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A Polynomial Time Approximation Scheme

for Metric MIN-BISECTION

W. Fernandez de la Vega* Marek Karpinski' Claire Kenyon?

Abstract

We design a polynomial time approzimation scheme (PTAS) for the problem of
Metric MIN-BISECTION of dividing a given finite metric space into two halves so as
to minimize the sum of distances across that partition. The method of solution depends
on a new metric placement partitioning method which could be also of independent
interest.

1 Introduction

The MIN-BISECTION problem of dividing a given graph into two equal halves so as to
minimize the number of edges or the sum of their weights across the partition belongs to the
most intriguing problems now in the area of combinatorial optimization. The reason is that
we do not know at the moment how to deal with the minimization global conditions like
partitioning the sets of vertices into halves. The MIN-BISECTION problem arises naturally
in several contexts ranging from combinatorial optimization to computational geometry and
statistical physics [H97]. At the moment we do not have any approximation hardness result
for MIN-BISECTION cf. [BKO1], thus we cannot exclude a possibility of existence of a PTAS
for that problem. On other hand the best known approximation factor for that problem is
only O(log®n) [FK00].
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Here we consider the metric version of that problem: we consider a finite set V' of points
which we call vertices together with a metric d(.,.) on V and we ask for a partition of V into
two equal parts such that the sum of the distances from the points of one part to the points
in the other is minimized. It is easy to see that the metric MIN-BISECTIOM is NP-hard
in exact setting even if restricted to weights 1 and 2. In this paper we prove somewhat

surprisingly that the general metric MIN-BISECTION possesses a PTAS.

We draw on two lines of research to develop our algorithm: One is by now the well known
methods of so-called exhaustive sampling for additive approximation for optimization prob-
lems such as MAX-CUT [AKK95], [F96], [GGR96], [FK96], [FK97], [AFKKO01]. The second
one connects previous papers on approximate algorithms for metric problems and weighted
dense problems [FKO01] and [FVKO00].

We describe now some of the new ideas which we used especially in contrast to [FK01]. The
main problem was the problem of sampling. Just as in [FKO1] uniform sampling does not
work, and we need to sample by picking each vertex with a probability proportional to the
sum of its distances to the other vertices. This was circumvented in [FKO01] by dividing each
vertex into an appropriate number of “clones” and doing standard sampling on the set of
clones. Then one could conclude easily from the fact that the clones of each fixed vertex go
together in a maximum cut. This does not hold anymore for MIN-BISECTION (and also
MAX-BISECTION) where we cannot use this cloning procedure. We circumvent this by
guessing the placement of the outliers.

We display first the NP-hardness of metric MIN-BISECTION in exact setting.
Proposition 1. Metric MIN-BISECTION s NP-hard in exact selting.

Proof: We use the fact that metric MAX-CUT and, in fact, metric MAX-BISECTION
problems are both NP-hard, even if restricted to the weights 1 and 2. (cf. [FKO01], Theorem 1
). We reduce from MAX-CUT following the reduction of [FK01]. Let OPT be the optimum of
a MAX-CUT instance GG of size n and OPT’ be the optimum of a MAX-BISECTION instance
H of size 2n to which G has been reduced. We have OPT'=20PT+nr?%. We construct now
a complementary weighted graph H’ by assigning weight 1 to all edges of H with weight 2,
and weight 2 elsewhere. Let OPT” be the optimum of a metric MIN-BISECTION instance
of H'. We have

OPT" = 2((n/2)2 — OPT) + n?
2
_ % — 20PT + n?
2
_ 3% _ 20PT.

Thus the exact computation of an optimum for metric MIN-BISECTION instances with
weight 1 and 2 is NP-hard.

2 Organization of the paper

The rest of the paper is organized as follows.



In Section 3, we formulate some metric lemmas which we need later. In Section 4, we give
an algorithm for the Fuclidean case and the analysis of its correctness. Finally, in Section

5, we construct a PTAS for the general metric MIN-BISECTION problem.

3 Preliminary results

Given a finite metric (V, d), we define

W, = Z d(z,y)

yeV

for each z € V, and

W:wa.

z€V
Thus, W is twice the sum of all distances in V.

We define also for U C V,
WU = Z Wy .

velU
First, a couple of metric lemmas.
Lemma 1 1
W, w
d < v u
(U’ U) — W
Proof: See [FKO1].
|
Lemma 2
Yu mvaxd(u,v) <W/n
Proof: See [FKO01].
|

The following lemma is crucial here. It shows that it suffices to obtain an additive approxi-

mation (within ¢WW) to get a PTAS for metric MIN-BISECTION.
Lemma 3 In the metric case, the optimal value of MIN-BISECTION satisfies OPT > W/5.

Proof: Let X = LUR be the optimal min bisection, of value OPT. Let W = Y5, x d(z,y),
Wi =>rxrd(z,y), and Wr = Y gyrd(z,y). Take 2 points z; and z, at random uniformly
with replacement from I and 2 points x5 and x4 at random uniformly with replacement
from R, and conside r the 6 edges of their induced subgraph. Then the contribution to the
bisection is a = d(x1, x3) + d(x1, 74) + d(x2, 3) + d(22, 24), with expectation 40PT/(n*/4),



and the contribution to Wi, +Wg is d(x1, x2)+d(x3, x4), with expectation (W, +Wg)/(n?/4),

and satisfies:

d(:ﬁ , ;vg) < d(:ﬁ \ ;vg) + d(:vg, ;vg)

d(zy,29) < d(z1,24) + d(24,22)

d(zs,ra) < d(zs, 1) + d(z1,24)

d(zs,xs) < d(zs,x2) + d(xg, 24)
d(zy,29) + d(z3,24) < a

Hence Wi, + Wr < 40PT, and so W < 50PT.

4 A Fixed Dimension Case

In the Euclidean case, when the dimension of the underlying space is fixed, a PTAS for MIN-
BISECTION can be easily obtained. Here, we describe the PTAS for MIN-BISECTION in
the plane. The cases of higher but fixed dimension are completely similar (replacing polar
coordinates by spherical coordinates).

4.1 The Algorithm
The algorithm is the following.

Input: A set V of n points in the Euclidean plane.

1. Scale the problem so that the average interpoint distance is equal to 1.
2. Compute g = 3 ¢y x/n, the center of gravity of V.
3. If (d(z,g),0(x)) denote the polar coordinates of = w.r. to g, define the domains

D k:{xeRa. (14 )~ <d(z,g) < e(1+¢) and }

kre < 0(z) < (k+ 1)me
where r > 1 and 0 < k < 27/e. Let

Dy ={z € R?: d(z,9) < ¢}.

4. Construct a point (multi)set V’ obtained by replacing each element of V' N D, ;. by y, x,
the point with polar coordinates d(y,x,g) = ¢(1 + ¢)"~" and (y, ) = kme. Hence y,
has multiplicity m, ; equal to the number of points in VN D, ;. Moreover, each element
of V' N Dy is replaced by g.



5. Let s =1+ 10g1+6(n/26). Let w,  denote the weighted distance from y, ; to X"

Wy = Z Z mj,ld(yr,kayj,é)-

0<j<2r/e 0<L<s

Note that a partition (L, X'\ L) of X’ is defined by the set of pairs of integers (p, x, ¢, k)
with ¢, = m,, — p, 1) where for each 0 < k < 2m/e and 0 < r < s, p, 1, denotes the
number of points in D, which belong to L. We do exhaustive search on all the
bisections corresponding to p,x with 0 < p.p < m,p when m,; < 1/62, and with
prk € {Jl¥m,p] 10 < 5 <1/ — 1}, for m,, > 1/€*. We output the best bisection
found.

Note that there are O(logn) domains D, ;. Thus the exhaustive search tests at most
(1/€2)Clesn) = pO(log(1/9) distinct bisections.

4.2 Analysis of Correctness

Let us analyse the effect of the restrictions of the sizes of the possible intersections of each
domain with each side of the cut.

Let J denote the set of admissible pairs (r, k). Given an optimum bisection

OPT=(p,t, Myt — Pri)r<sh<n/e of V', we are guaranteed that our exhaustive search

tests a bisection OPT'=(p] ., /. 1 )r<sk<rse With |ply — prr| < €¥m, . Denote by @ the set of
pairs (r, k) for which the inequality em,; < p.x < (1 — €)m,; is satisfied. Clearly, the y,
for (r,k) ¢ @ contribute at most eW to the bisection. We have thus,

Val(OPT') — Val(OPT) < > > (pfn7kq;7g — pr,kqs,g) d(Yr ks Ys1) + W
(rk)eQ (s,£)€Q

For (T,k) € Qa (S,f) € Q we have |p:n7k - pr,k| S €Pr ky |q;,l - QS,I| S €qs,1, and so

Val(OPT') = Val(OPT) < 37 3 (14 €2 prstss — Pratise) d(rs ysi) + W

(rk)€Q (s,0)EQ
< (L43¢) D0 D0 prwtsed(Yr, yst) + €W
(rk)€Q (s,0)EQ
< (1 +43¢)OPT + eW
< (1+8¢)OPT,

the last because we know that OPT > W/5 by Lemma 3. The proof that the preliminary
grouping of the vertices does not change the value of the optimum bisection by more than
O(eW) is similar to the proof given in [FKO01] and is omitted. Thus we have a PTAS for
MIN-BISECTION on the Euclidean plane.

5 A PTAS for the General Metric MIN-BISECTION

In this section we design and analyse a PTAS for the general metric MIN-BISECTION. Our
algorithm builds on a sequence of papers [AKK95], [F96], [GGR96], [FVK00], and [FKO01],
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and introduces a novel technique which combines biased metric sampling with some new
hybrid placement and partitioning method.

Definition 1 Consider a partition (L, R) of V. A multiset T of vertices with multiplicities
p(w), w € V is called (4, €)-representative with respect to P, if for every vertex v except
perhaps for a subsel of exceptional vertices of weight alt most 0W, we have

WD(V,t)
Z ,u Z d(u,v)| < ew,,
|T| ueTN, Wy uel
and
WD(V,t)
Z ,u Z d(u,v)| < ew,.
|T| ue€TNR Wy u€R

A wvertex which is not exceptional is called normal.

Our PTAS for metric MIN-BISECTION will make essential use of the following lemma.

Lemma 4 Lel t be any fixed integer > 1. Let U CV, Wy = 3 ey wu. Let T be a random
sample obtained by picking independently with replacement t points u; € U with the probability
distribution defined by Pr(u; = u) = w, /W VYu € U. (Thus our sample may be a mulli-set.)
Let p(u) be the multiplicity of w in T. Let v € V, and D(v,T) = ¥ erarr %iv’u). Then

Wir

WD(v,T)
pr [T i 1)

- Z d(U’ u)

uelU

< ewv) <

Proof: We have: .
=>Y,
=1

where the Y; are pairwise independent and each distributed as Y; with

d(v,u) _wy
and W
Pr(Yy=0)=1- e

We have clearly that ED(v, T) = =d(v,U), and

Var(D(v,T)) < 1) % (d("a“>)2

wel Wy,
< 2 d(v,u)?
N W uel Wy,
t
< — > wiw,
W3 wel ’



the last by using Lemma 1. Since }°, ¢y w, = Wy, this gives

twﬁ Wu

Var(D(v,T)) < e

and

WD(v,T) wAWy
< 2 .
Var( ! )— Wi

Observing that E (MDtQ) = Y uev d(v, u), the assertion of the lemma follows by Cheby-
shev’s inequality.

|
Let us choose ¢t = 20/¢° so that the probability in 1 is at most €*/20, implying that the
expectation of the number of vertices for which at least one of the inequalities in definition
1 does not hold is at most ¢*n/10. This implies in turn that the expectation of the weights
of the corresponding vertices does not exceed ¢*W/10. Thus, using Markov inequality, this
weight will not exceed ¢*W with probability at least 1 — ¢/10. This proves the following
lemma.

Lemma 5 Let T be a random sample of V with size |T| = t, defined as in Lemma 4 and let
(L, R) be an arbitrary bipartition of V. Ift > 20/¢°, then with probability at least 1 —¢/10, T
is (€, €*)-representative with respect to (L, R) and moreover, the total weight of the exceptional
vertices does nol exceed 2W.

Proof: See above.
||

Lemma 6 Let V' denole the set of vertices of weight less than W . IfV; is a random subsel
of V' obtained by picking each vertex v € V' with probability e, then with probability at least
1 — ¢ we have Yvev, Wy < 2eW. Wilh probability > 0.9 we have 37, 37, ev, d(u,v) < 11eW.

Proof: (i) The sum >_vev; Wy is dominated by the product ¢*W.B where B has the Binomial
distribution BIN(n, €). The result follows by applying a Chernoff-Hoeffding Bound.
(ii) The sum 3=, 37, ey, d(u,v) has expectation bounded above by the sum X2 52, |Vj[|V;—1] <
1.1eW. The result follows by using Markov inequality.

|
We need the following lemma.

Lemma 7 Let (L, R) be an optimum bisection of V Let { = 1/e¢ and define a partition
Vi, Vo, .., Vi of V by placing each vertex in a randomly chosen V. With probability 1 — o(1),
there exists a partition (A, B) whose cost is within an additive error at most eW from the
opltimum bisection and such that for each j it satisfies

ANV =B Vil <1. (2)



Proof: Let L; =V;N L, R; =V; N R. For each ;3 we do the following:

-If |Lj| > |R;|, we set §; = L%ﬂj and we move from R to L §; vertices randomly chosen
in LJ‘

-If |Lj| < |Rj|, we set §; = L%J and we move from L to R §; vertices randomly chosen
in Rj.

Clearly, the resulting partition satisfies to 2. Let MV be the set of vertices whose positions

have been changed according to the above rules and let A be the resulting loss in the objective
function. Clearly,

A< Z Wy,

reMV

and so

E(A) <) prw, (3)

reV

where p, is the probability that = is moved. Fix now attention on a particular # € L. (The
case of & € R is exactly similar.) Assume without loss of generality that € V. We have
that |L;| — 1 has the binomial distribution with parameters n/2 — 1 and p = e. Also, |R]
has the binomial distribution with parameters n/2 and p = e¢. Chernofl-Hoeffding gives

Pr(|Ly — ELy| > y/nlogn < 2n71/¢

and the analogue for |R;|. Thus,

Pr(|Ly — ELy |+ |Ry — ERy| > 2\/nlogn) < 4n~'/¢

For fixed |Li| and |R:|, we have p, < Ea=BLi R =BR nd thus

en

4

eV n
< 5 [logn

eV n

and using (3),
E(A) < ngxpm

< SW logn.
€ n

The lemma follows now by using Markov inequality. Note that the result proved is much
stronger than the result claimed.



5.1 The algorithm

The algorithm takes as input a finite metric space (V,d). It makes a series of guesses and
returns, when all these guesses are correct and with probability at least 3/4 a bisection of V'
whose cost is within O(eW) from the optimum.

1. Compute vertex weights w, = 3, d(u,v) and total weight W =Y, w,.

2. Let X denote the set of vertices with weight > ¢*W and let V' = V\ X.
Let £ = 1/¢ and define a partition Vi, V,,...,V; of V' by placing each vertex in a

randomly chosen V;.

3. Let P, = (L, R) be a bisection (L, R) with value at most e/ from the optimum and
with the property that it induces on each V; a partition whose parts sizes differ by
at most one. (The existence of such a partition is guaranteed by Lemma 7.) By
exhaustive search, find the partition (X, Xg) of X induced by Fy. Let (L;, R;) be
the partition of V; induced by F,. In the next phase the algorithm will construct
inductively a sequence of “hybrid” partitions Fy, Pi, ..., P}, ..., P, where the first hybrid
is [y, the last partition P, is the output, and such that, for each fixed j, P; coincides
with Py on each of the sets Vipq, Vigo, ..., Vi

4. For each 3 =1,2,...,¢, do the following :

(a) Let T;_; denote a random multiset of V' obtained by picking ¢ times a vertex v of
V according to the probabilities tw, /W, v € V| where ¢ is defined as in Lemma
5.

(b) By exhaustive search, guess the partition (77_,,T7 ) induced on Tj_; by
(X1, XRr), (A1, B1), ..., (A;j=1, Bj=1), (Lj, Rj), ..., (Ley Ry).
That is, classify the vertices of T;_; which are in X, V},V,,...,V,_; according to
the partition being built by the algorithm, and classify the remaining vertices of

T;_1 according to the optimal partition guessed by exhaustive search.

(¢) For v eV, let
d(u,v)

Uy,

d(u,v).

Wy

bo)= 3

1
uETj_

- 2

uET]”_l

1

(d) Construct a partition (A;, B;) of V; by placing the |V}|/2 vertices with smallest
value of b(v) in A; and placing the other |V;|/2 vertices in Bj.

Let A=U;A; and B =U;B;.

5. Output the best of the bisections (A, B) thus constructed.



5.2 The Analysis

Recall that for each j € {0,...,¢} P; is the partition which agrees with the partitions
(A1, B1),-.., (A}, Bj) constructed by the algorithm in Vj,...,V}, and which agrees with the
optimal partition (L, R) in Vj4,..., Vi

We will prove that when the algorithm correctly guesses for each j the partition (T]{,T;l)
induced on a random sample T; by P;, then the bisection (A, B) is optimal within at most
16¢WW with probability at least 3/4. The analysis will consist in showing that the increase
of the objective function when changing one hybrid bisection into the next is small. We will

need the following definition.

Definition 2 Consider a partition P = (L, R) of V. The unbalance of a vertex v € V with
respect to P is the quantity

ub(v) = 3 d(u,v) = Y d(u, v).
uel u€R
Lemma 8 [If T;_; is representative with respect to Pj_y, then COST(P;) — COST(P;—;) <
S5e2W + Puwev, d(u,v).

Before proving the lemma, let us first see how to use it to complete the analysis. By Lemma
5 the set T;_; has probability at least 1 — ¢/10 of being representative with respect to P;_;.
Thus, with probability at least 1 — fe/10 = 9/10, T;_; is representative for every j and
Lemma 6 holds for every 7. Summing over 7, we then deduce that in that case:

COST((A,B))—OPT = COST(F)— COST(F)
< 2eW + 5eW + Z Z d(u,v)
J uweV;

< 18eW

the last by lemma 6 with probability at least 0.9. This implies with Lemma 3 a relative
approximation ratio 1+90e. To conclude the proof, it remains to verify that the result holds
with probability at least 3/4 as claimed,when all the guesses are correct, The probability
that the result does not hold is bounded above by the sum of:

- the probability that Lemma 7 does not hold which is o(1)

- the probability that at least one of the samples Ty, T, ..., T; is not (€2, ¢)-representative
which is bounded above by 1/10

- the probability that LLemma 6 does not hold for at least one j which is bounded above by
1/9.

The sum of these bounds is smaller than 0.25 and the claim follows

The running time is 2°0/)n? where the first factor accounts for the required number of
exhaustive searches and n? is, within a constant factor, an upper bound for the number of
operations needed for any fixed sequence of guesses. Hence, the algorithm is a PTAS for

MIN-BISECTION on metric spaces.

We now proceed to prove Lemma 8.
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Proof: [of Lemma 8]

The only vertices which are classified differently in P;_; and in P; are vertices in Vj : say,
x vertices are in the left side of P;_; and in the right side of P;, and the same number = of
vertices are in the left side of P; and in the right side of P;_;. Pair up these vertices in a
matching M. For each such pair (u,v), such that P;_; places v on the right side and u on
the left side, let Pj_;(u,v) denote the partition obtained from P;_; by switching the sides of
vertices u and v. Note that by definition of the algorithm, I;(u) > i)(v)

Note that the overall probability that for each j, T} is representative is at least 9/10, so we
can assume that this is the case. Then,

COST(P,(u,v) ~ COST(P;-1)
< ub(u) — ub(v)
~ (ab(u) - ub(v)) -
< (ih(u) — wb(v) ~
< Jub(u) -

There are two cases.

(i) If v and v are normal, then we use the upper bounds |1/1B(u) - gi)(uﬂ < ewy, |1ﬁ)(v) —
%ZA)(UM < ew,.

(ii) For the total contribution of the exceptional vertices, we use the overall bound W of
Lemma 5. Also

COST(P;) — COST(P;j—;) <
> (COST(Pj_1) — COST(Pj—1(u,v))) + Y d(u,v).

(u,w)eM uwEV]
Thus,
COST(P;) — COST(Pj=1) < 2 Z w, + W + Z d(u,v)
u€Vj u,v€Vj
< 5EEW + Z d(u,v)
u,v€V;

the last by using Lemma 6.
|

This completes the correctness proof of our PTAS for the general metric MIN-BISECTTON.

Acknowledgements. We thank Mark Jerrum, Alan Frieze, and Ravi Kannan for
stimulating remarks and discussions.
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