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Abstract. Branching programs are a well-established computation model for boolean
functions, especially read-once branching programs (BP1s) have been studied intensively.
A very simple function f in n2 variables is exhibited such that both the function f and
its negation ¬f can be computed by Σ3

p-circuits, the function f has nondeterministic
BP1s (with one nondeterministic node) of linear size and ¬f has size O(n4) for oblivious
nondeterministic BP1s but f requires nondeterministic graph-driven BP1s of size 2Ω(n).
This answers an open question stated by Jukna, Razborov, Savický, and Wegener [13].

1 Introduction

Besides boolean circuits and formulae branching programs (BPs), sometimes also called
binary decision diagrams (BDDs), are one of the standard representations for boolean
functions. (For a history of results on branching programs see, e.g., the monograph of
Wegener [18]).

Definition 1. A branching program (BP) or binary decision diagram (BDD) on the
variable set Xn = {x1, . . . , xn} is a directed acyclic graph with one source and two sinks
labeled by the constants 0 and 1. Each non-sink node (or decision node) is labeled by
a boolean variable and has two outgoing edges, one labeled by 0 and the other by 1. A
nondeterministic branching program (∨-BP for short) is a branching program with some
additional unlabeled nodes, called nondeterministic nodes, which have out-degree 2.

An input a ∈ {0, 1}n activates all edges consistent with a, i.e., the edges labeled by ai

which leave nodes labeled by xi and all unlabeled edges. A computation path for an input
a in a BP G is a path of edges activated by the input a that leads from the source to a
sink. A computation path for an input a that leads to the 1-sink is called accepting path
for a.

Let Bn denote the set of all boolean functions f : {0, 1}n → {0, 1}. The BP G
represents a function f ∈ Bn for which f(a) = 1 iff there exists an accepting path for
the input a.

A parity branching program (or ⊕-BP for short) is syntactically a nondetermin-
istic branching program but instead of the usual existential nondeterminism the parity
acceptance mode is used. An input a is accepted iff the number of its accepting paths is
odd.

The size of a branching program G is the number of its nodes and is denoted by
|G|. The branching program size of a boolean function f is the size of the smallest BP
representing f . The length of a branching program is the maximum length of a path.
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In order to learn more about the power of branching programs, various restricted
models have been investigated intensively and several interesting restricted types of BPs
could be analyzed quite successfully (for the latest breakthrough for semantic super-
linear length BPs see [1],[2], and [3], where using a subtle combinatorial reasoning super-
polynomial lower bounds were obtained).

Besides this complexity theoretical viewpoint people have used branching programs
in applications. Bryant [9] introduced ordered binary decision diagrams (OBDDs) which
are up to now the most popular representation for formal circuit verification.

Definition 2. An OBDD is a branching program with a variable ordering given by a
permutation π on the variable set. On each path from the source to the sinks, the variables
at the nodes have to appear in the order prescribed by π (where some variables may be
left out). A π-OBDD is an OBDD ordered according to π.

Unfortunately, several important and also quite simple functions have exponential
OBDD size. Therefore, more general representations with good algorithmic behavior are
necessary. Generalizing the concept of variable orderings to graph orderings Gergov and
Meinel [10, 11] and Sieling and Wegener [16] have shown independently how deterministic
read-once branching programs can be used for verification.

Definition 3. A graph ordering is a branching program with a single sink, where on
each path from the source to the sink all variables appear exactly once. Let ω ∈ {∨,⊕}.
An ω-nondeterministic graph-driven BP1 is an ω-nondeterministic BP1 G for which
there exists a graph ordering G0 with the following property: If for an input a, a variable
xi appears on a computation path of a in G before the variable xj, then xi also appears
on the unique computation path of a in G0 before xj.

In the following if nothing else is mentioned nondeterministic graph-driven BP1s
means ∨-nondeterministic graph-driven BP1s .

The main idea is that in graph-driven BP1s according to a fixed graph ordering, for
each input the variables are tested in the same ordering, whereas (different from OBDDs)
for different inputs different orderings may be used. It is easy to see that any determinis-
tic BP1 is in fact a BP1 for a suitably chosen graph ordering. For nondeterministic BP1s
graph orderings do not exist in general. If we generalize OBDDs to nondeterministic
OBDDs we gain the possibility of nondeterministic guesses, but the variable ordering
remains the same on all computation paths. For read-once branching programs the sit-
uation is different. It is possible to guess nondeterministically and moreover, for each
input arbitrary orderings of the variables are allowed.

The concept of graph-ordered branching programs has turned out to be also useful
in other settings, see e.g. [14] and [17]. Gergov and Meinel [10] were the first ones who
suggested parity graph-driven BP1s as a data structure for boolean functions. Another
reason for investigating parity graph-driven BP1s is that until now exponential lower
bounds on the size of parity read-once branching programs for explicitly defined boolean
functions are unknown. One step towards the proof of such bounds might be to investi-
gate BP models inbetween deterministic and parity BP1s. Nondeterministic and parity
graph-driven BP1s have been investigated more intensively in [4], [8], and [7].

Definition 4. Σd
p , Πd

p be the classes of functions that can be computed by polynomial
size depth-d circuits over the de Morgan basis {∧,∨,¬} (negations are allowed only at
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the input variables and do not contribute to the depth) that have ∨ (respectively, ∧) as
output gate.

The following general question has been widely studied for various computational
models:

Suppose that both a computational problem f and its complement ¬f posses an effi-
cient nondeterministic computation in some model. Does this imply that f can also be
computed efficiently and deterministically in the same model?

This question is often called the P versus NP∩co-NP question and for boolean (non-
uniform) complexity, polynomial size instead of polynomial time is investigated.

In [13] an explicitly defined boolean function is presented that is in Σ3
p and in

NP∩co-NP for read-once branching programs but has exponential deterministic read-
once branching program size. Another function belongs to the smaller class Σ3

p ∩ Π3
p ,

but the separation is only quasipolynomial. Jukna, Razborov, Savický, and Wegener
(1999) asked whether the class Σ3

p ∩Π3
p contains a function separating NP∩co-NP from

quasipolynomial size in the context of read-once branching programs. Here we answer
the question in the affirmative. Moreover, we prove that not only the deterministic BP1
size but even the nondeterministic graph-driven BP1s size of the selected function is
exponential. In [5] a lower bound method for nondeterministic graph-driven read-once
branching programs is presented and the first exponential lower bound for an explicitly
defined boolean function has been proved. Since the lower bound technique is very gen-
eral we cannot apply the method directly to our function. Therefore, we have to improve
the lower bound method.

2 The separation result

The theory of communication complexity is a powerful tool for proving lower bounds
on the size of restricted nondeterministic oblivious BPs (a BP is called oblivious if the
nodes can be partitioned into levels such that edges point only from lower to higher
levels and all internal decision nodes of one level are labeled by the same variable). (See,
e.g., [12] and [15] for the theory of communication complexity.) In [7] and [5] it has been
shown how this tool can be used for proving large lower bounds on the size of so-called
well-structured ω-nondeterministic BP1s, ω ∈ {∨,⊕}, repectively, of nondeterministic
graph-driven BP1s.

For the ease of notations we assume w.l.o.g. that n is an even number. The function
fn is defined on n× n boolean matrices X on the variable set Xn = {x1,1, . . . , xn,n} and
outputs 1 iff the matrix X contains exactly one 1-entry in each row or exactly n − 1
columns with exactly one 1-entry and n−1 1-entries altogether. The technique described
in [5] is very general and cannot be applied directly in order to prove an exponential
lower bound on the size of nondeterministic BP1s representing fn. Therefore, we have
to improve the method. First, we need some further notation.

Definition 5. Let f be a boolean function defined on the variables in Xn = {x1, . . . , xn}.
A set A(f) = {(α1, β1), (α2, β2), . . . , (αk, βk)}, αi ∈ {0, 1}n′

and βi ∈ {0, 1}n−n′

, is called
a strong 1-fooling set if

i) f(αi, βi) = 1 for all i ∈ {1, . . . , k}, and
ii) i, j ∈ {1, . . . , k} and i 6= j implies that f(αi, βj} = 0 and f(αj , βi} = 0.
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For a subset Z ⊆ Xn we denote by A(Z) the set of all possible assigments to the
variables in Z. Let G0 be a graph ordering and v a node in G0. Let Xv be the set of
variables tested on a path from the source to v (excluding the variable which is the label
of v) and Av ⊆ A(Xv) a set of partial assignments which lead in G0 from the source to
v. Using well-known facts from communication complexity the following is easy to prove.
Let v1, . . . , vk be nodes in G0, where Xv1 = . . . = Xvk

, Av = ∪1≤j≤kAvj
, and Xv := Xv1 .

If there exists a strong 1-fooling set A(f) = {(α1, β1), (α2, β2), . . . , (α|Av |, β|Av |)}, αi ∈
Av, and βi ∈ A(Xn \Xv), then any ω-nondeterministic BP1 representing f according to
G0 has a size of at least |Av|.

Now our proof idea is the following one. We use the fact that in a nondeterministic BP
for a 1-input there has to be at least one accepting path and for 0-inputs accepting paths
are not allowed. This property does not hold for parity BPs and until now promising
methods for proving large lower bounds on the size of (usual) parity graph-driven BP1s
are unknown.

Let G be a nondeterministic graph-driven BP1 representing fn and let G0 be a graph
ordering such that G is ordered according to G0. We choose a large set of subpaths in G0

and define V as the set of nodes v1, . . . , vl which are reached by at least one of the chosen
subpaths. If there is large number of subpaths which lead to the nodes vi1 , . . . , vik in V ,
where Xvi1

= . . . = Xvik
, then we can construct a large strong 1-fooling set. Otherwise,

there are many nodes vj1 , . . . , vjm , where Xvjl
6= Xvj

l′
, 1 ≤ l < l′ ≤ m. Let Sw be the

union of all variables tested on a path from w to a sink (including the label of w). Let
xi′,j′ be a variable that is not contained in Xvj1

∪ . . .∪Xvjm
. We can prove that for each

set Xvji
there exists a node w in G such that Sw ⊆ Xn \ {Xvji

∪ {xi′,j′}}. Therefore, the
size of G is at least m.

Theorem 1. The function fn is in Σ3
p ∩Π3

p and can be represented by nondeterministic
BP1s with one nondeterministic node in linear size and the function ¬fn has size O(n4)
for nondeterministic OBDDs but its nondeterministic graph-driven BP1 size is 2Ω(n).

Proof.

The upper bounds:

The proof of the upper bounds are not difficult to prove.

– We can test whether the matrix X has exactly one 1-entry in row i by

(xi,1 ∨ . . . ∨ xi,n) ∧
∧

1≤j<k≤n

(xi,j ∨ xi,k).

Therefore, the test whether the matrix X has exactly one 1-entry in each row can
be computed by Π2

p -circuits of size O(n3). Similarly, the test whether the matrix X
contains no 1-entry in the jth column and exactly one 1-entry in each of the other
columns can be computed by Π2

p -circuits of size O(n3). Since there are n possibilities
to choose the column without a 1-entry, we can conclude that the function fn can
be computed by Σ3

p-circuits of size O(n4).

– The output of the function ¬fn is 1 iff there exist a row and two columns such that
the row and the columns do not contain exactly one 1-entry each or there exist a
row without exactly one 1-entry and a column with at least two 1-entries. The test
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whether the matrix X contains in row i not exactly one 1-entry can be computed by
the Π2

p -circuit

∧

1≤j≤n

(xi,1 ∨ . . . ∨ xi,j−1 ∨ xi,j ∨ xi,j+1 ∨ . . . ∨ xi,n)

in size O(n). Simlilarly the test whether the matrix X contains neither in column j1

nor in column j2 exactly one 1-entry can be performed. The test whether the matrix
X contains in a chosen column at least two 1-entries can be performed in the same
way in size O(n). Since there are O(n3) possibilities to choose a row and two columns
and O(n2) possibilities to choose a row and a column, ¬fn can be computed by Σ3

p-
circuits of size O(n4). Therefore, fn can be computed in size O(n4) by Π3

p -circuits.

– Now we construct two (deterministic) OBDDs G1 and G2, where G1 accepts exactly
the satisfying inputs with exactly one 1-entry in each row and G2 accepts exactly the
satisfying inputs with exactly n − 1 columns with exactly one 1-entry and n − 1 1-
entries in X. The BP1 G1 (G2) uses a rowwise (columnwise) variable ordering which
means that all variables of one row (column) are tested one after another. Moreover,
in G2 we store the information whether there has been one column without a 1-entry.
Obviously, G1 ∨G2 is a nondeterministic BP1 with one nondeterministic node for fn

and – because any satisfying input contains either exactly n ones or n−1 ones – also
a valid parity BP1. The size of Gi, i ∈ {1, 2}, is bounded above by O(n2). (Note,
that n2 is the number of variables in X.)

– For ¬fn we choose an arbitrary variable ordering and guess a row and two columns
such that the number of 1-entries is not exactly 1 in the row and for each of the
chosen columns. Since there are O(n3) possibilities to choose a row and two columns
and O(n2) possibilities to choose a row with not exactly one 1-entry and a column
with at least two 1-entries, the size of the nondeterministic OBDD (for an arbitrary
variable ordering) is O(n4).

The lower bound:

For the lower bound the following observation is helpful. A partial assignment a is
crucial if it is possible to complete a in two different ways ar and ac such that for the
first complete assignment (a, ar) there exist in each row of the matrix X exactly one
1-entry and for the second one (a, ac) there exist exactly n−1 columns with exactly one
1-entry and n − 1 1-entries altogether.

Let G be a nondeterministic graph-driven BP1 representing fn and G0 be a graph
ordering such that G is ordered according to G0. We consider all paths in G0 that corre-
spond to permutation matrices which means that there exist n variables xi1,j1 , . . . , xin,jn

which are set to 1, where il 6= il′ and jl 6= jl′ if l 6= l′, and all other variables are set to
0. The number of these paths is n! Next, we define a cut through all these paths after
exactly n/2 + 1 variables are set to 1. For each crucial assignment a corresponding to
a chosen path to the cut there exist (n/2 − 1)! different possibilities to complete a to
a permutation matrix. Therefore, there exist n!

(n/2−1)! different paths from the source to

the cut. Let Rp (Cp) be the set of indices i for which a variable xi,· (x·,i) is set to 1 on
p. If (n/2 + 1) rows and columns have been chosen, there are (n/2 + 1)! possibilities to
map the indices of the rows to the indices of the columns. Therefore, there is a set P of
different paths, |P | ≥

(

n
n/2+1

)

, such that for two different paths p and p′ it is Rp 6= Rp′
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or Cp 6= Cp′ . Using the pigeonhole principle we can conclude that there exists a variable
xi,j such that for at least |P |/n2 paths p in P the variable xi,j is the last variable tested
on p. Let P ′ ⊆ P be the set of these paths. The set V consists of all nodes v on a path
from P ′ labeled by xi,j . Now we consider all subpaths from the paths in P ′ to a node
v ∈ V . Let P ′′ be the set of these paths. Obviously, |P ′′| = |P ′|. By the definition of P
and the fact that xi,j is set to 1 on all paths in P ′, we know that Rp 6= Rp′ or Cp 6= Cp′

for two different paths p, p′ ∈ P ′′.

In the following let ap be the corresponding (partial) assignment of the variables
tested on a path p. Let vp be a node that is reached by a path p ∈ P ′′. We distinguish
two cases.

1) There are at least |P ′′|2/3 paths in P ′′ such that for any two of them Xvp = Xvp′
or

2) there are at least |P ′′|1/3 paths in P ′′ such that for any two of them p, p′, where
p 6= p′, Xvp 6= Xvp′

.

– We consider the first case. One of the following properties is true. There are at least
|P ′′|1/3 paths in P ′′ such that for any two of them Rp 6= Rp′ or at least |P ′′|1/3 paths
such that Cp 6= Cp′ for two different paths p, p′ ∈ P ′′.

• If there are at least |P ′′|1/3 paths in P ′′ such that for any two of them Rp 6= Rp′ ,
let Av be the set of the partial assignments which correspond to these paths. The
variable xi,j is the label of the nodes reached by these paths. We choose for each
ap ∈ Av a partial assignment aR

p of the variables in Xn \ Xvp such that (ap, a
R
p )

corresponds to a permutation matrix and xi,j = 1. By the definition of P ′′ such
an assignment aR

p exists. The function value f(ap, a
R
p ) is 1 since in each row there

exists exactly one 1-entry. For ap′ ∈ Av, let aR
p′ be a partial assignment such that

(ap′ , aR
p′) corresponds to a permutation matrix and xi,j = 1. For (ap′ , aR

p ), p′ 6= p,
there exists at least one row without a variable set to 1. Since the number of ones
in X is n, f(ap′ , aR

p ) = 0. With the same arguments f(ap, a
R
p′) = 0.

• If there are at least |P ′′|1/3 paths in P ′′ such that for any two of them Cp 6= Cp′ ,
let Av be the set of the partial assignments which correspond to these paths.
Again xi,j is the label of the nodes reached by these paths. We choose for each ap

a partial assignment aC
p which resembles aR

p but with the exception that xi,j is
set to 0. Since there are exactly n− 1 columns with one 1-entry and the number
of 1-entries is n − 1 altogether, the function value f(ap, a

C
p ) is 1. For (ap′ , aC

p ),
p′ ∈ P ′′ and p′ 6= p, there exist at least two columns without a variable set to 1.
Since the number of 1-entries in X is n−1, we can conclude f(ap′ , aC

p ) = 0. With

the same arguments f(ap, a
C
p′) = 0.

Altogether, we have proved that there exists a strong 1-fooling set of size at least
|P ′′|1/3.

– Now we consider the case that for at least |P ′′|1/3 paths in P ′′ for any two of them
Xvp 6= Xvp′

, p 6= p′. For each path p we consider a partial assignments aC
p of the

variables in Xn \ Xvp . As a first step we consider a partial assignment aR
p such that

(ap, a
R
p ) corresponds to a permutation matrix and xi,j = 1. By the definition of P ′′

such an assignment aR
p exists. Now the partial assignment aC

p resembles aR
p but with

the exception that xi,j is set to 0. Obviously, f(ap, a
C
p ) = 1. For each of the chosen

assignments, we consider one accepting path in G. Each of these accepting paths has
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length of at least n2−1 and the variable xi,j is the only variable that can be left out.
We define a cut in G through all these accepting paths after exactly n/2 variables
are set to 1. The variable xi,j cannot be tested on any of these paths, because xi,j is
set to 0 and after the test of xi,j only n/2 − 1 variables are set to 1. Let W be the
set of nodes reached for one of these accepting paths. If p is one of the chosen paths
in P ′′ and v is the node in G0 that is reached by p, then there exist a node w ∈ W
such that Xw = Xvp and Sw = Xn \Xvp or Sw = Xn \ (Xvp ∪{xi,j}). By assumption
the sets Xvp for the chosen paths in P ′′ are all different, therefore, there are at least

|P ′′|1/3 nodes in W .

Summarizing we can conclude that the nondeterministic BP1 complexity is at least

|P ′′|1/3 = (|P |/n2)1/3 =
(

(

n
n/2+1

)

/n2
)1/3

= 2Ω(n).
2
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