Electronic Colloquium on Computational Complexity, Report No. 38 (2002)

Resource Tradeoffs and Derandomization

Rahul Santhanam,
Department of Computer Science,
University of Chicago.
E-mail:rahul@cs.uchicago.edu

ISSN 1433-8092

Abstract

We consider uniform assumptions for derandomization. We pro-
vide intuitive evidence that BPP can be simulated non-trivially in de-
terministic time by showing that (1) P € i.0.i. POLY LOGSPACE =
BPP C SUBEXP (2) P ¢ i.0i.SUBPSPACE = BPP = P.
These results extend and complement earlier work of Sipser, Nisan-
Wigderson and Lu.

We show similar tradeoffs between simulation of nondeterminis-
tic time by nondeterministic space and simulation of randomized algo-
rithms by nondeterministic time. Thse results may be useful in settling

the question BPP L NEXP. We state two conjectures under which
BPP # NEXP - (1) An i.0.i. (infinitely often) analogue of Laute-
mann’s theorem holds (2) Every language in BPP can be reduced to
SAT using nondeterministic truth table reductions where the entire set
of queries can be computed in nondeterministic polynomial time from
the input. Unlike previous approaches, our approach does not seem to
require proving circuit lower bounds for NEXP.

Finally, we give uniform assumptions under which there is a strict
hierarchy for randomized polynomial time and randomized time can be
simulated nontrivially by randomized space.

1 Introduction

Much research in complexity theory over the past decade has focussed on de-
randomization. Techniques are known for eliminating randomness in many
important randomized algorithms, but the question of whether it is possi-
ble to simulate every polynomial-time randomized algorithm non-trivially in
deterministic time, i.e., more efficiently than the standard exponential time
simulation, is still open. One approach to this problem is via the notion
of pseudo-random generators, which are efficient deterministic procedures
expanding short random seeds to strings that “look” random to algorithms
from a given class. Given the existence of a pseudo-random generator, it is
possible to simulate randomized algorithms efficiently by enumerating the
short seeds, running the algorithm on the ouputs of the generator on the
seeds, and taking the majority vote.

Following on work by Yao [Yao82] and Blum and Micali [BM84], Nisan
and Wigderson showed in a landmark paper [NW94] that the existence of
pseudo-random generators is related to the average-case hardness of Boolean
functions computable in exponential time. Given a Boolean function such
that there is no small circuit computing it on most inputs, we can produce an
efficient pseudo-random generator; conversely, a pseudo-random generator

can be used to construct a hard Boolean function. Much work ([BFENW93],
[IW97] has gone towards weakening the average-case hardness requirement
to a worst-case hardness requirement. The culmination of these efforts is
the recent paper by Umans which demonstrates an essentially optimal con-
version of hardness to pseudo-randomness.

In this paper, we are concerned with derandomization under uniform as-
sumptions. Very few lower bounds are known for problems in non-uniform
models, hence it seems unlikely that we will be able to derandomize proba-
bilistic classes by exhibiting a hard function in the near future. More results
are known for uniform classes, so it is worthwhile to find assumptions on
uniform classes under which derandomization can be carried out. Of course,
our techniques will depend heavily on the powerful machinery developed by
Nisan, Wigderson, Impagliazzo et al.

The seminal paper of Sipser [Sip88] first demonstrated a connection be-
tween time-space tradeoffs and derandomization. Sipser showed that under
a hypothesis about the existence of a certain kind of explicit disperser, later
proved by Saks, Srinivasan and Zhou [SSZ98], there is a constant € such that:
DTIME(t) Ci.0.DSPACE(t) for all polynomially bounded ¢, or P = RP.
Essentially, the disperser hypothesis implies efficient error reduction for RP,
and if the time-space tradeoff does not hold, this error reduction can be used
to show that an efficient hitting-set generator exists, which can be used to
derandomize RP. The results of Andreev, Clementi and Rolim [ACR96]
imply that the second clause in Sipser’s theorem can be strengthened to
P = BPP.

Nisan and Wigderson [NW94] demonstrated a relationship between time-
space tradeoffs for exponential time classes and derandomization. Unlike
Sipser’s tradeoffs, their tradeoffs worked even at the low end, i.e., they
were able to show BPP C SUBEXP unless EXP C 1.0.PSPACE. In
a different direction, Impagliazzo and Wigderson [IW98] showed a remark-
able “gap” result for the simulation of BPP by deterministic time - either
BPP = EXP or BPP can be simulated in heuristic subexponential time
infinitely often. Kabanets [Kab00] considered simulations of randomized al-
gorithms that are successful against uniform adversaries. He showed that
for every RP algorithm, there is a simulation in zero-error subexponential
time (ZPSUBEXP) that is successful infinitely often against adversaries in
ZPSUBEXP. Lu [Lu00] generalized some of the results of Kabanets and
Nisan-Wigerson.

Our main contribution in this paper is to prove results analogous to those
of Nisan and Wigderson and Lu for polynomial time classes. These results
provide strong intuitive evidence for derandomization.

We cannot claim that our results are strictly stronger than those of
Nisan-Wigderson and Lu because we use a different concept of a langauge
being contained in a class infinitely often (i.0.). However the notion we use
suffices for proving hierarchy theorems and is therefore of interest if the
purpose is to separate complexity classes. Our results are stronger than
those of Sipser, since we show a much wider range of tradeoffs using the
same concept of i.0. as him.

The structure of the paper is as follows: In Section 2, we define the
notions and notation we use. In Section 3, we prove the main simulation
lemma and show some consequences. In Section 4, we examine the situation
for nondeterministic time. In Section 5, we consider uniform assumptions
under which we can draw conclusions about the fine structure of randomized
classes.

2 Preliminaries

The definitions of deterministic, nondeterministic and probabilistic resource-
bounded classes are standard and can be found in [BDG88] and [BDa90].

We use two different concepts of what it means for a language to be con-
tained in a class infinitely often. If L is a language and C is a deterministic
(resp. nondeterministic) class defined by a set of resource constraints, we
say L € 4.0.i.C if there is a deterministic (resp. nondeterministic) machine
deciding L that on infinitely many inputs satisfies the resource constraints
defining C. If L is a language and C is a class, we say L € i.0.C' if there is
a language L' € C such that {n: LN {0,1}" = L' 1 {0,1}"} is infinite.

We say a complexity class C' is easy if C' C P. We say a complexity class
C is somewhat easy if C' is contained in deterministic quasi-polynomial time.

A pseudo-random generator g is a sequence of functions {g},,n > 1 such
that g, maps {0,1}*(to {0,1}" for some s(n) < n, and for all circuits C
of size less than n,

| Pr{C(p) = 1]~ Pr[C(o = 1] |< L

p o

where p is uniformly distributed over {0,1}" and o is uniformly dis-
tributed over {0,1}*™). The pseudo-random generators we consider will be
computable in linear exponential time. A pseudo-random generator is said
to be computable in space S if the ith bit of the output of the generator can
be computed in space S(s(n) + log()), for each 7,1 < i < n.

We define a concept of mild non-deterministic truth table reduction. A
language L is in N P;;‘Ltt, where A is a complexity class, if there is a non-
deterministic oracle Turing machine M, that given an input z, first computes

in nondeterministic polynomial time, the entire set of queries @Q(z) (which
is therefore of polynomial size) that it is allowed to make during the compu-
tation. Let the string yq(,) represent the answers to these queries. M runs
a non-deterministic computation on input (z,yq(y)) to determine if z € L.

Kabanets [Kab00] defines some notions of what it means for a simulation
to be successful against a uniform adversary. A refuter is a deterministic
Turing machine that, on input 17, outputs a string of length n. Given
languages L and L', and a deterministic class A of refuters, L and L' are
A-indistinguishable if there is no machine M € A such that M(1") € LA L'
for infinitely many n. Given a complexity class C, pseudos — C' is the class
of languages L for which there is a language L in C such that L and L are
A-indistinguishable.

We consider a weaker concept of refutation. A weak refuter is a deter-
ministic Turing machine that, on input 17, outputs a polynomial-size set of
strings, each of which is of length n. Given languages L and L, and a de-
terministic class A of weak refuters, L and L are weakly A-indistinguishable
if there is no machine M € A such that M(1") N (L A L) is nonempty for
infinitely many n. Given a complexity class C, quasig — C is the class of
languages L for which there is a language L' in C such that L and L are
weakly A-indistinguishable.

We can also define weak refuters that work almost everywhere rather
than infinitely often. [io — quasia] — C is the class of languages indistin-
guishable from some language in a class C' by weak refuters of this kind
belonging to a class A. We have only discussed deterministic weak refuters
but we can also define non-deterministic weak refuters as non-deterministic
machines that accept on every input of the form 1™ and output a distin-
guishing set of strings on every accepting computation path.

Clearly, for each A and C, C C quasig — C C pseudos — C. The proofs
of the following propositions are straightforward.

Proposition 1 If C C D, then quasigy — C C quasiy — D.

Proposition 2 quasis — quasigy — C = quasig — C.

3 Main simulation

Like Nisan-Wigderson, we essentially give a technique for translating non-
uniform upper bounds into good simulations of time by space. By us-
ing a method for compressing configurations of Turing machines, we can

get the simulation to work in the polynomial-time domain rather than the
exponential-time domain as in Nisan-Wigderson.

Let M be a DTM operating in time T'. Assume, without loss of general-
ity, that the tape alphabet of M is binary and that M has k tapes. On input
z, let C’Mw (t) be the contents of the ith tape of M at time ¢. Let Cas,(t) be
the concatenation, over 1 < ¢ < k, of C]iv[z(t). The Boolean function far,
is defined as the function whose truth table is the concatenation C Mz, OVer
1<t <T,of Caralt).

Lemma 3 If M is a DTM operating in linear time and S = Q(log(n)) is a
space-constructible function, L(M) € i.0.DSPACE(Slog(S)) or for almost
all inputs z, far, has no circuits of size S.

Proof Assume that M has k tapes and a binary tape alphabet, and that M
operates in time cn on an input of length n, for some constant ¢. Assume
wlog that both ¢ and k are powers of 2. We define a DTM M’ that simulates
M in small space. If the simulation fails a.e., we can obtain a lower bound
on the circuit complexity of fas.

M’ works as follows: it represents the contents of each tape of M by
a circuit accepting the function defined by the tape contents considered as
a truth table. Let the encoding of the contents of the ith tape of M after
simulating ¢ steps of M be E}\,Im(t) Initially, the tapes are blank, and a
small encoding of a circuit accepting none of its inputs can be found easily.
We need to specify how M ' passes from one encoding to another using only
a small amount of space. On separate tapes, M’ records the state and tape
head positions of M. This costs space O(logn). To simulate the ¢+ 1th step
of M, M’ changes its record of state and tape head positions as specified by
the transition table of M. Also, for each tape i of M, it cycles through all
circuits A of size S, until it finds one that corresponds to the new contents
of that tape. To do this, it checks that the circuit encoded by E%, (t)
agrees with the circuit A on every input except the one corresponding to
the position of the ith tape head of M at time t. The two circuits should
disagree or agree on the input corresponding to this tape position depending
on whether the tape symbol at this position is changed or not by M during
its t + 1st time step. Checking agreement or disagreement on an input takes
space O(Slog(5)), as a circuit of size S can be represented in space S log(S)
and simulated in the same amount of space. As for the input head of M,
it moves in the same manner as the input head of M.

If there is a tape i of M and a time t such that M cannot find a

small encoding of C%, _(t), we can show that fus, has no circuits of size S.
Note that far, is a function defined on inputs of size 2log(n) + O(1). If
fm had circuits of size S, we could freeze all the input bits except those
corresponding to C%, () and obtain a circuit of size S encoding C%, (t),
contradicting the assﬁmption that the simulation failed at this stage. 7
Either the simulation succeeds on infinitely many inputs or it fails on
almost every input. If the simulation succeeds infinitely often, we have
L(M) € i.0.i. DSPACE(Slog(S)). If the simulation fails on almost every
input, the function fas, has circuit complexity greater than S. Thus at
least one of these statements must hold. O

Theorem 4 ([BFNW93]) If there is a function f € E such that f does not
have polynomial-size circuits, then BPP C SUBEXP.

Theorem 5 P C i.0.i. POLY LOGSPACE or BPP C SUBEXP.

Proof At least one of the following statements must hold - (1) For each
DTM M operating in linear time, there is a constant d such that the
simulation of Lemma 3 succeeds with § = log(n)? and hence L(M) €
1.0.i.POLY LOGSPACE or (2) There exists a DTM M operating in lin-
ear time such that, for all constants d, the simulation of Lemma 3 fails
with § = O(log(n)?) and hence fp; does not have polynomial-size cir-
cuits. If statement (1) holds, by a simple translation argument, we have
P C i.0.i.POLYLOGSPACE. If statement (2) holds, since the function
g(n) = farin € E and does not have polynomial-size circuits, by Theorem
4, BPP C SUBEXP. O

Theorem 5 states that, if there is no strong simulation of polynomial time
by space, then a low-end simulation of BPP is possible. By varying the pa-
rameter S in Lemma 3 and using different hardness-randomness tradeofs,
we can obtain a range of tradeoffs between the strength of the simulation of
time by space and the strength of the simulation of randomness by time.

Theorem 6 ([IW97]) If there is a function f € E such that f does not have
circuits of size 2¢”, for some € > 0, then BPP = P.

Theorem 7 For each € > 0 and polynomially bounded ¢, DTIME(t) C
1.0.i.DSPACE(t), or BPP = P.

Proof Analogous to the proof of Theorem 5, using Lemma 3 with S =

Theorem 5 and Theorem 7 are derandomizations of BPP under the
assumption that deterministic time cannot be simulated infinitely often in
small space. We would prefer to have derandomizations under the weaker
assumption that there are no small space simulations almost everywhere.
Our techniques do not allow us to achieve this, but we can obtain deran-
domizations under the assumption that there are no small space simulations
that fool uniform adversaries almost everywhere.

Theorem 8 P C quasip— POLY LOGSPACE, or BPP C i.0.SUBEXP.

Proof Consider the simulation of Lemma 3. If for every polynomial-time
machine M accepting an infinite language L, every refuter N in P succeeds
only finitely often, we have P C quasip — POLYLOGSPACE. Other-
wise, there is a polynomial-time machine M and a refuter N in P that
succeeds infinitely often. Now we have a strategy for simulating BPP in
1.0.SUBEXP: for each n, concatenate Cpr, for € N(1") to produce a
string f, and use f, as hardness source for a pseudo-random generator.
Since N succeeds infinitely often, this strategy succeeds infinitely often and
we have BPP C i.0.SUBEXP. O

Analogously, we can prove:

Theorem 9 For each € > 0 and polynomially bounded ¢, DTIME(t) C
quasigp — DSPACE(t®), or BPP C i.0.P.

The simulation in Lemma 3 does not run in polynomial time. If we
allow the simulating machines to be nondeterministic, then we can modify
the simulation to run in polynomial time.

Let NSC be the class of languages accepted by nondeterministic ma-
chines running simultaneously in polynomial time and polylogarithmic space.

Theorem 10 P C 1.0.i.NSC or BPP C SUBEXP.

Proof We modify the simulation of Lemma 3 so that the simulating machine
is nondeterministic and runs in polynomial time. We combine this modified
version of Lemma 3 with Theorem 4 to prove the theorem, analogous to the
proof of Theorem 5.

The only change in the simulation is that, instead of cycling over all
circuits of small size when trying to find an encoding of a new configura-
tion, the simulating nondeterministic machine simply guesses such a circuit.
Then it verifies that the circuit is a correct encoding in the same way as in
Lemma 3, by cycling over all possible inputs to the circuits. Since the input
is only of size log(n), the verification can be done in polynomial time. If
the verification fails, the simulating machine rejects. Clearly, only polyno-
mial time is required for the simulation as a whole, yielding the theorem. [

Actually, we can use our techniques to derandomize the class AM, on the
hypothesis that polynomial time cannot be simulated by polylogarithmic
space. Klivans and van Melkebeek [KvM99] showed that pseudorandom
generators secure against nondeterministic adversaries follow from hardness
conditions on SAT-oracle circuits. We can modify Lemma 3 to generate a
function that does not have small SAT-oracle circuits, if the simulation of
time by space fails. The property of SAT we use here is that it is in linear
space.

Theorem 11 ([KvM99]) If there is a function f € NE N co — NE such
that f has no SAT-oracle circuits of polynomial size, for some €, then
AM C NSUBEXP.

Theorem 12 P C i.0.i. POLYLOGSPACE or AM C NSUBEXP.

Proof We modify the simulation of Lemma 3 and then combine the modified
lemma with Theorem 11 to obtain the theorem.

We encode the configurations of a linear-time deterministic machine with
SAT-oracle circuits, rather than ordinary circuits. Each time a query to SAT
is made, we run the linear-space algorithm for deciding SAT to answer the
query. The size of a query cannot exceed the size of the circuit, hence the
space requirements of the simulation remain the same. If the simulation fails
almost everywhere, we obtain a function in F that does not have polynomial
size SAT-oracle circuits and we can apply Theorem 11. O

We can obtain a conditional low-end simulation (i.e., a complete deran-
domization of AM) by analogous means. We can also obtain conditional
simulations of NP by SPP, or of the polynomial time hierarchy by @&P.
The advantage of these conditional simulations over earlier results is that
the conditions are uniform rather than non-uniform.

Note that our technique also suggests that it might be difficult to show

that the Hopcroft-Paul-Valiant simulation of time by space cannot be sig-
nificantly improved. Any such proof would imply a circuit lower bound for
a function in F, and proving such lower bounds is widely believed to be
hard. Even showing P ¢ 4.0.:.DSPACE(log(n)log(log(n))) would imply
that there is a function in E that does not have linear-size circuits. No such
functions are known at present.

4 BPP vs NEXP

First, we show that to separate BPP from NEXP, it suffices to simulate
BPP in non-deterministic subexponential time for infinitely many input
lengths. The proof is implicit in [IKWO00].

Proposition 13 [IKW00] BPP C i.0.NSUBEXP = BPP # NEXP

Proof Assume, on the contrary, that BPP = NEXP. Then EXP =
NEXP. Let L be a language that is complete for NE under linear-time
reductions (it is easy to see that such a langauge exists). Then, L €
DTIME(2™) for some constant ¢, since NEXP = EXP. Thus NE C
DTIME(2™) and so i.0.NSUBEXP C i.0.NE C i.o.DTIME(2™). This
implies EXP = BPP C i.0o.DTIMFE(2™), which is a contradiction to the
a.e. hierarchy theorem for deterministic time classes [GHS91]. O

Next, we explore a connection between simulation of probabilistic time
by nondeterministic time and tradeoffs between nondeterministic time and
space.

Theorem 14 NP C i.0.i. NPOLY LOGSPACE or BPP C i.0o.NSUBEXP

Proof We shall give a proof analogous to Lemma 3 for nondeterministic
classes. Given an NP machine M such that L(M) is infinite, and a space
bound S = log(n)* for some k, perform the simulation of Lemma 3 on each
computation path of M. If the simulation fails, reject. If the simulation
succeeds on at least one accepting computation path of M on z, we say that
the simulation succeeds on x. Either there is an infinite set A C L(M) such
that the simulation succeeds on all members of A, in which case L(M) €
1.0.i.NPOLY LOGSPACE, or the simulation fails on all but finitely many
inputs in L(M). The key point is that by determining the outcome of a
computation path of M on an input, we will know whether the computation

10

on that computation path is a good candidate for producing the truth table
of a hard function or not.

Either, for each NP machine, the simulation succeeds for some S =
log(n)* or there is a machine M such that the simulation fails for all poly-
logarithmic space bounds. In the second case, we will be able to use the
hypothetical NP machine M for which the simulation fails to produce the
truth table of a function that is hard for infinitely many lengths. More pre-
cisely,we shall define, for each § > 0, a nondeterministic machine Ny that
operates in time 2m° on input 1™, outputs the truth table of a hard func-
tion on md inputs on every accepting computation, and accepts infinitely
many inputs of the form 1”. Combined with the pseudo-random generator
of [BFNW93], Ns can be used to simulate BPP for infinitely many input
lengths in NTIME(2"6), and thus BPP C i.0o. NSUBEXP.

Let the NP machine M for which the simulation fails run in time n* for
some constant k. The machine Ns operates as follows: on input 1™, it first
guesses a string z of length between 2(m~1/% and 2m°/% where € is to be
determined later. Ng simulates M on z and on a separate tape writes down
the concatenation t of configurations of M on z. If M accepts on x, Ny is
guaranteed that ¢ is the truth table of a hard function, so it outputs ¢ and
halts in an accepting state. Otherwise, it halts in a rejecting state.

Clearly, Ns outputs the truth table of a hard function on every accepting
computation. Also, since the simulation fails for all but finitely many mem-
bers of L(M), there are infinitely many m such that Ns accepts on 1™. All
that remains is to choose € so that N halts in time o’ Clearly, choosing
€ < § suffices. O

Using Theorem 4 rather than Theorem 2, we can show -
Theorem 15 NP C i.0..SUBEXP or BPP C i.0.NP.
Corresponding to Theorem 10, we can prove -

Theorem 16 For polynomially bounded 7', NTIM E(T) C i.0.i. NTISP(T?polylog(T), polylog(T))
,or BPP Ci.0o.NSUBEXP

Proof Analogous to proof of Theorem 6.

Theorem 16 is interesting because it demonstrates limitations to showing
time-space tradeoffs for nondeterministic classes. For classes defined by mul-

11

titape TMs, [San01] proved the tradeoff NTIM E(n) € NTISP(n?~¢,log(n)¥),
where € and k are any positive constants. Theorem 16 shows that even a
slight extension of this result will imply the existence of pseudo-random gen-
erators(and hence a superpolynomial circuit size lower bound for a function
in NEXP) and is therefore likely to be quite hard.

With Theorem 14, we are very close to showing that BPP # NEXP.
What it says is that if NP is not somewhat easy i.o.i., i.e., if it cannot be
simulated infinitely often in deterministic quasi-polynomial time,, then BPP
can be simulated infinitely often in NSUBEX P, and thus BPP # NEXP
by Proposition 13. On the other hand, we know from Lautemann’s theo-
rem that if NP is somewhat easy, then BPP is somewhat easy and hence
BPP # NSUBEXP. The only remaining case is if NP is somewhat easy
only infinitely often. We conjecture that Lautemann’s theorem can be ex-

tended to this case and thus BPP # NEXP.

Conjecture 1 If, for all constructible t, NTIME(T) C i.0i.DTIME(f(T)),
then BPTIME(T) C i.04.DTIME(f(f(T)))

This conjecture is likely to be quite hard to prove because only very
sparse subsets of languages in NTTM E(T) might be decidable in DTIME(f(T)).
But we note that a weaker version of the conjecture, where we only ask
to be able to show that BPTIME(T) C i.04.DTIME(f(f(T))) when
NTIME(T) is in DTIME(f(T)) on all “easy” inputs, where an input is
“easy” if it represents the truth-table of a function that has polynomial time
circuits, is sufficient to separate BPP and NEXP.

Our next conjecture concerns the position of BPP in the polynomial
time hierarchy.

Conjecture 2 BPP C NPNP.

We show below that this conjecture implies BPP # NEXP:
Theorem 17 BPP C NPNY = BPP # NEXP.

Theorem 17 is a consequence of Lemmas 18, 19 and 20:
Lemma 18 NP C quasiyp — QP, or BPP Ci.0o.NSUBEXP.

Proof Analogous to the proof of Theorem 9. We again use the simulation
of Lemma 3. Either, for each k, the simulation S; of an NP machine in

12

NSPACE(log(n)F) succeeds almost everywhere against all polynomial time
adversaries, or we can simulate BPP efficiently in nondeterministic time.
If, for every NP machine M accepting an infinite language , there is a k
such that L(M) € quasiyp — NSPACE(log(n)*, then the first clause of
Lemma 3 holds, since NPOLY LOGSPACE C QP. Otherwise, for each
simulation Sy there is a weak refuter Ny that weakly distinguishes L(M)
from the language accepted by the simulating machine. For each § > 0, we
define a nondeterministic Turing machine M (’; that on input 17, operates in
time 2"’ and outputs the truth table of a Boolean function on O(n%) inputs
with no circuits of size n for infinitely many n. From this, it follows that
BPP Ci.0o.NSUBEXP.

M(; operates as follows: Given input 1", it runs N;/p5 on the input to
produce strings 1,2 . .. Ty, Where p(n) is a fixed polynomial and each
z; is of length n. For each z; in order, M " runs M on xz; and stores the
concatenation Cpy 4, of configurations of M on z; corresponding to the cur-
rent computation path. If M rejects, M rejects, otherwise it continues the
simulation with z;1. If M accepts on every z;, M " concatenates C M,z; for
i =1...p(n) to produce a string Cy,, which is a candidate for the truth table
of a hard function.

It is sufficient to show that, for infinitely many n, every string C,, ouput
by M(; is the truth table of a function that does not have circuits of size n.
By assumption, for infinitely many n, there is a string = output by Ng on
1™ such that the simulation fails on every accepting path of M on z. Thus
Cum,z does not have circuits of size n, and hence neither does C,. O

Lemma 19 If BPP C NPNP then NP C quasiyp — QP = BPP C
quasip — QP

Proof Assume BPP C NP,QQ? and NP C quasiyp — QP. We show that,
under the second assumption, N P,%If C quasiyp — NQP. Assume, on the
contrary, that there is a language L in NPNP\ quasiyp — NQP. Without
loss of generality, L = L(MS4T), where M is a non-deterministic polynomial
time oracle machine and all queries made to SAT on an input of length n are
of length p(n), where p is a polynomial (this is true because of the paddability
of SAT). We show that, if L ¢ quasinp—NQP, then SAT ¢ quasinp—QP,
contradicting the assumption that NP C quasiyp — QP. If L & quasiyp —
NQP, for every language L' € NQP, there is a weak refuter N 1+ weakly
distinguishing L' from L. We construct, for each language L’ in QP, a

weak refuter N’L,, weakly distinguishing SAT from L". Let L' = L(M L”).

13

On input 17, N’Lu first checks if g(n) = p~'(n) exists. If not, it outputs an

arbitrary set of strings. Otherwise, it runs N;/ on input 19" and obtains
a polynomial size set of strings x1,zs...Z,(,). For each i,1 < i < r(n), it
guesses the query set @); of M on x; in polynomial time and checks that the
set is correct(this can be done since M is a mild truth-table reduction) . It
concatenates all sets Q(7) into a set .S and outputs S.

We need to show, that for each L”, N 1 weakly distinguishes L" from
SAT. The key observation is that L(M™") is in NQP, since M is a non-
deterministic polynomial-time machine and L" is in QP. Thus, if answers
to all queries in every set Q(¢) agreed with SAT, N,/ would not output any
strings in L A L' on input 1™. This cannot happen for all but finitely many
n since N;: is a weak refuter; thus N~ infinitely often outputs strings in
SAT A L".

Thus we know that BPP C quasiyp — NQP. By translation, since
NP C quasiyp — QP, quasiyp — NQP C quasiyp — QP, which yields our
result. O

Lemma 20 EXP ¢ quasinp — QP
Proof A straightforward diagonalization.

The concept of a mild truth-table reduction is admittedly somewhat
artificial, but Conjecture 2 is interesting because there does not seem to
be a proof that it implies BPP # NEXP using only standard structural
complexity-theoretic techniques such as diagonalization. On the other hand,
it is known [Moc96] how to show using such techniques that the class of lan-
guages truth-table reducible to NP is a strict subset of NEX P(Under the
assumption that BPP is in this class, we can actually obtain the stronger
result that BPP C i.0o.NSUBEXP). It is an interesting question to
find weaker assumptions than Conjecture 2 on the position of BPP in the
polynomial-time hierarchy under which BPP # NEXP. There is an or-
acle relative to which BPP = PNP = NEXP [vM], therefore showing
BPP C PNP implies BPP # NEXP would require non-relativizing tech-
niques, while all our techniques relativize.

For the sake of comparison, we state another conjecture the truth of
which would imply BPP # NEX P. This conjecture involves the Minimum
Circuit Satisfiability Problem (MCSP). The input to this problem is a pair
(t,s) where t is interpreted as the truth table of a function and s as a size
bound. The input is accepted if there is a circuit for the function of size less

14

than or equal to s. MSCP is clearly in N P. Cai and Kabanets [KC00] stud-
ied the problem in detail and showed that it is highly unlikely that MCSP
is in P or that MCSP is NP-complete under “natural” reductions. The
conjecture we make is that MCSP is in co — NQP.

Conjecture 3 MCSP € co— NQP.

The idea that this hypothesis is sufficient for separating BPP and NEXP
is implicit in [IW97] and in [Rud97], where it is stated in a non-uniform
framework.

Proposition 21(folklore) If MCSP € co— NQP, then BPP # NEXP
Corollary 22 NP Cco— NQP or BPP # NEXP.

A very similar proof to one in [KC00] shows that there are oracles relative
to which the result MCSP € co — NP does not hold. But it is unclear
whether an analogous result holds for the given hypothesis.

Three reasons why we think our conjectures worthy of consideration
are: (1) They concern uniform classes, and results for uniform classes are
generally easier to show than results for non-uniform classes (2) They are
positive inasmuch as they require efficient simulations of a problem or of one
class by another as opposed to negative lower bound proofs (3) Their status
with respect to the standard classification of approaches to derandomizing
BPP [IKWO00], discussed in detail below.

There are three distinct approaches to derandomizing probabilistic classes.
One is to construct pseudo-random generators, which is known to be as hard
as proving circuit lower bounds. Another is to construct efficient approx-
imators of circuit acceptance probabilities, which is equivalent to showing
Promise-BPP is easy. In [IKWOO], it is shown that simulating Promise-
BPP in NSUBEXP would imply that there is a function in NEXP that
does not have polynomial size circuits. This, again, is thought to be hard.
The third and most general approach is to show that there exists, for every
probabilistic algorithm, a nontrivial deterministic (or non-deterministic) al-
gorithm simulating it, without necessarily knowing how to construct such
an algorithm.

Note that our approach to derandomizing B PP does not require pseudo-
random generators to exist. We know that either time-bounded classes can
be simulated efficiently by space-bounded classes or pseudo-random genera-
tors exist, but we do not know which of the two is the case. A proof of Con-

15

jecture 1 or Conjecture 2 would imply a successful attack on BPP # NEXP
satisfying the third criterion of [[KWO00], and cannot be used in any obvious
way to show circuit lower bounds. Hence these seem to us to be promising
directions.

Finally, we note that by performing the simulation of Theorem 15 in-
finitely often against uniform non-deterministic adversaries, we obtain:

Theorem 23 NP C [io — quasinyp] — SUBPSPACE or BPP C NP

This is stronger than Theorem 24 in the paper by Kabanets [Kab00]
which introduced the notion of uniform adversaries.

5 The fine structure of randomized classes

An interesting question is to find hardness conditions that imply results
about the fine structure of randomized classes, i.e., about the relationships
between randomized classes with specific resource bounds. In this section,
we give conditions for the existence of a hierarchy for randomized polynomial
time and for the nontrivial simulation of randomized time by deterministic
space.

Unlike in the case of deterministic time and nondeterministic time, no
strong hierarchy theorems are known for probabilistic time classes. Cali,
Nerurkar and Sivakumar [CNS99] showed that if a version of the perma-
nent is not in probabilistic sub-exponential time, then probabilistic quasi-
polynomial time has a tight hierarchy. We consider a uniform assumption
under which probabilistic polynomial time has a tight hierarchy. Our result
is essentially an elaboration of Theorem 7.

Theorem 24 If there is a language L € DTIM E(n)\i.0.i.DSPAC E(n¢) for
some € > 0, then for each polynomially bounded ¢t and § > 0, BPTIME(t) C
BPTIME(t'19).

Proof If the hypothesis holds, we can construct, as in the proof of Theorem
7, the truth table of a hard function in time polynomial in the size of the
truth table. It is implicit in [IW97] that this implies there is a constant ¢
such that BPTIME(t) C DTIME(t¢) for each polynomially bounded t.
Now suppose, for the sake of contradiction, that there exist ¢ and 6 > 0
such that BPTIME(t) = BPTIME(t'*°). By translation, we obtain,
BPTIME(t) = BPTIME(t*®). Thus DTIME(t*¢) C BPTIME(t*¢) =

16

BPTIME(t) C DTIM E(t¢), which is a contradiction to the hierarchy the-
orem for deterministic time [HS66]. O

Note that the corresponding result for randomized space classes is known
unconditionally, as a corollary to the simulation of randomized space by
deterministic space using the recursive matrix powering technique.

Our second result gives a hardness hypothesis under which randomized
time can be simulated nontrivially by randomized space (and, in fact, by
deterministic space). In the seminal paper of Hopcroft, Paul and Valiant
[HPVT77], it is shown that DTIM E(t) C DSPACE(t/ log(t)) for constructible
time bounds ¢. But their techniques do not extend to showing a correspond-
ing result for randomized classes. We are able to show the result under a
hardness assumption. Showing the result unconditionally might be difficult
because it would imply a nontrivial simulation of randomized time by de-
terministic time.

Theorem 25 If there is a language L € DSPACE(S) for some polynomi-
ally bounded S such that L does not have polynomial size circuits, then for
each polynomially bounded T', BPTIME(T) C DSPACE(T/log(T)).

Theorem 25 will follow from Lemmas 26, 27 and 28:

Lemma 26 For any T and € > 0, there is a (log(7'),T°) design of size T
that can be generated in space O(T°).

Proof The proof is the same as in [KvM99], except that a different version
of Chernoft’s Lemma is used in the analysis.

Lemma 27 If there is a language L € DSPACE(S) for some polynomi-
ally bounded S such that L does not have polynomial size circuits, then for

each T, there exists an € > 0 such that there is a pseudo-random generator
G :{0,1}7° — {0,1}"* computable in space O(T/log(T)).

Proof Essentially, we use the Nisan-Wigderson generator [NW94] - Lemma
26 guarantees the space efficiency of the generator. The Nisan-Wigderson
generator needs a source that is hard on average rather than worst case hard,
so we first convert the Boolean function f corresponding to L to a function
g that cannot be approximated by polynomial-size circuits. The Sudan-
Trevisan-Vadhan [STVO01] reduction from average-case hardness to worst-
case hardness is space-efficient, thus by applying this reduction, we obtain

17

from f a function g that can be computed in linear space. By Lemma 26,
a Nisan-Wigderson design can be constructed in space O(T'/log(T)), hence
only space O(T¢ 4+ T'/1log(T)) = O(T/log(T)) is required to compute any
bit of the output of the Nisan-Wigderson generator corresponding to this
design. U

Lemma 28 If there is a pseudo-random generator G : {0,1}7° — {0,1}%”
computable in space O(T/log(T)), then BPTIME(T) C DSPACE(T/log(T))

Proof The idea is simple: we use the Hopcroft-Paul-Valiant simulation
of time by space. Doing the simulation with pseudo-random strings rather
than random strings allows us to recompute information as and when needed
efficiently, without having to use more storage space than that required for
the random seed.

More precisely, given an input = and a randomized Turing machine M
operating in time T, we construct a deterministic Turing machine M’ that
simulates M. M enumerates all strings y of length T, and performs the
Hopcroft-Paul-Valiant simulation for each y with G(y) substituting for the
random string. It then outputs the majority vote of the answers. During a
simulation with a string G(y), if any information needs to be recomputed,
M’ can do this efficiently, since it can obtain any bit of G(y) from y using
only space O(T'/log(T)). Clearly, after the computation for a particular y
has been completed, space can be re-used for the next y, hence the entire
computation takes only O(T'/log(T')) space. Since G is a pseudo-random
generator with respect to circuits of size 72, and since the computation of
M on z can be simulated by a circuit of that size, the answer output by M’
is correct. 0

Corollary 29 If SAT does not have polynomial-size circuits, then for each
polynomial ¢, BPTIME(t) C DSPACE(t/log(t)).

Corollary 30 Unless the polynomial-time hierarchy collapses to the second
level, for each polynomially bounded ¢, BPTIME(t) C DSPACE(t/log(t)).
References

[ACR96] Alexander E. Andreev, Andrea E. F. Clementi, and José D. P.
Rolim. Hitting sets derandomize BPP. In Friedhelm Meyer
auf der Heide and Burkhard Monien, editors, Automata, Lan-

18

[BDa90]

[BDGSS]

[BENWO3]

[BM84]

[CNS99]

[GHS91]

[HPV77]

[HS66]

[TKWOO]

guages and Programming, 23rd International Colloquium, vol-
ume 1099 of Lecture Notes in Computer Science, pages 357-368,
Paderborn, Germany, 8-12 July 1996. Springer-Verlag.

José Luis Balcdzar, Josep Diaz, and Joaquim Gab arré. Struc-
tural Complexity 2. Springer-Verlag, New York, NY, 1990.

José Luis Balcizar, Josep Dfaz, and Joaquim Gabarrd. Struc-
tural Complexity I. Springer-Verlag, New York, NY, 1988.

Laszlé Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson.
BPP has subexponential time simulations unless EXPTIME has
publishable proofs. Computational Complezity, 3(4):307-318,
1993.

M. Blum and S. Micali. How to generate cryptographically
strong sequence of pseudo-random bits. SIAM Journal on Com-
puting, 13:850-864, 1984. This paper introduces the notion of
cryptographically secure pseudo-random number generator.

Jin-Yi Cai, Ajay Nerurkar, and D. Sivakumar. Hardness and
hierarchy theorems for probabilistic quasi-polynomial time. In
Proceedings of the Thirty-First Annual ACM Symposium on
Theory of Computing (STOC’99), pages 726-735, New York,
May 1999. Association for Computing Machinery.

John G. Geske, Dung T. Huynh, and Joel I. Seiferas.
A note on almost-everywhere-complex sets and separating
deterministic-time-complexity classes. Information and Com-
putation, 92(1):97-104, May 1991.

J. Hopcroft, W. Paul, and L. Valiant. On time versus space.
Jrnl. A.C.M., 24(2):332-337, April 1977.

F. C. Hennie and R. E. Stearns. Two-tape simulation of mul-
titape Turing machines. Journal of the ACM, 13(4):533-546,
October 1966.

Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson.
In search of an easy witness: Exponential time vs. probabilistic
polynomial time. In Frances M. Titsworth, editor, Proceedings of
the Sithteenth Annual Conference on Computational Complezity
(CCC-01), pages 2-12, Los Alamitos, CA, June 18-21 2000.
IEEE Computer Society.

19

[TW97]

[TW9S]

[Kab00]

[KC00]

[KvM99)

[Lu00]

[Moc96]

[NWO4]

Russell Impagliazzo and Avi Wigderson. P = BPP if E requires
exponential circuits: Derandomizing the XOR lemma. In Pro-
ceedings of the 29th Annual ACM Symposium on the Theory of
Computing (STOC ’97), pages 220-229, New York, May 1997.
Association for Computing Machinery.

R. Impagliazzo and A. Wigderson. Randomness vs. time: de-
randomization under a uniform assumption. In IEEE, editor,
39th Annual Symposium on Foundations of Computer Science:
proceedings: November 8-11, 1998, Palo Alto, California, pages
734-743, 1109 Spring Street, Suite 300, Silver Spring, MD 20910,
USA, 1998. IEEE Computer Society Press.

V. Kabanets. Easiness assumptions and hardness tests: Trading
time for zero error. In Proceedings of the 15th Annual IEEE
Conference on Computational Colmplezity (COCO-00), pages
150-157, Los Alamitos, CA, July 4-7 2000. IEEE Press.

Valentine Kabanets and Jin-Yi Cai. Circuit minimization prob-
lem. In ACM, editor, Proceedings of the thirty second annual
ACM Symposium on Theory of Computing: Portland, Oregon,
May 21-23, [2000], pages 73-79, New York, NY, USA, 2000.
ACM Press.

Adam R. Klivans and Dieter van Melkebeek. Graph nonisomor-
phism has subexponential size proofs unless the polynomial-time
hierarchy collapses. In ACM, editor, Proceedings of the thirty-
first annual ACM Symposium on Theory of Computing: Atlanta,
Georgia, May 1-4, 1999, pages 659—-667, New York, NY, USA,
1999. ACM Press.

Chi-Jen Lu. Derandomizing arthur-merlin games under uniform

assumptions. In ISAAC 2000, pages 302-312, 2000.

Sarah E. Mocas. Separating classes in the exponential-time hier-
archy from classes in PH. Theoretical Computer Science, 158(1—
2):221-231, May 1996.

Noam Nisan and Avi Wigderson. Hardness vs randomness. Jour-
nal of Computer and System Sciences, 49(2):149-167, October
1994.

20

[Rud97]

[San01]

[Sip88]

Rudich. Super-bits, demi-bits, and NP /qpoly-natural proofs.
In RANDOM: International Workshop on Randomization and
Approzimation Techniques in Computer Science. LNCS, 1997.

Santhanam. Lower bounds on the complexity of recognizing
SAT by turing machines. IPL: Information Processing Letters,
79, 2001.

M. Sipser. Expanders, randomness, or time versus space. Jour-
nal of Computer and System Sciences, 36, 1988. Contains a
discussion on efficiently reducing the probability of error in ran-
domized algorithms. It also describes a relationship between
pseudorandomness, time and space used by certain algorithms if
certain types of expander graphs can be explicitly constructed.

Michael Saks, Aravind Srinivasan, and Shiyu Zhou. Explicit OR-
dispersers with polylogarithmic degree. Journal of the ACM,
45(1):123-154, January 1998.

Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom
generators without the xor lemma. Journal of Computer System
Sciences, 62(2):236—-266, 2001.

Dieter van Melkebeek. Personal communication.

A. C. Yao. Theory and application of trapdoor functions. In
IEEE, editor, 28rd annual Symposium on Foundations of Com-
puter Science, November 3-5, 1982, Chicago, IL, pages 80-91,
1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA,
1982. IEEE Computer Society Press.

21

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/pub/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

