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Abstract

A wide variety of combinatorial problems can be represented in the
form of Constraint Satisfaction Problems (CSP). The general CSP is
known to be NP-complete, however, some restrictions on the possible
form of constraints may lead to a tractable subclass. In [23] and then in
[5, 3], it was shown that the complexity of subclasses of the constraint sat-
isfaction problem depends only on certain algebraic invariance properties
of constraints. The tractability of the problem class raised from a finite
group has been proved in [12, 11]. In this paper we show that an arbi-
trary family of constraints invariant with respect to a Mal’tsev operation,
that is a ternary operation f(z,y, z) satisfying f(y,y,z) = f(z,y,y) ==
for any x,y, gives rise to a tractable problem class. Since any group con-
straint considered in [12, 11] is invariant with respect to a certain Mal’tsev
operation, this result implies the mentioned result of [12, 11].

1 Introduction

The Constraint Satisfaction Problem (CSP) provides a common framework for
a wide variety of combinatorial problems from across all the computer science,
including database theory [40, 28, 17], temporal and spatial reasoning [38], ma-
chine vision [34], belief maintenance [8], technical design [36], natural language
comprehension [1], programming language analysis [35], etc. The CSP can be
posed in many different forms, but the most concise one is probably the fol-
lowing: given a finite relational structure A and a relational structure B (not
necessarily finite) decide whether there is a homomorphism from A to B.

The general CSP is known to be NP-complete, and hence, intractable [30, 34].
However, certain restrictions on the possible type of the relational structures
may affect the complexity of the corresponding problem class and give rise to
a tractable subclass of the general CSP. There is, therefore, a fundamental
research direction aiming to recognise tractable subclasses of the constraint
satisfaction problem. A progress in this direction may help in speeding up of
general superpolynomial algorithms, and provide efficient algorithms for those
applications, which fall in one of the known tractable classes. This problem is
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also important from a theoretical perspective, as it helps to clarify the boundary
between tractability and intractability in a wide range of combinatorial search
problems.

There are two natural ways to restrict the general CSP corresponding to
restrictions on the source and the target structure. In the first direction a re-
markable progress has been recently achieved [16, 17, 18, 15]. In this paper we
explore the second approach. The first result in this direction has been obtained
by Schaefer [37] in the important case of Boolean CSP, that is when the target
structure is 2-element. Schaefer established that for Boolean constraint satisfac-
tion problems (which he called ” Generalised Satisfiability Problems”) there are
exactly six different families of structures that give rise to a tractable problem
class, and any problem involving structures not contained in these six families is
NP-complete. This important result is known as Schaefer’s Dichotomy Theorem
for Boolean relations.

In the same paper [37], Schaefer raised the question of how this result could
be generalised to larger structures (that is, sets with more than 2 elements).
Feder and Vardi [12] identified two broad families of tractable structures that
contain all of Schaefer’s six classes. The first family, the class of problems of
bounded width, is defined via Datalog, and each problem from this class can be
solved by a simple algorithm that determines the local consistency of a problem
instance. The second family, is defined to be the class of problems satisfying
the property of the ability to count. A large class of problems with the ability
to count consists of structures endowed with the operation of a certain group,
and the relations of structures are defined via this operation (as subgroups,
near-subgroups, and their cosets). Such group problem classes were proved to
be tractable in [12] in the case of groups of odd order, and in [11] in the case of
general finite groups.

Another approach to characterising tractable CSPs has been suggested by
P.Jeavons and co-authors in [26, 23, 24, 6, 4]. This approach relies upon closure
properties of relations with respect to certain operations. In [26, 23, 24, 25, 27],
several types of operations have been identified which guarantee the tractability
of the corresponding problem classes.

Subgroups and their cosets can be characterised making use of their invari-
ance properties: a subset H of a group G is a coset of a subgroup if and only
if H is invariant with respect to the operation zy~'z of the group. The group
operation zy 'z provides a standard example of a Mal’tsev operation, that is a
ternary operation f(z,y,z) satisfying the conditions f(z,y,y) = f(y,y,z) = z.
Moreover, in [11], near-subgroups and their cosets have been shown to be in-
variant with respect to a Mal’tsev operation which is not necessarily equals
zy~1z. Mal’tsev operations frequently appear in various areas of mathematics
and computer science, because most of the ‘classical’ algebraic structures such
as groups, quasigroups, rings, near-rings, fields, modules, vector spaces, modals
etc. possess a Mal’tsev operation.

In this paper we show that every class of CSPs arising from a Mal’tsev
operation is tractable. Moreover, there is an algorithm that, for every problem
instance from such a class, finds a basis of the solution space such that each



solution can be uniquely decomposed.

The paper is organised as follows. In Section 2, we give the definition of the
CSP in the relational form convenient for proving, and describe how to restrict
the general CSP using invariance properties of relations. Section 3 contains all
required algebraic definitions and results, both general and concerning particu-
larly Mal’tsev algebras. In Section 4, we sketch the algorithm solving Mal’tsev
problems instances, and define a special form of a basis of the solution space.
Finally, details, subroutines, proofs of soundness, and estimation of the time
complexity are provided in Section 5.

2 Preliminaries

2.1 Constraint satisfaction problem

For a class of sets, A = {4; | i € I}, a subset g of A;; x...x A;, together with
the list (41,...,4x) is called a k-ary relation over A with signature (i1,...,4x).
Elements of relations will be called tuples or vectors, and denoted in boldface.
Then ali] stands for the ith component of a tuple a.

The ‘constraint satisfaction problem’ was introduced by Montanari in 1974 [34]
and has been widely studied [9, 12, 32, 29, 30, 31, 39]. We define the constraint
satisfaction problem in a slightly more general form.

Definition 1 The constraint satisfaction problem (CSP) is the combinatorial
decision problem with

Instance: a quadruple (V; A = {A;:i € I};0;C) where

o V is a set of variables;

A is a collection of sets of values [domains] of a variables from V;
e 0:V — I is a sort function;
C is a set of constraints, {C1,...,Cq}.

Each constraint C; € C is a pair {s;, 0;), where

— 8= (V1,...,VUm,;) 5 a tuple of variables of length m;, called the
constraint scope;

— pi is an m;-ary relation on A, 0; C Ag(y,) X ... X Ay(v,,,), called
the constraint relation.

Question: does there exist a solution, i.e. a function f, from V to |J;c; As,
such that, for each variable v € V, f(v) € Ay(yy, and for each constraint
(si,0i) € C, with s; = (v1,...,VUm,;), the tuple (f(v1),..., f(vm;)) belongs
to o; g

Often all the variables can be supposed to have a common set of values. To
distinguish this important particular case, we will refer to the general case as to
the multi-sorted CSP, while to the case with a common domain as the one-sorted



CSP. A one-sorted problem instance is then written as (V, A,C) where A is the
common domain and V, C are as before.

The constraint satisfaction problem is NP-complete in general, as was proved
in [34] and will be seen from the examples below. However, some restrictions
may affect the complexity of the problem. One way to restrict the problem is
to impose some conditions on the possible form of constraint relations.

Let T be a set of relations over a collection of sets A = {A;:4 € I}. Then
CSP(T") denotes the subclass of the CSP defined by the property: for any in-
stance P € CSP(T), any variable has one of the sets from 4 as the domain, and
every constraint relation of P belongs to I'. If all A; are finite then the size of
a problem instance is the length of the encoding of all tuples in all constraints.
The set I is said to be tractable if, for each finite subset I'" C I', there exists a
polynomial time algorithm solving any problem from CSP(I"); T is said to be
NP-complete if CSP(I") is NP-complete for certain finite subset I'' C I". If there
is a uniform polynomial time algorithm that solves CSP(T'), then T is said to
be globally tractable.

Example 1 The binary disequality relation, denoted by #p, is defined as
#D: {(dl,dg) € D2:d1 75 dg}

Note that CSP({#p}) corresponds to the GRAPH |D|-COLORABILITY prob-
lem [14]. Thus CSP(#p) is tractable when |D| = 2 and NP-complete when
D| > 3.

Example 2 An instance of GRAPH UNREACHABILITY consists of a graph G =
(V,E) and a pair of vertices, v,w € V. The question is whether there is no
path in G from v to w. This can be expressed as the CSP instance (V,{0,1},C)
where

C = {(e,;{(0,0), (1, )}):e € E} U {{(v), {(0)}), ((w), {(D})}-

Thus, GRAPH UNREACHABITITY is equivalent to a subclass of CSP({0p, {0}, {1}})
where 05 stands for the equality relation on D = {0,1}.

Example 3 A system of linear equations over a field F' can be expressed as
the CSP instance (V, F,C) where V is the set of variables of the system, and
each constraint (s, g) from C corresponds to an equation. Then s is the set of
variables appearing in the equation, and g is the set of solutions of the equation,
that is, a hyperplane.

For further examples including essentially multi-sorted CSP the reader is

referred to [4, 3].

2.2 Transformations of problem instances

For a tuple a = (a[l],...,a[n]), and a set I = {i1,...,ix} C {1,...,n}, we
denote by aL_ the projection (afi1],...,a[ix]) of a onto I. Analogously, for an



n-ary relation p, g, denotes the relation {a{l :a € p}. Often we use tuples whose

components are indexed not by natural numbers, but elements of a certain set,
for example, by variables of a CSP instance. In this case the notation (a[i]);cr
where I is the index-set will be used. For the algorithms below we need a
particular kind of problem instances.

Let P = (V; A= {A4;|i € I};0;C) where C = (Cy,...,C,), Ci = (si, 0i) be
a problem instance, and V' C V. A partial solution of P on V' is a function
©: V' = U,evr Ao(v) such that, for any i < g, p(s; NV') € gi‘ v Notice
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that a partial solution can be treated as a solution to the restricted problem
instance Py = (V'; A; O"V,;CVI) where o, is the restriction of ¢ onto V', and
Cyr = (C,...,C), Cf = (siN VI’Qi‘V’)’ s; N V' is ordered in the natural
way. Let us denote the set of all partial solutions on V' by Sy.. We call a
problem instance P k-minimal if, for any at most k-element subset V' of V,
there is t € {1,...,q} such that V' C s;, and for any ! € {1,...,q}, we have
ol

V'Ns; =Sy Vs

Any problem instance P can be transformed to an equivalent k-minimal in-
stance P'. To do this we first add the constraint (V',Sy:), for each k-element
set V' C V; and second repeat the following procedure until the obtained prob-
lem instance coincide with the previous one: for each k-element set V' C V,
calculate the relation Sy, and then, throw out “superfluous” tuples from all
the constraint relations. It is easily seen, that P’ is k-minimal and the time
complexity of this procedure is O(m?n*r) where n is the number of variables,
m is the total number of tuples in the constraint relations, and r is the max-
imal arity of the constraint relations. The obtained instance is referred to as
associated with P. As is easily seen the solution set of the associated instance
is equal to that of the original instance.

Another transformation of a problem instance sometimes allows one to re-
duce the number of variables. Suppose that P is 3-minimal. For each constraint
relation g; define the digraph G(o;) as follows: the set of vertices is s;, and (v, w)
is an edge if and only if there is a mapping 7: A,(,) = Ag(w) such that g‘{v o} is

a subset of the graph of m, that is the relation {(a,7(a):a € A,(,)}. By G(’}5) we
denote the transitive closure of the union G(g1)U...UG(g,). Clearly, values of
any two variables from the same strongly connected component are related by
a one-to-one mapping. Formally this fact can be expressed as follows. Choose a
representative from each strongly connected component, the set of all represen-
tatives will be denoted by V'. For each v € V, there is v’ € V' and a mapping
Tyt Ag(v) = Ao (v) such that Sy, oy is the graph of m,. Then we transform P to
the instance P' = (V'; A;0';C") where ¢’ = O"‘V,, for each C; = (s;,0;) € C we

replace each variable v € s; = (vq,...,v,) with v/, replace g; with the relation
{(m; (afv1]), ..., H(avm])): a € 0}, and then remove all repetitions of entries
from the obtained constraint scope and corresponding coordinate positions of
the obtained relation; the resulted constraint is denoted by C}. Obviously, every
solution of P can be restricted to a solution of P’, and vice versa, every solution
of P! can be extended to a solution of P.



2.3 Algebraic structure of constraint satisfaction problem

A way how to describe problem classes of the form CSP(T") via their algebraic
invariance properties has been exhibited in [26, 27, 23, 5] for the case of the one-
sorted CSP, and in [3] for the case of multi-sorted CSP. We use the multi-sorted
version of the CSP as an auxiliary tool. So we describe in details the one-sorted
case and give only some basics for the multi-sorted one.

2.3.1 Omne-sorted case

An me-ary relation g is said to be invariant with respect to an operation f(z1,...,Zn)
[or f preserves g] if, for every (a11,...,am1),---, (@1n,s---,amn) € 0, we have
flai1,a12,...,a1n)
flaz1,a22,...,a2n)
€ p.
flami,amay .-, amn)

Given a set of relations, I', the set of all operations preserving I' is denoted
by Pol I'. Analogously, given a set of operations, C, on A, the set of all relations
which are preserved by operations from C' is denoted by Inv C'.

Theorem 1 ([23]) For any set of relations T over a finite set, and any finite
set of relations T C Inv Pol T', there is a polynomial time reduction from CSP(T)
to CSP(T).

Corollary 1 A set of relations, T', is tractable if and only if InvPol T' is tractable.

It is often useful to deal with not just a set of operations, but a set endowed
with operations.

Definition 2 A universal algebra (or simply algebra) is an ordered pair A =
(A; F) where A is a nonempty set and F' is a family of finitary operations on A.
The set A is called the universe (or the base set), and the operations from F
are called basic. An algebra is said to be finite if its universe is finite.

For an algebra A = (4;F), the set Pol Inv F is closed with respect to
substitution, and each operation from this set is said to be term operation of A.
Two algebras with the same universe are said to be term equivalent, if the sets
of their term operations are equal. The universe of an algebra A will be denoted
by A.

Thus, for any set of relation, T', over a set A the algebra corresponding
to the problem class CSP(T) is (A;Pol T'), and conversely, any finite algebra
A = (A; F) gives rise to a problem class Inv F. By Theorem 1, if sets I't, 'z cor-
respond to term equivalent algebras, then they are either tractable or intractable
simultaneously. An algebra A is said to be (globally) tractable [NP-complete] if
Inv F' is (globally) tractable [NP-complete].

We are now able to reformulate the main result of this paper. An algebra is
said to be Mal’tsev if it has a Mal’tsev term operation.



Theorem 2 Any finite Mal’tsev algebra is globally tractable.

2.3.2 Multi-sorted case

To introduce the algebraic structure of problem classes in the multi-sorted case
we need more algebraic terminology.

First we note that algebras can be grouped into families according to the
arities of their operations.

Definition 3 Algebras A, = (A1, F1), Ay = (A3, F) are said to be similar
(or of the same type) if there exists a set I such that Fy = {f} | i € I},
Fy={f?|i€I} and, for alli €1, f}, f? are of the same arity.

Let A be a class of similar algebras. The index-set for the basic operations
of algebras from A is often called the set of basic operations of A. For each
A € A, the concrete operation corresponding to an index f will be called the
A-interpretation of f and denoted fA. We will also use terms of A, constructed
from basic operations of A in the standard way (see, for example, [19, 10]).
Again, for each A € A, the A-interpretation of a term ¢ is a concrete operation
derived by the usual rules. The A-interpretation of ¢ is a term operation of A,
and denoted by A,

We say that an (n-ary) term ¢ preserves an (m-ary) multi-sorted relation p

with the signature (41, ...,%;,) over the collection of the universes of algebras
from A if, for any (a11,---,8m1),---,(@1n,---,amn) € @ we have
11 - Qin tha (a1, a1n)
t = €0
Gm1 "' Gmn i, (@miy---»Qmn)

For a class A of similar algebras, Inv (A) denotes the class of multi-sorted
relations over the class of the universes of algebras from 4 invariant with respect
to terms of A. Further, we can define the associated multi-sorted CSP just by
setting CSP(A) = CSP(Inv (A)).

Definition 4 A collection of algebras A is said to be tractable if Inv (A) is
tractable.
It is said to be NP-complete if Inv (A) is NP-complete.

3 Properties of Mal’tsev algebras

To describe the algorithm solving the CSP over Mal’tsev algebras, we need some
algebraic terminology and results. All these notions are standard, and can be
found in [7, 33], but we give all the required definitions so that the paper is
self-contained.



3.1 Basic definitions

We shall make use of four standard constructions on algebras which are defined
as follows:

Definition 5 Let A; = (AI,FAl), A, = (AQ,FAZ) be similar algebras.

A mapping p: Ay — Ay is called o homomorphism from A; to A, if

gofAl (a1,...,a5) = fAQ (p(a1),...,p(ar)) holds for all f € F and all a,...,ar €
Ay, where k is the arity of f. If the mapping @ is surjective then Ay is called a

homomorphic image of A, .

Definition 6 Let A = (A, F) be an algebra and B a subset of A such that, for
any f € F, with arity k, and for any by,...,by € B, we have f(by,...,b) €
B. Then the algebra B = (B,F‘B), where F‘B consists of restrictions of the

operations in F onto the set B, is called a subalgebra of A.
The least subalgebra containing a set C C A is called the subalgebra generated
by C, and denoted by (C).

Definition 7 Let A,,..., A, be similar algebras, and F a set of basic oper-
ations. The direct product of Ay,..., A, is the algebra B = (B;FIB) where
B = A x...x A, and the B-interpretation of a basic operation f € F of arity
k is defined as follows

ai aik fAl (ai1,...,a1k)
B . .
f : ey : = :
an1 Ank fA’" (anl, R ,ank)

where ayy,...,a1x € A1,...,0n1,...,an; € A,. The direct product of Ay, ..., A,
is denoted by A x ... x Ay or [Ticrr 0 i

Definition 8 An equivalence relation 0 is called a congruence of an algebra
A=(4F)if6einvF.

The equality relation 05 and the total binary relation 1, are congruences
of A.

For any a € A and a congruence 8, the 8-block containing a is denoted
by a/g-

For any congruence § of an algebra A = (4; F), the algebra A/y = (4/p; F?)
where A/g ={a/g:a€ A}, F* = {f?: f € F}, f(ar/g,-- - an/g) = far,--.,an)/p,
is called the factor algebra of A. The factor algebra is known to be a homo-
morphic image of A, and the (canonical) homomorphism is defined through the

formula a — a/g. Conversely, the kernel of every homomorphism is a congru-
ence.

Example 4 A group is an algebra of the form (G;{-,1,e}). Homomorphisms,
subalgebras, and direct products of groups as universal algebras are homomor-
phisms, subgroups, and direct products in usual sense. A congruence of a group
is the equivalence relation whose classes are the cosets of a normal subgroup.



It is not hard to see that, for an algebra A = (4;F), every (n-ary) re-
lation ¢ € Inv F can be viewed as a subalgebra of the nth direct power
A" = A x ... x A. Analogously, every relation from Inv A for a class of similar

—_———
n times
algebras A is a subalgebra of the direct product of some algebras from 4. We
therefore will use the algebraic notation for relations; relations will be denoted

by DR, ...

3.2 Simple properties of Mal’tsev algebras

The following proposition contains three basic properties of Mal’tsev algebras,
which will be constantly used. For a natural number n, by n we denote the set
{1,...,n}. For a = (a[l],...,a[n]) and b = (b[1],...,b[m]), (a,b) denotes the
tuple (a[l],...,a[n],b[1],...,b[m]), while (a, b) denotes the pair of tuples.

A subalgebra D of the direct product I); x ... x D, is called a subdirect
product if, for any i € n and a € I;, there is a € D such that a[i] = a.

Proposition 1 Let D be a subdirect product of Mal’tsev algebras
Dy,...,D, and I Cn. Then the following properties hold.
1. D is rectangular, that is if a,b € ]DL,c,d € m . and (a,c),(a,d),

(b,c) € D, then (b,d) € D.
2. The relation 61 = {(a,b) € (]DL)Q: there is ¢ € ]DL_I such that (a,c),

(b,c) € D} is a congruence of Dr.
3. D is a disjoint union of sets of the form B x C where B is a 81-block and C
is a Op_r1-block.

We are going to prove that every finite Mal’tsev algebra is tractable. How-
ever, it is clear that the less basic (and term) operations an algebra has, the
wider and harder problem class it corresponds to. Therefore, we may restrict
ourselves with those Mal’tsev algebras that have only one basic operation, the
Mal’tsev operation.

3.3 Types of prime quotients and the structure of rela-
tions

A pair of congruences (a,3) of an algebra A is said to be prime quotient if
a C 8 and there is no congruence <y such that o C v C . In this case we write
a < . Tame congruence theory [21] allows one to assign to each prime quotient
of an algebra one of five types 1,...,5. The type of the prime quotient (a, )
is denoted by typ(a, 8).

The types of prime quotients strongly affect the properties of an algebra.
For example, in [3], it is proved that if there is a prime quotient of type 1 then
the algebra is NP-complete.

As we do not need the general definition of types, we define them only in
the particular case of Mal’tsev algebras. Let A = (4;d) be a finite Mal’tsev



algebra, d a Mal’tsev operation, and (a, ) a prime quotient. Let also 8/,
denote the congruence of A/ , defined as follows ([20, 13]): (a/,,b/,,) € B/, if
and only if (a,b) € 8. Then typ(a, 8) = 2 if and only if, for any 3/ -block B of
A/, and any a € A/, the algebra (B;d’(z,a,y),d’(a,z,a),a) is an Abelian
group; otherwise typ(a, 3) = 3. The types 1,4,5 cannot appear in a Mal'tsev
algebra.

If the intersection 61 N...N# of congruences of an algebra A equals 04 then
A can be represented as a subdirect product of A/ IEEEES A/ 0, An algebra is
called subdirectly irreducible if the intersection of all nontrivial congruences is
nontrivial. In this case there is the least nontrivial congruence which is called
the monolith. As is well known, every algebra can be decomposed in a subdirect
product of subdirectly irreducible algebras. In fact, if congruences a;, ..., ay of
A are meet-irreducible, that is for ; there exists a unique f; such that (s, 5;)
is a prime quotient, and a; A ... Aoy = 0y, then A is a subdirect product of
A/ apr A/ a,, and all A; are subdirectly irreducible.

We will use the following folklore fact.

Proposition 2 Let A be a subdirectly irreducible Mal’tsev algebra, p its mono-
lith, and (a,b) € p. Then for any c,d € A such that (c,d) € u, there are a term
operation f(x,yi,...,yn) and ey,...,e, € A such that f(a,ei,...,e,) = ¢,
f(b,el,. .- ,en) =d.

A subdirect product ID of Dy, ...,ID, is said to be reduced, if for no two-
element subset I C n the projection ]DL is the graph of a mapping.

Let D be a reduced subdirect product of subdirectly irreducible Mal’tsev
algebras Dy,...,D,; u; the monolith of I;; and 0; the equality relation on
ID;, i € n. Let also I C n, and § be a congruence of ]D)‘I. We say that ID is

I-rectangular modulo 6, if § C 6.

Lemma 1 If i € n is such that typ(0;, ;) = 3, then D is {i}-rectangular
modulo ;.

Proof. Without loss of generality we may suggest that ¢ = 1. Suppose ID
is not {1}-rectangular modulo ;. This means p; Z 0413, therefore, 8713 = 0;.
Let J C n be minimal such that 1 € J and ]DL is not {1}-rectangular. Since by

the assumption D is reduced, and therefore each binary projection m{, _of D
27-7

is 4- and j-rectangular modulo p;, p1; respectively, J has at least 3 elements. It
will not be loss of generality, if we assume J = n.

For a term operation f of ID we denote by f; the corresponding term operation
of ;. By the results of [21, 2], for any u;-block B containing more than one
element, there are N = {0,1} C B, a term operation g(=,y, 21, .. ., zx) of D, and
aj,...,a; € D such that the operation f(z,y) = g(z,y,ai,...,a;) satisfies the
following conditions: f;(ID;,ID;) C N; f; is a semilattice operation on N, that
is fl(O: 1) = fl(lao) = fl(]-a]-) =1, fl(OaO) =0; fz(aab) = fZ(cad) for any ¢ # 1
and any a,b,c,d € D; such that (a,c),(b,d) € p;; and f(z,z) is idempotent,

10



that is f(f(z,z),f(z,z)) = f(z,z). Take a = (a[3],. ]DL 2 such

X
that { ° 1) e and denote by A [B] the set of all ¢ € Ay such
a )l a ]th{ﬂ nd den y e set of all ¢ 9 Suc

0 1
that [ ¢ | eD c | eD
a a

assumption 61} = 0,, we have AN B = J. Replacing a with f(a,a) we may
assume f(a,a) = a and, therefore, f2(A4,A) C A, f2(B,B), f2(A,B), f2(B,A) C

. Notice that A, B are 6;5)-blocks, and by the

' 0 1 : ,
Further, ( b > , ( a > € M{lﬁ}’ for any a € A,b € B, since ]1)1{1’2} is 1-
0
rectangular modulo ;. Take b € D, _¢; 5 such that | b ) € ID. Denoting
b

d(0,1,0) by d, we have

((2)
() (1)

and note that a' € A, b’ € B. If d' =

()~ (2)

hence a' {E !, that contradicts the assumption AN B = &. Therefore d' = 1.

. ( ) (2)
((2)(2))-(x)e

where " € B. On the other hand,

1 1 1
where a” € A. Due to rectangularity, since | & |,| b |,| a" | € D,
a b’ b’

PO =

!

(5)-(5)+

i
! ) € D where d' € {0,1}. Set f2(b,b) =¥,
0

then

.
/N
N
T e -
N~
S
ST
N——
N~

Il
/N
o8,
N——

m

S



the tuple | a” | is also in D, and therefore a’ € B. This again contradicts

a
the assumption AN B = <. O
4 Results

In fact, we will obtain more than just the tractability of a Mal’tsev algebra.
We exhibit an algorithm that finds a basis of the solution space of a problem

instance, and moreover, any solution can be uniquely decomposed.
Let A = (4;d) be a Mal’tsev algebra, and P = (V; 4;C) € CSP(A), |V| =

n. Choose a chain 0y = ag < au < ... < ag = 1, of congruences of A
and consider the nth direct power A" of A. For any sequence (al,...,a")
where al,...,a" € {ap,...,q,}, the congruence @ of A" is defined as follows:

((a[1],---,a[n]), (b[1],...,b[n])) if and only if (afi],b[i]) € af, for all i € n.

A basis of the set S of solutions to P we are looking for is of the following
form. There is a chain @y C @, C ... C @ of congruences of A" such that oy
corresponds to a sequence (q1,...,q,) € {aq,...,qq}", and

® Qp1 = ... = Qpp =g =15, @01 = ... = aon = a9 = 0p;
e forany ! € {0,...,k—1} and i € {1,...,n}, either ay; = a;41; or ay; <
Q4143
o the set [; = {i € m:ay; < ayy1; is a strictly connected component of
G(S/5,)-
Then the basis consist of k parts, B = B¥ U...U B! where

e B¥ = {a;} where a is an arbitrary tuple from S;

e B! = B{ U...UB! where r; is the number of classes of the congruence
al+13/al8, for certain s € I.

o Let C’{, . Cﬁl be those al+1s/al8—c1asses for which there is a € S| such
£

that a/ oy, € C’;-. Then one of the following two possibilities holds:

— for any 1 < j <r, Bl = {a} with als]/y,, € Cj
8
— forany 1 < j <,
B; = {al,...,at}
where t is the number of a;s-classes in Cj- whose intersection with S‘
S

is non-empty, a;[i],...,a[¢] lie in the same ay;-class for i ¢ I;, and
for any b € Cj- such that b = a/al for certain a € S| , there is u € ¢
S

with au[s]/als =b.

12



In the next section we show that an arbitrary tuple a € S can be represented
in the form

d(d( .. d(d( .. d(ak, ap—1, bk—l); . .), al,bl), . .), al,bl)
where, {a¥} = B*, for each 1 <1 < k, if ¢;41 denotes the tuple
d(d( . d(aka Ag—1, bk—l)a .- ')5 al+1abl+1)

then (c;41,a) € @41, and a;,b; € B! are such that (aj[s],ci11[s]) € aus,
(by[s], a[s]) € ays for s € I;. Obviously, such a representation is unique.

Example 5 Let S3 denote the full symmetric group on the 3-element set {1,2,3}.
The elements of S3 are

12 3 1
E_(123)’ ’81_(2
(123 (1
M= 1 3 2 y V2= 3
1

The group S3 is a Mal’tsev algebra with a Mal’tsev operation d(x,y,z) = zy~'z.
We consider the algebra A = (S3;{d}). As is easily seen, the only proper con-
gruence o of A and Sz has the classes {&, B1, B2}, {71,72,73}, and the corre-
sponding normal subgroup of Ss is {e, 1,02}

A basis of a subalgebra

e € € Pr B BL P2 P2 B i Y2 V2N VB3
D= v % v m 2% m 72 7 € b Bo e b1 e BB
B2 B2 B2 € € € B Br Pry2 72 72 73 VBB VL TN

can be chosen as follows

e B m|BL B2 € v o v|b B B ooy | b V3
Y3 l7M € [T M 2 51 ﬂ2 ﬂ2 Y12 Y3 € ,31 ﬂz 71 g
52 € 72| € ﬂ1 ﬂz Y1 Y2 V3| € & € T 1T N 3 71

M~ NS ~" - ~ ~" - ~" - ~ ~" “ N~ N~~~
B5 B4 B3 B3 B? B2 B} Bl

The strictly connected components are I = {1}, I, = {2},I3 = {3},14 =
{1,2,3}, and the chain of congruences is (0,0,0) C (o,0,0) C (a,0,0) C
(a,a,a) C (1,1,1).

Theorem 3 Let A be o finite Mal’tsev algebra. Then a basis of the solution
space of any problem instance P € CSP(A) can be found in polynomial time,
and each solution to P is uniquely decomposable.

13



5 Algorithm

In the following two sections we describe an algorithm that solves, in polynomial
time, arbitrary problem from CSP(A) where A is a Mal’tsev algebra with a
Mal’tsev term d. As is known, the less term operations has an algebra, the
large problem class of CSPs it determines. Therefore we shall assume that d
is the only basic operation of A. Furthermore, for the sake of convenience we
describe our algorithm for multi-sorted problem instances. However, all the
domains are supposed to be homomorphic images of subalgebras of A. This
means, in particular, that we can precalculate all the required parameters and
objects connected with the domains: subalgebras, congruences, types of prime
quotients, and so on, even if such a calculation takes superpolynomial time on
the size of an algebra.

The procedure of constructing a basis is sophisticated, and at first sight it
might seem to be quite different from what was described in Section 4. However,
it can be shown that the result of this procedure satisfies all the requirements
of the definition from Section 4.

5.1 Planning

The aim of the algorithm we describe is to build a basis of the solution space of
a problem instance over Mal’tsev algebras. A basis will be built inductively. For
this we will simplify the given problem instance by decomposing the algebras if
they are not subdirectly irreducible, and factorising modulo the monolith other-
wise. In each step we choose a variable and factorise the algebra corresponding
to this variable. During the first phase of the algorithm we build a “plan”, that
is a sequence of decompositions and factorisations.

Suppose that we are given a problem instance P = (V;A;6;{C1,...,Cy}).
For short we will denote the algebra A;(,) by A, and omit the sort-function.
We may assume that all A,s are subdirectly irreducible, and all the strongly
connected components of the graph G(P) are 1-element. Otherwise, we should
reduce P to such a problem as is described in Steps 1-5 of the algorithm in
Section 5.3. As we possibly will partially rearrange the plan, the procedure of
planning will be applied several times. So, we describe it as a subroutine.

Informally, in each step we do the following. First, we take a variable with
indegree 0 in G(P), and factorise the algebra corresponding to this variable
modulo its monolith. Second, we decompose the algebra which has become
not subdirectly irreducible in the previous step to obtain a problem instance
over subdirectly irreducible algebras. Third, we find the graph G(p) for each
constraint relation g of the obtained problem instance, and then the transitive
closure G of the union of the graphs, and the strongly connected components
of G. So, we find those variables whose values are connected by one-to-one
mappings. Second, we choose a representative from each strongly connected
component, and remove all other variables. During all this process we corre-
spondingly change the problem instance.

14



INPUT: P! = (VL {A} : v € V'},{Cl,...,C}}) where each A} is sub-
directly irreducible, and all the strongly connected components of G(P) are
1-element.

OUTPUT: Sequences

o (P?,...,P"), where P = (W{A, : v € W}{CY,....C}}), C} =
(s}, 0L), and |[Ak| =1 for all v € WF;

(GY,...,G*1) where G! = (W!, E!) is the graph such that (v,w) € E if
and only if P{, . is the graph of a mapping ¢y,u: A, = Af;

(V2,...,V¥) where V! C W' consists of representatives of strongly con-
nected components of G';

e (P2,...,P*) where P! = P"

vt
o (v1,...,v* 1) where v! € V! form a strongly connected component of G';
o (Al,..., A1) where Al is a set of meet-irreducible congruences of A!,

such that Asea:d = pl,.
ALGORITHM
Repeat the following steps until |Al | =1 for all v € V.

Step 1 Fix v! € V!, a vertex of G(P!) of indegree 0.
/* If typ(0':, pi!,) = 3 where 04, i!, denote the equality relation and the
monolith of A! | v € V!, respectively, then we say that [th step is of type 3,
otherwise Ith step is of type 2 */

Step 2 Set
! oo ol
B, — AU,/%I, if v =,
AL otherwise,
2! = {(av]),eqn: there is b € g} such that a[v!] = b[v']/,1 and
t v

a[v] = b[v] if v # v'}.

Step 3 Let 0y 1,. .. ,01):7,5”, be meet-irreducible congruences of B,: such that Oyt 1N

- -NOyr g, =0, where 0, denotes the equality relation on B,:.. Set Al =
{01,1,1, fen ,le’tvl }, and Aljll’l) = IBUI /01, .. 7Al+1 ) = Ith /otUl . Then

(vt R
B,: is a subdirect product of Al(jll’l), . Al(:}rll’t e ForveV'— (01}, set
ty =1, 0,1 =0, AL = {6,,}, and AT} = AL
Step 4 Set

W = ey {0, 5):1 < j <t}

15



C’iﬂ = (s£l+1, QQHI), for each 1 <t < ¢, where

™ = Ulwnsist)

10
vES,

p1+1
9

{(a[v]/av,l, . a[v]/gv,tv Juesitt (@[v]) e € o'}

P = (W AL 0 e WY (O 0n Y.

q

Step 5 Establish 3-minimality.

Step 6 Find the digraph G+ = G(P''*") = (W, EM+1) where (v,w) € E'+!
if and only if S'5t! } is the graph of a mapping ¢y .- ALy AL

{v’w

Step 7 Choose a representative from each strongly connected component of G*1;
let V+1 denote the set of the representatives. Set P!T1 = (VL {AlH:y €

V1Y ot L CFY that s obtained from P/ as follows. For each

. 1+1
) we replace each variable v € s/t = (vy,...,vp)

i

with the relation {(90;'11,1;1 (a[v1]), - .. ’9012 (alum])):a €
}, and then remove all repetitions of entries from the obtained con-
straint scope and corresponding coordinate positions of the obtained rela-
tion.

1l+1 _ +1 I+1
Cy = (sy 0

1141

with o', replace g}

I1+1
g;

sUm

5.2 Basis of the solution space

All objects involved in the problem instance: variables, tuples, domains, rela-
tions change from step to step of the procedure of planning. It will be convenient
for us to use a special notation for what the listed objects turn to.

Suppose P! is the problem instance in Ith step. Then

o oMt ig the tuple ((v,1)',...,(v,t,)") where (v,7) denotes the representa-
tive from V!*! of the strongly connected component of G'*! containing
(v,9) for v € V! with t, = |AL];

o s (a/am"'"a/ﬁv,tv) where a € A and {0,,1,...,0,: } = AL;
o atltl= (a[v!*t!),cw where a = (a[v])yew, W C V;

o gitl={at!*!:a € g} where g is a relation on {Al:v € V!}.

Suppose that o7, a4, a?, o7 are already defined. Then

o otitl=(pdtl [ i tl) where = (vy,...,v);

o aV = (alwit!),cri where a € Al (aw)),eppi = at;

o atitl= (a[U]Tj+1)v€WTj+1 where a = (aw])wew, W C Vi

o g9tl={a}i*!:a € p} where g is a relation on {Al:v € V!}.

16



We are going to find a basis of the solution space S' of the problem instance
P! in each step. Since all the constraint relations are subalgebras of correspond-
ing direct products, S' is also a subalgebra of A' =[], ., Al and the basis
will be a generating set of S'. The basis we look for should be of a very special
form. Let B be a basis of S!. Then

B=B*u...uB

where B¥M¥ U...U B*%? is a basis of S4* (which is not necessarily equals S?) for
each | < i < k. Since all A* are trivial, if | = k we have S¥ = B¥ = {a}. In
this case we say that a can be B-decomposed.

Let Ci,...,C; be the p!,-blocks. Then

B'=Blu...uB!
where for each 1 < p < s there is (ap[w])wevi— o1} € [Tyevr g1y A such that

B! ={ay, : b€ C), C Cp},

ay[u] = b, if w = 1!,
T apfw], ifw # o
and C}, = Cp or |C}| = 1.
Let B— B! = {cy,...,c,}. We say that b can be B-decomposed if

b =d(b',a,a.)

where b = b'[v!], ¢ = b[v!], and b’ is such that (a) b*! can be (B — BI)pi+1-
decomposed, (b) if b= f(cttt!, ... ctttl) isa (B— B! t+!-decomposition,
then b’ = f(e1,...,¢n).

Such a decomposition of a will be called a standard B-decomposition. If
B C S and each vector a € S* has a standard B-decomposition, then B is said
to be a standard basis of S'.

Lemma 2 Let B C S be constructed as above; S a subdirect product of Al
veV C,, = C}, whenever lth step is of type 3, or Ith step is of type 2and St s
v!-rectangular modulo pi}l, and C;, one-element whenever lth step is of type 2and

the congruence 6,1 of Ai) . is the equality relation. Then B is a standard basis
of St.

Proof. We prove by induction that, for any b € S and any 1 < [ < k,
the tuple b = bt can be ((B* U...B!')1!)-decomposed. The base case of
induction, [ = k, is obvious, because St*= B**= {b*}. Suppose that bf!*! is
((B*U...BH ) decomposed, f(ct*t!, ..., cttt!) where BFU.. .UBH! =
{c1,...,cn} is its decomposition, and set f(cift, ..., c,t) = c.

Let C} be the p!,-class containing c[v!]. Notice that c[v] = b![v] for all
v # v'. Therefore, if ,; = 0, then ¢ = b!, and b’ = d(c,at!,at!) where
Bé- = {a}.

17



Otherwise, b = d(c,ad!, agt!) where ¢ = c[v'], b = b'[v'], and a3,a. € B:. O

The coordinates of a in the basis B we will denote by K (a). The tuple K (a)
consists of parts K*(a),..., K!(a) which correspond to the parts B¥,..., B!
of B. Further, each K®(a) consists of Ki(a),...,K:(a) which in their turn
correspond to Bf, ..., Bi. Finally, each K/ (a) is a tuple of integers (ay, ..., o)
By the construction of the standard basis, at most one of Ki(a),...,Ki(a) is
non-zero, and this non-zero tuple, K;;(a), contains two non-zero components,
—1 and 1.

When solving equations we shall need a notation for the coordinates of an
unknown vector. These unknown coordinates will be denoted by K(z).

Let Ki(a) = (a1,...,am), B, = {a1,...,an}. Sometimes we will use the
notation b + K(a) - B} which denotes just b if Ki(a) is a zero tuple, and
d(b,a;,a;) where a; = —1, a; = 1. Since at most one of K}(a),...,Ki(a) is

non-zero, we may define b+ K'(a) - B* to be b+ K (a) - B} where K’ (a) is the
non-zero part of K%(a).

5.3 Constructing a basis

In this section we describe an algorithm that builds a standard basis of the
solution space of a given problem instance P. The algorithm produces a plan
for P, as is described in Section 5.1, and then finds the basis inductively starting
from the trivial problem instance P*. We denote the solution space of P! by
S!. There are two cases when finding a basis of P!. The first one, when the /th
step is of type 3, is easy because of Lemma 1. In this case, for each tuple a
from the basis of S'*!, the algorithm finds a representative b from S such that
b= a, and for each element of Al add a tuple to this set of representatives.
Second case, when [th step is of type 2, is more complicated. In this case
the algorithm finds a basis of the solution space for each block C4,...,C; of the
monolith y!, of Al separately. For this it takes a basis B¢, of S¢, = {a € S'*:
a = bt b[v!'] € Cp}, 1 < p < s, which was found in the previous (I + 1)th
step; and for each 1 < ¢ < g, and each a € Bg, finds a vector a, € Al such
that ay| , € o} and af*'= a. The set {a;:a € B¢, } is denoted by B¢, ;. Then

I

54

the algorithm takes an arbitrary vector a € Bg, 4, sets a = a[v'], and set D},

to be the set of elements from a/ ;1 if vl ¢ st or gl is vl-rectangular modulo
Ui

ui} 1, or {a} otherwise, extended by components of a to vectors from A’. Finally,
the algorithm finds a basis of intersection of subalgebras generated by basises
Be, UDL,, 1<t <q.

During this process the problem instance may be tightened, that forces re-
arranging the plan, because 3-minimality may be destroyed, or the graph G!

changed. The formal description of the algorithm follows.

Ineur. P = (V;{A, : v € V};{Ci,...,C;}) where A, are Mal’tsev with a
Mal’tsev term d, Cy = (s¢, 01)-

18



OUTPUT. A standard basis B of the solution space, or “NO” if the problem has
no solution.

ALGORITHM.

Step 1

Step 2

Step 3
Step 4

Step 5

Step 6
Step 7

Step 8

Step 8.1 Suppose we have a basis B = B'U...UB

Let 8,1, ..,0,,:, be meet-irreducible congruences of A, , v € V, such that
6y,1N...N0¢, =0,. For each v € V set A%v,l) = A”/Qu e ,A%v,tv) =

A@/gv , - Then A, is a subdirect product of A%v,l) e "A%v,tv)‘ If A, is
subdirectly irreducible, then set ¢, = 1 and A%m) =A,.

Set
Wt = UvEV{(Uaj): 1<5< tv}-
C'% = (321, g{tl), for each 1 <t < ¢, where
st = Jlwi1<i<e)
VESt
1
6" = (@, .- alil/p, , Jecs: (@l)es, € o)
Pl = (WhH{ALw e Wi}, 0L, O,
Establish 3-minimality.

Find the digraph G' = G(P'") = (W', E') where (v,w) € E" if and only
if S’%v’w} is the graph of a mapping ¢, .,: AL — AL .

Choose a representative from each strongly connected component of G*;
let V! denote the set of the representatives. Set P! = (V1;{Al:v €
V1};C,...,CL} that is obtained from P'" as follows. For each C}' =
(8%1’ 9;1) we replace each variable v € sgl = (v1,-..,Vy) with vl’, 11replace

. . — _ +

o; with the relation {(a,ovil,v1 (a[n1]), - - "‘Pv;i,vm (alvm])):a € ¢; 7}, and
then remove all repetitions of entries from the obtained constraint scope
and corresponding coordinate positions of the obtained relation.

Apply the procedure of planning to P!.

If P* has an empty constraint, Qutput ‘NO’. Otherwise, as all the alge-
bras A¥ are trivial, the problem instance P* has the only solution. Set
B = B* to be the set consisting of this solution.

For each 1 <[ < k do the following,.
"1 of the solution space
SH1.If Ith step is of type 3, then do
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Step 8.1.1 For each a € B choose an element a such that at'= a{

and set a’' to be such that

‘UlTl+1,

afw], if w# o, we VITL
a, if w = ol
a'lw] = { @ w(@'[w']), otherwise, w' is the variable of V!*!

from the same strongly connected
component Gt as w.

ThensetBj={a’:a€§j}f0rl<j§k.

Step 8.1.2 Let C1,...,Cs be the i ,-blocks. For each C}, choose a, € S't!
such that a ., = Ot

/* See Section 6.5. */
Set B! to be the set of all tuples b € A" such that

ap[w], if w# 0!, we Vi
be Cp, if w=1';
blw] =¢ ¢ w(bw']), otherwise, w' is the variable of V!*!

from the same strongly connected
component of G**1 as w,

and B' =B/ U...UB..
Step 8.2 If Ith step is of type 2 then do

Step 8.2.1 Let C4,...,Cs be the p! -blocks of A!,, and S¢,, 1 <p < s, be
the set {a € S!Tl:a = b'tl, bv!] € Cp}. For each1 <p<s
take a basis Bg, of Sc,.
/* Bg, is already found in step [ + 1 */

Step 8.2.2 For each 1 <t < ¢, each 1 < p < s, and each a € B¢, choose
a; € A such that
atTl+1: a,
a, € .
/* Such a vector a; exists, because a{ 1 € 07T = gt ¥/

Set BC’p,t = {at: ac BCP}.
Step 8.2.3 For each 1 < p < s fix a tuple a? € B,, the corresponding tu-
plesal,...,af from Bg, 1,..., B¢, s respectively; and for each

1 <t<gqset D,; to be al[v!] if o' ¢ st or gl is vl

I,
rectangular modulo x!,, and {af[v']} otherwise.
1 l. l — aP
Step 8.2.4 Set D), = {b € A":b[v'] € D,, b‘Vl—{vl} = at‘vl—{v’}}'
Step 8.2.5 For each 1 < p < s solve the system of equations
by, + KN 2) - BE S + ..+ K (@) - B +yibr + ..+ 41 b

= bh, + K@) - BE L+ .+ K (@) - B, +yabg + .+ g5 by
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5 (1)
by + K" (2) - BE G 4.+ K (@) - B +uibt + .+ y b
b KR B o KU BE, bl b

where Bg, ¢ = {bf,}UBg ,U...UBZ",, Dpy = {b},...,bj" }.
The solution space of the system is denoted by S, and its stan-
dard basis by E,. Let also 8" = J, <<, Sp-
/* Since each Ej, is a standard basis, we have E, = EFU...UEL.
For an algorithm solving the system see Section 6.2.%/
Step 8.2.6 If all E, are empty, then Output(“NO”) and Stop.
Step 8.2.7 Otherwise, transform the sets Ey,..., B, to a standard basis.
/* See Section 6.6 */
Step 8.3 For each i € {k,...,l — 1}, each v € Vi, and a subalgebra B of
Al find a standard basis of the set Sy = {a € S't%: a[v] € B} if
i #1—1, and of the set S = {a € &' a{ml € B!} otherwise.
/* See Section 6.4 */

Step 8.4 For each tuple a from each constraint relation g} find a basis of
the set {b € S:b| , = a}. For this do

st

Step 8.4.1 Let s} = {v1,...,v,}. Set D° = B.

Step 8.4.2 For each 1 < j < n find a standard basis of the set {b €
(D71) : blv;] = afv].
/* See Section 6.4. */

Step 8.4.3 Set D = D".

Step 8.4.4 If the basis D is empty, then remove a from g}, and all b from
oi, 1 <i <, such that bi{= a.

Step 8.5 Denote by P!’ the problem instance obtained from P! in the previous
step. If there is a 3-element subset W C V! such that the sets of
partial solutions to P!, and P! for W are different, then establish
3-minimality of P!, denote the obtained problem instance by P!
and Goto Step 3.

Step 8.6 Otherwise, build the graph G(P!') where P! is the problem in-
stance obtained from P! in Step 8.4. If G(P!') # G(P') then set
P! to be P!, and Goto Step 3.

6 Subroutines and comments to the algorithm

6.1 Solutions of the system (1) and of the problem in-
stance

6.1.1 Near-standard decomposition

In this section we need an extended version of the standard basis decomposition.
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Suppose that B = B'U...U B* is a basis of &', K(z) is an arbitrary tuple
of integers, but K*(z) = (1), and Y} oy = 0 for all K}(x) = (a1,...,0m).
Define an element b of A/ through the following rules.

e b* = a where B* = {a}.

e For | < j < k suppose that b/t! is already defined.

e Let B/, ..., BJ be parts of the basis B/, by = b/t!, b,_; already defined,
and BIJ; ={ai,...,anm}, Kzf)(x) =(Q1,...,0m).

In the term d(z,y, z) we call the positions z, z even, and the position y
odd. Set
bp = d( .- d(d(bp—17 ai1)7 aiZ’ai4) .- )

where the numbers of occurrences of a; in even and odd positions are 3;, v;
respectively, and f; —v; = o, for ¢ € {1,...,m}. (Therefore, b, is not
uniquely defined.)

Set b7 = b,.

Finally, b = bl.

Lemma 3 An element has a near-standard B-decomposition if and only if it
has the standard B-decomposition.

Indeed, if b has a near-standard B-decomposition, then b belongs to the
algebra generated by B. Therefore, b has the standard B-decomposition.

6.1.2 Correspondence between the solutions of the linear system and
of the problem instance

In this section we, first, show how to link the solutions of a linear system of the
form (1) and the solutions of the problem instance, and second, how to reduce
the system (1) to a linear system over certain Abelian group.
Suppose that [th step is of type 2, and for pth pi} ,-class C, there appear the
system
bk, + K (x) -Bg;ll +... + K () -B’Ci:l +yibl + .. +ybM

= byo+ K" (e) BE L+ + K () - B, +yib + .+ yiebEe

: (2)
by, + K@) - BE L+ + K (@) - BE +yibt + .+ y B

= by, +K"N2) - BE L+ + KT (@) - B +yiby 4.+ yebye

where Bg,: = {bF ,} U BElu...U Blotjf, is such that B, 4+ is a basis of

P

Sc,, and for each a € B, 4, a{si € o}; {b},...,b}"} is the basis D/ ,.
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Lemma 4 A tuple ¢ € Al is a solution to P' if and only if there are
(K1), ..., K" (), ui, ..,y ..., yg?) such that, for any 1 < t < g,
(K*=Yz),..., K" (2),y},...,y/") are near-standard coordinates, and c can
be represented in the form

bt , + KF(z)- Bg;; +.. + KT (). B’Cf:t +yibl + ... +ybM
where p is such that c[v'] € C,.

Proof. Let ¢ € &', and c[v'] € Cp. Then, for any 1 <t < ¢, e S¢, can
be decomposed

A = b+ KE e) - BT 4+ K ) B
where K*(c),..., K"t (c) does not depend on t. For each 1 <t < ¢, set
a; = (b, + K" '(c)-Bf 1+ ...+ K''(c) - B )
Notice that a;[w] = c[w] for all variables w # o'. If Dj ; = {b},...,b}"} is such
that {b}[v'],..., b [v']} = C, (see p. 20) then
¢ = d(a, b}, b!)
where bi[v/] = a[v/], b][vi] = c[v7]. Therefore, there are y},...,y™ such that
c=bh, +K*(c)-Bf L +...+ K" (c) - B, +yibi + ... + by
In fact, yi = —1, y/ = 1, and y}* = 0 otherwise. If |D;, ;| = 1 then dq. =2 and

1
yt = 0.

Conversely, if the conditions of the lemma hold then, for every <t < ¢, the
tuple ¢| , can be represented in the form

1
54

k k— k— +1 +1 11,1
bp,tsz+K l(x)'BCp,isz+“‘+K+ (w)'BC—Z,tsz+y1blsz+"'+y?1b?151‘
t t t

t t

Every tuple involved in this representation belongs to ¢!, hence, c‘ , also belongs
St

to o}, and so c is a solution to P'. O

Lemma 4 implies that a tuple c is a solution to P! if and only if its near-
standard coordinates in basises B¢, ;, 1 <t < g, form a solution to (2).

For every variable w € V!, w # o', each equation of (2) holds for any
KFY(z),..., K" (z), y}, ..., y;° whenever they are near-standard coordinates.
Indeed, we have ¢, [w] = ¢, [w], for any ¢ € Be,, t1,t2 € {1,...,¢}, and w # v
Therefore

(bl +K*(z)-Bi +...+ K" (z) - BSE)[w]
= (bp, + K (@) - B+ .+ K (2) - BUYL) [w];
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let us denote this element by b[w]. Then, we have bifw] = ... = b'[w] =
bi[w] = ... = bg?[w] = z[w]. So, for each t € {1,...,q}, the expression in the
right (left for ¢ = 1) side is equal to

b[w] +yjz[w] + ...+ yz[w] = d(... (d(b[w], z[w], z[w]), .. .), z[w]z[w]) = b[w].

Further, for any ¢ and a € Be, + UD), ,, the element a[v'] belongs to Cy. Let
Bg,+ = {a},...,a"}, D), = {b},...,b}"}, and a} = ai[v!], b} = b][v!]. Let
also (K¥1(2),..., K" (z)) = (z2,...,Tm_1). Since lth step is of type 2, the
Mal’tsev operation d on C,, is of the form d(z,y,2) = £ —y + z where +, — are
operations of an Abelian group Q = (Cp;d(z,a,y),d(a,z,a),a), and a € C, is
an arbitrary element. Then each equation of (2) can be rewritten as

(a1 + z2a? + ...+ zpmal +yib} + ... +y b (3)
= (af + 220 + ...+ Tmal™ +yibf + ... +ybi.

Finally, one may derive from (3) the linear system

r2(a? —al) + ...+ z, (@ —ad) +yibt + ..+ oy
+ y3by +...+yp?bh? = a3 —ay,

: (4)
z1(a —al) + ...+ zm(al —al') + yiby + ...+ yPo
1

+ y;b;—}—...—}—ygqbgq =a; —a;.

6.1.3 How to choose a basis of the solution space of the linear system

Every solution (Za,...,Zm,yL,...,yq?) to the system (4) such that, for any
1<t<q, (®2,---,Tm,Yt,---,y;") are near-standard coordinates corresponds
to a solution of P! represented as

a}+a:2-af—i—...—}—mm-a;n—i—y%-b}—l—...y{‘l-b{“.

We therefore have to find a set of solutions to (4) corresponding vectors of
which form a standard basis the solution space. The set of those tuples whose
near-standard coordinates satisfy the system (2) will be denoted by Sy..

Notice that due to Lemma 4, the set of vectors from A! corresponding to
the solution space of (1) is a subalgebra of Al.

INPUT A system L of the form (1), and a set B C [], oyt AL such that Bt is
a basis of S"*! and a{ , €0l foralla€ B.
51

OUTPUT A standard basis B of the set Sy, of elements whose (standard) coor-
dinates satisfy the system L.
ALGORITHM

Step 1 Construct the linear system L' of the form (4).
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Step 2 For each I < j < k,and 1 <t < s where B{,...,Bg are the parts of
the basis corresponding to jth step, add to L' the equation

where K7 (z) = (21,...,2m). The obtained system is denoted by L".

Step 3 Find a basis D of the set of solutions of the system L. This set is a
coset in a direct power of (Q. If the system is inconsistent, then B = &
and Stop.

Step 4 Set B = {a} where
a=Kt.B¥+ 4+ K'.B,
and K is an arbitrary tuple from D.
Step 5 For each l < j < k do

Step 5.1 Denote by II the coset spanned on the set
{(K*,..., K" . K € D}

Step 5.2 Let B/ = B U...UBJ,, and C},...,C" be the i/ ;-blocks. For each
1<p' <s' do
Step 5.2.1 Let Beo: be a basis of S¢r, that is the subspace of SY9 which
consists of elements a with a[v’] € C},.
/* This basis is already known */
Let also D)y be a set of tuples {(K*(a),...,K/*!(a)) :a € Ber, }
where K (a) is the coordinates of a in B.

Step 5.2.2 Find a basis D, of the intersection of II and the coset spanned
on Dpl .
/* That is of the set of those partial solutions of L" whose cor-
responding vectors lie in SC;,. */

Step 5.2.3 If D,y = &, then set ggl -

Step 5.2.4 Otherwise choose (K}, ..., Kg'H) € D, and find the set ﬁp/
of those tuples K = (K*,..., K7*1 K7) from the space of partial
solutions of L" which are of the form

KF =Kk .. Kt = KT KI=(0,...,0) for all r # p/,

and Kg, = (21,...,2p) is such that z; = 0if n = 1, and there is
1 <r < n such that

1, ifi=r,

;=< —1, ifi=r1',
0, otherwise,
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in the case when n > 1 where 7’ is such that
(K*. B* + ...+ K/t . BIt1)[I] = b7 [v7]
J o_ 1
and B), = {b',...,b"}.

Step 5.2.5 Set B/, = {K*-B¥ +...+ K'-B': K € Dy}.
/* Here K is near-standard. */

Step 5.3 Set B/ = BJ U...UBJ,.

Step 6 Choose a € B¥ U...U B'*!, and find a basis D' of the subspace
of the solution space of L" that consists of elements b with K*(b) =
K*(a),...,K"*1(b) = K!*!(a). Set E={K*-B*+ ...+ K!'-B:“ K ¢
D'}. The set {a € Al :a = a[v'], a € E} is a subset M of Cp. Set
Bl _ (b bl -

Bl = {b:bl] € M, b, =B, )
Step 7 Set B=B*U...UB.

To conclude this subsection we have to show that the set B is really a
standard basis of Sy..

Lemma 5 The set B obtained by the algorithm from this subsection is a stan-
dard basis of the solution space, S, of the system L.

Proof. By the definition, for each element a € Sy, the standard coordinates
K (a) give rise to a solution of L. Since standard coordinates satisfy the equa-
tions added in Step 2, solution spaces of L' and L” determines the same set
of vectors. Moreover, as is shown in Section 6.1.2, the systems L and L' are
equivalent. Therefore denoting the set of vectors corresponding to solutions of
L" by S, we have S = S N B

Then we show that, for each k > j > I, the set (B*¥U...UB/Y is a standard
basis of Sg17. This trivially holds for 5 = k, and we have the induction base.
So, suppose that the required property holds for j + 1.

For each p;-block Cy, the set B}, may be chosen as arbitrary set such that

éZ,Tj is of the form {a; : b € Cpy, b is the v/th component of a vector from
S} where

(] = b, if w=17,
Al = a[w], otherwise,

and a[w], w € V7 — {v7} are certain fixed elements. However, it is easily seen
from Steps 5.2.3, 5.2.4 that B, in fact, is of the required form. O

6.2 Solving equations over an Abelian group

In Section 5.2 we reduce the problem of solving of a system (2) to the problem
of finding a basis of the solution space of a linear system over a finite Abelian
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group Q. This system can be easily transformed to a problem from number
theory.
Let

ria;; +...+xpa1, = b1

T1ami + ...+ Tpnamn = bm

be the given system. The group (Q can be represented as a direct sum of
cyclic groups Q = Y°7_| G;. Fix generating elements g1,...,g, of Gy,...,G,
respectively. We may assume that summands are subgroups of (Q and therefore
treat gi,...,g, as elements of Q. Every element g of (Q can be represented as
alg+...+a"g, where ol,..., a" are residues modulo s = lem{|Gy |,..., |G, |}.
We will write this fact as follows: g = (a!,...,a").

Set a;; = (azlj,...,afj), b; = (B},....,080),i € {l,...,m}, j € {1,...,n}.
Then the system can be rewritten in the form

1 1 _ a1
ri0q; + ...+ 0y, = B
r 'I" — 'I"
riaf; +...+zpaf, = Bi
1 1 1
1051 + ...+ Tpay, = [
T r —_— r
x4+ . tapal,, = B

The solution of this system is a coset of the group (Z,)". A generating set
and shifting element for this coset can be found in time O(n3(mr)3logs), r =
O(log s), by known algorithm of number theory (see, e.g. [22]). The required
generating set of the original linear system is now easily recoverable.

6.3 Finding a basis of a subalgebra

6.3.1 The algorithm

INPUT. A basis B of the solution space S! of P!, subalgebra B of u € JA?,
1-1<i<k,JCViL

OuTpuT. A standard basis B of S = {a € S4%: a € B}.

ALGORITHM.

Step 1 For each c € B do

/* Find a basis of that subset of Sy which consists of elements a with
a‘J =c. ¥/

Step 1.1 Set J™ = A™ for i <m < k.
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Step 1.2 Set ¢, = ™ for i <m < k.

Step 1.3 Set S = {a € S a‘J =c}. Set 7" ={a € Sle:a‘Jm = ¢} if
m >, and T" =S¢ if m =4.

Step 1.4 Set D¥ = Bk,

Step 1.5 For each i <m < k do

Step 1.5.1

Step 1.5.2

Step 1.5.3

Step 1.5.4

Suppose we have found a basis D, of 7,"*!. For each a € D,
choose a tuple a’ € S4™ such that at™t!=a.

/* The tuple a’ can be found as follows. Let K¥(a),..., K™*!(a)
be the coordinates of a in the basis Bf™*!. Then set

a' = K*(a) - B#™ 4+ ...+ K™+1(a) . BmtYm | */

The set of all chosen tuples is denoted by De.
CASE 1. mth step is of type 3.

SUBCASE 1A. v™ & J™.
Let C1,...,Cs be the plt.-blocks. For each 1 < p < s find
a? € 7" such that a?[v™] € C).
/* See Section 6.4. Actually, for some C), such a vector may do
not exist. */
Then set _

D.=D.,UFE U...UE,

where if a, with the required properties exists, then E, =
{ap:b € Cp} with

apfw] = b, if w=0™;
bl = aP[w], otherwise;

otherwise, set £, = &.

/* By Lemma 1, D, C S4™. */
SUBCASE 1B. v™ € J™.

Set D, = {a’' : a € D.} where

a[w] = cp[v™], i w=v™;
] aw], otherwise.

/* By Lemma 1 each a’ belongs to 7. */

Step 1.5.5 CASE 2. mth step is of type 2.

Step 1.5.6 SUBCASE 2A. v™ ¢ J™. N
Let C4,...,Cs be those uyr.-blocks for which C,, ODC‘{ my # . For

each 1 <p < s, choose a, € D, such that a,[v™] € Cp
/* See Section 6.4. */
and set

D™ =Dry...uD"
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with

p P
where '
1y _ 1 7
ap - d(apiapaap)a

and {a, .. .,aﬁ”} = By} is the part of the basis Bg, of Sc,, and
alfv™] = apfum].
/* Since m < i, a basis of S¢, is already found, see Step 8.3 of the
algorithm from Section 5.3. */
/* Since, for any a € D, a‘Jm = ap‘Jm = Cpm, we have D" C 7™ for
all p. */
Step 1.5.7 SUBCASE 2B. v™ € J™.
Let C, be that pw-block which contains ¢, [v].

Step 1.5.7.1 Find a € 8™ such that a{Jm = cm‘Jm.

* See Section 6.4. ™ jis a homomorphic image of
/ vEdm D g
[T,es A%, and therefore, a ‘small’ algebra for which all the re-
quired information is known. */

Step 1.5.7.2 Set E, to be {a'',...,a'™} where
J_ 1 .4
a"” =d(a,a,,a)).
and {a},...,a}l} = BE .
/* Since m < i, a basis of S¢, is already found, see Step 8.3 of

the algorithm from Section 5.3. */
Step 1.5.7.3 Solve the equation

K*(@)-D¥[u™]+. . + K™ (2)-D"H 0™ +y1a” [v™]+. . .+yna’ " [v™] = em[v™]
()
where D, = D¥ U...U DL, Let D, be a standard basis of its
solution space.
/* See Section 6.3.2. */

Step 2 Transform the sets D, ¢ € B, to a standard basis B.
/* See Section 6.6 */

6.3.2 Solving an equation of the form (5)

Denote ¢, [v™] by ¢, a’*[v™] by a, for a'* € E,. As well as in Section 6.1.2, (5)
can be reduced to a linear equation

Tabs + ...+ b, +y1a] +... typa, =c—b

where {b;} = D¥[v™], {ba,...,b,} = DF"1U...U D™, Then the equation
can be solved analogously the linear system from Section 6.1.3. Notice also that
when finding a standard basis of the solution space of the linear system the
algorithm from Section 6.1.3 uses basises of sets of the form S¢. However, it
does not cause a confusion, because C is always a subalgebra of AJ for certain
v € VI where j > i; and therefore a basis of Sc is already found.
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6.3.3 Soundness

Lemma 6 The set B generated by the algorithm in this section for given number
I-1<i<k,asetJCV? and a subalgebra B of [Tucs Al is a standard basis,
Of S]B .

Proof. We actually have to prove that D, is a standard basis of S for each
c € B. For this it is enough to prove that the set D. generated in mth step of
the algorithm is a standard basis of 7). If m = k, this holds trivially, and we
have the induction base.

Suppose that in (m 4+ 1)th step the algorithm has found a standard basis D,
of 7+, There are two cases.

CAsE 1. mth step is of type 3.
If v™ ¢ J™, then D, C T, because for each a € D, and the corresponding
vector a' € D, we have a = at™*+! and 41, = Cmetl uniquely determines

o therefore, m = Cm- Furthermore, DI* C 7™ by Lemma 1; and Lemma 2

implies that D, is a standard basis.

If v™ € J™, then D, C 8™ by Lemma 1, and D. C 7. by the choice of De.
Since for any a,b € 7" we have a = b whenever at”™t1=b"*! the set D, is
a standard basis.

CASE 2. mth step is of type 2.

If v ¢ J7, then D, C 7", and D, is a standard basis by Lemma 2. If
v™ & J™, then the lemma follows from Lemma 5. O

6.4 Finding a representative of a subalgebra

We are given by elements ay,...,a, of [[,cyi AL, JC Vi aeB =]],., AL,
and are going to find an element b from the algebra generated by ay,...,a,
and such that bJ =a.

Notice that it can be checked in linear time, whether a belongs to the sub-
algebra of B generated by a; an‘J. Moreover, in the case when a belongs

[EXEeE
to the subalgebra, a representing term f(a;

yue .,an‘ ) = a can also be found in
J J

linear time. Therefore, the required element may be taken as b = f(ay,...,a,).
If a;,...,a, themselves form a subalgebra then bb can be chosen to be one
of them.

6.5 Decomposing on a basis

INPUT. A basis B of the solution space S, a tuple a € [] AL

veV!
OuTPUT. K(a) if a € &', ‘NO’ otherwise.
ALGORITHM.

Step 1 Let BF = {z}.
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Step 2 For k—1>m >1do

Step 2.1 Set b =#"™ +KkF1(a)- B¥" 1™ + ...+ K™*+1(a) - BmtY™,

Step 2.2 Let Ci,...,Cs be pl%-blocks.
If at™ [v™] & {c[v""]:c € B™"™} then Output ‘NO’ and Stop,
otherwise let a™ [v™] € C),.

Step 2.3 If |B}}| = 1 and &™# b then then Output ‘NO’ and Stop.
Step 2.4 If |B*| > 1 then set K["(a) = (0,...,0) for alli # pand K]*(a) =
(®1,...,%m) where Cp ={a1,...,an},
1, ifa; =™ [v™]
z; =4 —1, ifa; =bt" [v™]
0, otherwise.

If af™ [v™] = b[v™] then K'(a) = (0,...,0).

Soundness of this algorithm follows immediately from definition of a standard
basis.

6.6 Transformation of a basis

The algorithm presented in this subsection is applied in two situations: Step 8.2.8
of the algorithm from Section 5.3, and Step 2 of the algorithm from Section 6.3.
In the first case the basises Fy, ..., E; satisfy the condition {a[v]:a € E} = Al |
E = E; U...UE, while in the second case a basis of S* is known.

INPUT. Standard basises E, ..., E; of some subalgebras of Al.
OvuTPUT. A standard basis B of the subalgebra generated by E; U...U E;.

ALGORITHM.
Step 1 Set B* = EF.
Step 2 For each l < j < k do

Step 2.1 Suppose that B, ..., Bit! are already found.

Step 2.2 Set = U1§p§s Eg, and let C1,...,Cs be uf;j—classes.
Step 2.3 For each 1 < p <sdo

Step 2.3.1 Let E!, denote the set {a € E’:at? [v/] € Cp}, and let E! =
{a1,...,a;}. Each afi*! is (BFuU...uB*+1 pi+l_decomposable;
let aifti= f;(bi49*1,. .., by19*1) where B* U ... U BF! =
{b1,...,b.}.

/* For an algorithm finding the standard basis decomposition
see Section 6.5. */
Forany 1 <i <t setal, = fi(bt?,...,b4%),al = fi(by,...,b,).
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Step 2.3.2 If, for any i € t, a;1¥= al, then set Bg = {b} where b is an
arbitrary tuple from B/*! such that bV [v;] € C,.
/* Such a tuple exists by the definition of a basis. */

Step 2.3.3 Otherwise, suppose that for certain i a;[v/[}?# al[v’]; without
loss of generality we may assume ¢ = 1. '
/* This means that S’ is v/-rectangular modulo p?;. */
Let C Dbe the subalgebra of Af} ;  generated by
fat? ..., ai? [o7])

Step 2.3.4 If, for any v € V!, {a[v]:a € E} = Al then do the following.
Denote a = art¥ [v7], o’ = alt¥ [v7]. By Proposition 2, for any ¢ €
C, there are a term operation fe(z,y1,-..,Ym) and e1,...,en €
A/, such that fc(a,e1,...,em) =a, fo(a',eq,...,em) = c. Since
e1,...,em belong to the set {bf’ [v/]:b € E}, thereareey,..., e, €
E such that e;[v’] = e;.
Set

blll = fc(alaela"'aem);
by = f.(al,er,...,en).

Finally, set

c ; a a c
( a ) :d(alTJ7b13b2) =d (( a; )a( b’ ) 7( b’ ))a
alcl = d(alablllabg)'
Set Bj = {all:c € C)}.
Step 2.3.5 If a standard basis B of S is known then do the following. For

each ¢ € C set ¢, = d(ar, by, b.) where by, b, € Eﬁ, are such that
bit? [v] = aft? [v7], b3 [v7] = c. Then set B} = {c.:c € C}.

ac

Step 3 Set B=B*U...UB.

6.7 Soundness and time complexity

The algorithm described above generates, for given problem instance P € CSP(A),
a certain set B C AV, What we have to prove is that B is a standard basis of
the solution space of P.
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Proposition 3 The set B generated by the algorithm described in Sections 5,6
for a problem instance P € CSP(A) is a standard basis of the solution space,
S, of P.

Proof. We consider the algorithm constructing a basis described in Sec-
tion 5.3. Soundness of its subroutines is verified in Sections 6.1.3, 6.3.3. Clearly,
it is enough to prove that the set B¥U...U B! obtained in Ith step is a standard
basis of S!, the solution space of P!, for any 1 < I < k. Notice first, that the
procedure of planning does not change the solution space of the original prob-
lem, because establishing 3-minimality does not. This means, in particular, that
if P has a solution, then P* has a solution. In the latter case B¥ is obviously
a standard basis of S¥. Otherwise, if P* is inconsistent, the algorithm output
‘NO’ as required.

If P is inconsistent, then so is P'. So, suppose that the set B*U...UB' "
obtained in [ + 1th step is a standard basis of S'*', and prove that B¥U...UB!
obtained in Ith step is a standard basis of St.

CASE 1. Ith step is of type 3.

By Lemma 1, for any a from the set B¥ U...U B!, and any 1 < t < ¢, we have
a, € o!. This means B¥U...UB!' C S

Conversely, if a € S! then at!t'e S!*!. Hence at't! can be (B¥U...U
B4+ _decomposed. Let K'(at!t!) be its coordinates. Denoting b =
K'(at!*1) . (B¥ U ... U B"*1) we have blw] = a[w] whenever w # o', and
(a,b) € pt,, a = av'],b =Db[v!]. Let C, be the u! ,-block containing a,b. Then
a =d(b,ay,a,) for a;,a, € B},

CASE 2. [th step is of type 2.

In this case we just have to verify, that for each 1 < p <'s, the set E, is a stan-
dard basis of S;,. However, this follows straightforwardly from Lemmas 4, 5, 6. O

Then we estimate the time complexity of the algorithm. Let n = |V|, m be
the total number of tuples in the constraint relations, r the maximal arity of the
relations, and P = |A| (note that P is a constant). So the size of the problem
instance is nlogn + mrlog P.

Notice first, that in spite of the number of variables in the problem instance
may increase during the procedure of planning, this number does not exceed Cn
where C is a certain constant depending only on the original algebra. Therefore
the number of steps in one procedure of planning k < Cn|A| = CnP. Fur-
thermore each invoking of the procedure of planning but first one is caused by
removing at least one tuple from one of the constraint relations. Therefore, this
procedure and Steps 7,8 of the algorithm from Section 5.3 are applied at most
m + 1 times. Since each step of the procedure of planning requires cubic time
(actually, establishing of 3-minimality contributes the most complexity), what
is much less than the complexity of Steps 7,8, we may neglect the complexity
of the procedure of planning.

On each step the algorithm from Section 5.3 does the following:

1) solve a system of equation (if a step is of type 3, it is relatively easy and can
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be neglected);
2) check all tuples from the constraint relation if they are parts of a solution;
3) find basises for all subalgebras of certain kind.

1) The number of elements in a part of a standard basis corresponding to
Ith step does not exceed P, hence the total number of elements in a basis is less
than P-CnP < CnP?. Therefore the linear system obtained in Step 8, and then
transformed in Section 6.1.2 has at most CnP? variables, ¢gCnlog P equations
(here Cnlogp is the maximal number of cyclic summands of QQ), and can be
solved in time O(gn®). In the algorithm from Section 6.1.3 this system has to
be solved with various restrictions at most once for each part of a standard
basis, that is CnP times. Thus, the resulting complexity of solving the system
is O(gn*).

3) For each variable there is a constant number, D, of subalgebras whose
basis is to be found. The number D depends only on the original algebra
A. Therefore in each step the algorithm constructs basises for at most DCn
subalgebras. To obtain a basis of a subalgebra the algorithm from Section 6.3
runs over at most P its elements and at most Cn steps of the procedure of
planning. For each step the algorithm solves a linear equation, that contributes,
similarly (1), the time O(gn*). So, the total complexity of finding basises of
subalgebras is O(gn®).

2) The algorithm checks m tuples of length at most r each. For this it applies
mr times the procedure of finding a basis of a one-element subalgebra. Thus,
the complexity of this procedure is O(gn®mr).

Finally, the estimation for the total time is O(qgn"m?r).

References

[1] J.F. Allen. Natural Language Understanding. Benjamin Cummihgs, 1994.

[2] A.A. Bulatov. Three-element mal’tsev algebras. Submitted to Acta Sci.
Math.

[3] A.A. Bulatov and P. Jeavons. Algebraic structures in combinatorial prob-
lems. Technical Report MATH-AL-4-2001, Technische universitdt Dresden,
Dresden, Germany, 2001.

[4] A.A. Bulatov and P.G. Jeavons. Algebraic approach to multi-sorted con-
straints. Technical Report PRG-RR-01-18, Computing Laboratory, Uni-
versity of Oxford, Oxford, UK, 2001. Submitted to Theoretical Computer
Science.

[5] A.A. Bulatov, A.A. Krokhin, and P.G. Jeavons. Classifying complexity of
constraints using finite algebras. Submitted to STAM Journal of Comput-
ing.

[6] A.A. Bulatov, A.A. Krokhin, and P.G. Jeavons. Constraint satisfaction
problems and finite algebras. In Proceedings of 27th International Col-

34



loguium on Automata, Languages and Programming—ICALP’00, volume
1853 of Lecture Notes in Computer Science, pages 272-282. Springer-
Verlag, 2000.

[7] P.M. Cohn. Universal Algebra. Harper & Row, 1965.

[8] R. Dechter and A. Dechter. Structure-driven algorithms for truth mainte-
nance. Artificial Intelligence, 82(1-2):1-20, 1996.

[9] R. Dechter and J. Pearl. Network-based heuristics for constraint satisfac-
tion problems. Artificial Intelligence, 34(1):1-38, 1988.

[10] H.B. Enderton. A mathematical introduction to logic. Harcourt/Academic
Press, 2001.

[11] T. Feder. Constraint satisfaction on finite groups with near subgroups.
Submitted to STAM Journal of Computing.

[12] T. Feder and M.Y. Vardi. The computational structure of monotone
monadic SNP and constraint satisfaction: A study through datalog and
group theory. SIAM Journal of Computing, 28:57-104, 1998.

[13] R. Freese and R. McKenzie. Commutator theory for congruence modular
varieties, volume 125 of London Math. Soc. Lecture Notes. London, 1987.

[14] M. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, CA., 1979.

[15] G. Gottlob, L. Leone, and F. Scarcello. Hypertree decompositions and
tractable queries. In Proceedings of PODS’98, 1999.

[16] G. Gottlob, L. Leone, and F. Scarcello. A comparison of structural CSP
decomposition methods. Artificial Intelligence, 124(2):243-282, 2000.

[17] M. Grohe, T. Schwentick, and L. Segoufin. When is the evaluation of
conjunctive queries tractable? In Proceedings of the 83rd Annual ACM
Simposium on Theory of Computing, pages 657-666, Hersonissos, Crete,
Greece, July 2001. ACM Press.

[18] M. Gyssens, P.G. Jeavons, and D.A. Cohen. Decomposing constraint
satisfaction problems using database techniques. Artificial Intelligence,
66(1):57-89, 1994.

[19] A. G. Hamilton. Logic for mathematicians. Cambridge University Press,
1988.

[20] C. Herrman. Affine algebras in congruence-modular varieties. Acta Sci.
Math. (Szeged), 1971.

[21] D. Hobby and R.N. McKenzie. The Structure of Finite Algebras, volume 76
of Contemporary Mathematics. American Mathematical Society, Provi-
dence, R.I., 1988.

35



[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

T.H. Jackson. Number Theory. Routledge and Kegan Paul, 1975.

P.G. Jeavons. On the algebraic structure of combinatorial problems. The-
oretical Computer Science, 200:185-204, 1998.

P.G. Jeavons, D.A. Cohen, and M.C. Cooper. Constraints, consistency and
closure. Artificial Intelligence, 101(1-2):251-265, 1998.

P.G. Jeavons, D.A. Cohen, and M. Gyssens. A unifying framework for
tractable constraints. In Proceedings 1st International Conference on Con-
straint Programming—CP’95 (Cassis, France, September 1995), volume
976 of Lecture Notes in Computer Science, pages 276—291. Springer-Verlag,
1995.

P.G. Jeavons, D.A. Cohen, and M. Gyssens. Closure properties of con-
straints. Journal of the ACM, 44:527-548, 1997.

P.G. Jeavons, D.A. Cohen, and J.K. Pearson. Constraints and universal
algebra. Annals of Mathematics and Artificial Intelligence, 24:51-67, 1998.

Ph.G. Kolaitis and M.Y. Vardi. Conjunctive-query containment and con-
straint satisfaction. J. Comput. Syst. Sci., 2000.

P.B. Ladkin and R.D. Maddux. On binary constraint problems. Journal
of the ACM, 41:435-469, 1994.

A K. Mackworth. Consistency in networks of relations. Artificial Intelli-
gence, 8:99-118, 1977.

A K. Mackworth. Constraint satisfaction. In S.C. Shapiro, editor, Encyclo-
pedia of Artificial Intelligence, volume 1, pages 285—-293. Wiley Interscience,
1992.

A K. Mackworth and E.C. Freuder. The complexity of constraint satisfac-
tion revisited. Artificial Intelligence, 59:57-62, 1993.

R.N. McKenzie, G.F. McNulty, and W.F. Taylor. Algebras, Lattices and
Varieties, volume I. Wadsworth and Brooks, California, 1987.

U. Montanari. Networks of constraints: Fundamental properties and ap-
plications to picture processing. Information Sciences, 7:95-132, 1974.

B.A. Nadel. Constraint satisfaction in Prolog: Complexity and theory-
based heuristics. Information Sciences, 83(3-4):113-131, 1995.

B.A. Nadel and J. Lin. Automobile transmission design as a constraint sat-
isfaction problem: Modeling the kinematik level. Artificial Intelligence for
Engineering Design, Anaysis and Manufacturing (Al EDAM), 5(3):137-
171, 1991.

36



[37] T.J. Schaefer. The complexity of satisfiability problems. In Proceedings
10th ACM Symposium on Theory of Computing (STOC’78), pages 216—
226, 1978.

[38] E. Schwalb and L. Vila. Temporal constraints: a survey. Constraints,
3(2-3):129-149, 1998.

[39] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, London,
1993.

[40] M.Y. Vardi. Constraint satisfaction and database theory: a tutorial. In
Proceedings of 19th ACM Symposium on Priciples of Database Systems
(PODS’00), 2000.

37

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’




