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Abstract

We say that a distribution over {0,1}™ is almost k-wise independent if its restriction to
every k coordinates results in a distribution that is close to the uniform distribution. A natural
question regarding almost k-wise independent distributions is how close they are to some k-wise
independent distribution. We show that the latter distance is essentially n®(*) times the former
distance.
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1 Introduction

Small probability spaces of limited independence are useful in various applications. Specifically,
as observed by Luby [4] and others, if the analysis of a randomized algorithm only relies on the
hypothesis that some objects are distributed in a k-wise independent manner then one can replace
the algorithm’s random-tape by a string selected from a k-wise independent distribution. Recalling
that k-wise independent distributions over {0,1}" can be generated using only O(klogn) bits (see,
e.g., [1]), this yields a significant saving in the randomness complexity as well as to derandomization
in time n9®). (This number of random bits is essentially optimal; see [3], [1].)

Further saving is possible whenever the analysis of the randomized algorithm can be carried out
also in case its random-tape is only “almost k-wise independent” (i.e., every k bits are distributed
almost uniformly). The reason being that the latter distributions can be generated using fewer
random bits (i.e., O(k+log(n/e)) bits suffice, where € is the variation distance of these k-projections
to the uniform distribution): See the work of Naor and Naor [5] (as well as subsequent simplifications
in [2]).

Note that, in both cases, replacing the algorithm’s random-tape by strings taken from a distri-
bution of a smaller support requires verifying that the original analysis still holds for the replaced
distribution. It would have been nicer, if instead of re-analyzing the algorithm for the case of
almost k-wise independent distributions, we could just re-analyze it for the case of k-wise indepen-
dent distributions and apply a generic result. Such a result may say that if the algorithm behaves
well under any k-wise independent distribution then it would behave essentially as well also under
any almost k-wise independent distribution, provided that the parameter € governing this measure
of closeness is small enough. Of course, the issue is how small should € be.

A generic approach towards the above question is to ask what is the statistical distance &
between any almost k-wise independent distribution and some k-wise independent distribution.
Specifically, how does this distance ¢ depend on n and k¥ (and on the parameter €). Note that we
will have to set e sufficiently small so that § will be small (e.g., § = 0.1 may do).

Our original hope was that § = poly(2*,n) - € (or § = poly(2¥,n) - €/OM). If this were the
case, we could have set € = poly(2_k, n~1,6), and use an almost k-wise independent sample space
of size poly(n/e) = poly(2¥,n,6") (instead of size n®*) as for perfect k-wise independence).
Unfortunately, the answer is that § = n®k) . ¢ and so this generic approach does not lead to
anything better than just using an adequate k-wise independent sample space. In fact we show
that every distribution with support less than n®(*) has large statistical distance to any k-wise
independent distribution.

2 Formal Setting

We consider distributions and random variables over {0,1}", where n (as well as k and ¢) is a
parameter. A distribution Dx over {0,1}" assigns each z € {0,1}" a value Dx(z) € [0, 1] such
that >, Dx(z) = 1. A random variable X over {0,1}" is associated with a distribution Dx
and randomly selects a z € {0,1}", where Pr[X = z] = Dx(z). Throughout the paper we use
interchangeably the notation of a random variable and a distribution. The statistical distance,
denoted A(X,Y), between two random variables X and Y over {0,1}" is defined as

AX,Y) % % S PrX =2] - PrlY =2,
z€{0,1}"
= Sé?gﬁc}n{Pr[XES] — Prly e S]}



If A(X,Y) < e the we say that X is e-close to Y. (Note that 2A(X,Y) is equivalent to | Dx — Dy |1,
where [|7]]1 = 3 |vil.)

A distribution X = X; -+ X, is called an (¢, k)-approximation if for every & (distinct) coordinates
i1,y ir € {1,...,n} it holds that X;, --- X;, is e-close to the uniform distribution over {0,1}*. An
(0, k)-approximation is sometimes referred to as a k-wise independent distribution (i.e., for every &
(distinct) coordinates i1, ...,ix € {1,...,n} it holds that X;, --- X;, is uniform over {0,1}¥).

A related notion is that of having bounded bias on (non-empty) sets of size at most k. Recall
that the bias of a distribution X = X --- X, on a set I is defined as

biasy(X) X E[(—1)2uer X
= Pr[@ie]Xi = 0] — Pr[EBieIXi = 1] = 2Pr[@ieIXi = 0] -1

Clearly, for any (e, k)-approximation X, the bias of the distribution X on every non-empty subset
of size at most & is bounded above by €. On the other hand, if X has bias at most ¢ on every non-
empty subset of size at most k then X is an (2¥/2 . ¢, k)-approximation (see [7] and the Appendix
in [2]).

Since we are willing to give up on exp(k) factors, we state our results in terms of distributions
of bounded bias.

Theorem 2.1 (Upper Bound): Let X = (X;....X,,) be a distribution over {0,1}" such that the

bias of X on any non-empty subset of size upto k is at most . Then X is 6(n, k,€)-close to some

k-wise independent distribution, where 6(n,k,€) e Ko -e<nk-e

%

The proof appears in Section 3.1. It follows that any (e, k)-approximation is §(n, k, €)-close to some
(0, k)-approximation. We show that the above result is nearly tight in the following sense.

Theorem 2.2 (Lower Bound): For every n, every even k and every e such that e > Zkk/z/n(k/‘l)*1
there exists a distribution X over {0,1}" such that

1. The bias of X on any non-empty subset is at most .

2. The distance of X from any k-wise independent distribution is at least %

The proof appears in Section 3.2. In particular, setting e = n /5 /2 (which, for sufficiently large
n > k> 1, satisfies € > 2k*/2/n(*/9=1), we obtain that 6(n, k,€) > 1/2, where §(n, k, €) is as in
Theorem 2.1. Thus, if §(n,k,e) = f(n,k) - € (as is natural and is indeed the case in Theorem 2.1)
then it must hold that

fln k) > — = n7h/°

A similar analysis holds also in case 8(n, k, €) = f(n, k)-€'/9(). We remark that although Theorem
2.2 is shown for an even k, a bound for an odd & can be trivially derived by replacing k& by k& — 1.

3 Proofs

3.1 Proof of Theorem 2.1

Going over all non-empty sets, I, of size upto k, we make the bias over these sets zero, by augmenting
the distribution as follows. Say that the bias over I is exactly € > 0 (w.l.o.g., the bias is positive);
that is, Pr[@®;c;X; = 0] = (1 + €)/2. Then (for p = € to be determined below), we define a new
distribution Y = Y7...Y,, as follows.



1. With probability 1 —p, we let Y = X.
2. With probability p, we let Y be uniform over the set {o1--- 0y € {0,1}" : Bjecro; = 1}.

Then Pr(@;crY;i =0 = (1—p)-((1+€)/2) +p-0. Setting p = €/(1+¢€), we get Pr[®;erY; = 0] =1/2
as desired. Observe that A(X,Y) < p < € and that we might have only decreased the biases on
all other subsets. To see the latter, consider a non-empty J # I, and notice that in Case (2) Y is
unbiased over J. Then

1 1 1

Pri®icsYi = 1] — 5‘ = ‘((1 —p) Pri@®ics X =1 +p- 5) - 5‘
1

= (1-p)- |Pr®iesX; =1] - 5‘

The theorem follows.

3.2 Proof of Theorem 2.2

On one hand, we know (cf., [2], following [5]) that there exists e-bias distributions of support size
(n/€)%. On the other hand, we will show (in Lemma 3.1) that every k-wise independent distribution,
not only has large support (as proven, somewhat implicitly, in [6] and explicitly in [3] and [1]), but
also has a large min-entropy bound. It follows that every k-wise independent distribution must be
far from any distribution that has a small support, and thus be far from any such e-bias distribution.
Recall that a distribution Z has min-entropy m if Pr[Z = a] < 27™ holds for every a. (Note that
min-entropy is equivalent to [log, [|[Dz||s |, where [|¥]|o0 = max; |v;].)

Lemma 3.1 For every n and every even k, any k-wise independent distribution over {0,1}" has
min-entropy at least — logQ(kkn_k/z).

Let us first see how to prove Theorem 2.2, using Lemma 3.1. First we observe, that a distribution Y
that has min-entropy m must be at distance at least 1/2 from any distribution X that has support
2™ /2. This follows because

A(Y,X) > PrY € ({0,1}" \ support(X))]
1- Z PriY = qf
a€support(X)
1
> 1—|support(X)|-27" > 2
Now, letting X be an e-bias distribution (i.e., having bias at most € on every non-empty subset)
of support (n/€)? and using Lemma 3.1 (while observing that ¢ > 2k%/2 /n(*/4~1 implies (n/e)? <
2™ /2 for m = logy(n*/?/kF)), Theorem 2.2 follows. In fact we can derive the following corollary.

Corollary 3.2 For every n, every even k, and for every k-wise independent distribution Y, if
distribution X has support smaller than n*/2/2k* then A(X,Y) > 1.

Proof of Lemma 3.1: Let Y be a k-wise independent distribution, and « be a string maximizing
Pr[Y = a]. Assume (w.l.o.g., by shifting/XORing Y by «) that « is the all-zero string. We consider
the k-th moment of Y7 i.e., E[(3;(Y; — 0.5))%].



Upper bound: Following standard manipulation, we let Z; = Y; — 0.5, (note that E[Z;] = 0) and

write .
(=)

Observe that all (r.h.s) terms in which some index appears only once are zero (i.e., if for some
j and all b # j it holds that i; # @5 then E[[], Zi,] = E[Z;;] - E[[I; Zi,] = 0). All the
remaining terms are such that each index appears at least twice. The number of these terms
is bounded above by (k72) - (k/2)* < (k/2)* -n*/2, and each contributes at most 1 to the sum.

Thus, Eq. (1) is strictly smaller than (k/2)* - n*/2.

= > EZ 7). (1)

11,08, €[N

Lower bound: We write the formal expression for expectation (of the Lh.s of Eq. (1)).

()] - e[((52)-0m)]

= > Pr{(Vi) Y; = o] ((Za,> n/2>k

o1--0n€{0,1}"
Pr((Vi) ¥; = 0] - (—n/2)*
where we use the fact that all terms are non-negative (because k is even).

Combining the two bounds on Eq. (1), we infer than (n/2)* - Pr[Y = 0"] < (k/2)*n*/2, and we get
Pr[Y = 0"] < ((k/2)kn*/?)/(n/2)F = k*n~*/2. The lemma follows.
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