Electronic Colloquium on Computational Complexity, Report No. 36 (2002)

PP-lowness and a simple definition of AWPP

Stephen A. Fenner*
University of South Carolina

May 30, 2002

Abstract

We show that the counting classes AWPP and APP [Li93] are more robust than
previously thought. Our results identify a sufficient condition for a language to be
low for PP, and we show that this condition is at least as weak as other previously
studied criteria. Our results imply that AWPP C APP, and thus APP contains all
other established subclasses of PP-low. We also show that AWPP and APP are %)
definable classes. Our results are reminiscent of amplifying certainty in probabilistic
computation.

Keywords: counting complexity, counting classes, PP, AWPP, PP-low

1 Introduction
Qur main result is

Theorem 1.1 A language L is low for PP if there are a polynomial p and a function
g € GapP [FFK94] such that

zel = 2/3<g(x)/2? <1,
rdL = 0<g(x)/2? <1/3

for all x € ¥*, where p = p(|z|).

The %7% separation can be replaced with any constant positive separation, or even m.
Also, 2P can be replaced with any GapP function which depends only on the length of
x. Previously, the least known separation on g(z)/2P sufficient for PP-lowness is 27" to
1—27", where r is an arbitrary polynomial chosen before g and p (see Definition 1.2, below).

*Partially supported by South Carolina CHE SCRIG Grant R-01-0256 and by ARO DAAD 190210048.
Computer Science and Engineering Department, Columbia, SC 29208 USA. Email: fenner@cse.sc.edu.

ISSN 1433-8092

To our knowledge, ours is the weakest known sufficient criterion for PP-lowness involving
constraints on a GapP function. Our results build upon those of Li [Li93] and give simpler
definitions of the counting classes AWPP and APP [Li93, FFKL93|, whence we show that
AWPP C APP.

There are some interesting NP problems, Graph Isomorphism particularly, that are
known to be low for PP [KST92], but it is unknown whether an NP-complete problem
is PP-low. What is it about a language that makes it PP-low? A good approach to showing
PP-lowness of a language L is to put L into a complexity class which is already known to
contain only PP-low sets. To make it easy to do this, we want the largest such class(es)
that we can find.

BPP consists entirely of PP-low sets, but so do various counting classes like SPP, or
better yet WPP [FFK94|. Kobler et al. showed the PP-lowness of Graph Isomorphism by
putting it into WPP.

The complexity classes AWPP (Definition 1.2 below) and APP were defined by Li
[Li93, FFKL93], who was in search of big classes of PP-low sets. Li showed that AWPP and
APP are subclasses of PP-low, and also contain BPP and all the other known subclasses of
PP-low, including those mentioned above. (AWPP is really an analogue of the class BPP
defined using GapP functions instead of acceptance probabilities.) Later it was shown that
there is an oracle G such that P = AWPP® but the polynomial hierarchy is infinite relative
to G [FFKL93|. More recently, Fortnow and Rogers [FR99] showed that the class BQP of
languages efficiently decidable by quantum computers with bounded error probability [BV97]
is contained in AWPP. This means that all efficiently quantum computable languages are
PP-low, and furthermore P¢ = BQPY for the oracle G mentioned above.

Definition 1.2 (Li) A language L is in AWPP if and only if, for every polynomial r there
is a polynomial p and a GapP function g such that, for all x € ¥*,

re€Ll = 1-27"<g(x)/2" <1,
r¢L = 0<g(z)/2" <277,

where p = p(|z|) and r = r(|z|).

The complexity of Definition 1.2 is irksome. For example, it is not even clear from the
definition that AWPP is a ¥ definable class, whereas all the usual complexity classes are ¥9.
This definition appeared necessary, however, to obtain PP-lowness for AWPDP languages.
(Li gave other characterizations of AWPP, but they all involve universal quantification over
the “error” polynomial r.) One would prefer to replace 27" and 1 — 27" above with constant
fractions such as 3 and %, giving a simpler X definition of AWPP more closely analogous
with BPP, but it was not known whether this could be done.

We show that one can indeed make such a replacement.

Theorem 1.3 A language L is in AWPP if and only if there exist a polynomial p, and
GapP function g such that, for all x € X%,

zel = 2/3<g(x)/2? <1,
¢ L = 0<g(x)/2" <1/3,

where p = p(|z]).

Theorem 1.1 follows immediately from this and the PP-lowness results of Li [Li93]. We
prove similar results for APP and as a corollary, we get that AWPP C APP. Thus APP
contains all other established complexity classes of PP-low sets.

To show Theorem 1.3, we iterate the polynomial h(z) = 32> — 223 to “squeeze” the GapP
function g toward 0 and toward 2P, thus increasing the separation between acceptance and
rejection. Iterating the polynomial h or a similar polynomial 423 + 3z* is a technique that
has been used several times before to squeeze error in the context of modular arithmetic
[Tod91, Ya090, For97]. Here we use it in the nonmodular setting.

2 Preliminaries

We let ¥ = {0,1}, and for x € X* we write |z| for the length of z. We may identify
>* with either N or with Z via standard binary encodings. We use standard complexity
theoretic notation, and we assume knowledge of complexity classes, counting classes, and
GapP [FFK94]. In particular, we let FP be the class of all polynomial-time computable
functions, and we fix a standard pairing function—a bijection (-,-):¥* x ¥* — X* that is
polynomial time computable and polynomial time invertible—which allows us to identify »*
with X* x ¥*. We also fix some method of coding a finite sequence of strings ¢y,...,¢, € X*
as a single string [c1,...,¢,] € ¥* so that |[c1,...,¢,]| € O(n(1+ max{|c;|})). For any
function f, define

f("):fo---of,
—

n

for any integer n > 0 (f(© is the identity function).
All logarithms are to base 2. All polynomials that we mention are in Z[z].

2.1 The Polynomial 3z? — 223

We briefly look at the properties of the polynomial h(z) = 3x? — 223. The function h
maps the interval [0,1] onto [0,1] in a monotone increasing way, and the graph of A on
[0,1] is an S-shaped curve that is rotationally symmetric about the point (%, %), that is,
h(1 — z) =1 — h(z). The derivative of h vanishes at 0 and at 1. For any 0 < € < 3, define
the error set E. = [0,¢] U[1 —¢,1]. Obviously, 0 < ¢; < e < % implies E, C E,,. It is also

clear by symmetry that h(E.) = En C Ee. Let ¢ = h® (€) for 4 > 0. Since €;11 < 3¢Z, we
get by induction that 0 < ¢; < 3(3€)? for all i > 0, and thus if € < Z,

4 (1 + log (l — 6)) One way to see this is

If £ < €< 3, then ¢ < ¢ for any integer k >
% (l — :c) We summarize these results in

from the fact that if ¢ <z < £, then { — h(z) >
the following lemma:

Lemma 2.1 For any positive § < 1, any n € N, and any integer k > n + 4log %,

0 < h® <%) < 272"

The coefficients of the polynomial »(®) are easy to compute in a way that we make precise
in Section 2.2. This will imply that A (f(z)) is in GapP whenever f(z) is, where 4 is chosen
appropriately depending on x.

2.2 Closure of GapP Under Iterated Polynomial Composition
Definition 2.2 Let p be a polynomial. The representation rep(p) of p is a string in X*

defined as follows:
Tepp) = (19, co,...,ca] ifp(x) = Z?:o c;x? with cq # 0.
Note that |rep(p)| bounds the degree of p.

The next few lemmas are crucial for our results. They are stated in more generality than
we need here, as they may find use elsewhere.

Definition 2.3 Let py,p1,po, . .. be a sequence of polynomials. We say that {p;},.y is ptime
representable if there is an FP function r such that r(1°) = rep(p;) for all i € N.

Definition 2.4 Let py, p1,po, . .. be a sequence of polynomials. We say that {p;},.y is GapP
representable if there is a polynomial d and a GapP function c such that, for all 7 € N,

d(i)
pi(z) = Z c(1%,19) a7,
J=0

The following lemma, is obvious.

Lemma 2.5 If py,p1,... is ptime representable, then it is GapP representable (indeed, via
a function c € FP).

Lemma 2.6 If py, p1,po, ... is a GapP representable family of polynomials and f is a GapP
function, then the function

9(z) = pa(f(z))
is also in GapP.

Proof: This follows quickly from other known closure properties of GapP [FFK94|. Since
GapP is closed under uniform polynomial size products, the function e(x, 1) = H;;B flz) =
f(x) is also in GapP [FFK94, Corollary 3.8].

Let polynomial d and GapP function ¢ be as in Definition 2.4. Fix x € ¥* of length n.
Then

d(n)
g(@) = pu(f(2) = Y c(1™, V)e(x, 1Y),
j=0
which is a uniform sum of products of GapP functions. Hence, g € GapP. O

Lemma 2.7 Let p be any polynomial and let s € FP be such that s(x) € O (log|z|). Then
the sequence of polynomials {p(s(ln))}neN is ptime representable.

with ag # 0 (the case for p = 0 is also trivial). Clearly, it is easy (polynomial time) to
compute a representation for the composition p o ¢ of p with another polynomial g, given
a representation for g. To compute a representation of p*™) on input 17, we start with a
representation of the polynomial z, then repeatedly compose with p on the left s(1") times.
This can be all be done in time polynomial in n provided the intermediate representations
do not get too large.

Suppose q is a polynomial of degree m. The composition p o ¢ then has degree md, and
the largest absolute value of a coefficient in the composition can be seen to be bounded by
(d+1)a((m+1)b)%, where a and b are the largest absolute values of the coefficients of p and of g
respectively. Recalling that d and a are constants, we get that (d+1)a((m+1)b)¢ € O (m?b?).
It now follows by induction on ¢ > 0 that p(® has degree d’, and all its coefficients have

Proof: Fix p(z) = Zj o a;x? for constant d > 0 (the case for d = 0 is trivial) and a; € Z

absolute value in O <C"2di) for some constant C' depending only on p. This immediately

gives us an upper bound in O (i2d?) on the size of the representation of p. In the algorithm,
i < 5(1") € O (logn), so each representation in the algorithm has size in O ((logn)2d*'es™)
for some constant k. This is clearly polynomial in n, and so the algorithm runs in polynomial
time. 0

We will not iterate h itself but instead a scaled version of &, whence we need the following
lemma:

Lemma 2.8 Let pg,p1,po, ... be a GapP representable family of polynomials with degrees
bounded by a polynomial d. Suppose s is a GapP function outputting positive values. Then
the family of polynomials qq, q1, qo, . . . is GapP representable, where

gi(z) = s{'p(x/s:),
for all i € N, where s; = s(1°) and d; = d(3).
Proof: Let ¢ € GapP such that p;(z) = Z?":O c(1%,17)z7. Then
&
g(x) = Zc(li, 1)s% g9,
=0

Setting ¢/(1%,19) = ¢(1%,19)s% 7 it is clear by the closure properties of GapP that ¢’ € GapP
and ¢’ and d witness that the family of ¢; is GapP representable. O

3 Main Results
3.1 AWPP

Theorem 1.3 immediately follows from the next theorem.

Theorem 3.1 Let L be a language. L € AWRPP if and only if there are polynomials
u,q > 0 and a GapP function f such that, for all x € ¥* with n = |z|,

1+06, _ f(x)
.TEL = 2 SQq(n)Sl’
flz) 1-=146,
sl = 05—

where 6, = 1/u(n).

Proof: We prove the “if” part; the “only if” part is trivial. Let L, u, ¢, and f be as in
Theorem 3.1. We show that L satisfies Definition 1.2 for any polynomial . We may assume
that 7(n) > 0 for all n € N. Let b be a polynomial such that b(n) is an upper bound on
r(n)/d% for all n € N with 6, = 1/u(n). For n € N, define

kn = [logb(n)] > logr(n) + 4 logé = log(r(n)u(n)").

The family htko) pk1) p(k2) s ptime representable by Lemma 2.7, and hence GapP rep-
resentable by Lemma 2.5.
Set ¢, = (1 — 6,)/2. By Lemma 2.1 we have ht=)(¢,) < 277(),

6

Noting that h(*») has degree 3% < 3b(n)?, we let z, be the polynomials

— 93q(n)b(n)? (kn)(Yy)
z(y) =2 h 50)

By Lemma 2.8, 2y, 21, 29, ... is GapP representable.
Now for all n € N and x € X* of length n, we define

p(n) = 3q(n)b(n)*,
9(z) = z(f(z))
It follows from Lemma 2.6 that ¢ € GapP. Finally,
gL = 0< f(2)/21™ <e,
= 0< h(kn)(f(x)/gq(n)) <2
= 0<g(a)/27" <27,
and similarly, z € L = 1 — 27" < g(z)/2P(™ < 1. Therefore L € AWPP. O

Corollary 3.2 AWPP is a Y. definable class.

3.2 APP

Definition 3.3 (Li [Li93]) The class APP consists of all languages L such that for all
polynomials r there exist f,g € GapP such that g(1") > 0 for all n € N, and for all n,x
with n > |z|,

el = 1—2*T<n>§f($’1)g1,
g(1")
177.
D R PF AL PP

Li showed that all APP languages are PP-low [Li93]. APP is similar to AWPP but
handles the error threshold with an extra parameter. We show that both the polynomial r
and this extra parameter can be dispensed with. As a corollary, we get that AWPP C APP.

Theorem 3.4 Let L be a language. The following are equivalent:
1. L € APP.

2. There exist f,g € GapP and a polynomial u > 0 such that for all x € ¥* and n € N
with n > |z|, ¢(1") > 0 and
1496, < f(z,1™) <1,
2 g(1")
f(z,1™) < 1—(5n,
g(1") 2

rel =

x¢L = 0<

where 6, = 1/u(n).

3. There exist f,g € GapP and a polynomial u > 0 such that for all z € ¥*, g(11*) >0
and

where 0y = 1/u(|z]).

Proof: (2) = (1): Let f,g € GapP and u be as in (2). Let » > 0 be a fixed polynomial.
Define b and kg, k1, ko, . . . as in the proof of Theorem 3.1. Let zg, 21, 29, . . . be the family of
polynomials

Zn(y) = g(1") > p*) <ﬁ) :

which is GapP representable by Lemma 2.8 as before. Now for x € ¥* and n € N with
n > |z| let

gam) = g(m*
F@1) = z(f(e1).

Both ¢’ and f’ are in GapP, the latter inclusion following from Lemma 2.6. Then we have,
as in the proof of Theorem 3.1,

¢ L = 0<f(z,1")/9(1") < (1=6,)/2
= 0< A% (f(z,1%)/g(1") < 2770
= 0< f(z,1")/g'(1") <277,
and similarly, x € L = 1 — 277" < f'(z,1")/¢'(1") < 1. Thus L € APP witnessed by f’

and ¢'.
(3) = (2): Let f,g € GapP and u be as in (3). For x € ¥* and n > |z| define

g = JJe01",

Faam) = fa)gd(1m)/g().

Clearly, f', ¢' € GapP, and together with u witness that L satisfies (2).
(1) = (3): Let f and g be as in (1) when r(n) is the constant 2. Define

u = 2,
fl(x) = f(xalm)'
Then f', g, and u witness that L satisfies (3). O

Corollary 3.5 APP is a X3 definable class.
Corollary 3.6 AWPP C APP.

Proof: Compare Theorem 3.1 with item (3) in Theorem 3.4, setting g(1") = 29, a

4 Conclusions and Open Questions

We have seen that both classes AWPP and APP can be defined much more simply and
naturally than they were originally. This added robustness in the definitions makes both
classes much more interesting. Li showed that the denominator 29(#)) in the definition of
AWPP can be replaced with an arbitrary positive FP function of z [Li93]. Combining with
the current results, we see that the only difference between AWPP and APP is that in the
latter, the denominator can be any GapP function of 1. (Li also showed that if we allow
the denominator to be any GapP function of z, then we get the class PP [Li93].)

Since they solve the issue of error amplification in general, our results make it technically
much easier to prove membership in AWPP or APP, and hence lowness for PP. For
example, the proof that BQP C AWPP of Fortnow and Rogers [FR99] can be simplified
by ignoring the error amplification properties of BQP. We are not, however, aware of any
specific concrete problem that is now known to be low for PP as a direct consequence of our
results, and we would be very interested in finding such a problem.

Are AWPP and APP equal? Our results boil this question down to the following: “Can
a GapP function that only depends on |z| be replaced by an FP function in the denominator
in item (3) of Theorem 3.47”. Such a result would certainly add to the robustness of AWPP.

Finally, we know of no concrete problem in AWPP or in APP that is not also known
to be in a previously studied subclass. Discovering such a problem would increase the
importance of these classes significantly.

References

[BV97] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM J. Comp.,
26(5):1411-1473, 1997.

[FFK94] S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. Journal
of Computer and System Sciences, 48(1):116-148, 1994. An earlier version ap-
peared in Proceedings of the 6th Annual IEEE Structure in Complexity Theory
Conference, 1991, pp. 30-42.

[FFKL93] S. Fenner, L. Fortnow, S. Kurtz, and L. Li. An oracle builder’s toolkit. In
Proceedings of the 8th IEEE Structure in Complexity Theory Conference, pages
120-131, 1993.

[For97]

[FROY]

[KST92]

[Li93]

[Tod91]

[Ya090]

L. Fortnow. Counting complexity. In L. A. Hemaspaandra and A. L. Selman,
editors, Complexity Theory Retrospective II. Springer-Verlag, 1997.

L. Fortnow and J. Rogers. Complexity limitations on quantum computation.
Journal of Computer and System Sciences, 59(2):240-252, 1999.

J. Kobler, U. Schoning, and J. Toran. Graph Isomorphism is low for PP. Com-
putational Complexity, 2(4):301-330, 1992.

L. Li On the counting functions. Technical Report TR-93-
12, The University of Chicago, 1993. PhD thesis, available at
http://www.cs.uchicago.edu/research/publications/techreports/TR-93-12.

S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on
Computing, 20(5):865-877, 1991.

A. Yao. On ACC and threshold circuits. In Proceedings of the 31st IEEE Sym-
posium on Foundations of Computer Science, pages 619-631, New York, 1990.
IEEE.

10

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc

ECCC ISSN 1433-8092
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

