4, 18]. We
strongly believe that the synthesis between complexity theory and universal
algebra which we describe here is likely to lead to new results in both fields.

2 Algebraic structure of CSP classes

2.1 Constraint Satisfaction Problem

The set of all n-tuples with components from a set A is denoted A™. Any
subset of A" is called an n-ary relation on A; and a constraint language on
A is an arbitrary set of finitary relations on A.

Definition 1 The constraint satisfaction problem (CSP) over a constraint
language T, denoted CSP(T'), is defined to be the decision problem with in-
stance (V, A,C), where

V is a set of variables;
A is a set of values (sometimes called a domain); and
C is a set of constraints, {C1,...,Cy},

in which the constraint C; € C is a pair (s;, R;) with s; is a tuple of
variables of length m;, called the constraint scope, and R; an m;-ary
relation on A, called the constraint relation.

The question is whether there exists a solution to (V; A;C), that is, a
function from V to A, such that, for each constraint in C, the image of the
constraint scope is a member of the constraint relation.

We shall be concerned with distinguishing between those constraint lan-
guages which give rise to tractable problems (i.e., problems for which there
exists a polynomial-time solution algorithm), and those which do not.



Definition 2 A constraint language, T is said to be tractable, if CSP(I)
is tractable for each finite subset I'' C I'. It is said to be NP-complete, if
CSP(TY) is NP-complete for some finite subset T' C T.

In [28], Schaefer has classified Boolean constraint languages with respect
to the complexity. This result is known as Schaefer’s Dichotomy theorem.

Theorem 1 A Boolean constraint language, T, is tractable if and only if
one of the following conditions holds:

1. every R in T contains (0,...,0).

2. every R in T contains (1,...,1).

3. every R in T is definable by a CNF formula in which each clause has
at most one negated variable.

4. every R in T is definable by a CNF formula in which each clause has
at most one unnegated variable.

5. every R in I is definable by a CNF formula in which each clause has
at most two literals.

6. every R in T is the solution space of a linear system over GF(2).

Otherwise I' is NP-complete.

More examples of both tractable and NP-complete constraint languages
will appear later in this paper and can also be found in [7, 8, 12, 19]. It
follows from Theorem 1 that every Boolean constraint language is either
tractable or NP-complete; and so, there is no language of intermediate com-
plexity. The classification problem for larger domains is still open and seems
to be very interesting and hard [12].

Problem 1 Characterise all tractable constraint languages on finite do-
Mains.

2.2 Algebraic structure of problem classes

Schaefer’s technique heavily uses representation of Boolean relations by
propositional formulas. Such a representation does not exist for larger do-
mains. Instead, we shall use algebraic properties of relations. In our alge-
braic definitions we mainly follow [23].

Definition 3 An algebra is an ordered pair A = (A, F) such that A is a
nonempty set and F is a family of finitary operations on A. The set A is
called the universe of A, the operations from F are called basic. An algebra
with a finite universe is referred to as a finite algebra.

Every constraint language on a set A can be assigned an algebra with the
universe A.



Definition 4 An n-ary operation f preserves an m-ary relation R (or f is a
polymorphism of R, or R is invariant under f ) if, for any (a11,...,m1),-- -,
(@1n,---»@mn) € R, the tuple (f(a11,---,a1n)---, f(@m1,- -+, Gmn)) belongs
to R as well.

The set of all polymorphisms of a family ' of relations is denoted Pol T';
and the set of all relations invariant under all operations from a set F is
denoted Inv F.

Given a constraint language, T', on A, the algebra (A,Pol T') is called the
algebra associated with I', and is denoted Ar.

Conversely, for any finite algebra A = (A; F'), there are a constraint lan-
guage associated with A, for example, Inv F', and the associated problem
class CSP(A) = CSP(Inv F). A connection between the complexity of a
constraint language and the associated algebra is provided by the following
theorem.

Theorem 2 ([17]) A constraint language T’ on a finite set is tractable (NP-
complete) if and only if Inv Pol (T') is tractable (NP-complete).

Informally speaking, Theorem 2 says that the complexity of I is determined
by the algebra Ar. We, therefore, make the following definition: for a
constraint language T', the algebra Ar is said to be tractable (NP-complete)
if T is tractable (NP-complete).

In [18, 19], Jeavons and co-authors have identified certain types of alge-
bras which give rise to tractable problem classes.

Definition 5 Let A be a finite set. An operation f on A is called

e q projection if there is i € {1,...,n} such that f(z1,...,z,) = z; for

any Ti,...,Tn € A;

e essentially unary if f(z1,...,2,) = g(x;), for some unary operation g,
and any Ti,...,T, € A;

e q constant operation if there is ¢ € A such that f(z1,...,z,) = ¢, for
any Ti,...,Tn € A;

e idempotent if f(z,...,z) =z for any z € A.
e a semilattice operation®, if it is binary and satisfies the following three
conditions:

(a) f(z, f(y,2)) = f(f(2,9),2) (Associativity), (b) f(x,y) = f(y,z)
(Commutativity), (c) f(z,z) =z (Idempotency), for any z,y,z € A;

e a majority operation if it is ternary, and f(z,z,y) = f(z,y,z) =
fly,z,z) =z, for any x,y € A;

o affine if f(z,y,2) =z —y + 2, for any z,y,z € A, where +,— are the
operations of an Abelian group.

'Note that in some earlier papers [17, 18] the term ACT operation is used.



For a finite algebra A, an operation from Pol Inv F is said to be a term
operation? of A. If T is a constraint language, the term operations of Ar
are the polymorphisms of T'.

Proposition 1 ([18, 19]) If a finite algebra A has a term operations which
is constant, semilattice, affine, or majority, then A is tractable.

The 2-element algebras associated with Schaefer’s six constraint languages
have a constant term operation 0 or 1 in cases (1),(2); a semilattice term
operation V or A in cases (3),(4); the majority term operation (z Ay) V (y A
z) V(2 A z) in case (5); and the affine term operation z — y + z in case (6).

An algebra is said to be a G-set if every its term operation is essentially
unary, and the corresponding unary operation is a permutation.

Proposition 2 ([18, 19]) A finite G-set is NP-complete.

By combining those two results, and the classical result of E.Post [27], the
algebraic version of Schaefer’s theorem can be derived [7].

Theorem 3 (Schaefer) A constraint language T' on a 2-element set is
tractable if and only if Ar is not a G-set. Otherwise I' is NP-complete.

2.3 Algebraic constructions and the complexity of constraint
languages

Certain transformations of constraint languages preserve the complexity.
Let T' be a constraint language on A, and g a unary polymorphism of T’
such that g(g(z)) = g(z). By ¢g(T') we denote the set {g(R) | R € T'}
where g(R) = {(g9(a1),...,9(an)) | (a1,...,a,) € R}; and by I'" the set
F'u{{(a)} | a € A}. If g € Pol T is a unary operation range whose range is
minimal among ranges of unary operations from Pol I', then the constraint
language g(I')* will be denoted Ty

Proposition 3 ([7]) Let I' be a constraint language on A, and g € Pol T'
a unary operation on A with a minimal range and such that g(g(x)) =
g(z). Then T is tractable [NP-complete] if and only if T’ is tractable [NP-
complete].

If T and g satisfy the conditions of Proposition 3 then the algebra AF?]d is
idempotent, that is, all its basic operations are idempotent. The complexity
of the constraint language Fi]d does not depend on the choice of g, and we
shall denote every such language I'.

Due to Theorem 2 and Proposition 3 the study of the complexity of
constraint languages is completely reduced to the study of properties of
idempotent algebras.

2Every term operation can be obtained from operations of F' by superposition.



Definition 6 Let A = (A, F) be an algebra, and B a subset of A such that,
for any f € F (n-ary), and for any by,...,b, € B, we have f(by,...,b,) €
B. Then the algebra B = (B,F‘B), where F‘B consists of restrictions of
operations from F to B, is called a subalgebra of A. The universe of a sub-
algebra of A is called a subuniverse of A. A subalgebra B (a subuniverse B)
is said to be proper if B #A (B # A).

An equivalence relation 6 € Inv F is said to be a congruence of A. The
0-class containing a € A is denoted a?, the set Alg = {a? | a € A} is said
to be the factor-set, and the algebra A/g = (A/g; F), F® = {f° | f € F}
where f%(af,...,al) = (f(a1,...,a,))?, is said to be the factor-algebra.

Proposition 4 ([7]) Let T be a tractable constraint language on A, B C A
a subuniverse of Ar, and 0 an equivalence relation invariant under Pol T'.
Then

(1) the subalgebra B = (B; (Pol P)‘B) of Ar is tractable;

(2) Ar/p, and the set T = {R’ | R € T'} where R’ = {(af,...,d)) |
(a1,...,a,) € R}, are tractable.

Hence, every subalgebra and every factor-algebra of a tractable algebra is
tractable. Furthermore, every factor of a tractable algebra, that is, a factor-
algebra of a subalgebra, is tractable and cannot be a G-set. Thus, every
tractable algebra A satisfies the condition

none of the factors of A is a G-set. (No-G-SET)

Moreover, all known examples of NP-complete subclasses of the CSP have
a G-set behind. We, therefore, make the following conjecture.

Conjecture 1 A constraint language I' on a finite set A is tractable if and
only if Apia satisfies (NO-G-SET). Otherwise it is NP-complete.

By Theorem 3, the conjecture holds for constraint languages on a 2-element
set. The main result of this paper is that the conjecture holds for constraint
languages on a 3-element set.

Theorem 4 A constraint language I' on a 3-element set is tractable if and
only if the algebra Apia satisfies (NO-G-SET). Otherwise T' is NP-complete.

3 Algorithms

The necessity of the condition (NO-G-SET) for the tractability of a finite al-
gebra follows from Propositions 2,4. To show that the condition is sufficient,
we have to exhibit, for any 3-element algebra A satisfying (NO-G-SET), an
algorithm that solves the problem CSP(A) in polynomial time. We split
the proof into two parts. The first part is ‘algebraic’; we show that, for any



3-element algebra A = (A; F') satisfying (NO-G-SET), the relations from
Inv F' satisfy one of 10 properties. The second part is ‘algorithmic’; for each
of those 10 properties, we exhibit a polynomial time algorithm that solves
the constraint satisfaction problem rising from a set of relations satisfying
this property. The algorithms will be constructed in this section, while the
algebraic part based on an elaborate case analysis is done in Section 5.

It turns out, that we need only three types of algorithms: the first one
is based on finding partial solutions, the second one reduces CSP(A) to
the case of a 2-element domain, and the third is a generalised Gaussian
elimination.

3.1 Partial solutions and bounded width

Let R be an n-ary relation, and I = {i1,...,ix} C {1,...,n}; then R; de-
notes the k-ary relation {a; | a € R} where a; = (a;,,...,a;, ). We will often
consider relations whose coordinate positions are indexed by not necessarily
natural numbers, but elements of some arbitrary set, for example, the co-
ordinate positions of constraint relations will be supposed to be indexed by
variables.

Definition 7 Let P = (V; A;C) be a constraint satisfaction problem, and
W C V. The restricted problem Py is defined to be (W; A;Cw) where, for
each (s, R) € C, there is (sNW; Rsaw) in Cyw. A solution to Py is said to
be a partial solution, and the set of all such solutions is denoted Sy .

The problem P is said to be k-minimal if, for any k-element subset W C
V, any (s, R) € Pw, and any a € R, the tuple asnw is a part of a solution
from Sy

Any constraint satisfaction problem instance P can be modified to obtain
a k-minimal problem instance P’ without changing the set of solutions by
repeating the following procedure until the instance stays unchanged: solve
all subproblems involving k variables, and then remove from each constraint
(s, R) all tuples a € R such that as;nw is a part of no partial solution for
certain k-element set of variables W. This procedure is called ‘establishing
k-minimality’, and P’ is said to be the k-minimal instance associated with P.

Definition 8 A class C of constraint satisfaction problems is said to be of
width3 & if any problem instance P from C has a solution if and only if the
k-minimal problem associated with P contains no empty constraint.

Every class of finite width is tractable, because, assuming k fixed, establish-
ing k-minimality takes polynomial time.

3There appear several notions of the width of a problem class. For instance, Feder and
Vardi [12] characterised this concept in terms of Datalog programs. In this paper we use
the weakest version, which, therefore, gives the widest possible family of problem classes.



3.2 Multi-sorted constraints satisfaction problem

In [5], an algebraic approach to a generalised version of the constraint sat-
isfaction problem was developed. In this generalised version every variable
is allowed to have its own domain. In this paper we need the notion of
multi-sorted constraint satisfaction problem, and some results from [5] as an
auxiliary tool.

Definition 9 For any collection of sets A = {A; | i € I}, and any list of

indices (i1,12,...,im) € I™, a subset R of A;; x Aj, X -+- X A, together
with the list (i1,12,...,%m), will be called an [m-ary/ relation over A with
signature (41,42, ...,%m). For any such relation R, the jth component of the

signature of R will be denoted o(j).
The ith component of a tuple @ will be denoted by ali].

Definition 10 The multi-sorted constraint satisfaction problem is the combina-
torial decision problem with

INSTANCE: a quadruple (V;A;0;C) where

o V is a set of variables;

A={A; i€ I} is a collection of sets of values [domains];

e 0 is a mapping from V to I, called the domain function;

C is a set of constraints.

Each constraint C € C is a pair (s, 0), where

— 5= (v1,--.,Um) is a tuple of variables of length mc, called
the constraint scope;

— R is an m¢-ary relation over A with signature (6(v1),-..,0(Vmy)),
called the constraint relation.

QUESTION: does there erist a solution, i.e. a function ¢, fromV to|Jac 4 4,
such that, for each variable v € V, ¢(v) € Aj(v), and for each con-
straint (s, R) € C, with s = (v1,...,vn), the tuple (©(v1),...,o(vm))
belongs to R?

It is possible to introduce the algebraic structure of the multi-sorted CSP
in a very similar way as for the usual one.

Definition 11 Algebras A; = (A1, F1), Ay = (Ay, Fy) are said to be similar
(or of the same type) if there exists a set I such that Fy = {f} | i € I},
Fy={f%|i €I} and, for alli € I, f., f? are of the same arity.

Thus, a class of similar algebras can be viewed as a collection of sets, and a
set of operation symbols such that each operation is assigned the arity and
has an interpretation in each set from the collection, that is an operation



of the arity assigned. Let A be a class of similar algebras. We say that
an (n-ary) operation symbol f preserves an (m-ary) multi-sorted relation
R over the collection of the universes of algebras from A (or R is invariant

with respect to f) if, for any (a11,...,8m1),---, (@1n,---,mn) € R we have
aiy -+ a1 A0 (an, .. a1)
f : : = : €R
Gm1 *°* Gmn an(m) (@m1,-- - @mn)

where o is the signature of R. The set of all invariants of a set of terms C
is denoted by minv C.

Definition 12 For a given collection of similar finite algebras, A, CSP(A)
is defined to be the decision problem with

INSTANCE: An instance, P = (V;B;0;C), of the multi-sorted constraint sat-
isfaction problem, in which

e for each variable v, the domain As(,) 1s the universe of an algebra
Aé(v) € A;

e for each constraint (s, R), the relation R is invariant with respect
to all operation symbols of A.

QUESTION: Does P have a solution?

A class A of similar finite algebras is said to be tractable if mInv F' is tractable
where F' denotes the set of operation symbols of A. If, for every algebra from
a class, there is a operation symbol which is interpreted in the algebra as one
of the operations listed in Proposition 1, then the corresponding CSP-class
is tractable.

Theorem 5 ([5]) Let Ay,...,A;,By,..., B, be similar finite algebras, each
B; have either a constant term, or a semilattice or near-unanimity term, and
let Ay,...,A; have an affine term whose interpretations on other algebras
are idempotent. Then {Aq,..., A, By, ... B, } is tractable.

A class of similar algebras naturally arises when we consider the collection
of all factors of an algebra. We say that a problem instance P = (V; 4;C) €
CSP(A) where A is a 3-element algebra is 2-valued if, for any v € V, S
contains at most 2 elements. Such a problem can be treated as a multi-
sorted problem over the family of all proper subalgebras of A. If A satisfies
(NO-G-SET), then by Theorem 5 and Schaefer’s theorem, P can be solved
in polynomial time.

Corollary 1 If a 3-element idempotent algebra satisfies (NO-G-SET) then
any 2-valued problem instance from CSP(A) can be solved in polynomial
time.

10



Most of the ‘good’ properties of relations below allows us, first, to reduce
an arbitrary problem instance to a 2-valid problem instance, and, second, to
solve the obtained instance as a multi-sorted problem instance by making
use of the algorithms from [5].

3.3 ‘Good’ properties of relations

Throughout the rest of this section A = (4; F) is a 3-element algebra satis-
fying (N0O-G-SET). Certain properties of A make it possible to reduce any
problem instance from CSP(A) to a 2-valued problem instance. The ith
component of a tuple a will be denoted a[i]. By n, for a natural number n,
we will denote the set {1,...,n}.

Definition 13 Let B be a 2-element subuniverse of A, a € A — B, and
b € B. The algebra A satisfies the (a — b)-replacement property if, for any
(n-ary) R € Inv F, and any a € R, there is b € R with

bli] = { b, if ali] = a and a,b € Ry,

afi|, otherwise.

Definition 14 The algebra A satisfies the partial zero property if there are
a set of its subuniverses, Z, and zg € B for each B € Z, such that (a)
A€ Z; (b) for any relation R € Inv F, and any a € R, there is b € R with

b[Z] _ zp, if R{z} =BeZ,
afi], otherwise.

For a relation R € Inv F, and a subuniverse B of A we denote 6 (R) the
equivalence relation on W = {i | B C Ry;} generated by the set

{(i,) € W? | for any a € R, a[i],a[j] € B or a[i],a[j] ¢ B}.

Definition 15 Let B be a 2-element subuniverse of A. The algebra A is
said to be B-rectangular, if for any relation R € Inv F,

RwNBYl = (Ry,nBW1)x...x (Rw, NBWk) where W = {i | B C R},
and Wy, ..., Wy are the classes of Og(R);
for any a € R such that a[i] € B whenever i € W, there is b € R with

blil = ali], ifi €W or Ryy;
i) = ¢, ifigW,{c}=BnRy.

Definition 16 Let B be a 2-element subuniverse of A. The algebra A is B-

semirectangular if the equivalence relation 1 with classes B and A— B = {c}
is a congruence of A, and, for any (n-ary) relation R € Inv F, any tuple

11



b € R, and any a; € Ry, N BWil i e k, Wi,...,Wy, are the classes of
0p(R), the tuple a with

b[i], if BZ R;;
afil =1¢ ¢, if BC R; and b[i] = ¢;
aj[z'], ifi € Wj and b['L] €B

belongs to R.

Definition 17 The algebra A satisfies the splitting property if any (n-ary)
relation R € Inv F' can be represented in the form Ry X R,_w where W =
{i en|R; = A}, and Ry = A1,

Recall that the graph of a mapping f: A — B is the binary relation {(a, f(a)) |
a € A}. Then, a relation R is said to be irreducible if, for no pair i,j of
coordinate positions, the projection Ry; ;1 is the graph of a mapping.

Definition 18 Let B be a proper subuniverse of A. Then A satisfies B-
semisplitting property if, for any irreducible (n-ary) relation R € Inv F,
W = {i € n| R; = A}, we have (i) (Rw N B"') x R,_w C R; and (ii) for
any i,j € W and any (a;,a;) € Ry ;3 N B2, there is a tuple a € Ryy N BV
such that afi| = a;,a[j] = aq;.

Definition 19 Let B C A be a 2-element subuniverse of A. The algebra A
satisfies the B-extendibility property if, for any (n-ary) relation R € Inv F,
if W denotes the set {i | B C R;}, then

e forany k € W (k,l € W), and any a € B (( Z ) € Ryy), there

is a € R such that a[i]| € B for all i € W, and alk] = a (a[k] = a,
afl] = b);

e for any a € BY! such that ( :[[;]] ) € Ry jy, for any i,5 € W, there
is b € R such that
bli] = afi], ifie W or |Rip| =1,
a, otherwise, a € R; N B.

A ternary operation f is said to be Mal’tsev if the identities f(z,y,y) =
f(y,y,z) = z hold. A standard example of a Mal’tsev operation is provided
by the operation z — y + z of an Abelian group, or the operation zy 'z
of an arbitrary group. A binary operation f(z,y) on the set A is said to

be conservative commutative if, for any z,y € A, f(x,y) = f(y,z), and

f(z,y) € {z,y}-

12



Theorem 6 If an idempotent 3-element algebra A = (A; F) satisfies (NO-
G-SET), then there is a set F' of its term operations such that the algebra
A" = (A; F') satisfies (NO-G-SET) and one of the following conditions holds.

(1) A’ satisfies the (a—b)-replacement property for a 2-element subuniverse
B,anda € A— B, b€ B.

(2) A satisfies the partial zero property.

(8) A’ satisfies the B-extendibility property for a 2-element subuniverse
B C A.

(4) A' is B-rectangular for a 2-element subuniverse B.

(5) A satisfies the splitting property.

(6) A satisfies the B-semisplitting property for a 2-element subuniverse B,
and B has a majority term operation.

(7) A’ satisfies the B-semirectangular property for a 2-element subuni-
verse B.

(8) A' has a majority term operation.
(9) A' has a conservative commutative term operation.
(10) A has a Mal’tsev term operation.

3.4 Why ‘good’ properties are good

We conclude this section by showing that every algebra satisfying one of
those properties is tractable.

3.4.1 Relations invariant with respect to a special operation

In (8), the tractability of A follows from Proposition 1. In (9), CSP(A)
is of width 3, as is proved in [4]. The result of [2] states that any finite
algebra with a Mal’'tsev operation is tractable, and the solution algorithm
is a generalised version of Gaussian elimination.

3.4.2 The partial zero property

In this case any problem instance can be reduced to a 2-valued one. Indeed,
if A satisfies the partial zero property, and a 1-minimal problem instance
P = (V;A;C) € CSP(A) has a solution ¢, then P also has the solution 1
such that ¥ (v) = p(v) if S, € Z, and ¥ (v) = zs,,, otherwise. Thus, to solve
P we assign the value zg,, to each variable v € V' with §(,; € Z. Since
A € Z, the obtained problem instance is 2-valued.

3.4.3 The replacement property

In this case any problem instance can also be reduced to a 2-valued one. If A
satisfies the (a —b)-replacement property, and a 1-minimal problem instance
P = (V;A4;C) € CSP(A) has a solution ¢, then the mapping ¥:V — A
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such that 9(v) = b if a,b € Sg}, p(v) = a, and P(v) = p(v) otherwise, is a
solution to P. We therefore, may reduce P to a 2-valued problem instance
P' = (V;A;C") where for each C = (s, R) € C there is C' = (s, R') such that
a € R’ if and only if a € R and a[v] # a whenever a,b € Sg,}.

3.4.4 The extendibility property

We prove that in this case CSP(A) is of width 3. Suppose that A satisfies
the B-extendibility property, and take a 3-minimal problem instance P =
(V5 4;C).

Lemma 1 Let W C 'V be the set {v € V | B C S,y }. There is a =€ BIWI
a[v]

afuw]

Proof. Since P is 3-minimal, for any v,w € W, there is a constraint
(s, R) € cC such that v,w € s. Furthermore, since A satisfies the B-
extendibility property, for any ¢ € B, there are b € B and b € R such
that b[v] = a,b[w] = b. Therefore, Sy, N B> # . Let W C W be a

such that ( ) € Stvw), for any v,w € W.

a[v]

maximal set such that there is a =€ BIW'l with a[uw] € S{v,w}, for any

v,w € W'. If W' = W then we are done, otherwise take w € W — W'. Let
B = {a,b}. The maximality of W’ means that there is u,v € W' such that
( awc;[u] ) Z Stuw)s ( aWI; (] ) Z S{vw}- Since P is 3-minimal, there is a
ap[u]
ayw[v]
and by the B-extendibility property, for some b € R, b[u] = ay[u],b[v] =
ay[v], and b[w] € B, that contradicts the assumptions made. O

constraint (s, R) € C such that u,v,w € s. We have ) € Ry},

Finally, the B-extendibility property of A implies that the mapping
©:V — A where

(v) = afv], ifveWw;
LA c, if{c}:S{v}ﬂB

is a solution to P.

3.4.5 The rectangularity and semirectangularity

Suppose that A is B-rectangular or B-semirectangular, and {c¢} = A — B.
We show that any problem instance in this case can be reduced to a 2-valued
one. Take a problem instance P = (V;A4;C) € CSP(A). Without loss of
generality we may assume that P is 3-minimal. Let W denote the set of
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all variables v € V' with B C S(,3. Let 6(P) be the equivalence relation
generated by U, ryec 0B(R). Notice that, since P is 3-minimal, for any
(s,R) € C, any u,v € s N W such that (u,v) € 8(P), and any a € R, either
aful,alv] € B, or a[u] = a[v] = ¢. Repeat the following procedure until the
obtained problem instance coincides with the previous one.

e For each class W' of 0(P), solve the restricted problem
Py = (W';B;C') where, for each (s,R) € C, we make the
constraint (s NW', (Rsqaw) N B e .

e If, for a class W' of (P), the problem instance Pj,, has
no solution then,
for each constraint (s,R) € C, remove from R all the tuples
a such that afv] € B for some v € sNW'.

e Replace the obtained problem instance with the associated
3-minimal problem instance P.

e Remove from W those variables v for which Sj,; no longer
equals A or B.

e Calculate the relation f(P) for the obtained problem
instance and the set W.

Obviously, the obtained problem instance P has a solution if and only if
the original problem instance has.

Suppose first that A is B-rectangular. Then, if P has no empty con-
straint, then there is a solution ¢ to P such that ¢(v) € B whenever
B C Syy)- Indeed, let W1, ..., Wy, be the classes of §(P), and t; a solution to
Piw,» i € {1,...,k}. Tt follows straightforwardly from the B-rectangularity
that the mapping ¢: V — A where

’(/)Z'(’U), if v e W
90(10) = a, if S{v} = {G,, C}a a € B;
b, if Sy = {b}, b€ A,
is a solution to P.
Now, suppose that A satisfies the B-semirectangular property. Denote
by P? the factor-problem, that is the problem (V;{Co = A/g} U{C; | i €
I};6;C") where

e C;, i € I are the subuniverses of A;

e §(v) =i if and only if S;,y = Cj, and §(v) = 0 if Sg,; = 45

e for each (s, R) € C, there is (s, R’) € S where b € R? if and only if
there is a € R such that

_ [v], if R, # A;
blv] = { (L)), §R A
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It is not hard to see that if P has a solution, then P’ has a solu-
tion (see also [4]). Let ¢ be a solution to P?, and 1,...,%; solutions
to Pw,, ..., Pw,. The mapping 1) where

(,D(U), ifB¢ S{'u};
Ylv] = ¢ Pi(v), f BC S{v}, v € Wy, and o(v)
c, if B C Sgyy, v € Wy, and ()

1IN

Ca ;
o

is a solution to P. Indeed, take a constraint (s, R) € C. Since for each
i €{1,...,k} such that (v) = B, v € W;, 1; is a solution to Py,, the tuple
(1(v))vesnw; belongs to Ryesnw;. Moreover, ¢ is a solution to the factor-
problem, therefore, there is b € R such that b[v] = ¢(v) when v € s — W,
b[v] = ¢ when p(v) = ¢, b[v] € B when ¢(v) = B. The semirectangularity
of A implies that ((v))yes € R.

Finally, the factor-problem is 2-valued, and therefore, can be solved in
polynomial time by Corollary 1.

3.4.6 The splitting and semisplitting property

If A satisfies the splitting property, then for any 1-minimal problem instance
P = (V;4;C), denote W the set {v € V | S,y = A}, W/ =V — W, and
notice that Py is 2-valued and any solution to Py can be arbitrarily
extended to a solution to P.

Suppose that B is a 2-element subuniverse of A, there is a term operation
f such that f‘B is the majority operation, and A satisfies the B-semisplitting

property. A problem instance is said to be irreducible if every its constraint
relation is irreducible. Every 3-minimal problem instance P = (V; A4;C)
can be reduced to an equivalent irreducible problem instance in polynomial
time.

Indeed, denote by 7 the binary relation on V' such that (u,v) € 7 if and
only if Sy, .} is the graph of a bijective mapping my,y: Sy — Syyy- Since P
is 3-minimal, Sgy 1 © Sfyw) 2 S{uwy, for any u,v,w € V, where o denotes
the multiplication of binary relation; hence, n is an equivalence relation.
Choose a representative from each class of 7. Then, for no pair v,w € W of
variables, Sy, .} is the graph of a bijective mapping, and for any v € V—-W,
there is v' € W such that S{v' v} 18 the graph of a bijective mapping. We
transform P in three steps.

e For each constraint (s, R) € C and any a € R, replace a with b where
b[v] = 7, (afv]), v € s and v' € W is the representative of the 7)-class
containing v.

e For each constraint (s, R) € C and each v € s, replace v with v'.

e Replace every constraint (s, R) € C with (s N W, Rsnw ).
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Now, let P = (V; A;C) € CSP(A) be a 3-minimal irreducible problem
instance, and consider the instance P’ = (V; A;C') where, for each (s, R) €
C, there is (s, R') € C' with R' = {a € R | afv] € {0,2} for all v € s such
that R, = A}. The problem instance P’ is 2-valued, therefore, we just have
to show that P, P’ are equivalent.

Clearly, if P’ has a solution then P has a solution. Conversely, let P
have a solution, and set W = {v € V | S,y = 4, and W' =V — W.
By condition (i) of the definition of the semisplitting property, P’ has a
solution if and only if both Py, and P}y, have solutions. Since Py, = Py,
the instance Py, has a solution. By condition (ii), for any v,w € W,
Sémw} = S} N B? where Si%w} denotes the set of partial solutions to Py},
for {v,w}. Moreover, since P is 3-minimal, for any u € W every such partial
solution can be extended to a solution from S~,[v,w,u}' The last property is
called strong 2-consistency [18]. Recall that any relation R € Inv F such that
R C B" is invariant with respect to a majority operation m, in particular,
all the constraint relations of Py satisfy this condition. By Theorem 3.5
of [18], if Sgy ) # @ for any v,w € W then strong 2-consistency ensures
existence of a solution to Py .

4 Recognising tractable cases

In a practical perspective, we need a method that allows us to recognise if a
given constraint language I is tractable. The following problem is, therefore,
very tempting.

TRACTABLE-LANGUAGE. Is a given finite constraint language I on a finite
set tractable?

Schaefer’s Dichotomy Theorem [28] does not solve this problem satis-
factory. Indeed, it can be easily verified if a relation is of type (1) or (2),
however, the way of recognising the types (3)—(6) is not obvious (see also
[21]). Theorem 3, the algebraic version of Schaefer’s result, fills this gap:
to check the tractability of a Boolean constraint language one just have to
check if all relations from the language are invariant under one of the 6
Boolean operations.

In the general case, such a method can hopefully be derived from a
description of tractable algebras. For example, in [3], a polynomial time
algorithm has been exhibited that checks if a finite algebra, whose basic
operations are given explicitly by their operation tables, satisfies (NO-G-
SET). Therefore, if Conjecture 1 holds then the tractability of an algebra
can be tested in polynomial time. In particular, this algorithm sounds in
the case of 3-element algebras.

However, the algorithm does not solve TRACTABLE-LANGUAGE even un-
der the assumption of Conjecture 1, because in this problem we are given a
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constraint language, not an algebra. Actually, we need to solve the problem

NO-G-SET-LANGUAGE. Given finite constraint language I' on a finite set,
does the algebra Apia satisfy (NO-G-SET)?

By the results of [3], this problem is NP-complete. However, its restricted
version remains tractable.

NO-G-SET-LANGUAGE(k). Given finite constraint language I" on a finite
set A, |A| <k, does the algebra Apia satisfy (No-G-SET)?

This means that the tractability of a constraint language on a 3-element
set can be tested in polynomial time.

Theorem 7 There is a polynomial time algorithm that given a constraint
language T' on a 3-element set determines if T’ is tractable.

An example of such an algorithm is provided by the general algorithm
from [3]. That algorithm employs some deep algebraic results and sophisti-
cated constructions. In the particular case of a 3-element domain, we may
avoid using of hard algebra, and apply a simpler and easier algorithm.

To this end, notice that if a 3-element algebra A has a 2-element sub-
universe or a nontrivial congruence, and there is a term operation f which
is not a projection on the subalgebra or the factor-algebra, then f witnesses
that A itself is also not a G-set. We, therefore, have two cases to consider.

CASE 1. A has no 2-element subuniverse, and no proper congruence.
Such an algebra is said to be strictly simple. There is a complete description
of finite strictly simple algebras [30]. In particular, if a strictly simple al-
gebra satisfies (NO-G-SET) then one of the following operations is its term
operation: a majority operation, the Mal’tsev operation £ — y + z of an
Abelian group, or the operation

0, if0e€{z,y},

x, otherwise

for some element 0 € A. In the last case, A satisfies the partial zero property
for Z = {B | B is a subuniverse of A, and 0 € B}, and zp =0 for B € Z.
CASE 2. A has either a 2-element subalgebra, or a proper congruence.
In this case, A satisfies (NO-G-sET) if and only if every its 2-element sub-
algebra and every proper factor-algebra (which is also 2-element) is not a
G-set. In its turn, the latter condition holds if and only if, for any 2-element
subuniverse B of A, and any congruence 6, there is a polymorphism f of T’
such that f‘B (or f?) is one of the 4 Boolean operations: A, V, the majority

operation (z Ay) V (y A z) V (2 A z), the affine operation z — y + z (since A
is idempotent, a constant cannot be its term operation).

As is well known [23], the subuniverses and congruences of a k-element
algebra are completely determined by its k-ary term operations. Hence, we
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may restrict ourselves with finding ternary polymorphisms of a constraint
language I'. In the first 3 steps, the algorithm below construct the language

id,

Algorithm
INPUT A finite constraint language I" on a 3-element set A.
OUTPUT “YES” if T is tractable, “NO” otherwise.

Find all the unary operations on A that preserves each
relation from I'.

If there is a unary non-identity operation f such that
f(f(z)) = f(x) then take one with a minimal range, and re-
place I with f(I'), and A with f(A).

Add the relations {(a)}, a€ A, to I.

Find the set F' of all ternary operations preserving each
relation from I'.

Find the set S of all 2-element subsets from A and the set
C of all proper equivalence relations invariant under
operations from F'.

If S=C =9 then

— if F contains either a majority operation, or the
operation t, for some a € A, or the Mal’tsev operation
z—1y+ 2z of an Abelian group, then output ‘‘YES’’;

— otherwise output ‘‘NO’’.
Otherwise, for each B€ S (each 8 € (C), do

— check if there is f € F such that f‘B (f% is one of

the Boolean operations A, V, (zAy)V(yAz)V(zAzx)),
zT+y+z;

— if not then output ‘‘NO’’.

Output ‘‘Yes’’.

This algorithm is polynomial time, because the hardest step, finding the
set F', requires inspecting of all ternary operations on a 3-element set; and,
since their number does not depend on T', takes cubic time.

5 Proof of Theorem 6

Everywhere in this section A = (4; F), A = {0,1,2}, is a 3-element algebra
satisfying the conditions of Theorem 6.
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5.1 Prerequisites

In this section we state and prove some auxiliary statements. An element
a € A is said to be a right-zero [left-zero] with respect to the operation
t(z,y) if t(z,a) = a [t(a,z) = a] for any z € A. An operation of any of the
following two types guarantees the tractability of an algebra.

Definition 20 Let A = {a,b,c}. A binary operation f is said to be (a —b)-
operation if b, c are left- (right-)zeroes, and {f(a,a), f(a,b), f(a,c)} = {a,b}
({f(a,a), f(b,a), f(c,a)} = {a,b}).

Definition 21 Let A = {a,b,c}. A binary operation f is said to be zero-
operation if one of the following conditions holds

® a is a right-zero, a € {f(a,b), f(c,b)}, and {f(a,c), f(b,c)} N {a,b} #
&;

o ais aleft-zero, a € {f(b,a), f(b,)}, and {f(c,a), f(c,D)}N{a,b} # &.

Lemma 2 Let an algebra A = ({a,b,c}, F) have a term (a — b)-operation.
Then A satisfies the (a — b)-replacement property.

Proof. Suppose first that b, c are left-zeroes. Take a subuniverse R of
A" and a tuple a € R. We prove that, for all £k < n, a tuple a; € R with

ayfi] = { alil, ifali] € {b,c}

b, ifali]=a, i<k,
if f(a,b) = b; and

agli] = alil, ifa[i] € {b,c};
FE= Y b, ifafi] =a,i <k, and R; = A,

otherwise.

The tuple ag can be set to be a. Suppose that a tuple ay, is already found.
Then set ax; = ay if aglk + 1] € {b,c}, or Rxy1 = {a,b} and f(a,b) = a;
otherwise, set a1 = f(ax,b) where b € R is such that b[k + 1] = b if
f(a,b) = b, and blk + 1] = cif f(a,c) =b.

The case when b, ¢ are right-zeroes is quite similar. O

Lemma 3 Let an algebra A = ({a,b,c}, F) have a term zero-operation.
Then A satisfies the partial zero property.

Proof. Suppose first that a is a left-zero with respect to f. Then Z is
the set consisting of A and all the 2-element subuniverses of A, on which f is
a semilattice operation. Notice that if a belongs to such a subuniverse, then
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fla,z) = f(z,a) = a, for any z from this subuniverse. Therefore, zc = a
for any C € Z with a € C, and zg,¢) = f(b,¢) if {b,c} € Z.

Take a subuniverse R of A", and a tuple a € R. We prove that, for all
k <mn, a tuple a; with

ayfi] = ZR;, U R; € Z and i <k;
UZN afi), fR 22

belongs to R.
Set ag = a, and suppose that a; is already found. Then

( ag, if Rgy1 € Z, or ak[k+1] = ZRpy1)

f(ak, b), ifag[k +1] =b, a € Rgy1, and b € R is such
that b[k + 1] = z and f(b,z) = a; or
aylk + 1= ¢, a € Repy, a € (f(ea), f(cB)),

and b € R is such that b[k 4+ 1] = z and

— f(C,.Z‘) = a;

Bp+1 = 9 f(f(ag,b),c), ifaglk+1]=¢c, a € Rxy1, and b,c € R are such
that b[k + 1] = z, c[k + 1] =y where f(c,z) = b,
fb,y) =q

f(ag, b), if {b,c} € Z, z = f(b,¢), {y} = {b;c} —{z},
agy[k +1] =y, and b € R is such that
bk +1] =z.

O

An important particular type of zero-operations rises from the following
definition.

Definition 22 An element a € A is said to be a zero-element with respect
to a binary operation f(z,y), if f(a,z) = f(z,a) = a, for any z € A.

Lemma 4 If a is a zero-element with respect to f(z,y), then f is a zero-
operation.

We also need two simple observations that will be frequently used.

Lemma 5 (1) If f(z,y) is an idempotent operation on a 2-element set then
f is either a projection or a semilattice operation.
(2) If f(x,y) is an idempotent operation on a 2-element set then f(z, f(y,x))
[f(f(y,z),y)] is a semilattice operation if f is a semilattice operation, and
is the first [second] projection otherwise.

We consider 4 cases depending on the number of 2-element subalgebras
and nontrivial homomorphic images of the algebra A. Recall that an algebra
is said to be simple if it has only two homomorphic images: one-element,
and the algebra itself.
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5.2 Strictly simple algebras

A strictly simple algebra is a simple algebra that has no subalgebras but
one-element, and the algebra itself. Finite strictly simple surjective algebras
have been described by A. Szendrei [30]. To formulate A.Szendrei’s result
we need some notation.

Let G be a permutation group on a set A. By R(G) we denote the set
of operations on A preserving each relation of the form {(a,g(a)) | a € A}
where g € G, and F(G) denotes the set of idempotent members of R(G).

Let rA = (A;+, F) be a finite vector space over a finite field F, T(A)
the group of translations {r + a | a € A}, End A the endomorphism ring
of 7A. Then one can consider A as a module over End pA. This module is
denoted by (End FZ)Z'

Finally, F% denotes the set of all operations preserving the relation
X2 ={(ay,...,a;) € A¥ | a; = 0 for at least one 4, 1 < i <k}

where 0 is some fixed element of A, and let F, = N7, FY.
Algebras are said to be term equivalent if their sets of term operations
are equal.

Theorem 8 [30] Let A be a finite idempotent strictly simple algebra. Then
it is term equivalent to one of the following algebras:

(a°) (A,F(Q)) for a permutation group G on A such that every noniden-
tity member of G has at most one fixed point;

(b°) (A, F) where F is the set of all idempotent term operations of

(End KZ)A for some vector space kA over a finite field K;

(d) (A,F(G) NFY) for some k (2 < k < w), some element 0 € A and
some permutation group G on A such that 0 is the unique fized point of
every nonidentity member of G;

(e) (A, F) where |A| =2 and F contains a semilattice operation;

(f) a two-element algebra with empty set of basic operations.

In [7], tractable strictly simple algebras have been characterised: a finite
idempotent strictly simple algebra is tractable if and only if it is of type
(a°), (b°), (d), (e); otherwise it is NP-complete. As is easily seen, exactly
those algebras satisfy the condition of Theorem 6. In the same paper we
noticed that in the case (a°) the dual discriminator operation, that is the
majority operation

d(z,y,z>={ y, iy =z

z, otherwise;

and in the case (b°) the Mal'tsev operation z — y + z of the vector space
are term operations of the algebra. In the case (d) the algebra has the term
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operation
0, if0€ {z,y},
z, otherwise,

d(.’E, y) = {

and 0 is a zero-element with respect this operation; in the case (e) the
algebra has a term semilattice operation. Since a set of relations closed
under a majority operation is of width 3 ([19]), and any semilattice has a
zero-element, Theorem 6 holds for 3-element strictly simple algebras.

5.3 Simple algebras with 1 or 2 subalgebras

In this subsection we assume that A has the subalgebra B = {0,1}, but at
least one of {0,2},{1,2} is not.
We need several particular operations on the 3-element set:

0 1 2 0 1 2 0 1 2 0 1 2
0/0 10 0(0 0 2 0/0 1 2 0/0 1 2
Wilor1°@P1lo1r22® 1j11 2@ 1]01 0
210 1 2 2(0 2 2 202 1 2 212 1 2
0 1 2 0 1 2 0 1 2 0 1 2
0[0 1 1 0[0 1 2 0/0 1 1 0/0 1 1
G ylo12°® 11100 @ 0110 10® g1 0 0
200 2 2 2 0 2 2 2 2 2 2 2
_Jo1 2 0 1 2
(9 0[0 01 0[0 10
110 1 2 1110
2|1 2 2 212 2 2
[0 1 012
0[0 0 0/0 01
13 110 1 1111 0°
2(2 2 202 2 2

Lemma 6 If {0,1} is a subuniverse of A, but at least one of {0,2},{1,2}

is not, then A either has a binary term operation f and a zero-element with

respect to f, or a zero-operation, or a (2 — a)-operation, a € {0,1}, or one

of the operations

(a) (1),(2),(4),(6),(8),(10),(11),(12),(14),(16) if {1,2} is not a subuniverse;
(b) (1),(3),(5),(7),(8),(9),(11),(13),(15) if {0,2} is not a subuniverse.

Proof. Suppose that {1,2} is not a subuniverse. In the case when
{0,2} is not a subuniverse, the proof is dual in the sense that 0 and 1 are
swopped. Since {1,2} is not a subuniverse of A, there is a term operation
f(z1,...,2,), and a1,...,a, € {1,2} such that f(ai,...,a,) =0. Without
loss of generality we may assume that a1 = ... =ax =1, 0541 = ... = ap =
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2. Then the operation f(z,...,z,y,...,y) also destroys the set {1,2}, and
——

therefore, f can be chosen tokbe binary.

On the other hand, B = {0, 1} is a subuniverse. Hence, f preserves B,
and we have four cases depending on what is the restriction of f onto B, a
semilattice operation, the first or the second projection.

CASE 1. 0 , that is f‘ is a semilattice operation, 0 > 1.
B

SuBcAsE 1.1. f(2,1) =0.
If f(2,0) = 0 then f is a zero-operation; if f(2,0) = 1 then f(z, f(z,y))
is a zero-operation. If f(2,0) = 2 then g(z,y) = f(z, f(z,y)) is the opera-
tion (10) in the case f(0,2) € {0,1}, and 2 is a zero-element with respect to
9(g9(z,y),y) in the case f(0,2) = 2.
SuBCASE 1.2. f(2,1) =1.
In this case we may get Subcase 1.1 by substituting f(f(z,y), f(y,z)).
SuBcASE 1.3. f(2,1) =2.
SUBCASE 1.3.1. f(2,0) = 0. The operation f is a zero-operation.
SUBCASE 1.3.2. f(2,0) = 1.
If £(0,2) € {0,1} then 0 is a zero-element with respect to the operation
f(f(z,y),y). In the case f(0,2) = 2, 0 is a zero-element with respect to
f(f(z,y). z).
SUBCASE 1.3.3 f(2,0) = 2.
If £(0,2) € {0,1} then f(z,y) is one of the operations (10),(11). If f(0,2) =
2 then 2 is a zero-element with respect to f(f(z,y),y).

~—

0|0 1 . .
ASE 2. i i i > 0.
CASE 111 00 that is f‘B is a semilattice operation, 1 > 0

SUBCASE 2.1. f(2,1) € {0,1}.

SUBCASE 2.1.1. f(2,0) € {0,1}.
In this case, 1 is a zero-element with respect to g(z,y) = f(z, f(z,y)) if
f(2,1) = 1, and with respect to g(g(z,y),y) if f(2,1) =0.

SUBCASE 2.1.2. f(2,0) = 2.
If f(2,1) = 1 then 1 is a zero-element with respect to the operation f(z, f(z,y))-
In the case, f(2,1) = 0, f(f(z,y),y) is a zero-operation if f(0,2) = 0, or
1 is a zero-element with respect to f(f(y,z),y) if f(0,2) = 1, or f is the
operation (6) if f(0,2) = 2.

SUBCASE 2.2. f(2,1) =2.
If £(2,0) € {0, 1} then by substituting f(z, f(y,z)) we get Subcase 2.1. Con-
sider the case when f(2,0) = 2. If f(0,2) = 0 then f is the operation (12);
if £(0,2) =1 then f(z,y) is the operation (8); and if f(0,2) = 2 then 2 is a
zero-element with respect to f(f(z,v),v).
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CASE 3.

Flo 1
010 0
111 1

, that is f‘B is the first projection.

SUBCASE 3.1. f(2,1) =1.
SUBCASE 3.1.1. f(0,2) = 0. In this case, f is a zero-operation.
SUBCASE 3.1.2. f(0,2) =1.
If f(2,0) = 0 then, for the operation g(x,y) = f(f(z,y),z), g(z,g(z,y)) is
the operation (1). If f(2,0) € {1,2} then f(f(z,y),y) is a (2—1)-operation.
SUBCASE 3.1.3. f(0,2) = 2.
If f(2,0) = 0 then f(z, f(y,z)) is a (2 — 0)-operation. If f(2,0) = 1 then
f(y, f(y,z)) is a zero-operation. If f(2,0) = 2 then f is the operation (4).
SUBCASE 3.2. f(2,1) =0.
SUBCASE 3.2.1. f(0,2) = 0. In this case, f(y, z) is a zero-operation.
SUBCASE 3.2.2. f(0,2) = 1. The operation f(f(z,y),y) is a (2 —0)- or
a (2 — 1)-operation.
SUBCASE 3.2.3. f(0,2) = 2.
If f(2,0) = 0 then f(f(z,y),z) is the operation (14); if f(2,0) = 1 then
f(f(x,y), ) is a zero-operation. Finally, in the case f(2,0) = 2, set h(z,y) =
f(f(z,y),y). Then 2 is a zero-element with respect to the operation h(z, h(z,y)).
SUBCASE 3.3. f(2,1) =2.
SuBCASE 3.3.1. f(2,0) € {0,1}.

0 1 2
. . . 0]0 O
In this case, the operation table of f(z, f(y,x)) is 111 1 o and there-
2| 0/1 2

fore, we get one of Subcases 3.1, 3.2.

SUBCASE 3.3.2. f(2,0) =2.
If £(0,2) =0 then f is the operation (14). In the case f(0,2) =1, f is the
operation (16). Finally, if £(0,2) = 2 then 2 is a zero-element with respect
to f(f(z,9),y

, that is f‘B is the second projection.

SUBCASE 4.1. f(2,1) =1.
SUBCASE 4.1.1. f(2,0) = 0.
If £(0,2) € {0,2} then f is a (2 — 0)-operation. If f(0,2) = 1 then
f(f(z,y),y) is the operation (1).
SUBCASE 4.1.2. f(2,0) = 1. In this case, f is a zero-operation.
SUBCASE 4.1.3. f(2,0) = 2.
If £(0,2) =0 then f(f(z,y),x) is a (2 — 0)-operation; if f(0,2) =1 then f
is a zero-operation; and if f(0,2) = 2 then f is the operation (4).
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SUBCASE 4.2. f(2,1) =0.
Consider the operation g(z,y) = f(z, f(z,y)). Its operation table is
9]0 1 2

(1) (0) 1 0" Therefore, if f(2,0) =1 or 2 then we get Subcase 4.1 or
2] f2,0) 2

Subcase 4.3 respectively. If f(2,0) = 0 then ¢g(2,0) =¢(2,1) =0, and g is a
zero-operation.

SUBCASE 4.3. f(2,1) =2.
SUBCASE 4.3.1. f(2,0) = 0. In this case, f is a zero-operation.
SUBCASE 4.3.2. f(2,0) € {1, 2}.
01 2
Set g(z,y) = f(z, f(z,y)). Its operation table is (1) g 1 f(%’2) If
212 2 2

£(0,2) =0 then g(z, g(y,x)) is the operation (14). If f(0,2) = 2 then g is a
zero-operation. Finally, in the case f(0,2) = 1, the operation f(z, f(y,z))
is the operation (16). a

If A has a zero-element with respect to a binary term operation, or a
zero-operation, or a (2—a)-operation, then by Lemmas 3,2, A satisfies either
the partial zero-property, or the (2—a)-replacement property. We, therefore,
have to show that if A has one of the numbered term operations, then A
satisfies one of the properties listed in Theorem 6.

Lemma 7 Let A have a term operation f which is one of the operations
is (3), and g a term operation which is either a semilattice, or majority, or
minority operation on B. Then

—if 95 is a semilattice operation then A has a semilattice operation, and

therefore, satisfies the partial zero property;
—if g‘B is a majority operation then A satisfies the B-extendibility property;

-if g‘B is a minority operation then A is {0, 1}-rectangular.

Proof. We prove the lemma in the case when f is the operation (1); the
other 2 cases are quite similar.
If a term operation g is such that g‘ 0.1} is a semilattice operation, then

9(f(z,y), f(y,z)) is a semilattice operation on A.
Now, suppose that g is a majority operation on B, and R € Inv F' an
(n-ary) relation. We show first, that, for any k,l € n with Ry = R = A

and a € B there is b € B such that Z € Ry, and moreover, for any
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a

b
and a[i] € B for all 7 such that R; = A. Without loss of generality we may
assume that £k = 1,/ = 2, and a; € R is such that a[l] = a. Then, there is
b € R with b[2] € B; set ¢ = f(b,a;). As is easily seen, c[1] = a[l] = a,

€ Ryy,y such that a,b € B, there is a € R with a[k] = a,all] = b,

c[2] € B. Further, let € Ryi93 N B?, and let ag € R be such

a
b
that a[l] = a,a[2] = b. Then, for any k£ < n, there is a; € R such that
a[l] = a,a[2] = b, and afi] € B for all 4 < k such that R; = A. Indeed,
suppose that a; 1 is already found. Then a; can be chosen to be a; 1 if
a;_1[k] € B or Ry # A. Otherwise, there is b € R with b[k] € B, and the
tuple a; = f(b, a,_1) satisfies the required conditions.

Furthermore, denote W = {i € n | R; = A}, and take a € B'W| such

a[j]
k,l € W, there is ag, € R with ak,l[k] = a[k],ak’l[l] = a[l], and ak,l[z'] €B
whenever ¢ € W. Since g is a majority operation on B, by Theorem 3.5
from [18], there is b € R such that b‘W =a.

Let R ={c1,...,¢n}, and

c:f("'f(claCQ)a"'acm)'

Then, c[i] = 0 if R; = {0,2}, and c[i] = 1 if R; = {1,2}; and for the tuple
d = f(c,b), we have d‘W = b‘W =a,d[i| =c[i] =a if R; = {a,2}, a € B.

Let g be a term operation which is a minority operation on {0,1}, R €
Inv an (n-ary) relation, and W = {u | 0,1 € Ry}, W = n — W, and
Wi,...,Wi C W be the blocks of §(R). We have to prove that

that ( a[z.] € Ry; jy, for any i, j € W. By what was proved above, for any

Rw N {0,1}|W| = (RW1 N {0,1}|W1|) X --- X (RWk N {0,1}|Wk\)

Notice first, that replacing g with g(z, f(z,y), z), we may assume that
g(z,2,z) = z whenever z,z € {0,1}.

Let a; € R‘ N {0, 1}|W| for 7 € k, and let us suppose we have proved
that, for any I — l-element subset I C k there is a € R with a, = a
whenever ¢ € I. Take an [-element subset J C k; without loss of generality
we may assume J = {1,...,l} and U = Wy U... U W,. There exists a

tuple b € R such that by, € {0,1}"1l by, = ( ,2), or vice versa.
It will not be loss of generality if we suppose that le = (2,...,2), and
there is m < [ such that, for any i < I, by, = (2,...,2) if and only if

¢ > m. There also exist a,c € R such that ay, = a; for all 1 < i < m,
and cw; = a; for all m <4 < k. By rearranging the coordinate positions,
the tuples a{U, b‘U, c‘U can be viewed as consisting of 4 parts: the first one,
U1, includes those coordinate positions in which all the tuples have 0 or
1, this part is a subset of W7 U ... U W,,_1 and is nonempty; the second

27



part Uy equals to (W1 U...UW,,_1) — U1, and consists of those positions
in which a,b have 0,1 while ¢ has 2; the third part, U3 C W,, U... U W},
contains those positions in which a is 0, 1; finally, the last part, Uy, contains
the remaining coordinate positions, and in each such a position a, b equal 2.

al b! c!
. a’ b? 2
So, we may represent the tuples in the form ad |’ 5 | and o3
2 2 ct
respectively where a!,a? a’b!, b?, ¢!, c3, c¢* consist of Os and 1s. Then set
b! a'
b? a’
d=f(e,b) = 3 | and a' = f(c,a) = ad | Finally, we have
ct ct
ba' b! b! al
2 2 2 2
a b b a
€= g(ala b, d) =g a3 3 Pl ’ e3 = c3
c 2 c ct

The tuple e satisfies the condition e, = a whenever ¢ € J as required. O

i

Lemma 8 Let A have a term operation f which is one of the operations
(4),(5),(6),(9). Then

- A satisfies (2 — 0)-replacement property if f is (4);

- A satisfies (2 — 1)-replacement property if f is the operation (5);

— A satisfies the {1,2}-extendibility property if f is (6);

~ A satisfies the {0, 2}-extendibility property if f is (9).

Proof.
(4) Let f is the operation (4). Take an (n-ary) relation R € Inv F. We prove
that, for any a € R, and any k < n, there is a; € R such that

if ak[z] = 1;
if ak[z] € {0,2}, 1 <k,and R; = {0, 1,2};
if i <k, and R; = {0,2};
if 1 ¢ R; and a[i] = 2;
or 2, otherwise.

1
0
ag [Z] = 2
2
0

Clearly, a,, is the tuple required in the (2 — 0)-replacement property.

Since ag can be set to be a, we have the base case of induction. Further,
suppose that there is a; € R with the required properties.

CAsE 1. aglk+1]=1,oralk+1] =2 and 1 & Ry, or aglk+ 1] =0
and Ry € {{0,1,2},{0,1},{0}}.
In this case, set ag41 = ay.
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CASE 2. ag[k + 1] = 0 and R; = {0, 2}.

There is b € R with b[k + 1] = 2. By the induction hypothesis there is
by € R. It can be straightforwardly verified that the tuple a;1 = f(by,a)
satisfies the required conditions.

CASE 3. ag[k+1]=2and 1 € Rgy1.

This case is very similar to the previous one, but b is to be chosen such that
bk + 1] = 1.

(6) Let f denote the operation (6). We prove that A satisfies the
{1, 2}-extendibility property. To this end, notice first that the operation
9(@,9,2) = [(f (&, £ (4,2), [ (f(z,9), )} is the majority operation on {1,2}.
Moreover, f(f(z,y),y) is the operation (3); and the required result follows
from Lemma 7.

The arguments for the operations (5) and (9) are quite similar. O

Recall that we denote € the equivalence relation whose classes are {0,1}

and {2}.

Lemma 9 (a) If a simple algebra A has a term operation which is one of the
operations (7),(10),(12),(13),(14),(15), then it has a binary term operation
destroying 0.

(b) If A is simple and has a term operation which is one of the opera-
tions (8),(11),(16) then A has a binary term operation destroying 6, or an
operation g(z,vy,z) such that

each of the operations g(x,y,2),9(x,2,y),9(2,z,y) on {0,1} either pre-
serves the set {0,1}, or is the constant operation 2, or has the opera-
01
tion table 0|0 2 ;
112 1

each of the operations g(z,2,2),9(2,1,2),9(2,2,2) on {0,1} either pre-
serves the set {0,1}, or is the constant operation 2.

Proof. Since A is simple there is an operation g(z1,...,z,) and a,b €
A™ such (a[i],b[i]) € 6, but (g(a[l],...,a[n]),g(b[l],...,b[n])) & 0. It is
not hard to see that g, a,b can be chosen such that a,b differ only in
one coordinate position. Without loss of generality, let a[1] # b[1], a[2] =
b2l =...=alp] =blp]=0,ap+1 =bp+1]=... =a[r] =b[r] =1,
alr+ 1] =blr+ 1] =... = a[n] = b[n] = 2. Then the operation

hz,y,z,t) = f(z, y,-..,y » Zyeur2 5 tyoooyt )
— —_——— ~——

p— 1 times r — p times n — r times

also destroys 6.
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Notice that if (k(0,0,0,2),h(1,0,1,2)) ¢ 6 then the operation h(z,y, z, z)
destroys 6. Otherwise, since (h(1,0,1,2),h(0,0,1,2)) & 6, we have (h(0,0,0,2),
h(0,0,1,2)) ¢ 0, and the operation h(y,y,z,z) destroys #. Thus, in each
case there is an operation g(z,y, z) such that (g(0,1,2),9(1,1,2)) € 6.

Consider the operation ¢'(z,y) = g(z,y,2). Since (¢'(0,1),4'(1,1)) & 6,
we have 8 cases. Let f denote one of the operations listed in Lemma 9.

gl o 1 g0 1
Casel. 0(0/1 ,or 0|2
1 2 1 0/1

In this case g(z,z,y) destroys 0, and we have a binary operation with this
property.
9|0
0
1
For the operation h(z,y) = g(¢(z, z,y), z,y) we have h(0,2) =0, h(1,2) = 2.

CASE 2.

We get a binary operation destroying 6.
"10 1
1 2.
1

g

CAsE 3. 0

1

For the operation h(z,y) = g(z, g(z,z,y),y), we have h(0,2) = 2, h(1,2) =
1. We again get a binary operation destroying 6.

gl 0 1
2

CASE 4.

0]0/1
110/1 0/1

If f is one of (8),(10),(11),(12),(14),(16) then f(0,2) € {0,1}, f(1,2) = 0,
and, for the operation h(z,y) = g(f(z,y),z,y), we have h(1,2) = ¢(0,1,2) =

2, and h(0,2) = ¢(0/1,0,2) € {0,1}, i.e. h destroys 6. If f is one of
(7),(13),(15) then £(0,2) = £(1,2) = 1, for the operation h(z, y) = £(z, { (z,1),1),
we have h(0,2) = g¢(0,1,2) =2, and h(1,2) = g(1,1,2) € {0,1}, i.e. again h
destroys 6.

g0 1
Case5. 0|2 0/1.
112 2
This case is quite analogous to the previous one.
Jg| 0 1
Case6. 0| 2 0/1.
110/1 2

If f is one of (10),(12),(14) then f(0,2) = f(1,2) = 0, and, for the oper-
ation h(z,y) = g(f(z,y),z,y), we have h(0,2) = ¢(0,0,2) = 2, h(1,2) =
g(0,1,2) € {0,1}, and h destroys 6. Analogously, if f is one of (7),(13),(15),
and so f(0,2) = f(1,2) = 1, then for h obtained in the same way we
have h(0,2) € {0,1}, h(1,2) = 2, i.e. h destroys 6. Finally, if f(0,2) = 1,
f(1,2) = 0 then by substituting g(f(z, z),y, z) we obtain Case 8.
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g0 1
Case 7. 0|1 2.
1(2 0
The operation g(g(z, z, ), g(y, y, z), z) satisfies the conditions of the Case 8.
g0 1
Case 8. 0|0 2.
112 1

If £(0,2) = f(1,2) = 0, that is f is one of the operations (10),(12), (14),
then the operation h(z,y) = g(f(z,y), z,y) satisfies the conditions h(0,2) =
9(0,0,2) =0, h(1,2) = g(0,1,2) = 2, and therefore, destroys 6. If f(0,2) =
f(1,2) =1, that is f is one of the operations (7),(13),(15), then h satisfies
the conditions h(0,2) = ¢(1,0,2) =2, h(1,2) = ¢(1,1,2) = 1.

Finally, if f(0,2) = 1, f(1,2) = 0, that is f is one of the operations
(8),(11),(16), then each of the operations g(2,y, 2), g(x, 2, z) either satisfies
the same conditions as g(z,y, 2), or preserves {0,1}, or is the constant op-
eration 2, or a binary operation destroying 6 can be derived. Analogously,
each of the operations ¢(2,2,z),9(2,z,2),9(x,2,2) either preserves {0,1},
or is the constant operation 2, or a binary operation destroying 6 can be
derived. The lemma is proved. O

Lemma 10 If A has a binary operation destroying the equivalence relation
0 and one of the operations (7),(8),(10),(11),(12),(13),(14),(15),(16) then
either 2 is a zero-element with respect to some binary term operation of
A, or A has a binary conservative commutative term operation, or a zero-
operation, or a (2—a)-operation, a € {0,1}, or a (1—2)-operation and {0,2}
is a subuniverse of A.

Proof.

Let g be the term operation destroying 6, (¢(0,2),¢(1,2)) ¢ 6, and f
denote one of the operations listed.

Suppose, first, g(0,2) = 0,¢(1,2) = 2, and consider 4 cases.

g0 1 2
0(0 1 0
CASE A. 1101 2°
2 2
SUBCASE A.1. ¢(2,0),9(2,1) € {0,1}.
The operation g(z, g(z,y)) is either a zero-operation or a (2 — 0)-operation.
SUBCASE A.2. ¢(2,0) =0, g(2,1) = 2. In this case, g is a zero-operation

itself.

SUBCASE A.3. ¢(2,0) =2, ¢(2,1) = 1.
If f is one of the operations (7),(8),(10),(11),(12),(13), that is f{0 "
semilattice, then f(g(z,y),z) satisfies the conditions of Case C or Case D.
Otherwise, by substituting g(z, f(y,z)) we get Subcase A.4 or Subcase A.1.

is a
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SUBCASE A.4. All other cases.
The operation g(z,g(x,y)) is a zero operation.

SUBCASE B.1. 0 € {9(2,0),9(2,1)}. In this case g is a zero-operation.
SUBCASE B.2. ¢(2,0) =¢(2,1) =1 or ¢(2,0) =1,9(2,1) = 2.
If g(2,0) = ¢(2,1) = 1 then g(z,9(y,z)) is a (2 — 1)-operation. Then, if
9(2,0) = 1,¢(2,1) = 2 then by substituting g(z, g(z,y)) we get Subcase B.4.
SUBCASE B.3. ¢(2,0) = 2,¢(2,1) = 1.
In this case, if f(0,2) = f(1,2), that is f is one of (7),(10),(12),(13),(14),(15),
then g(f(z,v),y) is a zero-operation. Otherwise, the operation g(z, f(y, z))
satisfies the conditions of Subcase B.2.
SUBCASE B.4. ¢(2,0) = ¢(2,1) = 2.
Since g is a (1—2)-operation, if {0, 2} is a subuniverse then we are done. Oth-
erwise, by Lemma 6, one of the operations (1),(5),(7),(8),(9),(11),(13),(15)
is a term operation of A. Therefore, either, the conditions of Lemma 8 or
Lemma 7 hold and there is a term zero-operation of A or A satisfies one of the
following conditions: {0,1}- or {0, 2}-extendibility, (2—1)-replacement prop-
erty, {0, 1}-rectangularity, or one of the operations (7),(8),(11),(13),(15),(16)
is a term operation of A. Denote this term operation by h. If h is one of
(7),(13),(15), i.e. h(0,2) = h(1,2) = 1, then 2 is a zero-element with respect
to the operation g(h(z,y),y). If h is one of (8),(11),(16) then g(h(z,y),y)
satisfies the conditions of one of Cases E-H.

If g(2,0) # 2 or g(2,1) # 2 then g is a zero-operation. So, suppose that
9(2,0) = ¢g(2,1) = 2. Since g is the operation (2), if {0,2} is a subuniverse,
then by Lemma 7, either a zero-operation is a term operation of A, or A is
{0, 2}-rectangular, or A satisfies the {0, 2}-extendibility property.

If {0, 2} is not a subuniverse then, as in Subcase B.4, either the conditions
of Lemma 8 or Lemma 7 hold, or one of (7),(8),(11),(13),(15),(16) is a term
operation of A; denote this operation by h. If h is one of (7),(13),(15) then
2 is a zero-element with respect to the operation g(h(z,y),y). If f is one of
(8),(11),(16) then g(h(z,y),y) satisfies the conditions of one of Cases E-H.

If g(2,1) = 1 then g is a zero-operation. If g(2,1) = 0 then g(g(z,y),y) is
a zero-operation. Finally, let g(2,1) = 2. Then if ¢(2,0) = 2 then g is a
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zero operation, and if ¢(2,0) = 1 then g(z,g(z,y)) is a zero-operation. If
9(2,0) = 0 then g is a conservative commutative operation.

LO 1 2

01 2

Cask E. 1o 1 0
2 2

In this case, either g itself, or the operation g(x, g(z,v)) is a zero-operation
or a (2 — 0)-operation.

LO 1 2

00 0 2

CASE F. 1111 0

2 2

SuBcAsE F.1. ¢(2,0) =0,9(2,1) =
R0 1 2
. . . 0]0 0 2
Set h(z,y) = g(z,g(z,y)); its operation table is 111 1° Then the

210 0 2

h(z,h(y,x)) is a (2 — 0)-operation.
SuBcAsE F.2. ¢(2,1) =2, ¢(2,0) € {1,2}.
The operation g(g(z,y),y) is a zero-operation.
SUBCASE F.3. All other cases.
In this case, for the operation h(z,y) = g(z, g(z,y)) we have 1 € {h(2,0),h(2,1)},
and h(2,1) = 1. Therefore, h is a zero operation.

SUBCASE G.1. ¢(2,0) = 0. The operation g is a zero-operation.
SUBCASE G.2. ¢(2,0) = 1.
If g(2,1) € {0,2} then g(z,g(z,y)) is a zero-operation. If g(2,1) = 1 then

9(9(y,z),y) is a zero-operation.
SuBcAsE G.3. ¢(2,0) = 2.
If g(2,1) = 2 then 2 is a zero-element with respect to g(g(z,y),y). If
9(2,1) = 0 then, for the operation h(z,y) = g(z,g(z,y)), we have h(2,1) =
2, and we get the previous case. Finally, if g(2,1) = 1 then g(g(y, ), y) falls
to the previous cases.
g0 1

010 1

2

CASE H. 2.
1{1 1 0O
2

N

If g(2,0) = 2,9(2,1) = 0 then g is the operation (6), and, by Lemma 8,
A satisfies the {1,2}-extendibility property. If g(2,0) = ¢(2,1) = 2 then
g is a zero-operation, and if g(2,1) = 2,¢(2,0) € {0,1} then g(g9(z,y),v)
is a zero-operation. Further, if ¢(2,0) = ¢(2,1) = 0 then g(z,g(y,z)) is a
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zero-operation. In all other cases g(z,g(z,y)) is a zero-operation.

The proof in the case when 1 € {g(0,2), g(1,2)} is quite similar. O

Lemma 11 If A satisfies the conditions of Lemma 9 and has no binary
operation destroying 0, then either a zero-operation, or (2 —0)- or (2 —1)-
operation, or the operation (1) is a term operation of A.

Proof. Let f denote the operation (16), and g the ternary operation
satisfying the conditions of Lemma 9. Consider the operation ¢'(z,y) =

0 0
11

g(z,z,y); its operation table is . The restriction of ¢’ on {0,1}

is either a projection or a semilattice operation. If ¢'(2,0) = ¢'(2,1) € {0,1}
and g'{0 1 is the first projection, then ¢’ is either (2—0)- or (2—1)-operation.
If g'{0 1 is the second projection, ¢'(y, ¢'(y,)) is a zero operation. In the
case when ¢’ ‘ 0.1} is a semilattice operation, g’ is a zero-operation. Further,
if ¢'(2,0) = 0,¢'(2,1) = 1 then either ¢’ itself or ¢'(y, z) is the operation (1),
or ¢’ is a zero-operation. In the case ¢'(2,0) = 1,4'(2,1) = 0, the operation
g'(z,g(z,y)) is either a zero-operation, or the operation (1), or the opera-
tion (1) with permuted variables. The only case remaining to consider is
7(2,0) = g¢'(2,1) = 2.

If the restriction of ¢’ onto {0, 1} is a semilattice operation, then f(g(z,y),y)
is one of the operations (8),(11). By Lemma 9, there exists a binary term
operation of A that destroys the equivalence 6, a contradiction with the
conditions of Lemma 11. If g" 0.1 is the second projection then consider

the operation h(z,y,z) = g(z,y,9(z,2,x)). It is not hard to check that h
satisfied the conditions applied to g in Lemma 11, but the operation table

of h(z,z,y) is 0 . Finally, if g"{o 1 is the first projection then the

N = O
N = O
N = O

operation table of h(x,y) = g(x, f(z,y),y) is , and therefore, h

0
0
1
2

N = O| -
N DN NN

is a zero-operation.
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5.4 Conservative algebras

An algebra is called conservative if every its subset is a subuniverse.
If B is a 2-element subalgebra of A then B is tractable, and therefore, by
Schaefer’s theorem, there is a term operation f of A such that f‘B is either a

semilattice, or majority, or affine operation. We have 5 cases depending on
operations of which kind provide the tractability of 2-element subalgebras.

5.4.1 A has a term operation f whose restriction on a 2-element subuni-
verse is a semilattice operation.

Suppose that f is a semilattice operation on B = {0,1}, and f(0,1) =
f(1,0) = 1. Then, by Lemma 5(1), the restriction of f onto any other 2-
element subuniverse is either a semilattice operation, or a projection. More-
over, by Lemma 5(2) replacing f with f(z, f(y,x)), the projections may be
assumed to be first projections. We consider 3 subcases.

CASE 1. f is a semilattice operation on all three 2-element subuniverses.
In this case, f is a commutative conservative binary operation, and, by [4],
A is of width 3.

CASE 2. f is a semilattice operation on two of the 2-element subuni-
verses, and it is the first projection on the third one.

SUBCASE 2.1. f‘{0,2} is a semilattice operation.

Fl1001 2 flo1 2
Then the Cayley table of f is one of the following (1) (1) 1 ? , (1) (1) 1 ? )
210 2 2 2|2 2 2

In the first case, f is a zero-operation, and therefore, by Lemma 3, A sat-
isfies the partial zero property. In the second case, f is the operation (2),
hence, by Lemma 7, A satisfies the {1, 2}-rectangularity property.
SUBCASE 2.2. f‘{1,2} is a semilattice operation.
|

il
0 0
1

01 2 0 1
. . 010 0 1
Then the Cayley table of f is one of the following 111 11

bl

N N OIN

212 1 2 212 2

In the first case, 1 is a zero-element with respect to f. In second case f is a

zero-operation. Therefore, in both cases A satisfies the partial zero property.

CASE 3. f is a semilattice operation on one of the 2-element subuni-
verses, and is the first projection on the remaining ones.

In this case, the Cayley table of f is and f is a (0 — 1)-

operation . By Lemma 2, A satisfies the (0 — 1)-replacement property.
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Before considering the remaining cases, we observe some properties of
ternary term operations of A in the case when no 2-element subalgebras
of A has a semilattice term operation. An operation f(z,y,z) is said to
be minority if the identities f(z,z,y) = f(z,y,z) = f(y,z,2) = y hold.
There is only one minority operation on a 2-element set, the affine operation
T—y+ =z

Lemma 12 Let A be such that the restriction of every its binary term op-
eration onto every 2-element subuniverse is a projection. Then there ezists
a term operation h(z,y,z) of A such that, for any 2-element subuniverse B
of A, the restriction h‘B is the majority operation if there is a term opera-

tion f of A such that f‘B is the majority operation, and h‘B 1s the minority
operation otherwise.

Proof. Let B C A, |B| = 2, f' = f|; and fi(z,y) = f'(2,9,9),
folz,y) = f'(y,z,v), fs(z,y) = f'(y,y,z). If one of these operations is
not a projection, then it must be a semilattice operation, a contradiction to
the assumptions done.

Cramm 1. If fi(z,y) = y for some i and f’ is not a projection, then there
is a term operation g of A such that g‘B is the majority operation.

Let f1(z,y) = y. Then there are 3 possibilities. (a) f’ is a majority operation

and we are done; (b) fa(z,y) = =, fs(z,y) =y or fao(z,y) =y, f3(z,y) = =,
and f' is a projection, which is impossible; (¢) fo = f3 = z. In this case set

9(z,y,2) = f(f(z,y,2),y,2); we have

dp@vy) = f(f'@y9).0y) =Gy =y,
dpwzy) = f(f'wzy) 5y =f(=.5y) =y,
g v.7) = f(f'4y2).9,2) = f'(e,y,2) = y.

Denote by By, Be, B3 the sets {0,1},{0,2}, {1, 2} respectively. By Claim 1,
there are ternary term operations g1, g2, g3 of A such that gi‘B' is the ma-

jority operation if there are a term operation f of A such that f‘B' is the

majority operation, 9il 5 is the minority otherwise, and g;| is cither the

majority operation, or ‘Ehe minority operations, or the ﬁlrs“]cB ]projection for
J# 1.

CLAIM 2. g¢1,g9,93 can be chosen such that their restrictions on each
2-element subset is either the majority or the minority operation.
To prove the claim it is enough to notice that, for any 4,j € {1,2,3}, the
operation

gij(ma Y, z) = gj(gi(-’ﬂ, Y, z)v gi (ya 2, 3:)7 gi(Z, Zz, y))

is either the majority or minority operation on B;, Bj, and gij‘B,- = gi‘Bi.
Then we may replace g1, g2, g3 with

923(912(2, 9, 2), 912 (Y, 2, %), g12(2, %, 9)) (1)
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931(923(:0,y,z),923(y,z,:c),g23(z,x,y)) (2)
912(931(-'3,?},Z),ggl(y,Z,-T),ggl(z,x,y)) (3)

Finally, if all g1, g2, g3 are minority operations on each 2-element subset,
then any of them suits as h. Suppose that gl‘Bl, 92‘32 are majority opera-
tions, but gl‘Bz is the minority operation. Then for ¢'(z,y) = ¢1(z,z,y),
we have g"Bl(ac,y) = x,g"BZ(x,y) = y; and the operation ¢"(z,y,z) =
d'(91(z,y,2),92(x,y,2)) is the majority operation on both By, By. If g”‘B?’ #
gg‘B3 we repeat this procedure for By, Bs.

5.4.2 All three 2-element subalgebras have the majority term operation,
but no semilattice term operation.

By Lemma 12, there is a term operation f which is the majority operation
on each 2-element subset. This means that f is a majority operation on A,
and therefore, A has a majority term operation.

5.4.3 All three 2-element subalgebras have the minority term operation,
but no semilattice or majority operation.

By the analogous reason, A has a Mal’tsev term operation.

5.4.4 Two of the 2-element subalgebras have the majority term opera-
tion, but no semilattice operation; and the third subalgebra has
the minority term operation, but neither semilattice nor majority
operation.

By Lemma 12, there is a term operation f of A such that f‘B is the mi-
1

nority operation, and f are majority operations. Then the operation

5]
By’ /B3
g9(z,y) = f(z,y,y) is the first projection on Bj, and the second projection

on BQ, B3.
Lemma 13 The algebra A satisfies the By-semisplitting property.

Proof. For I,J Cn INJ =, and a € R;,b € R;, we write (a,b) for
the |I| + |J|-tuple ¢ = (cr)icrus with ¢; =a; ifi € I, and ¢; = b; if i € J.

Let R € Inv F be an irreducible (n-ary) relation, W = {i € n | R; = A},
and W; = {i €n | R; = B;}, j = 1,2,3. We have to prove that

@ # (Rw n BYY x Rw,uw, x Rw, C R.

CLAIM 1. For any a € Ry, 1 € WUW,UWs3, and any a € R;, the tuple
(a,a) belongs to Ry, ;-
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There is b such that (a,b) € Ry,u(;), and b € Ry, such that (b,a) €
Ryy,ugsy- If b € {0,1} then take a tuple of the form (c,2) € Ryy,ug3- The

tuple (;) = g(( Z > , ( (2: )) belongs to Ry, ugiy- If @ € {0,1} then
(5)=s((2)-2))

CLAM 2. For any i,j € W, any (a,a) € Ry,uq;) with a € By, there is
b € By such that (a,a,b) € Ry, -

Let us denote Ryy,uy,;) by R”. Since (a,a) € Ryy,uy), there is ¢ such
that (a,a,c) € R". If ¢ € By then we are done, so, suppose that ¢ = 1.
CASE 1. a = 2.
By Claim 1, there is d € A such that (a,d,0) € R"”. As is easily seen, the

a a
tuple ¢ d |,| 2 is as required.
0 1
CASE 2. a =0.
By Claim 1, there are ¢,d € A such that (a,c,0),(a,d,2) € R". If c €
a a a a
{0,2} or d € {0,1} then g c |,| 0 or g 0|,]| d is as
0 1 1 2

required. Therefore, we may assume that ¢ =1,d = 2.
Since R is irreducible, there is b € Ry, such that (b,c,d) € R" where

a b
(e,d) € {(0/1,2),(2,0/1),(0,0), (1,1)}. Inthe first case, g 0 |,| 0/1
1 2
a
0 | is as required. In the second case we have
2
a b a a a a
g 2 ’ 2 = 2 7 g 1 ) 2 = 2
2 0/1 0/1 0 0/1 0
a a a
g 2 (,1 O =10 ],
0 1 0
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and we get the required tuple. In the third case, g 21,10 =
2 0
a
0 | is as required. Finally, in the last case,
0
a b a a a a a
g 2 1,11 =| 1], andf O1l,]11],]1 =10
2 1 1 1 1 0 0

and we again obtain the required tuple.

CrAam 3. For any 41,42 € W U Wo UWs, any (ai,,ai,) € Ry, 4,) such
that aj; € By if 'ij e WUW,, any I C (W uwiu WQ) — {il,iQ}, and any
a € Ry, a tuple b with

ooy, iz, =12
bl {a[z’], if i € Wy;

and b[i] € By for i € INW, belongs to Ry, urugs iz} -

The base case of induction, I = &, follows from Claim 2. Indeed, by
Claim 2, there is c¢ such that (a,ai;,c) € Rw,uf,,i,), and ¢ € By when-
ever iy € W U Wo; and there is ¢ such that (c,a;,,a,) € Ry,uqiy,ip)- Then

a c
g ai, |, ay is the required tuple.
c Qi

Let I # @. Without loss of generality, let i1 = 1,49 = 2, and I =
{3,...,k}. Suppose that the claim holds for all I C W U Wy U W3 with
|I| < k — 3. Hence, there is b € A such that ¢ = (a1,a9,...,a5 1,b,a) €
Ry{12yuruw, where ag, ..., a1 satisfy the conditions of the claim. If k €
Wo U W3 or b € By then we are done; so let kK € W and b = 1.

CASE 1. a1 = 2.

By Claim 1, (0,a) € Rysuw,, therefore d = (c,bo,...,b; — 1,0,a) €
Ry12yuruw, for certain b, ..., bg—1 satisfying the conditions of the claim.
Set e = g(c,b). Since {d[i],c[i]} # {0,1} for all s € {2,...,k — 1}, we have
e[i] = ¢[i] = a;. Then e[1] = 2 because a; = 2, and e[k] = ¢(0,1) = 0.

CASE 2. gqg=0ora; =1if1 € Ws.

The tuple (2,a) belongs to Ryjuw,, and by Case 1 can be extended to
d=(2,c2,...,c-1,0,a) € R{y_ ryuw,- Thetuplee = g(d,c) is as required.
Indeed, if 7 € {2,...,k — 1} then {c[i],d[:]} # {0,1}, and therefore, e[i] =
cfi] = a;; e[l] = ¢(2,0) =0 (or e[l] = ¢g(2,1) =1if 1 € W3); e[k] = ¢g(0,1) =
0.

CLAIM 4. For any I C W U W2 U W3, any b € Ry such that b[i] € By
whenever 7 € W, and any a € Ry, the tuple (b,a) is in Rruw,.
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By Claim 3, there are tuples (b, ¢), (d,a) € Ruw, with d[i] € By whenever

1 € W. It is easy to see, thatg((i) ( Z
To finish the proof of Lemma 13, we just should put I = W U Wy U W3
in Claim 4. O

By the assumptions made, f is the majority operation on By, and there-
fore, in this case, A satisfies the conditions of Theorem 6(5).

5.4.5 One of the 2-element subalgebras has the majority term operation,
but no semilattice operation; and the two others have the minority
term operation, but no semilattice or majority operation.

By Lemma 12, A has a term operation f which is the majority operation
on Bj, and the minority operation on By, Bs. Then the operation g(z,y) =
f(z,z,y) is the first projection on Bj, and the second projection on By, Bs.

Let 6 denote the equivalence relation whose classes are 0 = {0,1} and
2 = {2}. The class containing an element a € A will be denoted by a?, and
for an n-ary relation R, we set R? = {(a{,...,d%) | (a1,...,a,) € R}.
Lemma 14 Let R € Inv be a binary relation such that Ry = Ry = A. Then
R is either the identity relation, or A%, or the graph of the non-identity
bijection with the fized point 2, or R? € {uy, po} where

(33) e (32)

Proof. Suppose first that R is the graph of a mapping ¢, and ¢(2) # 2,

N N
N Ol
N Ol

say, ©(2) = 0. Then denoting b = ¢~ '(1), we have g (( ) ( ))

1
Suppose that R is neither the graph of a bijective mapping, nor RY €

{p1, p2}. Then, R contains one of the tuples ( (2) ) , ( ; ) , ( 3 ) , ( ? ),

2
( > € R which contradicts the assumptions made. Thus ¢(2) =

and either the tuple ; or a tuple of the form Z where a,b € {0,1}.
If 3 > € R then there is a € A such that ( (1L € R; conse-

quently, (? ) = g(( (11 ) , ( 3 >> € R. Analogously, if < ? > € R
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then g ) € R, and if one of the tuples ( (2) ) , ( ;

the other also belongs to R. Since R; = A, we have two cases to consider.

0 1 2
CASE1.<2>,<2>,<2)ER.
a . 2
b in R where b € {0,1}. Then b) =
2 a a 2 2
f<<2>,<2>,<b>>ER,andtherefore,<O>,<1>ER.More-
f de A h ¢ —f ¢ 2 2 c R:
over, for any c, ; we have | | = o |l o]l g :

hence, R = A?.

oo (2 (2) () (1)

In this case there is Z with a,b € {0,1}, therefore,

<§>:f<<;),<(;),(2))ER,andwegetthepreviouscase. O

We consider two cases.

) belongs to R, then

Since Ry = A, there is

I. A is simple.

In this case 6 does not belong to Inv F', and moreover, any binary relation
R, such that R? € {p1, 2}, and R is not the graph of a mapping, does not
belong to Inv F' as well. Indeed, every such relation R is not of the form

01 2 2 a a b 2
<2 2 0 1 ) o ( c d d 2) where {a,b} = {¢,d} = {0,1}. Then
6= Ro R ! €lInv F, that contradicts the assumptions made

Lemma 15 Let R € Inv be an (n-ary) relation such that Ry = ... = R, =
A, and R; j = A? for any i,j € {1,...,n}. Then R = A™.

Proof. We prove the lemma by induction. To prove the base case n = 3,
take a ternary relation R from Inv F', and, for a € A, denote R, = {(b,c) €
A? | (a,b,c) € R}. Each R, satisfies the conditions of Lemma 14, and
therefore, is either a graph of a bijection with the fixed point 2, or AZ.

(Notice that in both cases ; € R,.) Since Ry U Ry U Ry = A2, one of
Ro, Rl, R2 is A2.
CASE 1. Ry = A%.
a a 2 2
For any a,b,c € {0,1}, wehave | b | = f 2 |,]1 2 [, b € R.
c 2 2
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Therefore, {0,1}2 C R,, and by Lemma 14, R, = A%2. Thus, R = A3.
CASE 2. R, = A% a € {0,1}.

2 2 a a
In this case, for any b,c € {0,1}, wehave | b | = f 2 1,1 2|, b
c 2 2 c

R. Therefore, Ry = A?, and we get the previous case.

To prove the induction step, suppose that the claim of the lemma holds
for n > 2, and R € Inv is an ((n + 1)-ary) relation. As before, let R, =
{(ag,-.-,an+1) | (a,a2,...,an+1) € R}. By the induction hypothesis, R, =
A™ for any a € A, and therefore, R = A", O

Lemma 16 The algebra A satisfies the splitting property.

Proof. Let R € Inv F be an (n-ary) relation, and W = {i | R; = A},
W; = {i | R; = Bj}, i = 1,2,3. We prove that R = Rw X Rw, X Rw,uws,
that is an even stronger condition.

Prove first that R = Rwuw,uws X Rw,. Take a’ € Rwuw,uws, b’ €
Ryw,, and a,b € R such that awuw,uw, = a’, by, = b’. By Lemma 15,
Rw = AW therefore, there is ¢ € R such that c[i] = 2 for all i € W. For
d = g(g9(b,c),a) we have
d[i] = g(g(b[i], c[i]),ali]) = g(g(bli],2),ali]) = g(2,a[i]) = ali] if : € W;
df: (g9(b[i], c[i]), a[i]) = a[i] if 1 € Wy U W;

d[i] = g(g(bli], c[i]),al]) = g(bli],c[i]) = b[i] if i € W1.

Then we prove that Rwuw,uw; = Rw X Rw,uws. Let v € W, and

R = Riyyuwyuws- Without loss of generality, we may assume that v = 1,

=g
=g

WoUWs = {2,...,k}. Notice first that if ( ; ) € R' then ( 2 ) € R,

and vice versa. Indeed, there is b € Ry, y, such that g € R'; and

0\ 0 1 ,
Furthermore, if (2,a), (0,a) € R’, for certain a, then (0, b), (1,b), (2,b) €
R', for every b € Ry,uw,- This follows from the equalities

(2) = () (2)(2)=(()-(0)-(2))
(b)) = AG)(2)(2)

Hence, either R’ = A x Ry,uw; or Rw,uw, = R' U R? with R' N R? = &,

and R' = ({2} x RY) U ({0,1} x R?).
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In the former case, let P(z,zo9,..., ) be the predicate corresponding
to R'. Then, set

Po(y,z) = 3zg, ..., zx(P(y, x2, ..., 2x) A P(2,22,...,21)).

The relation @ is the equivalence relation with the classes {0,1}, {2}, that
contradicts the simplicity of A.

Finally, for a € Ry,uw,, denote Ry = {b € Ry | (b,a) € Rwuw,uws }-
By what was proved above (Ra); = A, for any i € W and a € Rw,uw,.
Hence, by Lemma 15, R, = A!"'; therefore, Rwuw,uws = Rw X Rw,uws-
The lemma is proved. O

I1. A is not simple.
Lemma 17 The algebra A satisfies the Bi-semirectangular property.

Proof. Let R € Inv be an (n-ary) relation, W = {i | 0,1 € R;}, and
W1, ..., Wy the classes of §(R). It will be convenient for us to denote 2 the
tuple consisting of 2s; the length of this tuple will be clear from the context.
Suppose that b = (bg,by,...,b;) € R where by € Ry, W = n— W,
b; € Rw,, i € k,and b; = 2 for i € k— I and b; € Ry, N {0,1}Wil for
i € I. We have to prove that, for any a; € Ry, N {0, 1}‘Wi|, 1 € I, the tuple

(bg,di,...,dg) with
g @ ifiel
71 2 otherwise

belongs to R.

We prove by induction that, for any J = {i1,...,4} C I, the tuple
cy = (b(),ail, - ,ail) belongs to RWJ, W; =W'u W, U...U VVil- The
base case of induction is obvious, ¢ = b. The next case is [J| = 1. It
will not be loss of generality if we assume J = {1}. There is ¢y € Ry and
Co € I“EW2 such that ¢ = (00,31,02) S RW’UWg- The tuple g(C,b) € RW’UW2
has the form (bg,as,c)) as required.

Let us suppose now that the we proved what is required for all 1-
element sets J. Take J with |J| = 2, as usual, it can be supposed to
be {1,2}. By what was proved, there are d; € Ry,, do € Ry, such that
(bo,d1,a2), (bg,a1,ds2) € Rwruw,uw,- The tuples dq,ds can be assumed to
be from {0,1}"11 {0, 1}/"2! respectively. Indeed, if d; = 2, then

by by by
g § ) bl = bl
as bs ap

Furthermore, since W1y, W5, are different classes of §(R), there are ¢y € Ry
and ¢; € Ry, (OI‘ Co € sz) such that (Co,Cl,g) € RW’UW1UW2 ((Co,i, Cg) €
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Rwuw,uw,), and ¢; € {0,1}W1l (co € {0,1}™2l). The tuple ¢; can be
chosen to be a;. Indeed,

Co by Co
a; | =g ar [,| ¢ € Rwruw,uw,-
2 d; 2

Then we have
by Co by
ai =g a_l ) dl € RW’UW1UW23
ag 2 ao

as required.
Then suppose that the inclusion ¢; € Ry, is already proved for all J
with |J| < m, and K C {1,...,k} is such that |K| = m. Again, without
loss of generality, assume that K = {1,...,m}.
By the induction hypothesis, there are tuples of the form b = (bg, a1, ..., a,_1,d}),

b2 = (bOa ai,...,am—2, d%n—la am)a b3 = (b()a ai,...,am,m—3, d§n—2; amfla am)
in R. The tuples d},,d2,_,,d3 _, can be chosen to be distinct from 2. In-

deed, if, say, d}, = 2 then, since a;,b; € {0, Wil for i € {1,...,m — 1},
g(b!,b) is a tuple of the form (bg,ay,...,a, 1,b;,) where by, € {0, 1}|Wm\.
Finally, we have

by by by by

aj aj ai aj
am-—3 - f am—3 ? am-—3 ’ am—3 € R.
am—2 aAm—2 am—2 d?n_Q
-1 am—1 dgnfl am—1

a, d}n a, an,

Finally, let ¢ € R be a tuple with ¢y, = ¢;. As is easily seen, the tuple
(do,d1,...,dg) = g(c,b) satisfies the conditions: dy = by, d; = g(a;, b;) =
a;ifi e I, and d; = g(c;,2) =2 if i € I. The lemma is proved. i

5.5 Non-simple algebras

In this subsection we assume that A has a proper congruence. Without loss
of generality, let us suppose that the equivalence relation 8, whose classes are
{0,1},{2}, is a congruence of A. Then, for any term operation f(z1,...,z,),
and any a € {0,1}", we have

f(0,...,0) B 0
( F@[],....a[n) ) = < F@[],...,an)) ) €.
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Therefore, f(a[l],...,a[n]) € {0,1}, that is B = {0,1} is a subuniverse.
Denote B the subalgebra with the universe B. The condition (NO-G-SET)
implies that there are term operations f, g of A such that f is a semilattice,
majority, or minority operation on B, and ¢’ is a semilattice, majority, or
minority operation.

5.5.1 f‘B is a semilattice operation.

The operation f? is idempotent, hence, it is either a projection, or a semi-
lattice operation. In the latter case we get Case 2. In the former case, we
may assume that f? is the first projection, that is f%(z,y) = z. Consider
first the case f(1,0) = f(0,1) = 1. We prove that A or certain its reduct
satisfies (0 — 1)-replacement property.
Since f preserve 6, the operation table of f'(z,y) = f(f(z,y),y) is
01 2

(1) (1) 1 0{1 , and f’is a (0 — 1)-operation. If {1,2} is a subuniverse
212 2 2

of A, then, by Lemma 2, A satisfies the (0 — 1)-replacement property. Oth-
erwise, if g? is a semilattice operation we get Case 2, so, suppose that g% is
a minority or a majority operation, and consider the operation

g'(z,y,2) = f'(f'(f'(9(z,y,2),7),9), 2).

If g(z,y,2) € {1,2} then ¢'(z,y,2) = g(z,y,2). If g(z,y,2) = 0 and
z,y,z € {1,2}, then, as is easily seen, ¢'(z,y,z) = 1. Therefore, {1,2}
is a subuniverse of the algebra A’ = (4; f',¢), and ¢'° is a minority or a
majority operation. Hence, A’ satisfies the condition (NO-G-SET), and the
(0 — 1)-replacement property. The case when f(0,1) = f(1,0) = 0 is quite
analogous.

5.5.2 ¢’ is a semilattice operation.
If g% (2%,0%) = ¢%(0%,2%) = 29 then 2 is a zero-element with respect to g. So
suppose that g?(2%,0%) = ¢%(0?,2%) = 0°.

CASE 1. g‘{o i is a projection.

Without loss of generality we may assume that g is the first projec-

{0,1}
tion. As can be straightforwardly verified, the operation table of h(x,y) =
g(z,g(x,y)) is one of the following:

[0 1 2 [0 1 2 [0 1 2
0/0 0 O 0/0 0 O 0/0 0 O
1]t 1 1”> 111 1°” 1|1 1 1°
2|10 0 2 211 1 2 210 1 2
In the first 2 cases h is a (2 — 0)- or (2 — 1)-operation; in the third case h is
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the operation (1). By Lemmas 2,7, A satisfies one on the conditions listed
in Theorem 6.

CASE 2. g‘ 0.1} is a semilattice operation.
Suppose that g(0,1) = g(1,0) = 1. Set h(z,y) = g(=,g(z,y)), and k' (z,y) =
h(h(z,y),y), then, 1 is a zero-element with respect to h’.

In the following 3 cases we assume that there are term operations f,g
such that f‘ 0 1},99 are minority or majority operations.

5.5.3 A is conservative.

In this case we are in the conditions of Subsection 5.2.

5.5.4 One of {0,2},{1,2} is a subuniverse.

Without loss of generality, suppose that {0,2} is a subuniverse, but {1,2} is
not. Then A has one of the operations listed in Lemma 6. By Lemmas 8,7,
some of them lead to a good property of A. Since {0,2} is a subuniverse,
B has no semilattice term operation, and # is a congruence, only the opera-
tion (14) remains. This operation is a (1 — 0)-operation, and since {0, 2} is
a subuniverse, by Lemma 2, A satisfies the (1 — 0)-replacement property.

5.5.5 {0,1} is the only subuniverse of A.

As above, by making use of Lemmas 6,8,7, we have to consider only the
cases when (16), or both (14), (15) are a term operation of A.

CASE 1. (14),(15) are term operations of A.
Let r(z,y) denote the operation (14). For any term operation h'(z1,...,z,)
of A, the operation

~

h(z1,...,zn) =7(..7(R(z1,...,Zn),21) ... Tp)
satisfies the conditions: A(z1, ... ,@p) = 2 if and only if h(z1,...,zn) = 2,
otherwise if 2 € {z1,...,z,} then h(z1,...,z,) = 0, and h(z1,...,2,) =
h(z1,...,zn) whenever {z1,...,2z,} C {0,1}. As is easily seen, the oper-
ation f{0 1 (§%) is a minority or a majority operation if f‘{o " (¢%) is a

minority or a majority operation.

Let us consider the reduct of A, A’ = (4;
(No-G-SET), and {0,2} is a subuniverse of
Case 5.5.4.

CASE 2. (16) is a term operation of A.

~

,§G). The algebra A’ satisfies
'; We are in the conditions of

Lemma 18 Let g be a minority operation on A/g, and h the operation (16).
Then either A satisfies the conditions of one of the previous cases, or has a
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term operation g' which is minority on A/O, and g' preserves

{0,2},{1,2}.

gl‘{o,l} - g‘{O,l}’

Proof. Since, for any z,y € {0,1}, 9(2,z,y) = 9(z,2,y) = g(z,y,2) = 2,
we just are to show that there is a term operation ¢’ which is a minority
operation on A/p, and ¢'(2,2,z) = ¢'(2,2,2) = ¢'(2,2,2) = z. Suppose
first, that ¢(2,2,0) = ¢(2,2,1) = a € {0,1}. Then the operation table of

01 2

9(y,y,x) is (1] 0 1 Z , and we get Case 1. Then suppose that g(2,2,1) =
212 2 2

0,9(2,2,0) = 1. In this case, for the operation ¢'(z,y,2) = g(z,y, h(z, 1)),
we have ¢'(z,y,2) = g(z,y, 2), g"{o y= g‘{o n and ¢'(2,2,z) = z. Repeating
the same procedure for all three variables we get the required operation. O

Lemma 19 Let g be a majority operation on A/p, and h the operation (16).
Then either A satisfies the conditions of one of the previous cases, or has a
term operation g' which is majority on A/g, and g’ preserves

{0,2},{1,2}.

Proof. The proof is quite similar to that of Lemma 18, but the re-
quired operation ¢’ must satisfy the conditions ¢'(2,z,z) = ¢'(z,2,z) =
g'(z,z,2) = z. Suppose first, that ¢(2,0,0) = g(2,1,1) = a € {0,1}. Then

gl‘{o,l} - g‘{O,l}’

the operation table of g(y,z,z) is , and we get Case 1. Then

0
1
2
suppose that ¢(2,1,1) = 0,¢(2,0,0) = 1. In this case, for the operation

¢'(2,9,7) = h(g(z,y,2),), we have ¢'(z,y, 2) = 2 if and only if g(z, y, 2) =
2, that is ¢’ is a majority operation; g"{o N = g‘{o Wy d(z,2,z) = g(z,2, 1),

J(z,z,2) = g(x,2,2), and ¢'(2,z,2) = z. Repeating the same procedure
for all pairs of variables we get the required operation. O

Since g‘ 0.1} is an idempotent operation, and the subalgebra of A with the
universe {0, 1} has no semilattice term operation, g‘{o 1}(:15, z,Y), g‘{o 1}(:1:, Y, L),

y,z,z) € {z,y}. If ¢ and g are minority (majority) operations,

9,13 (0,1}
then applying one Lemmas 18 (Lemma 19) to g, we get a minority (majority)
operation on A. Noticing that a minority operation is Mal'tsev operation,
the algebra A has Mal’tsev (majority) term operation. Otherwise, an op-
eration A’ such that A'%(z,y) = =, hl‘{o 1}(:B,y) = y can be derived from

g.
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Lemma 20 Let f, g be term operations of A such that f‘{o Wy g’ are major-

ity or minority operations, Then there is a term operation g' of A such that
9°=q" g . =F
Il = Moy

Proof. By the observation before the lemma, there is a term opera-
tion A’ of A such that h'%(z,y) = z, h,‘{o 1}(:c,y) = y. Set ¢'(z,y,2) =

h,(g(m’ y’ z)’f("E’ y7 z))' Since f("E’ y7 z)’Q("'E’y’ z) E {07 1}7 for a‘I]'y "E7y7z E
{0,1}, we have g"{o 1}(30, Y,2) = f‘{o 1}(a:, y, z). Further, the equality hf(z,y) =

z, implies ¢"(z,vy, 2) = ¢%(z,y, 2). The lemma, is proved. O

Finally, applying Lemmas 18,19 we get an operation g” which preserves
{0,2} and {1, 2}, and such that each of ", g”‘{o 3

operation. If either both of these operations are minority, or both are major-
ity, then A has Mal’tsev or a majority term operation. Otherwise, the alge-
bra A’ = (A4;¢") is a reduct of A, and is conservative. We are going to show
that € is the only proper congruence of A’. Indeed, as was observed above,
an operation h/(z,y) such that h'e(m,y) =zxz,h z,y) = y is derivable

is a majority or a minority

‘{0,1}(

from ¢”. Since g" preserves all the 2-element subsets of A, so does h'; there-

01 2
([ HO,) ) (1
. The pair <h'(2,1) ) = (2)

fore, its operation table is

0|0
110
2|2

witnesses that A’ destroys the equivalence relation with classes {0,2}, {1};
h'(1,0)
1'(2,0)
tion with classes {1,2},{0}. Thus, A’ satisfies the condition (NO-G-SET),
and we get Case 5.5.3.

N = =
N = O

while the pair ) witnesses that h' destroys the equivalence rela-

6 Conclusion

In fact, Theorem 6 implies a stronger result than that claimed in Theorem 4.
The difference appears when considering infinite constraint languages satis-
fying the conditions of Conjecture 1. Theorem 4 claims that, for any finite
subset I' of such a language, there is its own polynomial time algorithm
Alg(T") solving CSP(T"), and for different subsets the corresponding algo-
rithms can be quite different. Theorem 6 yields a uniform polynomial time
algorithm that solves any problem from the class risen from the constraint
language. Moreover, from the proof of Theorem 6 a general algorithm can
be derived, which solves any problem instance P on a 3-element set provided
that P € CSP(I"), for some tractable I'.

As a matter of fact, Theorem 6 is proved by the ‘rough force’ method,
that is by analysing a large number of operations which provide the condition
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(No-G-SET). We believe that development of algebraic tools and more
subtle usage of results from universal algebra will make it possible to obtain
dichotomy results for larger domains, and eventually, for an arbitrary finite
domain.
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