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Abstract

Public-key cryptosystems are suggested based on invariants of groups. We give
also an overview of known cryptosystems which involve groups.

1 Introduction

In public-key cryptography the problem is to produce a cryptosystem which contains the
following ingredients: a public key k., a secret key k4, a public encrypting function f.
and a secret decrypting function f;. If somebody (usually named Bob) wants to send a
message m to another person (usually named Alice) via a public channel then he transmits
an encryption u = f.(m,k.). To decrypt a message Alice calculates m = fy(u,kq). It is
supposed that kg, f; are known only to Alice, while k., f. are known publically. Another
important property of a cryptosystem is that an unauthorized person (named Charlie)
would be unable to learn m from u (without knowing kg, fy).

A lot of efforts were undertaken to design cryptosystems (some literature one can find
in [17, 13, 11]). Still for no cryptosystem its security is proved and the issue of security
remains a challenging problem. All the existing results on security concern impossibility
of breaking a cryptosystem by certain fixed means, say, in frames of a particular proof
system. But what appeared to be interesting in the course of developpment of cryptogra-
phy is that many connections with other areas of mathematics were discovered. In fact,
public-key cryptography in many aspects plays a role of a bridge between mathematics and
computer science. The most recognized cryptosystems are based on number-theoretical
ideas like RSA, Diffie-Hellman or the elliptic curves cryptosystems (see e.g., [17], in this
book one can find also some cryptosystems invoking combinatorial-algebraic NP-hard
problems).

In these notes we study cryptosystems which involve ideas from the theory of group
invariants. Several known cryptosystems rely on groups (below we give a short overview
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of them), but surprisingly the concept of a group representation invariant was never
exploited, although it fits quite well the aims of cryptography. Still, applying invariants
into cryptography encounters the similar difficulties as other known approaches, however,
the purpose of these notes is to introduce invariants into cryptography, design a possible
cryptosystem and to discuss arising problems on its security.

Thus, the general idea behind using groups (and their invariants) is as follows. Let
E denote the set of encrypted messages and a group G act G : E — E. Some examples
of F are the set of words in a certain alphabet or a vector space. In addition, a subset
M C FE of plaintext messages is distinguished being transversal to the orbits of G, i.e. no
two distinct messages my, my € M belong to the same orbit of G.

Then G is used for a probabilistic encryption [14, 13] being more efficient in “hiding
information” than a deterministic one. Thus, for encrypting a message m € M Bob picks
randomly an element g from the group G and transmits gm € FE via the public channel.
Alice has to decrypt gm to learn m applying her secret key. And Charlie has to be unable
to learn m from gm.

Usually, the latter two properties of the cryptosystem are achieved by a special choice
of G. In the widely used quadratic residue cryptosystem [14, 13] one takes an integer
n = pq for large primes p, ¢ (being a secret key of Alice). As the group (& one takes (Z*)?
and £ = {g € Z : J,(g) = 1} where J,, denotes the Jacobi symbol. Take also an element
a € F — G (being a non-square), put M = {1,a}. A public key consists of n and a. Thus,
to encrypt 1 Bob picks first a random ¢ € ZZ, then its square g*> € G, and to encrypt a
Bob picks g?a being a random non-square in E, clearly £ = G U Ga.

The task of Alice is to verify whether an element b € E (being a transmitted encrypted
message) is a square. This Alice can easily do using p,q and Legendre-Jacobi symbols
Jp, Jy. On the other hand, it is a common belief that Charlie is unable to verify whether
b is a square without knowing p, ¢.

The described quadratic residue cryptosystem was generalized to a class of cryptosys-
tems called homomorphic. Namely, let f : E — H be a group epimorphism which is a
secret key of Alice. There is an exact sequence of group homomorphisms
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and a public key is B, s, £, H and a subset M C FE transversal to G = ker(f), hence f
provides a bijection between M and H. This is consistent with the above notations: GG
acts (by the multiplication from the left) on E and the set of plaintext messages M being
transversal to this action, but here G is given implicitly as an image s(B). To encrypt a
message m € M Bob picks randomly b € B and transmits s(b)m. Alice decrypts s(b)m
applying f, taking into account that f(s(b)m) = f(m). For Charlie it is difficult to
decrypt without knowing f. In the described above quadratic residue cryptosystem we
have H = Z,, B = E, s(b) = b* and [ being the epimorphism of the quadratic residue.



In [9, 33] a question was posed for which groups H homomorphic systems can be con-
structed (more generally, one could consider rings rather than groups homomorphisms)?
For some abelian groups H cryptosystems were designed in [4, 23, 24, 25, 27]. For certain
diedral groups H cryptosystems are designed in [28]. In [15] a homomorphic system was
designed for any solvable group H. For cryptosystems over elliptic curves see [18, 17].

What is common in all the mentioned constructions is that decrypting relies on the
knowledge of secret primes p,q. In these notes we suggest another way of decrypting
(and encrypting) based on an invariant w : £ — F, i.e. w being constant on the orbits
of . Then Alice is able to decrypt an encrypted message gm by means of calculating
w(gm) = w(m), provided that w takes distinct values on the elements (plaintext messages)
from M.

The theory of invariants, see e.g. [7, 30, 31], is developped mostly in the situation
when G : F — FE is a linear representation, so E is a vector space and G C GL(FE) over
a field I and w being a polynomial. But perhaps, it would be also worthwhile to look at
other group actions and their invariants.

Since for not too many infinite series of linear representations ¢ C GL(FE) their
invariants w are known explicitly and can be calculated fast ([31]), we suggest to hide G
considering its conjugation a~'Ga C GL(FE) for a secret matrix a € GL(E). Then an
invariant e — w(ae) of the conjugation a~'Ga enables Alice to decrypt a message a™'gam
where a~'ga is a random element from a~'Ga chosen by Bob for encrypting a message m.
Usually, the group a™'Ga (being a public key together with £ and M C F) is given by a
set of matrices in GL(F) being its generators. It is a quite succinct way of representing a
group by a set of its generators, in particular, known finite simple groups are representable
just by two generators, and any finite group (i is representable by log, |G| generators. In
calculations with (¢ represented by a set of generators it is not necessary to assume that
is finite (which is the case in particular, when the field F is finite) because for encrypting
Bob has just to pick randomly a certain product of generators of ¢ 'Ga.

In the next sections we describe cryptosystems based on group invariants and dis-
cuss the issues of their security, but first we complete an overview by two families of
cryptographic tools which involve groups.

Another particular problem of cryptography, apart from designing cryptosystems and
closely connected with it, is the key agreement protocol, see e.g. [13, 11, 17]. Now Alice
and Bob want to agree about a common key communicating via a public channel. The
usual approach is to choose by each of them secretly commutating operators f4 (by
Alice) and fg (by Bob) in the same set £ and in addition a certain (public) e € . Then
Alice communicates fa(e), Bob communicates fg(e) and they agree on a common key
fa(fele)) = fe(fa(e)). In the first key agreement protocol due to Diffie-Hellman (see e.g.
[13, 17]) it was used fa(e) = €7, fg(e) = €’(mod p) for integers a,b. Thus, decrypting (by
Charlie) of Diffie-Hellman protocol relates to computing the discrete logarithm which is
believed to be difficult, its complexity was studied in [6, 22].



This general approach was considered in the following setting (see [3, 26, 16]. Let F
be a group with two subgroups E4, £ C E which commute with each other. Then as
fa Alice chooses a conjugation ¢ — a'ea for a randomly picked a € E4, respectively,
fB(e) = b7teb for b € FEp. In [16] the braid group is used as E and the difficulty of
breaking this key agreement protocol relates to the difficulty of the conjugacy problem in
the braid group.

Few cryptosystems based on the difficulty of the word problem in appropriate groups
were proposed in [2, 8, 10, 32].

The last family of cryptosystems we mention rely on lattices (being discrete abelian
subgroups of R"), the first such a construction is due to [1]. Let L C R”™ be an n-
dimensional lattice with a property that it contains a (hidden) (n — 1)-dimensional sub-
lattice L’ whose linear span being a hyperplane H, satisfying the following property. The
coset hyperplanes H; parallel to H such that U;H; D L are well separated: the distance
between any adjacent pair H;, H;y; of them is greater than a suitable large d. In other
terms, there is a basis of L which consists of n — 1 rather “short” vectors which form a
set C from L’ and a single “long” vector ¢ having a “big” coordinate orthogonal to H.

Then a cryptosystem from [1] considers a random basis (' of L as a public key and a
basis C'U {c} as a secret key. The plaintext 0 is encrypted by Bob by a random vector
from L, and the plaintext 1 is encrypted by a random vector from R™.

For decrypting a vector u Alice computes a magnitude [ = (u,c— Py(c))/||c— Pu(c)||?
where Py denotes the orthogonal projector onto the hyperplane H. If [ is an integer
(this means that u lies on a certain coset hyperplane H;) then Alice can declare that the
plaintext message of Bob is 0 (otherwise, 1). Actually, in this manner Alice recognizes
elements from U; H; rather than from L, so an error happens when v € U;H; — L. To
correct this Bob slightly perturbs u, so each point from L is surrounded by a ball of a
suitable radius r in order to cover U;H;, but on the other hand, not to cover the whole
space R”. Moreover, the perturbations of adjacent hyperplanes H; and H;y should be well
separated, just for this reason the condition on a “long” vector ¢ was imposed. Finally,
Alice decrypts the points at the distance at most r from the union U; H; as 0, otherwise
as 1. Still, an error could happen when u lies at the distance at most r from the union
U; H;, but now it is more probable that Bob encrypted 0 in this case (rather than 1).

Thus, the presumed difficulty of breaking (by Charlie) this cryptosystem relies on
finding a long vector in a lattice given by its basis Cy (or equivalently, a short one in the
dual lattice), provided that a long vector is unique in an appropriate strong sense.

Another cryptosystem based on perturbations of a lattice was designed in [12]. Here a
plaintext message is a point of a lattice . C R™ and its encryption is its small perturbation
in R™. Then the problem of breaking the cryptosystem leads to finding for a given real
point the closest to it vector in the lattice L. This problem is known to be NP-hard, as
well as its approximating up to a constant factor. To make the decrypting possible Alice
first chooses (randomly) a basis ¢y,...,¢, of L of a special form (namely, such that the
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magnitude []; ||¢i||/] det(c;)| is not too large, a basis with this property is called “almost
rectangular”) which serves as a secret key. After that the basis ¢i,...,¢, is (randomly)
spoiled and the resulting new basis of L serves as a public key. The point is that an almost
rectangular basis allows Alice to find the closest vector in L, provided that a perturbation
was small enough.

Thus, in both mentioned lattice-based methods [1, 12] a plaintext message is hidden
by a small perturbation, this differs from our suggestion to hide by means of shifting by
an element from a certain group.

2 Construction of cryptosystems based on group in-
variants

Let G C GL,(F) be a representation of a group G where one can deem w.l.o.g. a field
F to be algebraically closed, however in computations the entries of the matrices from ¢
could belong to a certain subfield of F, it is reasonable, for example, the entries to belong
to a finite subfield.

Assume that we know a (non-constant) invariant w ([7, 30]) of the representation
of (G, i.e. a polynomial w € F[X;,...,X,] such that for any element ¢ € G and any
vector v € F™ we have w(gv) = w(v). Besides, we fix a pair of nonzero distinct vectors
vo, V1 € F.

Usually (and we suppose this) one is able to generate elements from (. To design a
(probabilistic) public-key cryptosystem Alice chooses randomly a matrix a € GL,,(F') with
the property that w(avg) # w(avy) (clearly, almost any matrix a satisfies this property).

Public key: vg,v; and a set of elements of the form h; = a~'g;a € GL,(F) where g;
being randomly generated elements of .
Secret key: a

Encryption: a letter 0 or respectively, 1 of a plaintext message is transmitted as a vector
u = h;, -+ hivg (or respectively, u = h;, - - - h;vy) for randomly chosen iy, ..., 1.

Decryption: given a vector u € F™ Alice computes w(au) and verifies whether it equals
to w(avg) (in this case the plaintext message was vg since w(avg) = w(ahy, - - - hyve) =
w(au)) or to w(avy) (in this case the plaintext message was vy).

3 Discussion on the security

To break the designed cryptosystem Charlie can try to find a certain invariant w’ of
a (sub)group H of a conjugation a™'Ga (where H is given by a set of generators h;).



One can think of the group G C GL,(F) (of exponential in n size or even infinite)
to be known as well as an invariant w. Charlie could try to look for an invariant w’
in the form w'(v) = w(bv) for an unknown matrix b € GL,(F). Let d denote the
degree of w (as usually, in the invariant theory one might reduce consideration to a
homogeneous w). Substituting w’ into the known generators of the form a~1g;a of H, so
w(bv) = w(b(a™1g;a)v) for each 7 (clearly, any such matrix b would fit), and equating the
coefficients at all the monomials in n coordinates of a vector v, Charlie obtains a system
of polynomial equations in the entries of a matrix b of degrees d. Hence this polynomial
n+d—1)
d

system contains ( equations (for each i) of degrees d in n? variables being the entries

of b.

Alternatively, Charlie could search for an invariant w’ treating it as a polynomial
of degree d with indeterminate <n+j_1) coefficients satisfying equations w'(h;v) = w'(v)
for each i for any vector v € F™. This provides a linear system in the indeterminate
coefficients.

Anyway, the complexity of both procedures depends on (”+j_1), therefore, for the
security reasons one should take a group (G without invariants of degrees d less than
const - n. On the other hand, the invariant w should be computable within polynomial in
n complexity (below we give few such examples).

The problem of finding an invariant seems to be difficult and in general not much is
known beyond obvious applying the Reynolds averaging operator |G|~ deGg (provided
that G is finite), cf. [31].

Let us consider two other approaches towards breaking the described cryptosystem.

In the first approach Charlie tries to find a matrix a (or any other b € GL,(F) such
that bHb™' C (). Clearly, one can assume w.l.o.g. that H is conjugate to (& itself
(rather than to a certain its subgroup) taking as g¢; a set of generators of (¢ (randomly
chosen large enough set of ¢; generates ¢ with a high probability). Then testing an
existence of b (and finding if it does exist) such that bHb™! = ( is called the conjugacy
problem for matriz groups. One can reduce to the latter problem the conjugacy problem
for permutation groups as it was communicated to the author by Eugene Luks [21]. In
its turn, the difficulty of the conjugacy problem for permutation groups was conjectured
in [20] where its complexity was posed as an open question. Furthermore, the graph
isomorphism problem is reducible to the conjugacy problem for permutation groups [20].
Thus, the first approach by Charlie leads in particular, to the graph isomorphism problem.

In the second approach Charlie tries to find a matrix A from H such that hu = vy
(or respectively, hu = vq1). This problem (in a particular case when H is a permutation
group) is called the vector transporter problem [20] where its difficulty was conjectured.
Again the graph isomorphism problem is reducible to the vector transporter problem [20].

We observe that a particular case of the vector transporter problem when (the set of
encrypted messages) F* is the space of 2 x 2 matrices and a group H = SLy(Z) x SLy(Z)
acts on F'* by v — hyvhy, where (hy, hy) € H, was proved to be NP-hard for the average



complezity [5]. In this connection we mention that a hardness of breaking a cryptosystem
for the average complexity would be more desirable than a hardness for the worst-case
complexity (cf. [19]).

Thus, both approaches towards breaking the described above cryptosystem relate to
the graph isomorphism problem. But of course, the difficulty of proving a reduction
of the graph isomorphism to breaking the cryptosystem lies particularly, in finding an
appropriate invariant w for a group G such that the graph isomorphism problem can be
reduced to the conjugacy and to the vector transporter problems for G. It would be
interesting to understand whether the graph isomorphism problem indeed, is reducible to
breaking the described above cryptosystem.

We mention also that a similarly looking problem of equivalence of representations of
the group algebras F'[(], F[H] (rather than the groups), in other words finding a matrix
a € GL,(F) such that a ' F[H]a = F[(], can be solved over an algebraically closed field
F [29] taking into account the structural theorems of Schur and Wedderburn.

An evident remark is that to provide more security of the cryptosystem it would be
reasonable to change secret and public keys @ and a~'g;a quite often.

Let us give few simple examples of cryptosystems based on invariants of classical
groups [7, 30].

Example 1 ([30]). As a group (G we take a subgroup of GL, generated by the
symmetric group 5, permuting the standard basis e;,1 < 7 < n and all the matrices ¢
such that te; = c;e; where ¢ = 1,1 < i < n,(e;++-¢,)' = 1 for some I|m. Then as w
one can take the power sum z* + ...+ 2. We deliberately consider an extension of the
symmetric group to avoid invariants of small degrees (see the beginning of this section).

Example 2. Consider the representation of the group GG = SL,(F') on the symmetric
product S?F", in other words, on symmetric matrices (or quadratic forms) by v — mvm?
where m € G and T denotes the transposing. Then as w one takes det(v).

Example 3. Now (7 = L, (F) which acts on the direct sum F* = F*@...@ F”* of
2n copies of F™ by m(p1,...,p2.) = (mp1,...,mps,). Consider two (disjoint) partitions
LuJ,=6LUJ, ={l,...,2n} into n-element subsets |I1| = |/1| = |I2| = ]| = n. As
det;, we denote the determinant of n vectors p; for 1 € I;. Then as w we take the rational
invariant

detll detjl

det12 detJ2 '
In the described above cryptosystem we considered polynomial invariants w, but nothing
changes when we deal with rational invariants w € F/(X,...,X,), except that, of course,

in the cryptosystem Alice should pick vectors vo,v; € F?*° and a matrix a € G Ly (F)
in such a way that w(avg), w(avy) be defined.



One could produce more similar examples invoking direct, tensor, symmetric, exterior
products of group representations.

The present state of art of cryptography does not allow to prove security of cryp-
tosystems, the latter is usually a question of belief in a difficulty of a relevant problem
and a matter of experience (that is why it is not quite unusual to have a paper on cryp-
tography without theorems, including this one). Just the opposite, one could expect a
“disappointing” breaking of a particular cryptosystem. This is not excluded for any of the
aforementioned examples (and avoiding solving the graph isomorphism problem, see the
discussion above). On the other hand, such breaking would lead perhaps, to interesting
algorithms in group representations. Thus, one can treat the examples (and the general
construction in all) just as a suggestion to play with cryptosystems based on the invariant
theory.
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