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Abstract

We show how to efficiently transform any public coin honest verifier zero knowledge proof system into
a proof system that is concurrent zero-knowledge with respect to any (possibly cheating) verifier via black
box simulation. By efficient we mean that our transformation incurs only an additive overhead, both
in terms of the number of rounds and the computational and communication complexity of each round,
independently of the complexity of the original protocol. Moreover, the transformation preserves (up
to negligible additive terms) the soundness and completeness error probabilities. The new proof system
is proved secure based on the Decisional Diffie-Hellman (DDH) assumption, in the standard model of
computation, i.e., no random oracles, shared random strings, or public key infrastructure is assumed. In
addition to the introduction of a practical protocol, this construction provides yet another example of
ideas in plausibility results that turn into ideas in the construction of practical protocols.

We prove our main result by developing a mechanism for simulatable commitments that may be of
independent interest. In particular, it allows a weaker result that is interesting as well. We present
an efficient transformation of any honest verifier public-coin computational zero-knowledge proof into a
(public coin) computational zero-knowledge proof secure against any verifier. The overhead of this second
transformation is minimal: we only increase the number of rounds by 3, and increase the computational
cost by 2 public key operations for each round of the original protocol. The cost of the more general
transformation leading to concurrent zero knowledge is also close to optimal (for black box simulation),
requiring only w(logn) additional rounds (where n is a security parameter and w(logn) can be any
superlogarithmic function of n (e.g., log n-log* n), and w(log n) additional public key operations for each
round of the original protocol.

1 Introduction

Zero knowledge proofs are (interactive) proofs that yield nothing but the validity of the assertion being
proved, and they are one of the most fundamental building blocks in cryptographic protocols. For example,
zero knowledge proofs can be used to make sure that distrustful parties involved in a protocol are really
following the protocol instructions, without revealing any extra information. The original formulation of
the notion of zero knowledge [27] considers a single prover and a single verifier working in isolation. This
formulation is clearly inadequate in real applications where zero knowledge proofs are used as part of complex
protocols. In order to use zero knowledge proofs in real applications one needs to make sure that the proof
system is zero knowledge not only when executed in isolation, but also when many instances of the proof
system are executed asynchronously and concurrently. This strong notion of zero knowledge has been the
subject of many recent investigations [15, 33, 14, 9, 10, 5, 39, 32, 6, 8, 1]. For example, in [10, 5], it is shown
that if a public key infrastructure (PKI) is in place, then all languages in NP have an efficient (constant
round) concurrent zero knowledge proof system. Unfortunately, in the standard model, where no PKI is
available, Canetti, Kilian, Petrank and Rosen [6] have shown that no nontrivial language (i.e., no language
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outside BPP) has constant round black box concurrent zero knowledge proofs. In particular, [6] provides a
o(log n/loglogn) lower bound on the number of rounds for any such protocol. Interestingly, Kilian, Petrank
and Richardson [38, 32] gave an upper bound showing that a polylogarithmic number of rounds is sufficient
to achieve concurrent zero knowledge, and very recently Prabhakaran and Sahai [37] improved the analysis
of the Kilian-Petrank-Richardson simulator to show that w(log k) many rounds are enough.

Although less efficient than solutions in the PKI model, the solution of [32, 37] is interesting because it
may be used where a PKI is not possible, or as a mean to set up a public key infrastructure or establish
common random strings. Namely, one possible good use of a moderately efficient concurrent zero-knowledge
protocol in the standard model is that it can be used to register public keys with a certification authority
and bootstrap the system. Once the PKI is available, then one can use the very efficient concurrent zero
knowledge proofs in the PKI model.

The protocols of [32, 37] are general plausibility results, showing that any language in NP has a concurrent
zero knowledge protocol with a (poly)logarithmic number of rounds. Although the number of rounds is
relatively small (in fact, within a w(loglogn) factor from the optimal for black-box simulation), the steps of
the protocol use general results about zero knowledge proof systems for any NP problem. Thus, the resulting
protocol is not practical. The goal of this paper is to show that for a large class of languages, the ideas in
[32, 37] lead to concurrent zero knowledge proofs that are efficient enough to be practical, i.e., their cost is
comparable (within any w(logn) factor) with that of number theoretic operations commonly used in public
key cryptography. We show that any language that admits a public coin honest verifier zero-knowledge proof
system, can be efficiently transformed into a very strong proof system. The new proof system is concurrent
zero knowledge with respect to any (possibly cheating) verifier via black box simulations. The cost of
the transformation is minimal: w(logn) additional rounds (which, by [6], is close to optimal for black-box
simulation), where the cost of each additional round is essentially the same of a standard public key operation
(say, a modular exponentiation in a finite field). The computational overhead for the remaining rounds is
also w(logn) exponentiations for each pair of rounds of the original protocol. Moreover, the soundness and
completeness error of the new protocol are essentially the same as the original one. Our protocols are based
on a perfectly binding commitment scheme based on the Decisional Diffie-Hellman (DDH) assumption which
satisfies some special properties. Note that our transformation works for many interesting protocols. In fact,
many of the known zero-knowledge proof systems are public-coin (see for example [26, 23, 21]).

A weaker result that follows from our technique is a transformation of (non-concurrent) computational
public-coins honest-verifier zero-knowledge proofs into computational public-coins zero-knowledge proofs that
are good also for non honest verifiers. Such a transformation clearly follows from the fact that everything
provable is provable in computational zero-knowledge [23, 28, 2]. However, the general transformation is not
efficient. Methods for improving the efficiency of the transformation to remove the honest-verifier restriction
for computational zero-knowledge protocols have been investigated in [30] and can be obtained from the
techniques in [7], but none of these results makes a practical protocol with a widely acceptable security
assumption. QOur techniques allow such a transformation for public coin zero-knowledge proofs with low
overhead and building on the Decisional Diffie Hellman assumption. (Note that a similar transformation
from honest verifier to cheating verifier for statistical zero knowledge does not follow from general results,
yet, [25] shows that such transformation is possible in principle. Our transformation is much more efficient
than the one in [25], but it does not preserve statistical zero knowledge, i.e., even if applied to a honest
verifier statistical zero knowledge proof system, the transformed protocol will satisfy only computational
zero knowledge.)

Finally, it is worth noting the exciting result of Barak [1] about concurrent zero-knowledge with constant
number of rounds. His zero-knowledge proof is a breakthrough in showing that non black-box zero-knowledge
exists. However, this protocol works in the model of bounded concurrency. A polynomial bound on the
number of concurrent sessions must be known a priori and the length of each message is larger than this
number. Thus, for defending against a large polynomial number of concurrent sessions (say, n®), we need a
seemingly inefficient protocol with very long messages. From a practical standpoint we could not find a way
to instantiate Barak’s protocol in an efficient manner. We believe it is an interesting open question to find
a way to make the constant-round concurrent zero-knowledge proof of Barak efficient enough to be used in
practice.



1.1 Organization

The rest of the paper is organized as follows. In section 2 we introduce standard definitions and notation.
Some of the standard definitions are relegated to Appendix A. In section 4 we define the special properties of
“simulatable commitments” to be used in the main protocol. In Section 5 we describe a specific construction
of simulatable commitments based on the Decisional Diffie Hellman assumption. In Section 6 we present the
main result, showing how (efficient) simulatable commitments can be used to efficiently transform any public
coin honest verifier zero knowledge protocol into a concurrent general zero knowledge one. In Section 7 we
present the easier, yet interesting, transformation from any public coins honest verifier zero knowledge proof
into a zero knowledge proof that is robust also against non honest verifiers. A possible commitment to be
used by the verifier is Pedersen’s commitment scheme [36], based on the discrete logarithm problem, and
described in Appendix B.

2 Preliminaries

We relegate the basic cryptographic preliminaries to the appendix. See Section A.l for a short reminder of
the zero-knowledge concept, Section A.2 for auxiliary input zero-knowledge, Section A.3 for a discussion of
black box simulation, and Section A.4 for witness indistinguishability.

2.1 Some notions used in this paper

In addition to the very basic definitions, we would like to stress the variants that are specifically interesting
for us.

Public coin proofs: We say that a proof system is public coins if all the messages of the (honest) verifier
are computed by choosing uniformly at random an element in a predetermined set and sending the chosen
element to the prover. The power of verification stems (only) from the fact that future verifier messages
(challenges) are not known to the prover before the verifier sends them.

The number of rounds: An interaction proceeds in rounds of communication. One of the parties sends
a message to the second party, and then the other party responds. This goes on until the protocol ends.
Each message sent is one round of the protocol. In particular, we will discuss 3 round proofs in which the
prover sends one message, the verifier responds, and then the prover finishes with a last message.

We go on into the basics of concurrent zero-knowledge and commitment schemes.

2.2 Concurrent zero-knowledge

Following [14], we consider a setting in which a polynomial time adversary controls many verifiers simultane-
ously. However, since in this paper no timing assumption is needed, we slightly simplify the model of [14] and
omit any reference to time. Without loss of generality we also assume that messages from the verifiers are
immediately answered by the prover. In other words, we assume that the conversation between the prover
P and the verifiers V1, V», ... is of the form v, p1,v2,p2,. .., vn, pp Where each v; is a message sent by some
verifier V;; to P, and the following p; is a message sent by P to V;; in reply to v;. The adversary A takes as
input a partial conversation transcript, i.e., the sequence of messages received from the prover py,...,pg so
far (with the verifiers’ messages v; and their senders V;; being implicitly specified by the adversarial strategy
A). The output of A will be a pair (4,v), indicating that P receives message v from a verifier V;. The view
of the adversary on input  in such an interaction (including all messages, and the verifiers random tapes)
is denoted (P, A)(z).

Definition 2.1 We say that a proof or argument system (P,V') for a language L is (computational) black
box concurrent zero-knowledge if there exists a probabilistic polynomial time oracle machine S (the simulator)
such that for any probabilistic polynomial time adversary A, the distributions (P, A)(z) and SA(zx) are
computationally indistinguishable for every string x in L.



In what follows, we will usually refer to the adversary A as the adversarial verifier or the cheating verifier,
and denote it by V*. All these terms have the same meaning,.

2.3 Commitment schemes

We include a short and informal presentation of commitment schemes. For more details and motivation,
see [20]. A commitment scheme involves two parties: The sender and the receiver. These two parties are
involved in a protocol which contains two phases. In the first phase the sender commits to a bit (or, more
generally, an element from some prescribed set), and in the second phase it reveals it. A useful intuition
to keep in mind is the “envelope implementation” of bit commitment. In this implementation, the sender
writes a bit on a piece of paper, puts it in an envelope and gives the envelope to the receiver. In a second
(later) phase, the reveal phase, the receiver opens the envelope to discover the bit that was committed on.
In the actual digital protocol, we cannot use envelopes, but the goal of the cryptographic machinery used,
is to simulate this process.

More formally, a commitment scheme consists of two phases. First comes the commit phase and then we
have the reveal phase. We make two security requirements which (loosely speaking) are:

Secrecy: At the end of the commit phase, the receiver has no knowledge about the value committed upon.

Binding property: It is infeasible for the sender to pass the commit phase successfully and still have two
different, values which it may reveal successfully in the reveal phase.

Various implementations of commitment schemes are known, each has its advantages in terms of security
(i-e., binding for the prover and secrecy for the receiver), the assumed power of the two parties etc.

Two-round commitment schemes with perfect secrecy can be constructed from any claw-free collection
(see [20]). It is shown in [3] how to commit to bits with statistical security, based on the intractability of
certain number-theoretic problems. Damgard, Pedersen and Pfitzmann [11] give a protocol for efficiently
committing to and revealing strings of bits with statistical security, relying only on the existence of collision-
intractable hash functions. Commitment schemes with perfect binding can be constructed from any one-way
functions [34].

We will employ different commitment schemes for the prover and the verifier. The prover’s scheme will
be perfectly binding. In particular, in this work we construct a special kind of commitment schemes that are
perfectly binding and computationally secure with extra special properties. The details are given in Section
4. For perfectly hiding commitments that the verifier will use, we choose a standard technique, see Appendix
B. The commitment scheme that we will use for the prover is non interactive, meaning that the commit
phase consists of a single message from the prover to the verifier. The commitment message used to commit
to value v using randomness r is denoted COMMIT,.(v). The canonical decommitment procedure is also non
interactive, and consist in revealing the randomness r used to compute the commitment message ¢ to the
verifier, who checks that ¢ is indeed equal to cOMMIT,(v).

3 The KPPRS protocol

Richardson and Kilian [38], following ideas of Feige, Lapidot, and Shamir [17], have proposed a concurrent
zero-knowledge proof system, for any language in NP, with a polynomial number of rounds. Kilian and
Petrank [32] have drastically improved the analysis of the protocol by presenting a new simulation technique
resulting in a concurrent zero-knowledge proof for all languages in NP with a polylogarithmic number of
rounds. The analysis of the Kilian-Petrank simulator has been further improved by Prabhakaran and Sahai
[37] showing that the number of rounds can be reduced to any superlogarithmic function w(logn).

The protocol itself has the following structure. Initially the verifier V' commits to random values vy, . . . , vg.
Then P and V alternate £ times, with P first committing to some value v}, and then V revealing v; opening the
corresponding commitment sent in the first round. The intuition is that P tries to guess the value of v; before
V' decommits. However, since the commitment protocol used by V is statistically hiding, the prover has only
a negligible chance at making the right guess v; = v; forany i = 1,...,£. After P has committed to v{,...,v;
and the verifier has successfully decommitted vy, ...,v;, P proves in zero knowledge that either v} = v; for



some i or x € L. More precisely, if ci,...,c; are the commitments to v{,...,v,, P and V engage in a zero
knowledge (in fact, witness indistinguishable is enough) proof that the string ' = (¢1,...,¢¢,v1,...,04, )
belongs to the NP language L’ of all strings such that either x € L or cOMMIT(v;,7;) = ¢; for some ¢ and
r;. The intuition for this second stage is that in a real interaction between the prover and the verifier, the
chances of P correctly guessing a commitment ¢; to the right string v; before v; is revealed is negligible. So,
proving ' € L' is essentially equivalent to showing x € L. However, a simulator with black box access to
the verifier strategy V* can produce a conversation between P and V* by first choosing random values for
v}, and after some v; is revealed, “rewind” V* back to a point after the initial commitment of the verifier
to vy, ..., v, but before the commitment of P to ¢; (e.g., right after the verifier reveals v;_;). During this
second run, when the adversarial verifier reveals v;_1, the simulator replies with a commitment to v; (as
revealed by V* in the previous run). So, by the time the first stage of the protocol is over, the simulator
knows a witness of 2’ € L' (namely, the randomness used to commit to v; = v;), and can successfully prove
the statement z' € L' to the verifier. This is different from the witness used in a real interaction between
P and V, but, because of the witness indistinguishability property of the proof system used in the second
stage, the conversation transcript produced by the simulator will be indistinguishable from the real one. As
a matter of terminology, the first and second stage of the proof are usually called the preamble and the body
of the proof. The difficulty in carrying this simulation scheme is that the adversarial verifier can cause the
simulator to fail by aborting the execution of the verifier protocol before revealing v; during the first run
(in which case the prover is also entitled to abort the protocol), but successfully decommitting v; during
the second run, causing the simulator to reach the body of the proof without knowing an NP-witness for
z' € L'. In [6] it is shown that if the number of rounds (in any concurrent black-box zero-knowledge proof
system) is o(log k/ loglog k), then by coordinately aborting several concurrent executions of the protocol, the
adversarial verifier can force the simulator to perform a superpolynomial number of rewinding operations
in order to simulate the conversation for a non trivial language L. (Namely they show that any polynomial
time simulator can be transformed into a probabilistic polynomial time decision procedure for L, showing
that L is in BPP.)

In a sequence of papers [38, 32, 37|, Kilian, Petrank, Prabhakaran, Richardson and Sahai show that
if the number of rounds in the preamble is set to any superlogarithmic function w(logk) of the security
parameter, then there is a polynomial time rewinding strategy that always allows the simulator to reach the
second stage of any concurrent execution of the protocol with a valid commitment to v} = v; for some 3.
Moreover, the rewinding strategy is independent (oblivious) of the adversarial verifier strategy. It follows
(using standard hybrid techniques, and the secrecy properties of commitments and witness indistinguishable
proofs) that the final transcript used by the simulator is indistinguishable from a real conversation.

3.1 Our advantage

Our protocol is based on the protocol of [38, 32, 37]. In particular, we use a similar structure of proof system
with an important modification. Our proof of correctness relies on the proof in [32] with an additional anal-
ysis. In particular, our construction is based on a special commitment scheme such that committed values
can be efficiently proved in zero knowledge, i.e., the proof of the commitment can be simulated. Interest-
ingly, our proof system uses the simulator of the commitment scheme as a subroutine, while the concurrent
simulator uses the actual proof system for the commitments. This provides an interesting application of
zero-knowledge proofs where the simulator is not only used in the proof of security of the application, but it
is invoked by the actual protocol. So, the efficiency of the application directly depends on the efficiency of
the simulator.

The main differences between our proof system and the proof systems in [38, 32, 37] is that we use a
specific commitment scheme with some interesting properties and that we do not invoke a general zero-
knowledge proof for an NP-Complete problem. Instead, we start with any public coins zero-knowledge
proof and extend it in an efficient manner making it concurrent. Furthermore, it is enough for us that the
original proof system is honest-verifier zero-knowledge whereas the Kilian-Petrank transformation required
a witness indistinguishable proof system that is good for any verifier.

It should be noted that the number of rounds in the protocols obtained applying our transformation
depends on the number of rounds in the original public coin protocol. So, our protocol can have a larger



number of rounds than protocols obtained invoking general results for NP (which employ a constant round
protocol in the proof body, e.g., 5 rounds in the case of [21]). However, public coin HVZK protocols usually
have only a small constant number of rounds (typically 3). So, for most cases of practical interest the round
complexity of our protocols is comparable with (or even slightly better than) that of general results for NP.
(We remark that since we only need protocols that are zero-knowledge with respect to the honest verifier, the
soundness error can be made arbitrarily small by parallel repetition, without increasing the number of rounds
of the original protocol.) More importantly, since our transformation does not invoke Cook’s theorem, our
protocols are much more efficient than protocols obtained from general results from a computational point
of view. Details follow. Consider an NP language L. General results immediately give a computational zero
knowledge proof system that operates as follow. Let f be a polynomial time computable reduction from L
to an NP-Complete problem C for which a zero-knowledge proof system is known. (E.g., the zero knowledge
proof system for 3-colorable graphs of [21] used by [32, 37].) In order to prove that « € L, both the prover
and the verifier apply function f to x to obtain an instance f(x) of problem C. Finally the known proof
system for NP-Complete language C' is used to prove that f(z) € C. Even if the proof system for C is
reasonably efficient, this scheme hides a big computational overhead behind the application of the reduction
function f. Typical reduction functions f perform some sort of gate-by-gate transformation, starting from
the verification circuit for the instance-witness relation associated to NP language L. So, the size of the
output of f is usually much bigger than the size of the original problem. In contrast, in our proof system
the prover algorithm of the original public coin protocol is run unmodified, and the only overhead is a
small number of additional public key operations. So, if we start from an efficient public coin protocol, the
transformed protocol is also efficient enough to be run in practice.

4 Simulatable Commitments

We start by defining and constructing simulatable commitment schemes that satisfy some special properties.
We will later use these commitment schemes for the efficient transformation from public coin honest verifier
proofs into concurrent general zero knowledge proofs.

Simulatable commitment schemes satisfy the standard requirements of commitment schemes with respect
to secrecy and binding of a commitment phase and a reveal phase. In this section, we will be interested
in commitments with perfectly binding and computational secrecy properties. These commitments will be
later used by the prover of the concurrent zero-knowledge proof. The verifier may use standard commitment
schemes without the extra properties. (To allow the zero-knowledge proof to be interactive proof and not
just an argument, the verifier commitment scheme should be perfectly hiding).

We require two extra features of simulatable commitments. First, we require the existence of a proof
system to show, given a pair of strings (c,v), that ¢ is a commitment to the value v. Second, we require a
simulator for this proof system with some special properties. Let us start with the proof system. The prover
(in this proof system) gets as an auxiliary input the randomness used to compute the commitment message,
i.e., the string r such that ¢ = cOMMIT,(v). Informally this proof system has the following properties.

e 3 rounds: The prover sends the first message and the last. The verifier sends the second message.
We denote these three messages by (m, ¢,a). (Intuitively: message, query, answer.)

e Public coins: The proof system is “public coin”, meaning that the honest verifier chooses its message
q uniformly at random from some prescribed set Q.

e Perfect completeness: If the input (c,v) satisfies the property that ¢ is a commitment on v, then
the prover produces a first message m such that for any possible verifier choice of ¢ € Q the prover
continues by outputting an a such that the verifier accepts the proof (m,q, a).

¢ Soundness and optimal soundness: We say that the soundness error of the proof is € if for any
common input (¢, v) that does not satisfy the property that ¢ is a commitment on v the following holds.
For any possible m, there are at most € - |Q| strings ¢ that can be answered by the prover. Namely, for
at most € - |Q| strings ¢ there exists a string a such that the verifier accepts (m, ¢, a). We say that the
soundness is optimal if for any possible m there is only one single ¢ € Q that can be answered by the
prover.



e Efficiency: The prover can be implemented as a polynomial time machine given a proof r that c is a
commitment on v. Namely, r is a string such that ¢ = COMMIT,(v) = 1.

Our second requirement of a simulatable commitment scheme is that there exists a (non-rewinding)
simulator S for the view of the honest verifier in the above proof. We call a pair of strings (¢, v) legitimate
input if v is any string and ¢ is a possible commitment ¢ = COMMIT, (v) to value v for some r. The following
two distributions are polynomially indistinguishable over the set of legitimate pairs (c,v):

1. Interactions with the honest verifier: Invoke the prover on input (¢,v,r) (and uniformly chosen
random coin tosses) to produce a first proof message m, choose uniformly at random a query ¢ € Q
and invoke the prover again with the chosen query ¢ to get the third message a. The output is set to
the computed triplet (m, g, a).

2. Simulation of legitimate inputs: the output of simulator S on input (c¢,v) (and uniformly chosen
random coin tosses).

Having stated the properties of the simulator, let us make an important claim about the output distri-
bution of the simulator on “bad” inputs.

Claim 4.1 The following two distributions are polynomially indistinguishable over strings v in the domain
of committable values.

e Simulation of random commitments ;(v): Invoke the commitment scheme on v to get ¢ =
coMMIT,(v) (using uniformly chosen random coin tosses r), invoke the simulator on input (c,v) (and
uniformly chosen random coin tosses), and output the resulting triplet (m,q,a).

e Simulation of random bad commitments Qy(v): Choose uniformly at random a value v' from
the domain of committable values, invoke the commitment scheme on v' to get ¢ = COMMIT(v') (using
uniformly chosen random coin tosses), invoke the simulator on input (c,v) (and uniformly chosen
random coin tosses), and output the resulting triplet (m,q,a).

Sketch of proof: If the distributions ; (v) and Q3(v) are polynomial time distinguishable then it contradicts
the secrecy property of the commitment scheme. In order to check with polynomial advantage whether a
commitment ¢ is a valid commitment on a value v one may run the simulator on input (¢,v) and use the
given distinguisher to get a polynomial advantage. This contradicts the secrecy property of the commitment
scheme. [

To allow future reference to the prover machine, verifier machine and simulator, we adopt the following
notations. The proof system is specified by a tuple

(PCOOm’ Pclom’ Vcom7 Q’ Scom)

where

o (PO . Pl )is the prover strategy. More precisely, P2 is a probabilistic polynomial time algorithm
that on input (c¢,v,r) such that comMmIT,(v) = ¢, outputs the first prover message m and some state
information s. On input (c,v,r), state information s and challenge g, PL ~ outputs an “answer” a to

challenge q.

e Q is the set of possible challenges and V.., is a (deterministic) polynomial time verification procedure
that on input a transcript (¢,v,m,q, a) either accepts or rejects the input.

e S.om is a probabilistic polynomial time algorithm that on input a pair (¢,v) of a value v and a
commitment ¢, outputs a transcript (m, g, a) distributed as described above.



4.1 Using simulatable commitments

We will build a commitment scheme with optimal soundness. Let us point out an important feature of
this scheme, that allows this proof system to serve as a building block in our zero-knowledge proof. If the
common input is (¢,v) and ¢ is not a commitment to v, then once m is fixed, a matching ¢ is completely
determined. No other ¢ € Q can be completed into a convincing proof (m,gq,a) because of the optimal
soundness property. On the other hand, if ¢ is a commitment to v, then fixing m has no influence over q.
Any g € Q can be completed into a triple (m, ¢,a) that convinces the verifier.

A polynomial time algorithm cannot tell whether a pair (c,v) is legitimate or not. Thus, the verifier or
a distinguisher that looks at a proof transcript cannot tell if 7 determines ¢ (i.e., the pair was bad) or the
choice of m allows any ¢ € @ to be used next (i.e., the pair was good). The fact that any ¢ € @ can be
chosen (for good input pairs) will give the prover an advantage: the power to select any value ¢ € Q that
can be answered, after m is fixed. Such influence games in which the prover has more influence if the input
is legitimate, and less influence if it is not, have been used in previous zero-knowledge protocols. See for
example [12, 31].

We will now show how to obtain simulatable commitment schemes (in section 5 below), and then proceed
with using simulatable commitment to implement efficient concurrent zero knowledge proof systems (see
Section 6 below).

5 Commitment schemes based on DDH

In this section we construct a simulatable commitment scheme and prove its properties under the DDH
assumption. Our scheme is based on exponentiation in finite groups, but it is quite different from other
discrete logarithm based commitment schemes, like Pedersen’s [36]. In fact, Pedersen’s algorithm is sta-
tistically hiding, and only computationally binding. So, it cannot be used in our application, where the
committer (the prover) is not necessarily computationally bounded. More importantly, what distinguishes
the commitment scheme presented in this section from other standard commitment schemes, is the simu-
latability property, as defined in the previous section. In particular, we show that our commitment scheme
admits a very efficient zero knowledge proof system with perfect completeness and optimal soundness, with
very efficient simulator. As noted earlier, in our application we will use the simulator of the proof system
associated to the commitment scheme to build a concurrent zero knowledge protocol. Therefore, in order to
get an efficient protocol, it is not enough to have a simulator that runs in polynomial time, but we need a
simulator that is also reasonably efficient in practice.

The commitment scheme uses the following parameters: two sufficiently large primes P, such that
@ divides P — 1, and two distinct generators g,h of the order @) subgroup of Zp. Such parameters are
standard in modern cryptography, but for self containment let us say a few words on how they can be
chosen. One may consider primes P of the form 2Q +1 (a so called Sophie-Germain prime, also known in the
cryptographic community as a safe prime), however we only need @ to be sufficiently big. This parameters
can be chosen by the prover at random, and the verifier simply checks that P, @ are prime, ) divides P —1,
and () is sufficiently large. Regarding the generators, the prover picks ¢g’, A’ uniformly at random in Zp,
computes g = (¢")(F~/Q  (mod P) and h = (h')(P~1/Q  (mod P), and checks that g,h # 0,1. It follows
from elementary group theory that g and h have (multiplicative) order ) and therefore each of them is a
generator of the subgroup of Z} of order (). The verifier can also check that g and h are generators of the
order () subgroup of Z}5, computing g9 and h? (modulo P), and checking that they evaluate to 1.

Then, in order to commit to a value v € {0,...,Q — 1}, the committer picks uniformly at random
r € {0,...,Q — 1}, and outputs (P,Q,g,h,g",h""?). The exponentiations are done modulo the prime P.
We will not explicitly say that, but we assume working in Z}, for the rest of this paper. There is no need
to send (P,@Q,g,h) over and over, and the same parameters can be used for several commitments. Upon
receiving the commitment (g, h) = (g”, h"*7), the verifier also checks that g¥ = h% =1 (mod P), to make
sure that both g and h both belongs to the group generated by g and h. If this is the case, then (g,h) can
certainly be expressed as (g”, h?*"), for some (possibly unknown to the verifier) r and v. This check is not
essential for the standard commitment and decommitment operation, but it will be useful to give a proof
system for the simulatable commitment.



Perfect binding: The binding property immediately follows (in an information theoretic manner) from
the fact that g and h have order (). Therefore, g",h"t¥ uniquely determine the values of r and r + v
(mod @), and so also the value of v.

Computational secrecy: The computational secrecy property immediately follows from the DDH as-
sumption. Informally, since g and h generate the subgroup of Z} of order @, it is possible to write h = g*
for some w € {0,...,Q—1}. Using this fact, the DDH assumption implies that it is impossible to distinguish
(efficiently) between (g, h, g", h") for a uniform r € {0,...,Q — 1} and (g, h, g™, h™) for uniform r; and r,
in {0,...,Q — 1}. Computational secrecy follows. Formally, one has to use the self reducibility of the DDH
problem. The details are omitted.

The proof system We present a proof system to prove that (g,k, §, k) is a commitment to v, i.e., that
(g,h) = (¢g", h"*?) for some r. The common input to the proof is a tuple (P, Q, g, h,§, h). The prover gets
as an auxiliary input the value r and the proof proceeds as follows.

e The prover selects uniformly at random an s € {0,...,Q — 1} and sends (g, k) = (g%, h*) to the verifier.
e The verifier chooses uniformly at random a ¢ € {0,...,Q — 1} and sends it to the prover.

e The prover sends a = gr + s to the verifier

e The verifier checks that §%g = g* and (h/h?)?h = he.

The above proof system is clearly a 3-round public coin proof. It is easy to verify that the proof system
has perfect completeness, i.e., if the prover follows the protocol it can answer any query g € () so as to make
the verifier accept. Also, the prover can run in polynomial time given r.

We now argue that the proof has optimal soundness. Assume that for some g, h, there are two (distinct)
q1, g2 for which the prover can make the verifier accept, with answers a;,as respectively. Since § and
h belong to the order @ subgroup of Z} % (this follows from the check §9 = h@ = 1 performed by the
verifier upon receiving the commitment), and g and h are both generators for this subgroup, we can write
(§,h) = (g7, h™™"") for some r,v'. We want to prove that o' = v. From the last check performed by the
verifier we know that §%g = g% and (ﬁ/h”)‘“ﬁ = h% for ¢ = 1,2. It follows that g©*~% = ¢g?~% and
(h/h?)1 =92 = pa1=a2_ Using h = g* and (3, h) = (g", h"+""), we get

g"w(lh—lh) — g(fh—th)w — g(dl—a2)w — h(al—a2) — (ﬁ/hv)(lh—'h) — gw(T+v'—’U)(¢h—qz)‘

Taking the quotient of the first and last term, and extracting the discrete logarithm to the base g, we
get v(gn — q2) = V(g1 — ¢2) (mod Q). So, if ¢1 # ¢2, then (¢1 — ¢2) is invertible modulo @ (because
0 < q1,¢2 < Q), and dividing by (¢q1 — ¢2) yields equality v = v'.

The simulator It remains to show that there exists a simulator with the required properties (see Section
4). Here we describe the simple simulator. On input (g, ﬁ) and v, the simulator chooses ¢,a € {0,...,Q —1}
independently and uniformly at random and sets g = g/, h = h?/ (ﬁ/h”)q. The output of the simulator
s ((9,h), ¢, a)-

To see that the simulator outputs the correct distribution, we first check how the distribution of inter-
actions of the prover with the honest verifier looks like. This distribution consists of triplets of the form
((9°,h*),q,a), where s and ¢ are chosen uniformly at random in {0,...,Q —1} and aissettoa=¢q-r+s
(mod @). The same distribution is obtained if one chooses ¢,a € {0,...,Q — 1} independently and uni-
formly at random, and then sets s =a—¢q-r (mod Q) and outputs ((g%, h%),q,a). The latter is the output
distribution of the simulator on legitimate inputs. Thus, the simulator perfectly simulates the view of the
honest verifier for any legitimate pair (¢, v), as required in Definition 2.1. Note that the second requirement
in Definition 2.1, i.e., that the simulator does not rewind the verifier, also holds.



6 Efficient Concurrent Zero Knowledge

In this section we show that any public coin honest verifier zero knowledge proof system can be efficiently
transformed into a new proof system which is concurrent zero knowledge with respect to any verifier. The
transformation is based on any simulatable and perfectly binding commitment scheme.

6.1 An overview

We modify the concurrent zero-knowledge proof system of [38, 32, 37] in the following manner. We start with
a similar preamble. The verifier begins by committing to £ random strings v, . .., vy, where £ is any function
asymptotically larger than logn. The verifier may use any efficient statistically hiding commitment scheme.
As in the protocols of [38, 32, 37], the parties repeat for i = 1,..., £ the following steps: the prover commits
to a random string v} and then the verifier reveals the string v; opening the corresponding commitment sent
in the first round. The prover uses a simulatable commitment scheme for his commitments. The real prover
cannot hope to set v} = v;, except with negligible probability. On the other hand, as shown in [38, 32, 37],
the rewinding simulator may set v} = v; for one of the rounds 1 < i < £.

Next comes the body of the proof in which the prover shows that the input is in the language. Here
we provide a mechanism by which the prover and the verifier together toss a random string to be used as
the verifier’s challenge in the original protocol. This random string is guaranteed to be uniformly chosen at
random if both of the following two conditions hold:

1. The prover has not managed to set v; = v; for any round 1 < ¢ < £ in the preamble, and,
2. One of the parties (either the prover or the verifier) follows the protocol.

On the other hand, if v} = v; for some i, then the prover has the power of setting the outcome of the coin
tossing protocol to any value of its choice. The random string output by this protocol is used to run the
original public coins proof and show that the common input is in the language.

Completeness will easily follow. To show that soundness holds, we note that the prover can only break
the first condition with negligible probability, and since the verifier follows the protocol, the random tape
used is indeed random. Therefore, soundness follows from the soundness property of the original protocol.

To claim zero-knowledge we note that the simulator may set v; = v; for one of the rounds 1 < i < ¢
even in the concurrent setting. Using this, the simulator gets control over the choice of the coin tosses
for each of the rounds in the body of the protocol. Therefore, it can use the following strategy. Run the
simulator of the original (honest verifier) proof system. This yields a transcript of the body of the proof
that is indistinguishable from the actual original interactive proof. The simulator then forces the body of
the concurrent proof be this output of the original simulation. Doing this requires control over the choice of
the verifier random coin tosses in the simulated protocol, which he has, given that v} = v;.

We proceed with a formal description of the protocol and simulation.

6.2 The protocol

Let COMMIT be a simulatable perfectly binding commitment scheme, and let (P2 PL V1 = Q,Scom)
be the corresponding proof system and simulator. Let also (Pr, V%) be any public coin honest verifier zero
knowledge proof system for some language L. Let 2k 4+ 1 be the number of rounds of the protocol. Without
loss of generality we assume that the verifier messages are chosen from a set Q.! More precisely, the prover
Py, is an algorithm that on input a string x € L, some randomness 7y, and a sequence of messages q1, - - -, @i,
(for 0 < i < k) outputs the next prover message p;11. The verifier algorithm answers each prover message p;
with a random and independently chosen g;, and at the end of the interaction applies a verification procedure
Vi(z,p1,q1,---,pr) to determine whether to accept or reject x.

We show how to combine (Pr,, V7)) and the commitment scheme to design a new interactive proof system
for language L. Let £(n) be any function such that ¢(n) = w(logn). In what follows ¢ = £(|z]). The new
proof system is the following.

IShorter messages can be emulated by letting the prover ignore part of the message, while longer messages can be emulated
by concatenating several blocks.
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1. The verifier chooses uniformly at random a sequence of values vy, ..., v, from an exponentially large set
V. The verifier commits to the values vy, ...,v¢ in the sequence using a perfectly hiding commitment
scheme. The commitments are sent to the prover.

2. The following two steps are executed for i =1,...,¢

(a) The prover chooses uniformly at random a value v} € V', computes a commitment ¢; = COMMIT,(v})
using a simulatable commitment scheme (and fresh randomness r each time), and sends the com-
mitment to the verifier.

(b) The verifier opens v;. If at any point the verifier does not open the commitment properly, the
prover aborts the execution of the protocol.

3. The following four steps are executed for i = 1,...,k. Steps (c) and (d) below can be merged with
steps (a) and (b) of the following iteration.

(a) For all j = 1,...,¢, the prover runs the simulator S¢o, on input (¢;,v;) to obtain transcript
(mi,j,qi,j,ai,j). Then it computes pi = PL(ql,...,qifl) and sends (mi’l,...,mi,g,pi) to the
verifier.

(b) The verifier picks a randomly chosen ¢; and sends it to the prover.
(c) The prover computes g; = €D, ¢;,; ® ¢; and sends ¢;1,...,¢i¢ and a;1,. .., a;; to the verifier.
e verifier checks that V.om(m; ;,qi.i,a: ;) = accept for all j = 1,...,¢ and computes ¢; =
d) The verifier checks that Viom(mi, i j, i t for all j = 1,...,¢ and ¢
®D; ai; ® ¢-
4. The verifier accepts if and only if V7, accepts (p1,q1,---,Dk)-

In what follows, we denote Steps (1) and (2) as the preamble of the proof. Step (3) is the body of the
proof. We now state the main theorem.

Theorem 6.1 Let (Pr,VL) be an interactive proof (or argument) system for a language L such that the
proof is honest verifier public coins auziliary input zero-knowledge proof system for L and such that the
prover can be implemented as an efficient machine given a witness to the input being in the language. Then
the above protocol is an interactive proof for L with the following properties.

e If the original protocol (Pr,V5) has completeness and soundness errors (err.,errs), then the new
protocol has errors (err. + €1,errs + €3) where €1 and €3 are negligible functions.

e The prover of the above protocol works in polynomial time given black box access to the prover Pr and
to the simulator Scom. In particular, if L is in NP and Pr can be implemented efficiently given an
NP-witness for x, then also the new prover has an efficient implementation given the NP witness.

e The protocol is concurrent zero-knowledge via black box simulation. The simulator for the new protocol
works in polynomial time given black box access to the verifier V*, to the simulator Sy, guaranteed for
the view of the honest Vi, in the original interaction, and to the machines P.opm, Scom guaranteed for
the simulatable commitment scheme.

In the rest of this section we sketch the proof of Theorem 6.1.

Completeness Here both the prover and verifier are honest. Since the proof system (Peom, Veom) for
the commitment scheme has perfect completeness and the simulator S¢,,, produces a distribution which is
polynomial time indistinguishable from the real interaction (actually it is identical to the real interaction
for our construction of simulatable commitment scheme), the verifier reaches the last step of the protocol
except with negligible probability and the only condition to be checked is that Vi, accepts (po, - .., pr)- It is
easy to see that if the ¢ ’s are chosen independently and uniformly at random and if the prover is honest,
then also the ¢; ’s are chosen independently and uniformly at random. Also, the prover messages (the p;’s)
are computed according to the original protocol Pr. Therefore, the probability that the verifier accepts x
is almost the same as in the original proof system, with a negligible difference. In fact, using our specific
construction of a simulatable commitment scheme that achieves perfect simulation and perfect completeness,
€1 = 0 and the completeness of the new scheme is exactly err..
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Soundness Since the verifier uses a perfectly (or statistically) hiding commitment scheme to commit to v;,
the prover has no information about v; before sending the commitment ¢; to the verifier. So, the probability
that ¢; is a valid commitment to v; is exactly 1/|V| (plus a negligible term if the verifier’s commitment
scheme is only statistically hiding). It follows that (¢;,v;) is not a valid pair for all ¢ with probability at
least 1 — £¢/|V|. We now show that, given that all pairs (¢;,v;) are not valid, the conditional soundness
error is the same as in the original protocol. Assume that none of (¢;,v;) is valid. It follows from the
optimal soundness property of (Peom, Veom) that for any m; ; there exists at most a single ¢; ; such that
Veom (M5, qi,j, as,5) accepts. Assume that one such value exists (otherwise, the verifier certainly rejects the
proof). Then, assuming that ¢} is chosen uniformly at random, the conditional distribution of ¢; (given all
m;,;) is also uniformly random. This proves that the values g; are chosen as prescribed by the honest verifier
Vi, and the probability that V7 accept x (given that all v; # v}) is at most errs. Overall, the soundness
error is at most err,; + e where e = £/|V|.

6.3 Concurrent zero-knowledge

Let us describe a simulator to simulate the above proof system. The simulator gets black box access to V* —
an adversarial verifier that controls a polynomial number of concurrent sessions as discussed in Section 2.2.
The simulator will use the following polynomial time machines as subroutines:

1. The simulator S, for the honest verifier in the original proof system for L.

2. The prover (P2, PL ) of the simulatable commitment scheme.

3. The simulator S.,,, of the simulatable commitment scheme.

Recall that we denote Steps (1) and (2) of the protocol the preamble of the proof. Step (3) is the body
of the proof. Step (2) of the protocol contains £ pairs of rounds. Since the simulator has black-box access
to the verifier, it may rewind the verifier after it reveals the value v;, return to just before committing to
vj and set v} = v;. By doing that, it gets extra power for the body of the proof, to be discussed later. A
problem with such a rewinding in the setting of concurrent zero-knowledge is that rewinding one step in one
proof session may render irrelevant the simulation of steps in other sessions that took place in between those
steps. Using the rewinding schedule of [32], [37] shows that if the number of pairs of rounds in the preamble
is £(n) = w(logn) then the rewinding schedule of [32] has the following two properties. First, it can be run
in polynomial time. Second, when run, except for a negligible probability, the simulator gets the chance to
set v} = v; for some 4 and for all of the sessions before getting to simulate the body of the proofs. Namely,
for each session, there exists a pair of rounds i, 1 < ¢ < £ such that the simulator gets a chance to commit
to v} after it has already seen the verifier revealing the value of v;. In what follows we assume the above.
Note that the transcripts of the preambles that are simulated in the above manner are indistinguishable
from transcripts of the real interaction. Of course, the transcript does not show the rewinds, but also, the
fact that there exists a round in which the prover has committed on the value v = v; cannot be told in
polynomial time because the commitment scheme of the prover is computationally hiding and v} is never
revealed. The rewinding schedule of [32] assumes that the simulator does not rewind the verifier during the
simulation of the body of the proof. This indeed will be the case here. It is also important to note that
the values v} (for 1 <4 < {£) are never revealed later in the proof. To sum up, until now, we have used the
simulation technique and analysis of [32, 37] to get for each session an index i for which v] = v; in polynomial
time and such that the preamble transcripts are indistinguishable from the transcripts of the real proof.

We go on with describing how the simulator simulates the bodies of the proofs, i.e., Step (3), without
rewinding the verifier V*. We concentrate on a specific proof session. The same algorithm is used with any
of the proof sessions. Let the index in which the simulator has v; = v} be u. The simulator keeps a data
structure in which the current session has the entry (u,cy, vy, ), where ¢, = COMMIT,. (v,,) is the prover
commitment on v, = v,, in the preamble.

The simulator runs the honest verifier simulator S, from the original protocol to produce a sequence of
messages (p1,4qi1,--.,pr)- The simulator is going to force these p;’s and ¢;’s to actually appear in Step (3) of
the proof, no matter what the cheating verifier V* (given as a black box) does. Unless, of course, V* chooses
to abort, in which case the original prover would choose to abort as well, and so will our simulator. Step (3)
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of the protocol is now executed with the simulator playing the prover, and the adversary V* generating the
responses of the verifiers. The simulator plays the prover in Step (3) in the following manner.

e In step 3.a, when j = u, instead of running the simulator S.om, to obtain (m; u, Giu, @), run P%  on
input (cy,vu, ) to obtain message m; ; and state s.

e Instead of setting p; = Pr(q1,---,qi—1), use the p; produced by Sr..

e Let ¢} be the message received by the (possibly cheating) verifier. Set ¢;, = @#u ¢i,; ® ¢ ®q; and
compute a; , = PL.. (5, qiv)-

6.3.1 Indistinguishability

As discussed above, the simulated preambles are indistinguishable from the real interaction preambles. We
go on with discussing the bodies of the proofs. Hybrid arguments can be used to show that the full proof
is indistinguishable as a whole. We note that the hybrid arguments are made possible by the fact that
the original prover is auxiliary input zero-knowledge and by the fact that the original prover can run in
polynomial time given a witness to x being in L. We do not elaborate on the hybrid composition here.
A similar argument can be found in [16]. Loosely speaking, since the verifiers will not be rewound during
the bodies of the proofs, concurrent sessions do not interfere during the bodies of the proofs, and we may
consider the indistinguishability of each session separately.

Since we are proving zero-knowledge, we may assume that the prover is acting according to the protocol.
The honest prover always invokes the simulator S, on pairs (¢,v) where ¢ is a commitment to a uniformly
chosen random element in Q. By Claim 4.1, the output of the simulator S, in this case is indistinguishable
from the output of the simulator S¢y, on inputs (¢, v) in which ¢ is a commitment to v. It follows that (except
for a negligible probability) the simulator S.,,, must output triplets of the form (m, g, a) and furthermore,
the distribution of ¢ in these triplets is indistinguishable from a uniform choice in Q (as is the case with the
output of the simulator Scom, on legitimate inputs). Thus, we get that the each of the values g¢; ; for any
1<i<kand1l<j</isdrawn from a pseudo-random distribution on Q. (In fact, using our DDH based
simulatable commitment, the distribution is uniformly random over @.)

We go on and claim that the verifier V*, upon seeing a value m; j, generated by the simulator on an
illegitimate input pair (¢,v), cannot “tell” anything about g; ;. Even though g¢; ; is determined by m; ;, if
the polynomial time adversarial verifier can change its behavior in a way that distinguishes the value of g; ;
from a uniformly chosen value in Q, then we get a contradiction to Claim 4.1. Recall that by this claim, it is
not possible to tell transcripts output by the simulator on legitimate inputs from transcripts output by the
simulator on illegitimate inputs in polynomial time. Thus, if the prover behaves according to the protocol
and the verifier outputs any ¢;, the value ¢; = €, ¢i,; ® ¢; is pseudo-random in Q. We deduce that the
projection of this proof system on the original proof system, i.e., the distribution of the tuple (p1,q1,---,Pr)
is polynomially indistinguishable from the distribution of the original interaction (Pr,, V) with the honest
verifier. Our simulator starts by invoking Sy, to get an interaction (p1,q1,-..,pr) of this type with the
appropriate distribution. It then has to fill in the rest of the messages: m; ;,¢;j,a:; for 1 <4 < k and
1< j</{andgfor 1 <i<ksothat they all fit and are indistinguishable from the distribution on these
messages in the original interaction.

The easiest to fit with the correct distribution is ¢}. This value is generated by the real verifier V* given as
a black box. For all j # u, all values m; j,¢; ;,a;,; are generated exactly as in the original interaction. Thus,
they perfectly fit the required distribution. Finally, for j = u, the real prover of the simulatable commitment
scheme is invoked on a legitimate input (cy,v,). Of course, the output distribution is indistinguishable
from the distribution output by the simulator on the same legitimate inputs. By Claim 4.1 the distribution
output by the simulator on legitimate inputs is indistinguishable from the following distribution: choose a
random value v’ € V, choose a commitment ¢ = COMMIT,(v') and invoke the simulator on (c,v,). But this
latter distribution is exactly the distribution output in the real interaction by the real prover: it invokes the
simulator on (COMMIT,.(v},), v, ) for v}, chosen uniformly at random from V. Thus, also the output messages
M, u> Qi uy G,y are distributed in a way that is indistinguishable from their distribution in the real proof.

Hybrid arguments can now be used to show that all these separate indistinguishability properties imply
indistinguishability for the full interaction.
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Intuition: Intuitively, the ability to set v; = v; gave the simulator an edge: it could use the prover
(P, PL,.) instead of the simulator. Since it can use the prover, the simulator is able to choose g;,,, at his

will and let the P! = come up with a matching a; ,. Thus, it chooses ¢; ,, in a way that sets ¢; at his will. In
particular, it sets all the ¢;’s and p;’s to fit an interaction output by the simulator Sy, of the honest verifier
proof system. Having managed to set all p;’s and ¢;’s appropriately, we get that the body of the proof in
the simulation is polynomially indistinguishable from the body of the proof in the real interaction.

One can prove, via a standard hybrid argument, that the above distribution is indistinguishable from the

one of the real protocol. It follows from [32, 37] that the new protocol is concurrent zero-knowledge.

6.4 Cost of transformed protocol

We now compute the cost of the transformed protocol when using the simulatable commitment schemes
presented in Section 5. First, in terms of round complexity, the transformation adds only ¢ rounds: an
additive term which is polylogarithmic (in fact, only slightly superlogarithmic) in the security parameter.
(Recall that during step (3) of the protocol, parts (c) and (d) are merged with parts (a) and (b) of the following
iteration.) An appropriate £(n) is any £(n) satisfying £(n) = w(logn), for example, £(n) = logn - loglogn
will do. The communication complexity of each round (in the body of the proof) is increased by an additive
term: £(n) many strings. This addition does not apply to the verifier, who sends the same random string in
Q as before.

In terms of computation time for the prover, we first note that each commitment has a cost of two
exponentiations. Each invocation of the simulator S..,, requires four exponentiations. Given a honest
verifier zero-knowledge interactive proof with 2k + 1 rounds we need to add 2¢ + 1 preliminary rounds (for
the preamble) in which the prover computes £ commitments. The prover then needs to run the simulator £
times for each of the k£ random choices the verifier makes in the original proof system. To summarize, the
prover needs to add computation of 4kf + 2¢ exponentiations. The additional computation for the verifier
involves the computation of £ commitments in the first round, and receiving £ commitments from the prover
in the remaining rounds of the preamble, for a total of 4¢ exponentiations. For each of the verifier’s rounds
the body of the proof the overhead is invoking V..., £ times, which requires four exponentiations. This sums
up to an overall overhead of 4(k + 1)¢ additional exponentiations to the verifier.

7 From honest verifier to (non-concurrent) general zero knowl-
edge

A simplification of the above protocol yields a transformation of any honest verifier zero-knowledge proof
into a normal zero-knowledge proof, yet without achieving robustness to concurrent composition. Namely,
here the goal is to remove the honest verifier restriction for standard zero-knowledge proof systems. The
transformation incurs very low overhead on the original protocol. To do this, we note that it is enough to
use £ = 1 when concurrent sessions are not considered. Since we can always rewind the verifier without a
cost in concurrent sessions, we can always set vj = v1 and use it in the body of the proof. The cost of this
transformation for an honest-verifier public-coins zero-knowledge interactive proof that has 2k + 1 rounds is
an addition of 4k + 2 exponentiations. The increase in round complexity is only by 3 rounds. At this low cost,
we remove the honest-verifier restriction from any public-coins honest-verifier computational zero-knowledge
interactive-proof. The theorem follows.

Theorem 7.1 Let (Pr,VL) be an interactive proof system (or argument) for a language L such that the
proof is honest verifier public coins auziliary input zero-knowledge proof system for L and such that the
prover can be implemented as an efficient machine given a witness to the input being in the language. Then
the protocol of Section 6.2 with £ =1 is an interactive proof for L with the following properties.

e If the original protocol (Pr,Vi) has completeness and soundness errors (err,errs), then the new
protocol has errors (errc,errs + 1/|V|), where |V| is superpolynomial in the security parameter.
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o The prover of the above protocol works in polynomial time given black box access to the prover Pr and
to the simulator Scom. In particular, if L is in NP and Pr can be implemented efficiently given an
NP-witness for z, then also the new prover has an efficient implementation given the NP witness.

e The protocol is zero-knowledge via black box simulation. The simulator for the new protocols works in
polynomial time given black box access to the cheating verifier V*, to the simulator St for the view of
the honest Vi, in the original interaction, and to the prover and simulator protocols P, Scom of the
simulatable commitment scheme.

8 Conclusion

We have shown that any public coin honest verifier zero knowledge protocol can be efficiently transformed
into a black box concurrent zero knowledge one. The cost of the transformation is close to optimal: the
number of rounds is increased only by an additive term which is an arbitrarily small superlogarithmic function
of the security parameter, and the communication complexity of each round is also increased by the same
superlogarithmic additive term.

Our solution corresponds to a clever instantiation of the scheme of Kilian, Petrank, and Richardson with
a specific commitment scheme and proof system satisfying some special properties, thereby avoiding the
use of generic results about zero knowledge proofs for problems in NP, which although polynomial are not
practical.

Beside the specific proof system presented in this paper, our construction demonstrate that even generic
constructions as the one in [32, 37] that are usually interpreted as mere plausibility results can lead to
efficient protocols when properly instantiated.
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Basic Definitions

In this appendix we recall some fundamental definitions concerning zero knowledge proofs. A function f(n)
is negligible if for all ¢ > 0 and all sufficiently large n, |f(n)| < 1/n°.

A.1 Zero-knowledge proofs

Let

us recall the concept of interactive proofs, as presented by [27]. For formal definitions and motivating

discussions the reader is referred to [27].

Definition A.1 A protocol between a (computationally unbounded) prover P and a (probabilistic polynomial-

tim

e) verifier V' constitutes an interactive proof for a language L if there exist two negligible functions 5 and

€c such that

e Completeness: If x € L then

Pr[(P,V)(z) accepts ] > 1 - e.(/a)
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e Soundness: If x &€ L then for any prover P*

Pr[(P*,V)(z) accepts | < e,(]z)

The error in the first item, ¢, is called the completeness error and the error in the second item, €, is called
the soundness error.

Brassard, Chaum, and Crépeau [3] suggested a modification of interactive proofs called arguments in
which the prover is restricted to run in polynomial time. Thus, the soundness property is modified to be
guaranteed only for probabilistic polynomial time provers P*.

Let (P,V)(x) denote the random variable that represents V’s view of the interaction with P on common
input . The view contains the verifier’s random tape as well as the sequence of messages exchanged between
the parties.

We briefly recall the definition of black-box zero-knowledge [27, 35, 22, 26]. The reader is referred to [26]
for more details and motivations.

Definition A.2 A protocol (P,V) is computational zero-knowledge (resp., statistical zero-knowledge) over a
language L, if there exists an polynomial time oracle machine S (simulator) such that for any polynomial
time verifier V* and for every x € L, the distribution of the random variable SV (x) is polynomially indis-
tinguishable from the distribution of the random variable (P, V*)(x) (resp., the statistical difference between
M(z) and (P,V)(x) is a negligible function of |z|).

In this paper, we concentrate on computational zero-knowledge. In the sequel we will say zero-knowledge
meaning computational zero-knowledge.
A (seemingly) weaker definition is one that requires that a simulation exists only for the honest verifier.

Definition A.3 A protocol (P, V) is honest-verifier zero-knowledge over a language L, if there exists a poly-
nomial time machine S (simulator) such that for for every x € L, the distribution of the random variable
S(x) is polynomially indistinguishable from the distribution of the random variable (P, V)(z).

A.2 Auxiliary Input Zero-Knowledge

Auxiliary input zero-knowledge proofs were presented by [27]. Introducing auxiliary input into zero-knowledge
enabled sequential composition of zero-knowledge proofs.

Definition A.4 A proof system (P,V) is auxiliary-input zero-knowledge for a language L, if for any V'(z,y)
which is polynomial time in the length of its first input, there exists a simulator S', running in time polynomial
in the length of its first input, such that the following two distributions are polynomially indistinguishable
over the inputs in the language L.

1. The view of the verifier V'(x,y) in the interaction with the prover on common input x € L, while it
has private access to a string y € {0,1}* as an auziliary input.

2. The output of the simulator S given (z,y) as the input.

A.3 Black box simulation

The initial definition of zero-knowledge [26] requires that for any probabilistic polynomial time verifier V, a
simulator Sy, exists that simulates Vs view. Oren [35] proposes a seemingly stronger, “better behaved” no-
tion of zero-knowledge, known as black-box zero-knowledge. The basic idea behind black box zero-knowledge
is that instead of having a new simulator Sy, for each possible verifier, we have a single probabilistic poly-
nomial time simulator S that interacts with each possible V. Furthermore, S is not allowed to examine the
internals of V, but must simply look at V’s input Joutput behavior. That is, it can have conversations with
V and use these conversations to generate a simulation of V’s view that is computationally indistinguishable
from V’s view of its interaction with P.

At first glance, the limitations on S may seem to force S to be as powerful as a prover. However, S has
important advantages over a prover P, allowing it to perform simulations in probabilistic polynomial time.
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First, it may set Vs coin tosses as it wishes, and even run V on different sets of coin tosses. More importantly,
S may conceptually “back up” V to an earlier point in the conversation, and then send different messages.
This ability derives from S’s control of V’s coin tosses; since V otherwise operates deterministically, S can
rerun it from the beginning, exploring different directions of the conversation by trying various messages.

Until recently, essentially all known zero-knowledge proofs were shown zero knowledge via a black-box
simulator. Recently, Barak [1] presented a zero knowledge protocol where the simulator uses as input a
description of the cheating verifier V*, and it cannot be implemented given only access to the input/output
behavior of V*.

An advantage of black-box simulator is that they automatically implies zero-knowledge with respect with
auxiliary input.

A.4 Witness Indistinguishability

Witness indistinguishable proofs were introduced in [19]. The motivation was to provide a cryptographic
mechanism whose notion of security is similar though weaker than zero-knowledge, it is meaningful and
useful for cryptographic protocols, and the security is preserved in asynchronous compositions.

We say that a relation R is polynomial time if there exists a machine that given (z,w) works in polynomial
time in |z| and determines whether (z,y) € R or not. For any NP language there exists a polynomial time
relation Ry such that L can be described as L = {z: Jy, Rr(z,y)}. If (z,w) € R, then w is called a
witness for x € L. A witness indistinguishable proof is an interactive proof system for a language in NP such
that the prover is using some witness to convince the verifier that the input is in the language, yet, the view
of the verifier in case the prover uses witness w; or witness ws is polynomial time indistinguishable. Thus,
the verifier gets no knowledge about which witness is used by the prover. The formal definition follows. For
further discussion and motivation the reader is referred to [19].

Definition A.5 A proof system (P,V') is witness indistinguishable with respect to a polynomial time relation
R if for any V', any large enough x, any w1, w2 such that (z,w1) € R and (z,w2) € R, and for any auziliary
input y for V', the view of V' in the interaction with P(x,w;) is polynomially indistinguishable from the
view of V' in the interaction with P(x,ws).

It is shown in [19] that witness indistinguishability is preserved under asynchronous composition of
proofs. Moreover, zero-knowledge proofs for languages in NP are also witness indististinguishable. So, any
(non concurrent) zero-knowledge proof, like the one in [21], is also a concurrent witness indistinguishable
proof system.

B Perfectly hiding commitments

In this section we provide a standard commitment scheme. This is a variant of a scheme, due to Pedersen [36],
based on the discrete log assumption (and thus, weaker than the DDH assumption) with perfectly hiding
and computationally binding properties. This is the scheme used by the verifier in our interactive proof
system. It should be noted that the verifier can use any commitment scheme with perfect (or statistical)
hiding properties. However, Pedersen’s scheme naturally fit our application because it uses parameters that
are similar to those used by our simulatable commitment scheme. The only difference between the scheme
below, and the one in [36], is in the choice of the parameters P,@Q,g,h. In [36] it is assumed that this
parameters are either chosen by a trusted center or they are generated by the participating parties using a
coin-flipping protocol. In our application, the choice of the parameters can be safely delegated to the prover
(i-e., the recipient of the commitments), avoiding the need of a trusted center.

Beside the cost of generating the parameters (which can be used for several commitments), the cost of
each commitment scheme is two exponentiations. The setting is similar to our simulatable commitments.
Namely, the prover (who plays the role of the receiver this time) choose two sufficiently large primes P, Q
such that @) divides P —1, and two random distinct generators g, h of the order () subgroup of Zp. This can
be achieved selecting ¢', b’ in Z} at random, computing g = (¢')(F~1/Q h = (h')P=1)/Q  and checking that
g, h # 0,1. The receiver sends these parameters to the committer (verifier), who checks that P, () are primes,
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Q@ divides P — 1, and g and h have order (). The committer may use parameters P, @, g, h several times. In
fact, the same parameters can be used also for the perfectly binding simulatable commitment scheme used
by the prover.

To commit to a value v € {0,...,Q — 1}, the committer chooses a random r € {0,...,Q — 1} and sends
the value g" - h¥ (mod P) to the receiver.

Perfect secrecy: Whatever v is, if 7 is chosen uniformly at random in {0,...,Q —1} (and g is a generator
of the order @ subgroup of Zp), then the commitment ¢g" - h* (mod P) is a uniformly chosen value in the
order () subgroup of Zp.

Computational binding: If the verifier may come up with (r1,v1) and (rs,v2) such that
g™ -h" =g"-h"? (mod P),

for v1 #vs (mod Q), then the verifier may also compute the discrete log of h to the base of g as log, h =
(r1 —re)/(va —v1) (mod Q).
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