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Abstract

We consider uniform assumptions for derandomization. We pro-
vide intuitive evidence that BPP can be simulated non-trivially in de-
terministic time by showing that (1) There is a simulation of P in
POLY LOGSPACE that is successful against all polynomial-time ad-
versaries infinitely often, or BPP ⊆ SUBEXP (2) There is a simu-
lation of P in SUBPSPACE that is successful against all polynomial-
time adversaries infinitely often, or BPP = P . These results comple-
ment and extend earlier work of Sipser, Nisan-Wigderson and Lu.

We show similar tradeoffs between simulation of nondeterminis-
tic time by nondeterministic space and simulation of randomized algo-
rithms by nondeterministic time.

Finally, we give uniform assumptions under which there is a strict
hierarchy for randomized polynomial time and randomized time can be
simulated nontrivially by randomized space.

1 Introduction

Much research in complexity theory over the past decade has focussed on de-
randomization. Techniques are known for eliminating randomness in many
important randomized algorithms, but the question of whether it is possi-
ble to simulate every polynomial-time randomized algorithm non-trivially in
deterministic time, i.e., more efficiently than the standard exponential time
simulation, is still open. One approach to this problem is via the notion
of pseudo-random generators, which are efficient deterministic procedures
expanding short random seeds to strings that “look” random to algorithms
from a given class. Given the existence of a pseudo-random generator, it is
possible to simulate randomized algorithms efficiently by enumerating the
short seeds, running the algorithm on the ouputs of the generator on the
seeds, and taking the majority vote.

Following on work by Yao [Yao82] and Blum and Micali [BM84], Nisan
and Wigderson showed in a landmark paper [NW94] that the existence of
pseudo-random generators is related to the average-case hardness of Boolean
functions computable in exponential time. Given a Boolean function such
that there is no small circuit computing it on most inputs, we can produce an
efficient pseudo-random generator; conversely, a pseudo-random generator
can be used to construct a hard Boolean function. Much work ([BFNW93],
[IW97] has gone towards weakening the average-case hardness requirement
to a worst-case hardness requirement. The culmination of these efforts is
the recent paper by Umans which demonstrates an essentially optimal con-
version of hardness to pseudo-randomness.
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In this paper, we are concerned with derandomization under uniform as-
sumptions. Very few lower bounds are known for problems in non-uniform
models, hence it seems unlikely that we will be able to derandomize proba-
bilistic classes by exhibiting a hard function in the near future. More results
are known for uniform classes, so it is worthwhile to find assumptions on
uniform classes under which derandomization can be carried out. Of course,
our techniques will depend heavily on the powerful machinery developed by
Nisan, Wigderson, Impagliazzo et al.

The seminal paper of Sipser [Sip88] first demonstrated a connection be-
tween time-space tradeoffs and derandomization. Sipser showed that under
a hypothesis about the existence of a certain kind of explicit disperser, later
proved by Saks, Srinivasan and Zhou [SSZ98], there is a constant ε such
that: DTIME(t) has no DSPACE(tε)-immune languages for all polyno-
mially bounded t, or P = RP . Essentially, the disperser hypothesis implies
efficient error reduction for RP , and if the time-space tradeoff does not
hold, this error reduction can be used to show that an efficient hitting-set
generator exists, which can be used to derandomize RP . The results of An-
dreev, Clementi and Rolim [ACR96] imply that the second clause in Sipser’s
theorem can be strengthened to P = BPP .

Nisan andWigderson [NW94] demonstrated a relationship between time-
space tradeoffs for exponential time classes and derandomization. Unlike
Sipser’s tradeoffs, their tradeoffs worked even at the low end, i.e., they
were able to show BPP ⊆ SUBEXP unless EXP ⊆ i.o.PSPACE. In
a different direction, Impagliazzo and Wigderson [IW98] showed a remark-
able “gap” result for the simulation of BPP by deterministic time - either
BPP = EXP or BPP can be simulated in heuristic subexponential time
infinitely often. Kabanets [Kab00] considered simulations of randomized al-
gorithms that are successful against uniform adversaries. He showed that
for every RP algorithm, there is a simulation in zero-error subexponential
time (ZPSUBEXP) that is successful infinitely often against adversaries in
ZPSUBEXP . Lu [Lu00] generalized some of the results of Kabanets and
Nisan-Wigerson.

Our main contribution in this paper is to prove results analogous to those
of Nisan and Wigderson and Lu for polynomial time classes. These results
provide strong intuitive evidence for derandomization.

The structure of the paper is as follows: In Section 2, we define the
notions and notation we use. In Section 3, we prove the main simulation
lemma and show some consequences. In Section 4, we examine the situation
for nondeterministic time. In Section 5, we consider uniform assumptions
under which we can draw conclusions about the fine structure of randomized
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classes.

2 Preliminaries

The definitions of deterministic, nondeterministic and probabilistic resource-
bounded classes are standard and can be found in [BDG88] and [BDa90].

A pseudo-random generator g is a sequence of functions {g}n, n ≥ 1 such
that gn maps {0, 1}s(n) to {0, 1}n for some s(n) < n, and for all circuits C
of size less than n,
| Pr

ρ
[C(ρ) = 1]− Pr

σ
[C(σ = 1] |< 1

n

where ρ is uniformly distributed over {0, 1}n and σ is uniformly dis-
tributed over {0, 1}s(n). The pseudo-random generators we consider will be
computable in linear exponential time. A pseudo-random generator is said
to be computable in space S if the ith bit of the output of the generator can
be computed in space S(s(n) + log(i)), for each i, 1 ≤ i ≤ n.

We need to be careful when specifying what it means for a machine of
one class to be simulated by a machine in another class. According to the
conventional notion, the simulation is successful if it fools all non-uniform
adversaries, i.e., the languages accepted by the two machines coincide on all
but finitely many inputs (if the simulation is ”almost everywhere”) or on
infinitely many input lengths (if the simulation is ”infinitely often”). Thus,
if L is a language and C is a class, we say L ∈ i.o.C if there is a language
L

′

∈ C such that {n : L ∩ {0, 1}n = L
′

∩ {0, 1}n} is infinite.
Kabanets [Kab00] defines some notions of what it means for a simulation

to be successful against all uniform adversaries (which is weaker than the
conventional notion of a simulation). A refuter is a deterministic Turing ma-
chine that, on input 1n, outputs a string of length n. Given languages L and
L

′

, and a deterministic class A of refuters, L and L
′

are A-indistinguishable
if there is no machine M ∈ A such that M(1n) ∈ L4L

′

for infinitely many
n. Given a complexity class C, pseudoA − C is the class of languages L for
which there is a language L

′

in C such that L and L
′

are A-indistinguishable.
We also consider a weaker concept of refutation. A weak refuter is a

deterministic Turing machine that, on input 1n, outputs a set of strings,
each of which is of length n. Given languages L and L

′

, and a deterministic
class A of weak refuters, L and L

′

are weakly A-indistinguishable if there is
no machine M ∈ A such that M(1n) ∩ (L4 L

′

) is nonempty for infinitely
many n. Given a complexity class C, quasiA − C is the class of languages
L for which there is a language L

′

in C such that L and L
′

are weakly
A-indistinguishable.
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We can also define weak refuters that work almost everywhere rather
than infinitely often. [io − quasiA] − C is the class of languages indistin-
guishable from some language in a class C by weak refuters of this kind
belonging to a class A. We have only discussed deterministic weak refuters
but we can also define non-deterministic weak refuters as non-deterministic
machines that accept on every input of the form 1n and output a distin-
guishing set of strings on every accepting computation path.

Clearly, for each A and C, C ⊆ quasiA −C ⊆ pseudoA −C. The proofs
of the following propositions are straightforward.

Proposition 1 If C ⊆ D, then quasiA − C ⊆ quasiA −D.

Proposition 2 quasiA − quasiA − C = quasiA − C.

We note that there is a still weaker concept of ”infinitely often” simula-
tions in the literature (eg. [Sip88]), where for every uniform adversary from
a certain bounded complexity class, there is a successful simulation fooling
it. Instead, we shall use the notion of immunity for some of our results.
Given complexity classes C and D, C is said to have a D-immune language
L if L is infinite and no infinite subset of L belongs to D.

All time and space bounds in this paper are assumed to satisfy ”reason-
able” constructibility conditions, which we shall leave unspecified.

3 Main simulation

Like Nisan-Wigderson, we essentially give a technique for translating non-
uniform upper bounds into good simulations of time by space. By us-
ing a method for compressing configurations of Turing machines, we can
get the simulation to work in the polynomial-time domain rather than the
exponential-time domain as in Nisan-Wigderson.

Let M be a DTM operating in time T . Assume, without loss of general-
ity, that the tape alphabet ofM is binary and thatM has k tapes. On input
x, let Ci

M,x(t) be the contents of the ith tape of M at time t. Let CM,x(t) be

the concatenation, over 1 ≤ i ≤ k, of C i
M,x(t). The Boolean function fM,x

is defined as the function whose truth table is the concatenation CM,x, over
1 ≤ t ≤ T , of CM,x(t).

Lemma 3 If M is a DTM operating in polynomial time and S = Ω(log(n))
is a space-constructible function, there is a DTM M

′

operating in space
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S log(S) such that for each input x, either (1) x ∈ L(M) if and only if
x ∈ L(M

′

) or (2) fM,x has no circuits of size S.

Proof Assume that M has k tapes and a binary tape alphabet, and that
M operates in time T on an input of length n. Assume wlog that k is a
power of 2. We define a DTM M

′

that simulates M in small space. If the
simulation fails on an input x, we can obtain a lower bound on the circuit
complexity of fM,x.

M
′

works as follows: it represents the contents of each tape of M by
a circuit accepting the function defined by the tape contents considered as
a truth table. Let the encoding of the contents of the ith tape of M after
simulating t steps of M be Ei

M,x(t). Initially, the tapes are blank, and a
small encoding of a circuit accepting none of its inputs can be found easily.
We need to specify how M

′

passes from one encoding to another using only
a small amount of space. On separate tapes, M

′

records the state and tape
head positions of M . This costs space O(log n). To simulate the t+1th step
of M , M

′

changes its record of state and tape head positions as specified by
the transition table of M . Also, for each tape i of M , it cycles through all
circuits A of size S, until it finds one that corresponds to the new contents
of that tape. To do this, it checks that the circuit encoded by E i

M,x(t)
agrees with the circuit A on every input except the one corresponding to
the position of the ith tape head of M at time t. The two circuits should
disagree or agree on the input corresponding to this tape position depending
on whether the tape symbol at this position is changed or not by M during
its t+1st time step. Checking agreement or disagreement on an input takes
space O(S log(S)), as a circuit of size S can be represented in space S log(S)
and simulated in the same amount of space. As for the input head of M

′

,
it moves in the same manner as the input head of M .

If there is a tape i of M and a time t such that M
′

cannot find a small
encoding of Ci

M,x(t), we can show that fM,x has no circuits of size S. Note
that fM,x is a function defined on inputs of size 2 log(T ) +O(1) (Hence the
simulation only makes sense if S > log(T ). If fM,x had circuits of size S,
we could freeze all the input bits except those corresponding to C i

M,x(t) and

obtain a circuit of size S encoding C i
M,x(t), contradicting the assumption

that the simulation failed at this stage.

Note that the simulation can detect its own failure. The simulating ma-
chine either outputs the right answer or reports failure.
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Theorem 4 ([BFNW93]) If for each k, there is a function fk ∈ E such that
fk does not have circuits of size nk, then BPP ⊆ i.o.SUBEXP .

Theorem 5 P ⊆ quasiP −POLY LOGSPACE, or BPP ⊆ i.o.SUBEXP .

Proof Consider the simulation of Lemma 3. If for every polynomial-time
machine M accepting an infinite language L there is a polylogarithmic
space bound S such that every weak refuter N in P succeeds only finitely
often against the simulation of M in space S, we have P ⊆ quasiP −
POLY LOGSPACE. Otherwise there is a polynomial-time machine M
such that for each k, there is a weak refuter Nk in P that succeeds in-
finitely often against the simulation in space log(n)k+1. The truth table of
a function fk that does not have circuits of size nk can be computed in time
polynomial in the size of the truth table as follows: Concatenate CM,x for
x ∈ Nk(1

r), r = 2(n−1)/s . . . 2n/s, with the constant s, which depends on the
running times of M and Nk, being determined by the condition that the
length of the truth table obtained by this process is 2n. Since Nk succeeds
infinitely often, there are infinitely many input lengths on which the func-
tion fk does not have circuits of size nk.

As Eric Allender has pointed out, it follows from [NW94] and standard down-
ward translation techniques that either for each adversary in LOGSPACE,
there is a simulation of P in POLY LOGSPACE that fools the adversary
on almost every input length, or BPP ⊆ i.o.SUBEXP . The statement
we have proved is stronger because the order of the quantifiers is different.
Also note that corresponding to a different version of Theorem 4, we can
get either a simulation of polynomial-time machines in small space that suc-
ceeds infinitely often or a derandomization of BPP that succeeds almost
everywhere.

Using a translation argument, we can show the following:

Theorem 6 For each t,DTIME(t) ⊆ quasiDTIME(poly(t))−DSPACE(polylog(t)),
or BPP ⊆ i.o.SUBEXP .

Proof It is sufficient to prove that if DTIME(n) ⊆ quasiDTIME(poly(n)) −
DSPACE(polylog(n)), thenDTIME(t) ⊆ quasiDTIME(poly(t))−DSPACE(polylog(t)).
We shall make the reasonable assumption that t−1(n) can be computed in
time poly(n) on input 1n (this is true if t is a convex function and is time-
constructible). Now assume, contrary to the hypothesis, that there is a
language L in DTIME(t) such that for every language L

′

, there is a weak
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refuterM(L
′

) operating in poly(n) time that weakly distinguishes L from L
′

infinitely often. Let Lpad = {x1t(n)−n | x ∈ L, x ∈ {0, 1}n}. Clearly Lpad is
in DTIME(n). Now, for any language Rpad ∈ DSPACE(polylog(n)), con-
sider R = {x | x ∈ {0, 1}n, x1t(n)−n ∈ Rpad}.R is in DSPACE(polylog(t))
and thus M(R) weakly distinguishes L from R infinitely often. We define
a weak refuter M

′

weakly distinguishing Lpad from Rpad. On input 1n, M
′

computes t
′

(n) = t−1(n), runs M(R) on 1t
′

(n) to produce poly(n) strings
x1 . . . xpoly(n) each of length t

′

(n), pads each of these strings to length n by
adding 1’s, and ouptuts the resulting strings. For infinitely many n, one of
these strings is in Lpad 4Rpad, yielding a contradiction.
By setting t(n) = 2n, we obtain the theorem of Nisan and Wigderson stating
that EXP = PSPACE or BPP ⊆ i.o.SUBEXP .

Theorem 5 states that, if there is no strong simulation of polynomial
time by space, then a low-end simulation of BPP is possible. By varying the
parameter S in Lemma 3 and using different hardness-randomness tradeoffs,
we can obtain a range of tradeoffs between the strength of the simulation of
time by space and the strength of the simulation of randomness by time.

Theorem 7 ([IW97]) If there is a function f ∈ E such that f does not have
circuits of size 2εn, for some ε > 0, then BPP ⊆ i.o.P .

Theorem 8 For each ε > 0 and polynomially bounded t, DTIME(t) ⊆
quasiSUBEXP −DSPACE(tε), or BPP ⊆ i.o.P .

Proof Analogous to the proof of Theorem 5, using Lemma 3 with S =
nε.

Ideally, we would like the simulations in Theorem to work almost every-
where, or at least for infinitely many input lengths, against all adversaries,
but such a result for nondeterministic machines would imply the separation
of BPP from NEXP and so is probably quite hard.

The simulation in Lemma 3 does not run in polynomial time. If we
allow the simulating machines to be nondeterministic, then we can modify
the simulation to run in polynomial time.

Let NSC be the class of languages accepted by nondeterministic ma-
chines running simultaneously in polynomial time and polylogarithmic space.

Theorem 9 P ⊆ quasiP −NSC or BPP ⊆ i.o.SUBEXP .
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Proof We modify the simulation of Lemma 3 so that the simulating machine
is nondeterministic and runs in polynomial time. We combine this modified
version of Lemma 3 with Theorem 4 to prove the theorem, analogous to the
proof of Theorem 5.

The only change in the simulation is that, instead of cycling over all
circuits of small size when trying to find an encoding of a new configura-
tion, the simulating nondeterministic machine simply guesses such a circuit.
Then it verifies that the circuit is a correct encoding in the same way as in
Lemma 3, by cycling over all possible inputs to the circuits. Since an input
to the circuit is only of size O(log(n)), the verification can be done in poly-
nomial time. If the verification fails, the simulating machine rejects. Clearly,
only polynomial time is required for the simulation as a whole, yielding the
theorem.

Actually, we can use our techniques to derandomize the class AM , on
the hypothesis that polynomial time cannot be simulated by polylogarith-
mic space. Klivans and van Melkebeek [KvM99] showed that pseudorandom
generators secure against nondeterministic adversaries follow from hardness
conditions on SAT-oracle circuits. We can modify Lemma 3 to generate a
function that does not have small SAT-oracle circuits, if the simulation of
time by space fails. The property of SAT we use here is that it is in linear
space.

Theorem 10 ([KvM99]) If for each k there is a function fk ∈ NE ∩
co − NE such that fk has no SAT-oracle circuits of size nk, then AM ⊆
i.o.NSUBEXP .

Theorem 11 P ⊆ quasiP−POLY LOGSPACE orAM ⊆ i.o.NSUBEXP .

Proof We modify the simulation of Lemma 3 and then combine the modified
lemma with Theorem 10 to obtain the theorem.

We encode the configurations of a polynomial-time deterministic ma-
chine with SAT-oracle circuits, rather than ordinary circuits. Each time a
query to SAT is made, we run the linear-space algorithm for deciding SAT
to answer the query. The size of a query cannot exceed the size of the cir-
cuit, hence the space requirements of the simulation remain the same. If
the simulation fails against some uniform adversary for infinitely many in-
put lengths, we obtain a function in E that does not have polynomial size
SAT-oracle circuits and we can apply Theorem 10.
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We can obtain a conditional low-end simulation (i.e., a complete deran-
domization of AM) by analogous means. We can also obtain conditional
simulations of NP by SPP , or of the polynomial time hierarchy by ⊕P .

Note that our technique also suggests that it might be difficult to show
that the Hopcroft-Paul-Valiant simulation of time by space cannot be sig-
nificantly improved. Any such proof would imply a circuit lower bound for
a function in E, and proving such lower bounds is widely believed to be hard.
Even showing that P is not contained in quasiP−DSPACE(log(n) log(log(n)))
sets would imply that there is a function in E that does not have linear-size
circuits. No such functions are known at present.

4 Probabilistic time vs nondeterministic time

We explore a connection between simulation of probabilistic time by nonde-
terministic time and tradeoffs between nondeterministic time and space.

The following proposition is analogous to Theorem 4:

Proposition 12 If for each k there is an NP machine Mk that, on infinitely
many inputs of the form 12n , accepts, and outputs the truth table of a func-
tion on n inputs that does not have circuits of size nk on each accepting
path, then MA ⊆ i.o.NSUBEXP .

Theorem 13NP ⊆ pseudoNP−NPOLY LOGSPACE orMA ⊆ i.o.NSUBEXP

Proof We shall give a proof analogous to Lemma 3 for nondeterministic
classes. Given an NP machine M such that L(M) is infinite, and a space
bound S = log(n)k for some k, perform the simulation of Lemma 3 on
each computation path of M . If the simulation succeeds, accept or reject
depending on whether the computation accepts or rejects, otherwise reject.
Thus the simulating machine M

′

k runs in space log(n)k.
Either the simulation succeeds against all refuters running in NP , or

there is some refuter distinguishing L(M) from L(M
′

k) infinitely often. If for
everyNP machine, the first clause holds for some k, thenNP ⊆ pseudoNP−
NPOLY LOGSPACE. Otherwise, there is an NP machineM such that for
each k, there is a NP refuter Rk distinguishing L(M) from L(M

′

k) infinitely
often.

To apply Proposition 12, we define an NP machine Mk as follows: On
input 12n , it guesses an input length j between 2n/s and 2n−1/s, where s
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is a constant depending on M . It then runs Rk+1 on 1j . If Rk+1 accepts
and produces a string y of length j, Mk runs M on y. If M accepts on y,
Mk outputs CM,y, where CM,y is the concatenation of configurations on the
accepting path. Otherwise, it rejects.

We choose s so that the size of the truth tables output by Mk is 2n

(padding the truth table, if necessary). We still need to show that Mk works
correctly. Note that the language accepted by any machine that simulates
M in the prescribed manner is a subset of L(M). Hence the refuter, when
it is correct, outputs a string that is in L(M) but is not accepted by the
simulating machine. Hence all accepting computation paths of M on this
string give rise to hard truth tables, which means that every string output
by Mk on an accepting computation path is hard.

By a simple modification to the proofs of Theorem 5 and Theorem 13,
we can obtain the stronger statement that if there is no simulation in space
log(n)k, for some fixed k, then MA can be derandomized.

We are not able to show the stronger simulations against weak refuters
for nondeterministic time. But the translation result does hold -

Theorem 14 For each t,NTIME(t) ⊆ pseudoNTIME(poly(t))−NSPACE(polylog(t)),
or MA ⊆ i.o.NSUBEXP .

Using Theorem 7 rather than Theorem 4, we can show -

Theorem 15 NP ⊆ pseudoNSUBEXP − SUBEXP or MA ⊆ i.o.NP .

Derandomization of AM can be carried out under the same assumption
using similar techniques as in the previous section. Also, all results for
NTIME hold with NTIME replaced by RTIME, as can easily be checked.

In the case of NP , it is also interesting to consider simulations against
non-uniform adversaries. The proof of the following theorem is analogous
to the proof of Theorem 13:

Theorem 16 If NP has a QP -immune set, then MA ⊆ i.o.NSUBEXP .

We know, from Lautemann’s theorem, that if NP ⊆ QP , then MA ⊆
NPNP ⊆ QP , and hence MA ⊆ i.o.NSUBEXP . On the other hand, if
NP has QP -immune sets, by Theorem 16, MA ⊆ i.o.NSUBEXP . Thus,
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what is of interest is the ”gap” between the two statements about the hard-
ness/easiness of NP . We now further refine this gap.

We consider languages in NP that are not too sparse, i.e., languages
L such that for any c, | L ∩ {0, 1}n |> 2log(n)c for all but finitely many n.
Let us call the class of such languages NPd. Also, let s(n) be a function
with appropriate constructibility properties that bounds the polylogarithmic
functions from above, i.e., for each k, log(n)k = o(s(n)). We now prove a
theorem that can be interpreted as a derandomization based on ”hardness”
of NPd -

Theorem 17 If there is a language L in NPd such that for each L
′

∈
NSPACE(s(n)), L

′

⊆ L, there is a constant c such that for infinitely many
input lengths n, L

′

contains fewer than 2log(n)c strings of length n, then
MA ⊆ i.o.NSUBEXP .

Proof Assume the hypothesis holds for a language L in NPd accepted by
a nondeterministic machine M running in polynomial time. Consider the
language L

′

defined by the simulation of Theorem 13 with space bound s(n).
We define a machineN that on infinitely many inputs of the form 12n accepts
and outputs on each accepting path a truth table of size 2n that does not
have polynomial size circuits. Let ε > 0 be a small constant. On input 12n ,
N guesses, for each input length k between 2(n−1)1/(c+ε)

and 2n
1/(c+ε)

, 2log(k)c

strings of length k, simulates M on each of these strings, and accepts only if
M accepts on all these strings. On accepting, it outputs the concatenation
of the configurations of M on all the strings, padded appropriately to length
2n.

To see that N works correctly, note that by the assumption on density
of L, N always accepts. Furthermore, by the hypothesis, for infinitely many
k, there are at most 2log(k)c strings on which the simulation succeeds and
hence the sequence of configurations corresponding to any accepting path
of any other input in L of length k is hard. A polynomial fraction of this
hardness is preserved after concatenating all the truth tables, proving the
theorem.

Next we prove a theorem that can be interpreted as a derandomization
based on the ”easiness” of NPd.

Theorem 18 If for each language L in NPd, there is a language L
′

such
that L ⊆ L

′

,L
′

∈ DTIME(2log(n)c) for some constant c, and for each n, if
L does not contain all strings of length n, then there is at least one string x
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of length n such that x 6∈ L and x 6∈ L
′

, then MA ⊆ NSUBEXP .

Proof Consider L = {x | x is the truth table of a function accepted by
a circuit of size < s(log(n))}. Clearly, L ∈ NPd. Thus there is L

′

∈
DTIME(2log(n)c) satisfying the conditions of the hypothesis. Let M be
a deterministic Turing machine running in time 2log(n)c and accepting the
complement of L. Choose a small constant ε > 0. We construct a nonde-
terministic Turing machine N that outputs hard strings as follows: N , on
input 12n , guesses a string x of length 2n

1/(c+ε)
, and runs M on it, accepting

and outputting x padded to length 2n only if M accepts. It is easy to see
that N accepts on every input of length 2n and only outputs strings that
are hard.

Though the theorems above show that it is very likely thatMA ⊆ i.o.NSUBEXP ,
this result is probably hard to prove, since by the results of [IKW00], this
would imply NEXP 6⊆ P/poly. In an earlier version of this paper, we
suggested an approach to showing BPP ⊆ i.o.NSUBEXP by situating
BPP lower and lower in the polynomial-time hierarchy. As recent results of
Impagliazzo and Kabanets indicate that proving BPP ⊆ i.o.NSUBEXP
would imply circuit lower bounds in either the Boolean or algebraic model,
we now believe this approach will not be fruitful, and hence do not pursue
it.

Corresponding to Theorem 9, we can prove -

Theorem 19 For polynomially bounded T , NTIME(T ) has noNTISP (T 2polylog(T ), polylog(T ))-
immune sets , or MA ⊆ i.o.NSUBEXP

Proof Analogous to proof of Theorem 6.

Theorem 19 is interesting because it demonstrates limitations to showing
time-space tradeoffs for nondeterministic classes. For classes defined by mul-
titape TMs, [San01] proved the tradeoffNTIME(n) 6⊆ NTISP (n2−ε, log(n)k),
where ε and k are any positive constants. Theorem 16 shows that even a
slight extension of this result will imply the existence of pseudo-random gen-
erators(and hence a superpolynomial circuit size lower bound for a function
in NEXP ) and is therefore likely to be quite hard.
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5 The fine structure of randomized classes

An interesting question is to find hardness conditions that imply results
about the fine structure of randomized classes, i.e., about the relationships
between randomized classes with specific resource bounds. In this section,
we give conditions for the existence of a hierarchy for randomized polynomial
time and for the nontrivial simulation of randomized time by deterministic
space.

Unlike in the case of deterministic time and nondeterministic time, no
strong hierarchy theorems are known for probabilistic time classes. Cai,
Nerurkar and Sivakumar [CNS99] showed that if a version of the perma-
nent is not in probabilistic sub-exponential time, then probabilistic quasi-
polynomial time has a tight hierarchy. We consider a uniform assumption
under which probabilistic polynomial time has a tight hierarchy. Our result
is essentially an elaboration of Theorem 8.

Theorem 20 If there is a language L ∈ DTIME(n) \ quasiSUBEXP −
DSPACE(nε) for some ε > 0, then for each polynomially bounded t and
δ > 0, BPTIME(t) ⊂ BPTIME(t1+δ).

Proof If the hypothesis holds, we can construct, as in the proof of Theo-
rem 8, the truth table of a hard function in time polynomial in the size
of the truth table. It is implicit in [IW97] that this implies there is a
constant c such that BPTIME(t) ⊆ i.o.DTIME(tc) for each polynomi-
ally bounded t. Now suppose, for the sake of contradiction, that there
exist t and δ > 0 such that BPTIME(t) = BPTIME(t1+δ). By trans-
lation, we obtain, BPTIME(t) = BPTIME(t2c). Thus DTIME(t2c) ⊆
BPTIME(t2c) = BPTIME(t) ⊆ i.o.DTIME(tc), which is a contradiction
to the a.e.hierarchy theorem for deterministic time [GHS91].

Note that the corresponding result for randomized space classes is known
unconditionally, as a corollary to the simulation of randomized space by
deterministic space using the recursive matrix powering technique.

Our second result gives a hardness hypothesis under which randomized
time can be simulated nontrivially by randomized space (and, in fact, by
deterministic space). In the seminal paper of Hopcroft, Paul and Valiant
[HPV77], it is shown thatDTIME(t) ⊆ DSPACE(t/ log(t)) for constructible
time bounds t. But their techniques do not extend to showing a correspond-
ing result for randomized classes. We are able to show the result under a
hardness assumption. Showing the result unconditionally might be difficult
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because it would imply a nontrivial simulation of randomized time by de-
terministic time.

Theorem 21 If there is a language L ∈ DSPACE(S) for some poly-
nomially bounded S such that L does not have polynomial size circuits
infinitely often, then for each polynomially bounded T , BPTIME(T ) ⊆
DSPACE(T/ log(T )).

Theorem 21 will follow from Lemmas 22, 23 and 24:

Lemma 22 For any T and ε > 0, there is a (log(T ), T ε) design of size T
that can be generated in space O(T ε).

Proof The proof is the same as in [KvM99], except that a different version
of Chernoff’s Lemma is used in the analysis.

Lemma 23 If there is a language L ∈ DSPACE(S) for some polynomially
bounded S such that L does not have polynomial size circuits infinitely often,
then for each T , there exists an ε > 0 such that there is a pseudo-random
generator G : {0, 1}T

ε
→ {0, 1}T

2
computable in space O(T/ log(T )).

Proof Essentially, we use the Nisan-Wigderson generator [NW94] - Lemma
22 guarantees the space efficiency of the generator. The Nisan-Wigderson
generator needs a source that is hard on average rather than worst case hard,
so we first convert the Boolean function f corresponding to L to a function
g that cannot be approximated by polynomial-size circuits. The Sudan-
Trevisan-Vadhan [STV01] reduction from average-case hardness to worst-
case hardness is space-efficient, thus by applying this reduction, we obtain
from f a function g that can be computed in linear space. By Lemma 22,
a Nisan-Wigderson design can be constructed in space O(T/ log(T )), hence
only space O(T ε + T/ log(T )) = O(T/ log(T )) is required to compute any
bit of the output of the Nisan-Wigderson generator corresponding to this
design.

Lemma 24 If there is a pseudo-random generator G : {0, 1}T
ε
→ {0, 1}T

2

computable in spaceO(T/ log(T )), thenBPTIME(T ) ⊆ DSPACE(T/ log(T ))

Proof The idea is simple: we use the Hopcroft-Paul-Valiant simulation
of time by space. Doing the simulation with pseudo-random strings rather
than random strings allows us to recompute information as and when needed
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efficiently, without having to use more storage space than that required for
the random seed.

More precisely, given an input x and a randomized Turing machine M
operating in time T , we construct a deterministic Turing machine M

′

that
simulates M . M

′

enumerates all strings y of length T ε, and performs the
Hopcroft-Paul-Valiant simulation for each y with G(y) substituting for the
random string. It then outputs the majority vote of the answers. During a
simulation with a string G(y), if any information needs to be recomputed,
M

′

can do this efficiently, since it can obtain any bit of G(y) from y using
only space O(T/ log(T )). Clearly, after the computation for a particular y
has been completed, space can be re-used for the next y, hence the entire
computation takes only O(T/ log(T )) space. Since G is a pseudo-random
generator with respect to circuits of size T 2, and since the computation of
M on x can be simulated by a circuit of that size, the answer output by M

′

is correct.

Corollary 25 If QBF does not have polynomial-size circuits infinitely often,
then for each polynomial t, BPTIME(t) ⊆ DSPACE(t/ log(t)).

Corollary 26 Unless PSPACE collapses to the second level of the polynomial-
time hierarchy, for each polynomially bounded t, BPTIME(t) ⊆ i.o.DSPACE(t/ log(t)).
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