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A Polynomial Time Approximation

Scheme for Subdense MAX-CUT

W. Fernandez de la Vega* Marek Karpinskif

Abstract

We prove that the subdense instances of MAX-CUT of average degree
Q(n/logn) posses a polynomial time approzimation scheme (PTAS). We
extend this result also to show that the instances of general 2-ary maximum
constraint satisfaction problems (MAX-2CSP) of the same average density
have PTASs. Our results display for the first time an existence of PTASs
for these subdense classes.

1 Introduction

Significant recent results concerning existence of polynomial time approximation
schemes (PTASs) for dense instances of several N'P-hard problems such as MAX-
CUT, MAX-k-SAT, BISECTION, DENSE-k-SUBGRAPH, and dense MAX-SNP
problems have been obtained in Arora, Karger and Karpinski [AKK95], Fernan-
dez de la Vega [F96], Arora, Frieze and Kaplan [AFK96], Frieze and Kannan
[FK97]. Still more recently, the approximability of dense instances of NP-hard
problems has been investigated from the point of view of the query complexity.
Goldreich, Goldwasser and Ron [GGR96] show that a constant size sample is
sufficient to test whether a graph has a cut of a certain size. Frieze and Kannan
[FK97] obtained faster approximations for all dense MAX-CSP problems. Alon,
Fernandez de la Vega, Kannan and Karpinski [AFKKO01] succeeded further in
improving efficiency and sample complexity of the underlying approximations of
dense MAX-CSP classes. Recall that a PTAS for a given optimization problem
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is a family (A.) of algorithms indexed by a parameter ¢ € (0,00) where each
algorithm runs in polynomial time and, for each ¢, the algorithm A, has approx-
imation ratio 1 — ¢ (or 1 + ¢ for a minimization problem). In most cases, the
instances are graphs, and a dense graph is defined as a graph with ©(n?) edges
where n is the number of vertices. (In some cases, the algorithms apply only
to graphs with minimum degree ©(n).) Some of the problems considered in the
papers mentioned above, such as MAX-CUT, are MAX-SNP-hard, and thus, if
P # NP, have no PTASs when the set of instances is not restricted.

In this paper, we adress the question of whether the density condition can be
relaxed. This possibility was anticipated in [AKK95]. The next two theorems
give a partial answer to this query.

Recall that the density d(() of a graph G is defined by

i@ = (3) @)

and an average degree is defined as d(G)n.

Theorem 1. MAX-CUT problem does have a PTAS on the sel of graphs G with
density Q(1/logn).

We generalize our result to subdense classes of general MAX-2CSP problems (cf.
for definitions [KSW97]).

A density d(C) of an instance of an MAX-2CSP problem is defined by
d(C) = (n) “'N for N a number of constraints of C.

2

Theorem 2. MAX-2CSP has a PTAS on the set of instances of density
Q(1/log n).

2 Proof of Theorem 1

2.1 Results on Representativity.

Assume that we have an instance G = (V, E') of MAX-CUT with |V| = n vertices
and dn®/2 edges where d = Q(1/logn). The weight of a set of vertices U C V
is defined as the sum of the degrees of the vertices in U. In particular, we define
W = dn? as the weight of V. For consistency of notation, we write w, for the
degree of v, whereas I'(v) will denote the set of neighbors of v in G. We follow a
variant of a concept introduced in [GGR96] (see also [FKKO02] and [F96]) of, so

called, set representativity. To suit our purpose, we formulate it as follows.



Definition 1 For any subset T CV and v € V, let
y(v,T)=1T'(v)NT|.

Consider a partition P = (L, R) of V. For T C V, define Tr, = TNL,Tp = TNR.
T is called (6,¢)-representative with respect to P if for every vertex v except
perhaps for a subset of exceptional vertices of weight at most dW, we have

ny(v, Tt)

— (v, )| < ew,,
and
T
% — (v, T)| < ew,.

A wvertex which is not exceptional is called normal.

We will need (2, ¢/10)-representativity. Let us show that we can achieve this
with a suitable ¢ = |T'|.

Lemma 1 Let t be any fized integer > 1. Lel T be a random sample (possibly
with ties) obtained by picking independently with replacement t points u; € V with
the uniform distribution. Let v € V be any fized vertex and let Ty, Tr,v(v,T1)
and v(v, Tr) be defined as in definition 1. Then we have thal

T *tw,
Pr ( M — (v, L)‘ > cwy) < exp(—€2|‘l/v| ) (1)
and,
ny(v, T 2w,
Pr ( H’Y(Lfti,R) — (v, R)‘ > ewu) < exp(—62|‘t/,v| ) (2)
Proof: We have that (v, 7Ty) is Binomial with parameters {7, and p = |77’| with
vr, = [I'(v) N L|. Thus, by Hoeffding- Chernoff,
T (v, L) tew,
Pr ( ny(v, To) _ 7(U,L)‘ > ewv) — Pr (‘V(U,TL) _ bl D tew )
[/ n n
< 9 ( thwg )
= 2P 2nv(v, Tr,)
< 9 ( e*tw,
< Zexp(———)
Atd
< Qexp(—(—)
2n



. 2
if w, > % and

ny(v, 1)

. — (v, L)| > 6wv) < €%/20

o

if w, > 29 and ¢ > 10log(1/€)/(de*) and e is sufficiently small. Note that this

2
choice of ¢ has logarithmic size for d = Q(1/log n) and we can thus afford as we
shall do to perform exhaustive search on the bi-partitions of T

|
We can now prove that (e — ¢/10)-representativity holds.
Let T' be a random sample of V with size |T'| = t, defined as just above and let
(L, R) be an arbitrary bipartition of V. As we have just proved, the inequalities
1 and 2 hold for any fixed vertex of weight at least 52% with probability at least

1—¢?/20 implying that the total weight of the exceptional vertices has expectation
Wed

at most . By Markov inequality, the weight of these vertices will not exceed

20
WQEQ with probability 1 — ¢/10. Adding the weight of the small vertices gives the

claimed total We2. This proves:

Lemma 2 Fiz t = 10log(1/¢)/(de*). Then, with probability at least 1 —¢/10, T
is (€2, ¢/10)-representative with respect to (L, R).

Proof: See above.
||

Lemma 3 Let Vi, V5, ...V, be a random partition of V' in to sels of cardinalily ne.
Then with probability at least 1 — €2 we have:yZ ey, wy, < 2¢W. With probabilily
> 9/10 we have 3; Luvev, Y(u,v) < 11eW.

Proof: The proof is straightforward by using Markov inequality.

2.2 The Algorithm

The algorithm takes as input a graph G(V, E) on n vertices with density d =
Q(1/log n). It makes a series of guesses and returns with probability at least 4/5
when all these guesses are correct a cut of (G whose value is within (1 + O(e) of

the optimum. We let ¢ = 2dlog(3/¢)/€*.

1. Compute vertex weights w, = degree(v) and total weight W = ¥ w, =
2|E(G)).

2. Let £ = 1/e and define a partition Vi, V4, ..., V; of V by placing each vertex
in a randomly chosen V.



3. Let P, = (L, R) be an optimum cut of G. Let (L;, R;) be the partition of V;
induced by F,. In the next phase the algorithm will construct inductively
a sequence of “hybrid” partitions Fy, Py, ..., P;j, ..., P, where the first hybrid
is Py, the last partition P is the output, and such that, for each fixed 7, P;
coincides with Fy on each of the sets Vi1, Vi, ..., Vi

4. For each 5 =1,2,...,¢, do the following :

(a) Let T;_; denote a random multiset of V' obtained by picking ¢ times a
vertex v of V' according to the uniform probability distribution on V.

(b) By exhaustive search, guess the partition (77_;,7;_,) induced on
Tj—l by (Ah Bl)7 ey (Aj—lv Bj—1)7 (Lj7 Rj)v (Lj+17 Rj+1j) Ty ([47 RZ)
That is, classify the vertices of T;_; which are in Vi, V5,..., Vi_y ac-
cording to the partition being built by the algorithm, and classify the
remaining vertices of T;_; according to the optimal partition .

(¢) For v eV, let
b(v) = [T(v) N T7 o] = T(0) N T}, |
(d) Construct a partition (A;, B;) of V; by placing the |[V}|/2 vertices of
V; with non-negative values of 8(’0) in A; and the others in B;.
Let A =U;A; and B = U;B;.

5. Output the best of the cuts (A, B) thus constructed.

2.3 The Analysis

Recall that for each 5 € {0,...,¢} P; is the partition which agrees with the par-
titions (Ay, By), ..., (Aj, Bj) constructed by the algorithm in V;, ..., Vj, and which
agrees with the optimal partition (L, R) in Vj41,...,Vi. We let EX; denote the
set of exceptional vertices occuring in the jth phase.

Definition 2 Consider a partition P = (L, R) of V. The unbalance of a vertex
v € V with respect to P is the quantily

ub(v) = |T(w) N R| — |T(w) N L]
Lemma 4 [fT;_; is representative with respect to P;_q, then we have that

COST(Pj—1) — COST(P;) <2¢ > wy + >, w, + W,

vEV; vEEX;

where W; denotes the number of edges inside V.



Proof: Let U; denote the set of vertices which are placed differently in P;_; and
P;. Clearly U; C V. Let u € U;j and let Pj_i(u) be the partition obtained from
P;_1 by changing the side of U. We have then that:

COST(P;_1)—COST(P;) < 3 (COST(P;_y)—COST(P;(uw)+ Wi+ 3 w,+W;.

u€lUy vEE X

Assume that 1/11\)(u) is non-negative which means that u is on the left-side (L) of

P;_y. We have
(COST(P;—1) — COST(Pj(u)) = [T'(u) N R| = |T'(u) N L]

Assume that u is normal. [Otherwise the contribution of u to the loss is bounded
above by its weight and counted separetely.]. Then, the first term in the right-side

of the above is approximated within ew, by the quantity %W(U) N Tgr| and the

second term is approximated by the quantity %W(u) N Tgr|. Thus we get that

COST(P;_y) — COST(P;(u) < ub(u)(u) + 2ew,,

Summing over u € V; gives us then the lemma.

Lemma 5 With probability at least 4/5, we have that
COST(Py) — COST(P, < 14eW

Proof: Observe that Lemma 2 holds simultaneously for all j with probability at
least 9/10 and also that our bound 11e¢W for the total number of edges inside
the V; holds with probability 9/10. Summing the bounds given by the preceding
lemma for each j gives the claimed result, with probability at least 4/5.

|

3 Proof of Theorem 2

A PTAS for MAX-2CSP with density £(1/logn) can be given along the same
lines as our PTAS for subdense MAX-CUT. The only really new feature is an
adequate version of representativity. We restrict ourselves to formulate this new
version and show that it holds with suitable values of the parameters, again with
the logarithmic sample size.

Let C be an instance of MAX-2CSP on a set V of n boolean variables. As usual,

we define the density of C by
_cl

2

d

n



We denote by N = |C| the number of constraints in the instance. Fix an assign-
ment a and let T' denote a fixed subset of V. For each variable x let n'(z) (resp.
n°(x)) denote the number of constraints containing @ which are true when z is
set to true [resp. to false] and the other variables are set according to a. Let n(x)
be the total number of occurrences of . We also refer to n(z) as the weight of .
Let n'(x,T) [resp. n°(x,T)] denote the number of constraints containing = and
another variable in T which are true when z is set to true [resp. to false] and the
other variables are set according to a.

Definition 3 (Representativity for MAX-2CSP) The sel of variables T' is
said to be (0 — €)-representative with respect to the assignement a if for every
variable v except perhaps for a subset of exceptional variables of weight at most

oW, we have

2l T) =) (0)] < enli)
and
|T| (;v T)— (;v) < en(z).

The following lemma is proved as its MAX-CUT counterpart.

Lemma 6 Let t be any fized integer > 1. Let T' be a random, uniformly picked

sample of the variables with size t = |T'|. Let x € V be any fized variable and let

n(z),n'(z),n" (z,T),n(z),n"(x,T) be defined as above. Then we have that, for
n

i=0,1,
Pr (| Toni e, 7) = (o) < o)) 2 1= 20 (200

[The 32 in the right-hand side of 4 comes from the fact that there are 16 distinct
boolean functions of 2 variables.]

Assuming that n(z) > €¢*dn, we get that, for i = 0,1,

pr (| o) - () < ene)) 21— 2 (- 520

Now assume furthermore ¢t = 1501log(1/¢)/(¢*d). This gives
n

Pr (ITI "z, T) —n'(z)| < en(a ))21—63/20

for sufficiently small €, again for : = 0,1. Since the total weight of the variables

z with n(z ) < €%dn clearly does not exceed e?dn? < N, we have, reasoning as
in the previous section, that for our choice of ¢, T is (€ ,6/10) representative.

Once we know that the above representativity property holds, the design of a
PTAS for subdense MAX-2CSP is similar to the design of the PTAS for MAX-
CUT of the preceding section.



4 Open problems

This work raises the following questions. What about subdense MAX-rCSP prob-
lems for arbitrary r? Our method of proving of Theorem 2 gives an apparently
much weaker result in the case of r > 3. Can our method be extended to some

other even more relaxed density classes of MAX-CUT and MAX-2CSP?
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