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Abstract. We study non-Boolean PCPs that have perfect completeness and
read three positions from the proof. For the case when the proof consists of
values from a domain of size d for some integer constant d > 2, we construct
a non-adaptive PCP with perfect completeness and soundness d ' +d 2 +¢,
for any constant € > 0, and an adaptive PCP with perfect completeness and
soundness d~! + ¢, for any constant ¢ > 0. These results match the best
known constructions for the case d = 2 and our proofs also show that the
particular predicates we use in our PCPs are non-approximable beyond the
random assignment threshold.

1 Introduction

A language belongs to NP if it has the property that inputs in the language
admit a proof that can be verified in polynomial time. More specifically,
if L is an NP language, there exists a polynomial time verifier V;, with
the following properties: For every x € L, there exists a proof y with size
polynomial in the size of = such that Vi, accepts (z,y), but for z ¢ L there
does not exist any polynomially sized proof y such that V7, accepts (z,y). In
the above definition, the verifier V7, is deterministic, i.e., it always accepts
a proof of a correct input and never accepts a proof of an incorrect input.
One way to modify the definition of NP is to let the verifier be probabilistic
and allow it to make mistakes. One can also change the notion of a proof
and instead view the process of verifying a proof as an interaction between
the verifier and several provers.

A burst of activity focusing on the power of various types of interactive
proof systems in the 80s and early 90s culminated in the so called PCP
theorem [1]. In the PCP model, the proof can be viewed as a table that the
verifier has oracle access to. The verifier also has access to a specified amount
of random bits. Based on the random bits and the input, the verifier decides
which positions in the proof it should look at. Once it has examined the
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positions of its choice, it uses all available information to decide if the input
should be accepted or rejected. The PCP theorem asserts the startling fact
that any language in NP can be probabilistically checked by a verifier that
uses logarithmic randomness, always accepts a correct proof of an input in
the language, accepts proofs of inputs not in the language with probability
at most 1/2, and examines a constant number of bits of the proof.

PCPs using a logarithmic number of random bits can be used to prove
approximation hardness results for many combinatorial optimization prob-
lems. In particular, PCPs querying a small number of bits, say k bits,
are intimately connected with Boolean constraint satisfaction problems on
k variables. In a constraint satisfaction problem, we are given a set of con-
straints over some variables and are asked to find an assignment satisfying
as many constraints as possible. Indeed, a k-query PCP for NP with log-
arithmic randomness, completeness ¢, and soundness s immediately gives
rise to a constraint satisfaction problem on k variables that is NP-hard to
approximate within ¢/s, as long as the verifier is non-adaptive, that is, the
queries may not depend on the values of previously queried bits. In this
case, the problem of computing the proof which maximizes the acceptance
probability is a constraint satisfaction problem corresponding to the con-
straint verified by the verifier. For instance, if the verifier reads three bits
from the proof and accepts for seven out of the eight possible answers, the
corresponding constraint satisfaction problem is maximum E3-satisfiability.

A natural question to ask is: What is the best soundness that can be
achieved with a small number of queries? In his seminal paper [6] Hastad
constructed a three-query PCP where s is arbitrarily close to 1/2. To be
more precise: for any L € NP and any given constant ¢ > 0, Hastad’s
construction gives a proof system that accepts inputs in L with probability at
least 1—¢ and accepts inputs that are not in L with probability at least 1/2+
€. Since Hastad’s proof system accepts inputs in L only with probability
1 — g, and not always, we say that it has near-perfect completeness. By
contrast, a proof system is said to have perfect completeness if inputs in the
language are always accepted.

Samorodnitsky and Trevisan [13] used a clever extension of Hastad’s
construction to prove that any language in NP can be recognized by a
(k2 +2k)-query PCP with near-perfect completeness and soundness 2k 4 ¢
for any € > 0. This result is known to be essentially optimal since it is not
possible to get better soundness than 2'~7 for a non-adaptive g-query PCP
for NP unless P = NP [16].

For several reasons we would prefer the proof systems to have perfect
completeness. Firstly, it is simply esthetically pleasing to have a proof sys-
tem where a correct proof is always be accepted. Secondly, in several proofs
of hardness of approximation, perfect completeness has been important. For
example, when proving hardness of hypergraph coloring [4, 11] and vertex
cover on hypergraphs [9] perfect completeness appears to be crucial. Thirdly,



it is of theoretical interest to get an understanding of how near-perfect versus
perfect completeness and adaptive versus non-adaptive verifiers affect our
ability to construct proof systems with low soundness. For non-adaptive
3-query PCPs, Hastad’s construction provides a PCP for NP with near-
perfect completeness and soundness 1/2 + ¢ for every constant ¢ > 0 and
it is impossible to achieve soundness better than 5/8 in proof systems with
perfect completeness unless P = NP [17, 18]. Using the tools from Hastad’s
paper, it is possible to construct a three query PCP with perfect complete-
ness and soundness 3/4 + ¢ for any constant € > 0 and Guruswami et al. [5],
building on Hastad’s work, proved that there is an adaptive PCP for NP
with perfect completeness and soundness 1/2 + ¢ for any constant ¢ > 0.
For more than 3 queries, Hastad and Khot [7] proved that a non-adaptive
verifier can achieve perfect completeness and soundness 2% 4 ¢ with k2 +4k
queries, while an adaptive verifier can achieve the same completeness and
soundness with only k% 4 2k queries.

In all PCPs mentioned so far, the proof has been a list of bits, i.e., the
proof has been binary. Hastad also constructed a PCP where the positions
in the proof contain elements from a larger domain in his paper [6]: For the
case when each position in the proof contains an element from a domain
of size d, where d is an arbitrary integer constant, he constructed a proof
system with near-perfect completeness and soundness d~! + ¢ for any con-
stant € > 0. Engebretsen [2] adapted the construction of Samorodnitsky
and Trevisan [13] to domains of size d, thereby constructing a proof system
that queries k% 4+ 2k positions in the proof, has near-perfect completeness
and soundness d % + ¢ for any € > 0.

This brings up the question that we address in this paper: How does the
soundness behave, as a function of the domain size d, for 3-query PCPs with
perfect completeness? The result of Hastad and Khot for non-adaptive PCP
generalizes to domains of size p where p is a prime to give soundness p_’92 +e€
with 4k + k2 queries. However, since 4k + k% = 5 when k = 1, this doesn’t
give us anything for the case of three queries. It is easy to construct a proof
system with perfect completeness and soundness (d — 1)/d and Holmerin [8]
has constructed a proof system with soundness 2/d for d > 3. In this paper,
we prove the following:

Theorem 1. Any language in NP is decided by a non-adaptive PCP with
answers from a domain of size d that queries three positions in the proof, has
perfect completeness and soundness d~! + d=2 4 ¢ for any constant € > 0.

Theorem 2. Any language in NP is decided by an adaptive PCP with an-
swers from a domain of size d that queries three positions in the proof, has
perfect completeness and soundness d~! + ¢ for any constant € > 0.

This generalizes the constructions for the binary case [5, 6] and shows that
we can achieve, as a function of the domain size, the same higher order term



in the soundness for PCPs with perfect completeness as for the best currently
known PCPs with near-perfect completeness. As a technical component in
our construction, we use parts of new variant of Hastad’s PCP with a simpler
analysis, due to Khot [10]. We remark that the hardness results obtained are
the best possible for the constraints we use in our verifiers since a random
assignment to the proof makes the verifier accept with probabilities d—'4d—2
and d~ !, respectively. Hence, we establish in this paper that the predicates
are what Hastad [6] calls “non-approximable beyond the random assignment
threshold”.

It appears difficult to get stronger results using current techniques. For
d > 2 it is currently only known that it is impossible to get soundness d—?2
in a 3-query PCP for NP [14] and it is at present unknown if it is possible
to get better soundness with near-perfect completeness than with perfect
completeness.

2 PCPs and hardness of approximation

In his paper [6], Hastad introduced a methodology for proving lower bounds
for constraint satisfaction problems. On a high level, the method can be
viewed as a simulation of the well-known two-prover one-round (2P1R) pro-
tocol for E3-Sat where the verifier sends a clause to one prover and a variable
contained in that clause to the other prover, accepting if the returned as-
signments are consistent and satisfy the clause.

2.1 The 2-prover 1-round protocol
We start with an instance of the NP-hard [1, 3] problem p-gap E3-Sat(5).

Definition 1. u-gap E3-Sat(5) is the following decision problem: We are
given a Boolean formula ¢ in conjunctive normal form, where each clause
contains exactly three literals and each literal occurs exactly five times. We
know that either ¢ is satisfiable or at most a fraction u < 1 of the clauses
in ¢ are satisfiable and are supposed to decide if the formula is satisfiable.

There is a well-known two-prover one-round (2P1R) interactive proof system
that can be applied to u-gap E3-Sat(5). It consists of two provers, P; and P;,
and one verifier. Given an instance, i.e., an E3-Sat formula ¢, the verifier
picks a clause C' and variable z in C uniformly at random from the instance
and sends C to P; and z to P». It then receives an assignment to the
variables in C' from P; and an assignment to z from P», and accepts if
these assignments are consistent and satisfy C. If the provers are honest,
the verifier always accepts with probability 1 when ¢ is satisfiable, i.e., the
proof system has completeness 1, or perfect completeness. It can be shown
that the provers can fool the verifier with probability at most (2 + u)/3



when ¢ is not satisfiable, i.e., that the above proof system has soundness
(24 mu)/3.

The soundness can be lowered to ((2 + u)/3)" by repeating the protocol
u times independently, but it is also possible to construct a one-round proof
system with lower soundness by repeating u times in parallel as follows: The
verifier picks u clauses (Cy,. .., C,) uniformly at random from the instance.
For each Cj, it also picks a variable z; from C; uniformly at random. The
verifier then sends (Cy,...,C,) to Pi and (z1,...,2,) to Py. It receives an
assignment to the variables in (Cy,...,Cy) from P; and an assignment to
(1,...,2y) from P,, and accepts if these assignments are consistent and
satisfy C1 A --- A Cy. As above, the completeness of this proof system is 1,
and it can be shown [12] that the soundness is at most c};, where ¢, < 1 is
some constant depending on g but not on u or the size of the instance.

2.2 A more balanced setting

In this paper, we use a version of the u-parallel repetition of the basic 2P1R
protocol that was recently applied by Khot [10] to Hastad’s PCP for E3-
Sat [6]. It turns out that a problem in the analysis of the particular type of
PCP verifier that Hastad had in his PCP for NP with perfect completeness
and soundness 3/4—and that we have in our PCP in this paper—is that a
large set of satisfying assignments to the clauses (Cy,...,C,) from § 2.1 may
project down to a very small set of assignments to the variables (z1,...,zy).
Hastad solved this problem by making a very careful analysis of the PCP
verifier. Khot recently obtained a simpler analysis by a modification of the
basic 2P1R protocol from § 2.1.

The modified protocol is parameterized by both u and T. In this ver-
sion, the verifier selects at random a multiset W consisting of (T' + 1)u
clauses. It then selects at random a multiset of T" clauses and u variables
by selecting, uniformly at random from W, a multiset of u clauses and then
selecting, independently and uniformly at random, a variable from each of
those clauses.

Definition 2. Given a pu-gap E3-Sat(5) formula ¢, a (T, u)-block selected
from ¢ is a multiset of (T + 1)u clauses from ¢.

Definition 3. Given a (T,u)-block W, a random wu-projection of W is a
multiset formed by first selecting u clauses at random from W and then
replacing each of those clauses with a variable selected uniformly and inde-
pendently at random from the respective clause.

Having selected a (T, u)-block W uniformly at random and a random u-
projection U from W, the verifier sends W to the first prover and U to
the second prover. The verifier accepts if the assighments returned by the
provers agree and satisfy both U and W.



Lemma 1. The protocol described in this section has perfect completeness
and soundness c;, where ¢, < 1 is some constant depending on p but not
on u or the size of the instance.

Proof. For a satisfiable formula, the verifier always accepts if the two provers
answer according to the same satisfying assignment.

To prove that the verifier accepts unsatisfiable formulae with probability
at most cj;, we reduce from the protocol described in § 2.1. Tt is known [12]
that this protocol has soundness c;, where ¢, <1 is some constant depend-
ing on y but not on u or the size of the instance. Now suppose that there
exists provers ()1 and Qo for the protocol from this section such that the
verifier accepts an unsatisfiable formula with probability s > ¢j. Then the
provers P; and P, from the protocol described in § 2.1 can use 1 and Qo
to construct strategies that make the verifier in that protocol accept an
unsatisfiable formula with probability s.

Given a multiset of clauses (C1,...,Cy), P selects T more clauses uni-
formly at random. The thereby obtained (7', u)-block is sent to @; and
P; then returns the assignment to (C1,...,C,) obtained from Q. Given a
multiset of variables (z1,...,z,), P selects T more clauses uniformly at ran-
dom. The thereby obtained u-projection is sent to ()2 and P, then returns
the assignment to (z1,...,%,) obtained from Qs.

The answers sent back by P, and P, make the verifier accept with prob-
ability s. But this is a contradiction since s > ¢j;. .

2.3 The long d-code and the Fourier transform

Our PCP construction is used to simulate the 2P1R game from § 2.2. The
proof in our PCP should therefore contain answers to the queries for all
possible choices of the verifier in the 2P1R game. Since we want to use our
PCP construction to prove lower bounds for constraints over domain size d,
we use a variant of the standard long code.

Definition 4. Let V be a multiset of variables and clauses and denote by
SATV the set of assignments to the variables in V and the clauses in V that
satisfy all the clauses in V. The long d-code of some y € SATY is a function
Ayy: ZgATV — Z, defined by Ayy(g9) = g(y)-

Definition 5. A standard written d-proof with parameters u and T con-
tains for each multiset U containing u variables and T clauses a string of
length d2u7Tu, which we interpret as the table of a function Ay: ZEATU - G.
It also contains for each multiset W of (T + 1)u clauses a string of length
™V which we interpret as the table of a function Aw: ZEATW - G.

Definition 6. A standard written d-proof with parameters u and T is a
correct proof for a formula ¢ if there is an assignment x, satisfying ¢, such



that Ay is the long d-code of x|y for any multiset V' containing u variables
and Tu clauses and any multiset V' of (T + 1)u clauses.

The verifier in our PCP selects a random (7, u)-block W and then a random
u-projection U of W. It then queries the tables Ay and Ay in the standard
written d-proof at cleverly chosen positions. The analysis of the acceptance
predicate of the verifier needs certain facts regarding the Fourier transform
of the long d-code.

The Fourier series of a function from an Abelian group to C is a linear
combination of the characters of that group, i.e., homomorphisms from the
group to C. For a general treatment of this theory, we refer the reader to
Terras’s book [15]. Since we only work with powers of Z;, we use the follow-
ing conventions to simplify the framework: The group Z; is represented by
the powers of w = €2™/¢ with multiplication as the group operator and Zy,
the characters of that group, is represented by the integers {0,1,2,...,d—1}
with addition modulo d as the group operator. For g € Z; and v € Zd we
denote the action of v on g by ¢7 and this should be interpreted as normal
exponentiation. Similarly, for functions A taking values in Z; we write A
for the function z — (A(x))?.

Lemma 2. Lety € Z, be arbitrary. Then
1 1 ifyv=0
- Y — ’
d Z g { 0 otherwise.
9€Zy

Lemma 3. Let g € Z; be arbitrary. Then
d—1 .
Ly b da=1,
d = 0 otherwise.

The spaces of functions from SATY to Z; and from SATY to Z, can be
viewed as powers of Z; since we can identify a function with the table of its
values. We always use the shorthands

F= ZLSATU \, H= Z(\iSATW\

for given U and W. The dual groups F and H are then represented by
vectors that contain elements of Z; and are indexed by elements in SATY
and SATW, respectively, and given f € F, h € H, a € F, and 3 € H, we
define

fa — H (f(.’,C))a(I)a hﬂ = H (h(y))ﬁ(y)
TESATV yeSATW

We can then expand arbitrary functions A: F — Z; and B: H — Z; in their
respective Fourier series:

A(f) =Y Aaf*,  B(h)=>_ Bgh’,

ack BeH

7



where the Fourier coefficients are computed as

L1 w .1 s
Aa= i AN By= g S B,

feF heH

The Fourier coefficients satisfy Plancherel’s equality:
~ 1 1 ~
> 1Al = 7| S AP =1= ] S IBM®)? = |Bgl

ack JfeF heH BeH

2.3.1 Folding

As in many previous PCP constructions, we require the tables in the PCP to
be folded. The lemmas in this section were originally proved by Hastad [6],
we state them here for easy reference.

Definition 7. A function A from ZSATV to Zg4 is folded if A(gf) = gA(f)
for all g € Z; and it is y-homogeneous for v € Z, if A(gf) = g7 A(f).

In the above definition, gf is interpreted in the obvious way: it is the func-
tion defined by z — gf(x).

Lemma 4. If A: ZgATV — Zg is folded, A7 is y-homogeneous for every
S Z,.

Lemma 5. Suppose that the function A: ZgATV — Z, 1is y-homogeneous
for some v € Z; and let A, be the Fourier coefficients of that function at .
Then Aq = 0 unless v =3 cqapv a(T).

Now let W be a (T, u)-block and U be a u-projection of W. This u-projection
defines a projection function 7: SAT" — SATY. We define the projection
function 7g: H — F as follows: a = m4(8) if a(z) = Yyen1(z) Bly) for all
z € SATY.

Lemma 6. Let U, W, F, H and 7 be as above. Then, for any B € ﬁ,
(f om)B = fralB),

For a given 8 € H we define |8| = |{y € H : B(y) # 0}|. We also need the
projection 7(8) = {z € F : Iy € 7~ '(z)[B(y) # 0]}. Note that 7(8) is a

subset of F' while 74 is a function from H to F.

2.3.2 Projections

As we mentioned in § 2.2, the 2P1R for p-gap E3-Sat(5) was modified to
handle certain difficulties in the analysis of the PCP verifier we present
in this paper. In this section, we formalize the properties needed in the
analysis. The facts from this section are straightforward generalizations of
the corresponding definitions and lemmas from Khot’s paper [10].



Lemma 7. Let W be a (T, u)-block and consider two different assignments
v,y € SATV. Then

Pr[n(y) #7(y')] >1— %

where the probability is over the selection of a random wu-projection of W
and m s the projection induced by the u-projection of W.

Proof. Since y # 1, there is at least one variable that is assigned different
values by y and ¢'. If this clause is present in the u-projection—which
happens with probability T'/(T'+1) > 1—1/T—the projections are certainly
different. "

Corollary 1. Let W be a (T,u)-block and consider a B:SATY — Z,.
Then, with probability at least 1 — |B|/T over the choice of a random u-
projection U of W, it holds for an arbitrary y € SATY such that B(y) # 0
that there is no other y' such that B8(y') # 0 and ylv = ¥'|v-

Proof. Take an arbitrary y € SATY. By Lemma, 7, for any 3’ € SATV \{y},

Prr(y) = n(y')] <

where the probability is over the selection of a random wu-projection of W
and 7 is the projection induced by the u-projection of W. By the union
bound,

pl U ) =] <
y' €SATY \{y}
By)#0

where the probability is over the same probability space. "

Lemma 8. Let W be a (T, u)-block and 8 be a function from SATY to Zg.
Then

bl <3
l=(B)[1 — 18] T

where the probability is over the selection of a random wu-projection of W
and 7 is the projection induced by the u-projection of W.

Proof. Since every y € SATY projects down to at most one z € SATY,
18l= Y Hy€SATY :n(y) =z AB(y) # 0}}.
zem(f)
Now apply the Cauchy-Schwartz inequality to the above equation. Then,

67 = (3 1 Hy e SAT n(y) =2 A B(w) £ 0)])
zET(B)



<(X 2)( X Hyesar™in) —onsw) #0}?)

zen(B) z€(B)
=|w(B) > Hy € SATY :w(y) =z A B(y) # 0}
zen(B)
= |m(B)|Nx(B),
where N, (3) is the numbers of pairs (y1,72) € SATY x SATY such that
m(y1) = m(y2), By1) # 0 and B(y2) # 0. Hence,
1 NG
l=(B) — 181>
Now introduce for each pair (y1,72) € SAT"Y x SATY an indicator random
variable I(,, ..y that is one if 7(y1) = 7 (y2), B(y1) # 0 and B(y2) # 0. Then

1 1
E[|W(ﬂ)\]:W Z Z E[I(yl,yz)]

y1ESATY yoeSATW
By1)#0  B(y2)#0

|ﬁ|2 <|ﬁ|+ Z Z E[I(yl,yz)])

y1ESATYW yreSATW

B(y1)#0  B(y2)#0
Y17Y2

ST GRRD YD DR ()

y1 ESATW yoeSATW
B(y1)£0  B(y2)#0
Y17£Y2

1 1

<pelo+ £ % )
y1ESATW yoeSATW
B(y1)#0  B(y2)#0

Y1#Y2
— 1 1
L 1ol ol
18l | 18IT — Iﬁl
where the first inequality follows from Lemma 7. .

Corollary 2. Let W be a (T,u)-block and 3 be a function from SATW
to Zy. Then |n(B)| > 6 min{|B|, T} with probability 1 — 28, where the prob-
ability is over the selection of a random wu-projection of W and m is the
projection induced by the u-projection of W.

Proof. Apply Markov’s inequality to the conclusion of Lemma 8. "

2.4 Constructing strategies for the provers

The verifier in our PCP expects as proof encodings of the answers of the two
provers in the balanced version of the 2P1R game from § 2.2. Specifically,
the proof in our PCP consists of purported Long d-Codes of the assignments

10



to the variables in U and W for each possible choice (U, W) of the 2P1R
verifier. To prove that our PCP has a certain soundness, we use the Fourier
expansion of the purported long codes to extract probabilistic strategies for
the provers P; and P,. In particular, we express the acceptance probability
of the verifier in the 2P1R protocol as a sum of certain pairwise products
of Fourier coefficients and these products turn out to be large whenever the
PCP verifier accepts with large probability.

Lemma 9. Suppose that B: H — Zg, is yo-homogeneous for some s # 0
and known to the first prover in the 2P1R game once it has received a (T, u)-
block W, that A: F — Zj is vy1-homogeneous for some y1 # 0 and known to
the first prover in the 2P1R game once it has received a u-projection U of W
Let A, be the Fourier coefficients of A and Eﬁ be the Fourier coefficients
of B and let a < 8 mean that a(zx) #0 = z € n(B). If

B S 3 aPIBsPlol Y| 2 m,
BeH ack
a=p
where the probability is over the selection of a (T',u)-block W uniformly at
random, and a random u-projection U of W, there exists a strategy for the
provers in the balanced version of the 2P1R game from § 2.2 that makes the
verifier in that game accepts with probability at least 0.

Proof. The strategy is as follows: On receiving a multiset W of clauses, the
first prover computes the Fourier coefficients Eg selects a [ according to
probability distribution given by |ng|2 and then a y such that S(y) # 0
uniformly—by Lemma 5 such a y always exists—this y is returned to the
verifier.

On receiving a multiset U of clauses and variables, the second prover
computes the Fourier coefficients A, selects an o according to probability
distribution given by |A4|? and then an z such that a(z) # 0 uniformly— by
Lemma 5 such an x always exists—this z is returned to the verifier.

The assignment y always satisfies the clauses in W and it is guaranteed
to be consistent if @« < ( and the second prover happens to select a y
that projects onto the x selected by the first prover. Therefore, the success
probability of the above strategy is at least

E[Z > ALPIBs18] | = . .

BeH ack
azp

3 Our PCP construction

The PCP is shown in Fig. 1. The intuition behind the protocol is to take
a linearity test—which we know has soundness at most d~! + ¢ for any

11



The proof is a standard written d-proof with parameter u and T":

The verifier acts as follows:
1. Let W be a random (T, u)-block selected from &.
2. Let U be a random u-projection of W.
3. Let m: SAT" — SATV be the function that creates
an assignment in SATY from an assignment in SAT" .
4. Let F = 2" | and 7 = 257" |,
. Select f € F and h € H uniformly at random.
6. Select ey € H by selecting, independently for every y € SATW,
ef(y) such that:
~fr) #1 = ef(y) =1
f(r(y) =1 = (Prles(y) = 1] = 1— 6) A (Prles(y) = w] = o).
7. Accept if Ay (f)Aw (h)Aw (R~ (fom)tep) =1
or if Ay(f) =1 and Aw (h)Aw (A~ (fom) les) = w;
Reject otherwise.

ot

Figure 1. The above PCP is parameterized by the positive integers d, u
and T and the positive real § and tests if a p-gap E3-Sat(5) formula @ is
satisfiable by querying three positions in a Standard Written d-proof with
parameter u. With suitable choices of the parameters u, T' and § as functions
of £ and d, the above PCP has perfect completeness and soundness d~* +
d™?% 4 ¢ for any constant € > 0.

constant € > 0 and near-perfect completeness—and modify it a slightly in
such a way that we get at test with perfect completeness which is still close
enough to a linearity test to have soundness d ! 4+ d~2 + ¢ for any constant
€ > 0. The following lemma is immediate:

Lemma 10. The PCP in Fig. 1 has perfect completeness.

To analyze the soundness of the protocol we follow the standard approach.
We estimate the acceptance probability of the verifier using Fourier analysis
and prove that if the acceptance probability is large there must exist pairs of
correlated coefficients whose product is large. We then use these products to
devise a strategy for the provers in the balanced version of the 2P1R game
from § 2.2.

By Lemma 3, the expression d—! iiy;%) g7 is an indicator for the event
g = 1 when g assumes values in Z;. Hence, the test accepts with probability
E[I; + I3] where

L = %le(AU(f)AW(h)AW(hl(f °m) lep))
v=0
d—1 d-1
=32 (40)") (5 X (Awmawn (7 omepw)").
v=0 =0

12



This expression can be rewritten as d ! +d 2 + E[L + Q + C; + Cs] where

1d—1
L==3(Au(H), (1)
d =
1 & -1 -1 -1\7
Q== (AwmAw (' (fom)Tepw) (2)
y=1
d—1
€1 = 3 3 (Au (D Aw B Aw (7 (F o) tep) . (3
y=1
C—ld_ld_lA " (Aw (h) Aw (b “lepw ). (4
2_@12_1722_1( v(D)" (Awm)Aw (b (Fom) lepw™) . (4)

We now prove that L and @) have small magnitude and then prove that most
of the terms in Cj and C5 also have small magnitude. Finally, we prove that
the remaining terms can be used to extract a strategy for the provers in the
balanced version of the 2P1R game from § 2.2.

Lemma 11. E[L] =0
Proof. The tables in the proof are folded. .

Let us now analyze E[Q)]:

BlQ] =B dz_:iw-vE[mW(h)Aww—%f om) e [, ] .

Our aim is to show that the inner expectation

Qy = E[(Aw (W Aw (b1 (f om) ep))” | U, W] (5)

always has small magnitude, regardless of . To this end, we expand it in a
Fourier series:

@ =E[ T 5 BaBahh ' (fom) e | v,]
B1€H B2€H
Y S Bu By Bl £ | U WIERS R | U,
B1€H B2€H

where By is the Fourier coefficient of A at 3. Since E[RP1=F2 | U, W] unless
(1 = P2 by Lemma 2, the above expression can be simplified to

Q=Y BiE[]f ™ | Uw).
BeH

Let us now compute

Blef 4 | U, W) = B[ [Tes () (7 ()~

U, W]

13



I E[ I (s @)

zem(B)  Tyer—H(z)

Consider the factor corresponding to a fixed = in the above product. Since
ef(y) depends on f(x) we have to condition on f(z):

Bl I (er)s @)
yer—1(z)
1 d—1

=23 B I (s @)

t=0  “yer~1(z)

flo) =o',

If f(z) # 1, ef(y) is always 1, otherwise es(y) is selected according to a
biased distribution on {1,w}. Hence

B T (ert)f )"

yen—'(z)

_1 H (1—6+wP®s) + éi H W)

yer—1(z) =1 yer—1(z)

Recall the notation 74(8)(z) = Yger—1(y) Bly) mod d. If m4(B)(z) # 0, the
last sum above is —1; otherwise it is d — 1. If we define

1
E( [ a-o6+uf >5)+d—1), (6)
yer~1(z)
1
E( H (1—6+uf y>5)—1) (7)
yen1(x)
we can write
2
Q=S8 1w T1 b
BeH zen(B) zen(B)
mq(8)(x)=0 mq(B8)(x)#0
< (Z |Bﬁ\2> (Z 1Bs> I lesal” ]I |bﬁ,x|2)
BeH BeH zem(B) zem(B)
ma(B)(z)=0 ma(8)(x)#0
=Y 1Bs” I lagel® JI Ibgel
BeH zem(B) zem(B)
mq(8)(x)=0 ma(B)(x)#0

where the inequality is the Cauchy-Schwartz inequality and the last equality
follows from Plancherel’s equality.

Lemma 12. For any integer b # 0 mod d and any real § € [0,1], |1 — 0 +
wP8|? < 1—4dd 2 and, consequently, |1 — & +w®5| < 1—d6d2/2.

14



Proof. Since w = e2™/4

|1 —6+wbd|? < |1 -6+ wd|?
= (1 — 6(1 — cos(27/d)))?* + 6% sin’ (27 /d)
=1—2(6 — 6%)(1 — cos(27/d)).

For d € {2,3,4} this expression is at most 1 — 26(1 — ) < 1 — ¢ while for
larger d it is at most

1—2(6 — 6*)(2r?d™2 — 2n%d™/3) <1 —27%d726(1 — 6) < 1 —dd 2.

The conclusion of the lemma now follows since (1 —n)'/2 < e 72 <1—75/2
for all n € [0,1]. .

Using separate arguments for terms where || = |{y € H : 8(y) # 0}| is
large and terms where || is small, we now bound the factor multiplying
|B€g|2 by 26. This is the first place where we use the new construction due
to Khot [10] mentioned in § 2.2: For the case when |3| is small, we use
Corollary 1 and when |g| is large, we use Corollary 2.

Lemma 13. Let Q. be defined as in equation (5) and let v € Zg \ {0} and
§ € (0,1) be arbitrary. Then E[|Q|%] < 28 provided that T > 6 2d*Iné L.

Proof. By the above reasoning, we have established that

> BPE| I lasal I |bﬂ,z|2\wﬂ ®

BeH zen(B) zen(P)
ma(B)(x)=0 ma(B)(x)#0

We now bound the inner expectation above separately for every 8 and then
use Plancherel’s equality to bound the entire sum.

Suppose that || < 6T and Bﬂ # 0. It follows by Lemma 5, that Bﬂ =0
if B(y) = 0 for all y; hence there exists some y such that 8(y) # 0. By
Corollary 1, with probability at least 1 — |3|/T > 1 — ¢ over the choice of
U there is no other 3’ such that y|y = ¢'|y. Given that this event happens,
the factor corresponding to z = y|y in the product has magnitude

1—04+wfWs—1] 61 —wfW)| 26
P =Te  C&

Since the other factors have at most unit magnitude, the magnitude of
the inner expectation is bounded by 206d 2 when |3| < 6T. Given that
|7~ (x)| # 1, which happens with probability at most §, the entire product
has at most unit magnitude. Therefore, the factor multiplying |Bgs|? in (8)
is at most (1 —§) -26d=2 + -1 < 36/2 when |8| < 7.

Next, we consider the case when |G| > 0T. Since |ag ;| > |bg 4|, we can
upper bound the product inside the inner expectation in (8) by |a5,z|2‘”(ﬁ)‘ <

EBllQ,"]<E

15



(1 —6d3/2)%mB). By Corollary 2, |7(8)| > 6T = 6 'd®*Ind ! with proba-
bility at least 1 — 24 over the choice of U. When this holds,

(1—6d3/2)2" BN < e=0d=In(B)] = g,

When |7(8)| fails to be large, which happens with probability at most 24,
the product has at most unit magnitude. Therefore, the factor multiplying
|Bs|? in (8) is at most (1 —20) -6 4 -1 < 26 when |8| > T

To conclude, the term corresponding to an arbitrary £ in (8) has mag-
nitude at most 26/Bg|?, hence

B[, 7] < 25E[Z |B[,\2] — 25, .

BeH

Corollary 3. Let Q) be defined as in equation (2) and § € (0,1) be arbitrary.
Then |E[Q]|? < & provided that T > 6 2d®Iné 1.

Proof. Since E[Q] = E[d~2 Z’i;% w~7Q,], and the function z — |z|? is con-
vex, it follows from Jensen’s inequality that

1 d—1

1S e < 1S g,
d—1 R e 7 = 7

y=1

(d—1)°

[FlQIP =

d—1%2 25(d — 1)2
< 2Bl <=
=1

where the last inequality follows from Lemma 13 and the first two inequali-
ties follow from Jensen’s inequality. "

Let us now look at the terms of degree three, i.e., the expectations (3)
and (4). They can be written as

a1 ] 41 a1
E[C4] = E[a Z C’y,’y:|7 E[C] = E[ﬁ Z Z wwc"nm)]
y=1

y1=172=1

where

Cous = B[(Au () (Aw (h) Aw (b7 (f 0 ) Veg))™

U, W]. (9)

To prove that E[C}] and E[C5] have small magnitude, it is enough to bound
|C1 70| for arbitrary 1,72 # 0. To this end, we expand C,, ,, in a Fourier
series:

071’72 = Z Z Aaég E[e’?faiwd(ﬂ) | U, W]
acF ﬂef[

where A, is the Fourier coefficient of A'(y]1 at « and Bﬁ is the Fourier coeffi-
cient of AJj, at 8. Since e 7 and f are dependent, we cannot simply discard all

16



terms where « # 74(3). However, we can use Lemma 2 to discard terms for
which there exists an x such that a(z) # 0 but 8(y) = 0 for all y € 7~ !(z).
Recall that a < 8 denotes precisely that this does not hold. Thus

Copn = O > ABEE[] fo™®) U w).
Bel 2_6515
Let us now compute
E[e?fa—wd(ﬂ) |\ U,W] = H E[(f(x))“(‘”) H (ef(y)f—l(x))ﬂ(y) .
zew(P) yer—1(z)

We consider each factor separately. The factor corresponding to an arbi-
trary  can be written

B|(f@)*@ I () ())

yer—1(x)
1 1 d—1
== J] 1-0+u®5)+=3 wle@® ] w0
d yen—1(z) d t=1 yen—1(z)
1 1 d—1
== I -6+°Ws)+ >3 Hel@-mal@)e),
d yer—1(z) d t=1

where 74(f) is defined as above. If a(z) # 74(8)(z), the second term eval-
uates to —d~!; otherwise it evaluates to (d — 1)/d. Therefore,

Cyys = Z Z Aaégp(a,ﬁ) (10)
pein i
where
p(a,ﬁ) = H ag.x H bﬂ,x (11)
zem(B) zem(B)

o(z)=mnq(B)(z) a(z)#mq(B)(w)

and ag , and bg , are defined in equations (6) and (7) above. We now proceed
to bound the terms corresponding to terms with |3| > T'.

Lemma 14. For any 8 € H,
Yol = I (apal®+ (d—1)bsel?),

g%lg zen(B)
where ag g, bg o and p(a, B) are defined in equations (6), (7) and (11).
Proof. There are dI™®) different o such that « < 3. Of those, exactly one

a, namely a = my(B) gives a product with only factors of type a. More
generally, let A C () be the set of z such that a(z) = 74(8)(z). Then

17



there are (d— 1) O\l different o such that o and 74(3) agree exactly on A
and for all those «,

|p a ﬁ H ‘O'/J’ :c|2 H ‘bﬁ,w|2'

T€EA zem(B)\A
Hence,
> @B’ = Y (@-1) "M ] jagal* [ Ibpel’
ack ACm(B) zeA zem(B)\A
azB
= [I (apel®+(d=1)|bsal). .
zem(B)

Lemma 15. For all integers d > 2,
)

Z p(a AP < (1 B _)IW(ﬂ)I

acF
a=p

Proof. By Lemma 14,
>, B < [ (agal* +(d—1)lbgl?).

ack zém(B)

We now bound each factor in the above product using the observation that

lagz|” + (d—1)|bgz|* = (age + (d— 1)bgz)(asz + (d — 1)bgz)"
— (d—1)(ap,zb} » + af 1bsz) — (d —1)(d — 2)bg 2|, (12)

where z* denotes the complex conjugate of z. Using the definitions of ag
and bg , together with the shorthand

cge= ] (1-6+w’¥5)
yer1(@)

and the notation R{z} for the real part of z, we now expand each of the
expressions in the right-hand side of (12):

agz + (d—1)bg s = caq,

(ape + (d = Dbga)(aga + (d— 1bsa)* = legal?,

ag b, = d2(lepal® + (d = 1)ep e — ¢ — (d— 1)),

ag.abf 5 + af bpe = 2d7*(|cael” + (d — 2)R{c .} — (d — 1)),

18



|bﬂ,w|2 = d_2(|cﬂ,z|2 +2R{cg .} + 1),
Hence ag gbf , + af ybpo + (d — 2)|bpz|* = d7[cpo|* —d! and

d—1 1—|egql?
05+ (d = Dlbgal? = legal? = T2 (el 1) =1 - =122l
By Lemma 12,
lesel>= J[ 11-6+wP®sP < (1-6d72)" '@ <1642
yer—1(z)

and we can therefore bound each |ag ;|?+(d—1)|bg . |* from above by 1—5d~3.
Since there are |7(3)| factors in the product, the proof is complete. .

As before, the terms in the Fourier series are bounded in separate ways
depending on the size of |3|. We first prove that the sum of all terms
corresponding to large || must have a magnitude that is upper bounded by
an expression linear in 6'/2. Intuitively, this follows since p(c, §) has small
magnitude with very high probability when |3| is large. Here we, again,
use Corollary 2 from § 2.2. We then prove that the terms corresponding to
small | 3| must also have a magnitude that is upper bounded by an expression
linear in §1/2, or else there exists a strategy for the provers in the 2P1R game
from § 2.2 that makes the verifier accept with probability larger than cjj.

Lemma 16. Let C,, ,, be defined as in equation (9) and let y1,v2 € Z,\{0}
be arbitrary. Then, provided that T > §2d®>Iné !,

2

|C’71,’Yz|2 < 2‘E[ Z Z A"‘B%p(aaﬁ)] + 64,
Eﬁ acF
i<r a8

where A, is the Fourier coefficient of Al at a and Bﬁ is the Fourier coef-
ficient of A} at (3.

Proof. By equation (10),

2

Compl> 1 N
ool _ Le[ Y 5~ AuBipten )]
ﬂeﬁ?él;
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2 2

<B| Y X Abipan) + B[ X T Abipla.n)
i a€F i a€F
IgIGST azf \gfﬂ axp

where the inequality follows from Jensen’s inequality. We now bound the
latter sum above. By the Cauchy-Schwartz inequality and Parseval’s in-
equality applied to Bg,

DIDIFN: NG

‘ 2

fErass
< (X X AaPiB?) (X X 1Bl ple o))
Brash Frash
< > 1B 3 (e AP,
e
hence
2
‘E[z S AuBiples8)]| <B| T 1B B[S lote, 5 WH
ez i

Consider the expression multiplying |Bg|?. Since |8] > T > 6 2d*Ind~",
Corollary 2 implies that |7(8)| > 6~ 'd® In6~! with probability at least 1—24
over the choice of U. When this holds,

= (B)]
ShesPs(1-5) " <o m (@) <o
acl
a=p

In the other case, when |7(3)| fails to be large,

> Ip(a, B))* < 1.

acF
axp

To conclude,

B[ Y [p(a,0)P

acF
axp

W] <(1-26)-6+26-1<35

and hence

i

2

S Y AuB2p(a, ) 33513[2 |Bg|2].

BeH €l BeH
B> @28 BI>T

20



Since the latter expectation is at most 1 due to Plancherel’s equality, the
conclusion of the lemma follows. .

Lemma 17. Let C,, ., be defined as in equation (9) and let y1,v2 € Zy\
{0} and & € (0,1) be arbitrary. Then E[|C, ,|?] < 85 provided that T >
572 In 67! and u > (logé~! +log T + Tlogd)/ log c;l.

Proof. By Lemma 16,
2
+ 60,

|C’Yl,’72|2 < 2‘E|: Z Z Aaégp(a,ﬂ)]
e[—} a€cF
pi<r @<
where A, is the Fourier coefficient of A?} at « and Bﬁ is the Fourier coeffi-
cient of AJ} at 8. Now suppose that |Cyy 7|2 > 85. Then

2
0 <

E[ S Y AaB2p(a, B)
Ef] aEF -
|%3T“5ﬂ

<E ‘ > > AuBp(a,B) 2}

L' BeH o€l
Bl<r 2P

<p|(T T a5 (T X IBMle(“’B"Q)]

L “geH o€l geH a€l
ipl<T @28 < @28

<ul( X X a15:) (¢ 5 1)
- peH o€k €l
si<razs Bi<r

SdTE{ D> |Aa|2|Bﬂ|2]

BeH a€F
|8i<T @20

<Td"E[ 3 ¥ [AaPIBsI6

BeH o€l
/<1 @0

<Td" B[S ¥ 1AaPIBsP18l
ﬂeﬁggl;

We can now apply Lemma 9 with n = 67 'd~7T to see that there exists
a strategy for the provers in the balanced version of the 2P1R game from
§ 2.2 with success rate . Note that the functions A]} and AJ} are known
to the provers in that game since the provers can simply try all possible
combinations of 1, 2, Ay, and Ay and select the combination that gives
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the largest expectation. But since w has been selected in such a way that
¢l < n, we obtain a contradiction, and hence |C,, ,,[* < 8. .

Corollary 4. Let C; and Cy be defined as in equations (3)—(4) and 6 €
(0,1) be arbitrary. Then |E[C1]]? < 8(d — 1)§ and |E[C2]|? < 85 provided
that T > 6 2d*Iné~"! and u > (log 6! + log T + T'logd)/log c;l.

Proof. By the definitions of C; and Cj from equations (3)—(4) it follows
that

(d—1)°

1 d—1 2 (d _ 1) d—1
|E[C1]* = 2 |1-1 > ElC,]
y=1

< P Z |E[Cy )17

=1

(d—
d2

(d—1)°

1) 42 86
<Dy me,,py < 2
y=1

and similarly that

d—1)2 &l 86(d —1)*
( d4 Z Z E[|C’YI:’72|2] S T -

71=172=1
Hence | E[C1]? < 8 and | E[Cy]|? < 84. .

|E[C][* <

Putting the pieces together, it turns out that if we first select ¢ as a function
of ¢, then select T" as a function of € and ¢ and finally select u as a function
of £, § and T, we can prove that all the terms above sum up to something
having magnitude strictly less than € under the assumption that the verifier
in the PCP accepts with probability d=! +d =2 + €.

Lemma 18. For any integer d > 2 and any constant € > 0, there are
choices of the parameters §, T and u such that the verifier in Fig. 1 with
these parameter choices has soundness at most d—* +d 2 + €.

Proof. Given ¢, first select § < £2/52 and then select T > § 2d®Ind ! and
u > (log 6 +log T+Tlogd)/ log cljl. Now suppose that the verifier in Fig. 1
with these parameter choices accepts an incorrect input with probability
d ' +d?+¢e. Then

e = E[L] + E[Q] + E[Ch] + E[C5] = E[@Q] + E[C1] + E[C2],

where L, @, C1, and Cs are defined as in (1)—(4) and the last equality follows
since E[L] = 0 by Lemma 11. Jensen’s inequality now implies that

e’ < 3|E[Q] + 3| E[C1]” + 3| E[C2]”

Since | E[Q]|?> < § by Corollary 3 and | E[C1]|? + | E[Cs]|? < 166 by Corol-
lary 4, we obtain a contradiction. .

Combing Lemma 10 and Lemma 18, we get Theorem 2.
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The proof is a standard written d-proof with parameter w.

The verifier acts as follows:
Steps 1-6 are as in Fig. 1.
7. Select e,y € H by selecting, independently for every y € SATW,
ewy(y) such that:
—wf(r(y) #1 = eur(y) = 1;
~wf(r(y) =1 = (Prles(y) = 1 =1 8) A (Prless(y) = ] = 8).
8. If Ay(f) # 1, accept if Ay (f)Aw (h)Aw (R (f o) tey) = 1;
If Ay(f) =1, accept if Ay (h)Aw (A~ H(w ™ fom) e —1f) = w;
Reject otherwise.

Figure 2. The above PCP is parameterized by the positive integers d,
u and T and the positive real § and tests if a p-gap E3-Sat(5) formula &
is satisfiable by adaptively querying three positions in a Standard Written
d-proof with parameter u. With suitable choices of the parameters u, T
and § as functions of € and d, the above PCP has perfect completeness and
soundness d~* + ¢ for any constant € > 0.

4 The adaptive PCP

In this section we give an adaptive version of the PCP construction in the
previous section. The PCP is shown in Figure 2. The verifier proceeds as in
the non-adaptive case when the first queried value, Ay (f), is not 1. When
Ay (f) = 1, the verifier essentially makes the same test as it would have if
w1 f would have taken the place of f. Since Ay (w ! f) # 1, the verifier may
thus accept for only one value of Ay (-)Aw (+), as in the case Ay (f) # 1. Due
to folding, Ay(w 'f) = w 'Ay(f), so the test can be performed without
reading any extra values. Again we have perfect completeness:

Lemma 19. The PCP in Fig. 2 has perfect completeness.

Turning to the soundness, we note that the acceptance probability of the
verifier can be written as E[I; + I3] where

(1_1‘§<AU n))

d—1
* (3 2 (v Aw W) Aw (7 (7 om) ep) )

y=0

and

I = (% (E(AU(f))v)

=0




d—1

- (A3 (wavwn)")

s ,
(g D eromTen)'),

where the second equality follows since Ay (w™f) = w™ 1Ay (f). Since f is
selected uniformly at random in the protocol,

B[ (Aw (W Aw(h™ (Fom) e)) '] = B[ (Aw(h wf om) T eumr)) ]

and therefore E[I1 + Is] = d~! — E[L] — E[Q] + E[C1] — E[Cs] + E[L'] + E[Q'] +
E[C'], where L, ), C; and C5 are defined as in (1)—(4) and

s

df
Q = di Z ( W(}fl(f o w)*lef)ufl)v,
y=1
o d—1 d-1 ~ " . 1 _1\ 2
C'=g X 2o (40() " (Aw (w07 (f om)tepu™)
Y1=17v2=1

From the previous section, we already know how to bound all these terms.

Lemma 20. Let § € (0,1) be arbitrary and suppose that T > §—2d*Ind~!
and u > (logd~! 4 log T + T'logd)/logc,*. Then E[L'] =0, |E[Q']]* < 4,
and |E[C"]|? < 8§

Proof. E[L'] = 0 since the tables in the proof are folded. The two inequali-
ties follow from Lemmas 13 and 17 in the same way as Corollaries 3 and 4.

To prove that the adaptive protocol has soundness d~! + ¢ for any constant
e > 0 is now straightforward.

Lemma 21. For any integer d > 2 and any constant € > 0, there are
choices of the parameters §, T and u such that the verifier in Fig. 2 with
these parameter choices has soundness at most d~' + ¢.

Proof. Given ¢, first select § < £2/131 and then select 7 > 6~2d*Ind~! and
u > (log 6~ +log T+Tlog d)/ log c;l. Now suppose that the verifier in Fig. 1
with these parameter choices accepts an incorrect input with probability
d'4+d?+¢. Then

e = —E[L] - E[Q] + E[C1] — E[Co] + E[L] + E[Q] + E[C"]
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— —E[Q] + E[C1] — E[Cy] + E[Q"] + E[C"],

where L, @, Ci, and Cy are defined as in (1)-(4), Q" and C' are defined
above, and the last equality follows since E[L] = E[L'] = 0 by Lemma 11.
Hence Jensen’s inequality implies that

e? < 5| E[Q]]” + 5| E[C1]* + 5| E[C2]|” + 5| E[Q']] + 5| B[C"]”.

Since | E[Q]|? < d by Corollary 3, | E[C1]|? + | E[Cs]|? < 16§ and |E[Q']|? +
| E[C']|? < 9§ by Lemma 20, we obtain a contradiction. .

Combing Lemma 19 and Lemma 21, we get Theorem 2.

5 Conclusions and open problems

We have established that there exists, for every constant € > 0, a non-
adaptive PCP for NP that reads three values from a domain of size d,
has perfect completeness and soundness d ! + d 2 + e. Moreover, we have
presented an adaptive version of that PCP where the soundness is improved
to d~'+e. As mentioned in the introduction, for d > 2 it is currently an open
question whether these results are optimal. However, improvements would
probably require new techniques for constructing PCPs. We believe that a
search for better approximation algorithms for 3-ary constraint satisfaction
over domains of size d could be very fruitful. In particular, an algorithm with
approximation ratio better than d ' + d 2 for satisfiable instances would
prove that adaptive verifiers are strictly more powerful than non-adaptive
ones also for non-Boolean PCPs.
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