Almost \(k \)-wise independence versus \(k \)-wise independence

Noga Alon*
Sackler Faculty of Exact Sciences
Tel Aviv University
Ramat-Aviv, ISRAEL.
nogaa@post.tau.ac.il

Oded Goldreich†
Department of Computer Science
Weizmann Institute of Science
Rehovot, ISRAEL.
oded@wisdom.weizmann.ac.il

Yishay Mansour
School of Computer Science
Tel Aviv University
Ramat-Aviv, ISRAEL.
mansour@post.tau.ac.il

July 31, 2002

Abstract

We say that a distribution over \(\{0,1\}^n \) is almost \(k \)-wise independent if its restriction to every \(k \) coordinates results in a distribution that is close to the uniform distribution. A natural question regarding almost \(k \)-wise independent distributions is how close they are to some \(k \)-wise independent distribution. We show that the latter distance is essentially \(n^{\Theta(k)} \) times the former distance.

Keywords: Small probability spaces, \(k \)-wise independent distributions, almost \(k \)-wise independent distributions, small bias probability spaces.

*Research supported in part by a USA Israeli BSF grant, by a grant from the Israel Science Foundation and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University.

†Supported by the MINERVA Foundation, Germany.
1 Introduction

Small probability spaces of limited independence are useful in various applications. Specifically, as observed by Luby [4] and others, if the analysis of a randomized algorithm only relies on the hypothesis that some objects are distributed in a k-wise independent manner then one can replace the algorithm’s random-tape by a string selected from a k-wise independent distribution. Recalling that k-wise independent distributions over \(\{0,1\}^n \) can be generated using only \(O(k \log n) \) bits (see, e.g., [1]), this yields a significant saving in the randomness complexity as well as to derandomization in time \(n^{O(k)} \). (This number of random bits is essentially optimal; see [3], [1].)

Further saving is possible whenever the analysis of the randomized algorithm can be carried out also in case its random-tape is only “almost k-wise independent” (i.e., every k bits are distributed almost uniformly). The reason being that the latter distributions can be generated using fewer random bits (i.e., \(O(k + \log(n/e)) \) bits suffice, where \(e \) is the variation distance of these k-projections to the uniform distribution): See the work of Naor and Naor [5] (as well as subsequent simplifications in [2]).

Note that, in both cases, replacing the algorithm’s random-tape by strings taken from a distribution of a smaller support requires verifying that the original analysis still holds for the replaced distribution. It would have been nicer, if instead of re-analyzing the algorithm for the case of almost k-wise independent distributions, we could just re-analyze it for the case of k-wise independent distributions and apply a generic result. Such a result may say that if the algorithm behaves well under any k-wise independent distribution then it would behave essentially as well also under any almost k-wise independent distribution, provided that the parameter \(e \) governing this measure of closeness is small enough. Of course, the issue is how small should \(e \) be.

A generic approach towards the above question is to ask what is the statistical distance \(\delta \) between any almost k-wise independent distribution and some k-wise independent distribution. Specifically, how does this distance \(\delta \) depend on \(n \) and \(k \) (and on the parameter \(e \)). Note that we will have to set \(e \) sufficiently small so that \(\delta \) will be small (e.g., \(\delta = 0.1 \) may do).

Our original hope was that \(\delta = \text{poly}(2^k, n) \cdot e \) (or \(\delta = \text{poly}(2^k, n) \cdot e^{1/O(\log k)} \)). If this were the case, we could have set \(e = \text{poly}(2^{-k}, n^{-1}, \delta) \), and use an almost k-wise independent sample space of size \(\text{poly}(n/e) = \text{poly}(2^{k}, n, \delta^{-1}) \) (instead of size \(n^{O(k)} \) as for perfect k-wise independence). Unfortunately, the answer is that \(\delta = n^{O(k)} \cdot e \), and so this generic approach does not lead to anything better than just using an adequate k-wise independent sample space. In fact we show that every distribution with support less than \(n^{O(k)} \) has large statistical distance to any k-wise independent distribution.

2 Formal Setting

We consider distributions and random variables over \(\{0,1\}^n \), where \(n \) (as well as \(k \) and \(e \)) is a parameter. A distribution \(D_X \) over \(\{0,1\}^n \) assigns each \(z \in \{0,1\}^n \) a value \(D_X(z) \in [0,1] \) such that \(\sum_z D_X(z) = 1 \). A random variable \(X \) over \(\{0,1\}^n \) is associated with a distribution \(D_X \) and randomly selects a \(z \in \{0,1\}^n \), where \(\Pr[X = z] = D_X(z) \). Throughout the paper we use interchangeably the notation of a random variable and a distribution. The statistical distance, denoted \(\Delta(X,Y) \), between two random variables \(X \) and \(Y \) over \(\{0,1\}^n \) is defined as

\[
\Delta(X,Y) \overset{\text{def}}{=} \frac{1}{2} \cdot \sum_{z \in \{0,1\}^n} |\Pr[X = z] - \Pr[Y = z]| \\
= \max_{S \subseteq \{0,1\}^n} \{\Pr[X \in S] - \Pr[Y \in S]\}
\]
If $\Delta(X, Y) \leq \epsilon$ the we say that X is ϵ-close to Y. (Note that $2\Delta(X, Y)$ is equivalent to $\|D_X - D_Y\|_1$, where $\|w\|_1 = \sum |w_i|$.)

A distribution $X = X_1 \cdots X_n$ is called an (ϵ, k)-approximation if for every k (distinct) coordinates $i_1, \ldots, i_k \in \{1, \ldots, n\}$ it holds that $X_{i_1} \cdots X_{i_k}$ is ϵ-close to the uniform distribution over $\{0,1\}^k$. An $(0,k)$-approximation is sometimes referred to as a k-wise independent distribution (i.e., for every k (distinct) coordinates $i_1, \ldots, i_k \in \{1, \ldots, n\}$ it holds that $X_{i_1} \cdots X_{i_k}$ is uniform over $\{0,1\}^k$).

A related notion is that of having bounded bias on (non-empty) sets of size at most k. Recall that the bias of a distribution $X = X_1 \cdots X_n$ on a set I is defined as

$$\text{bias}_I(X) \overset{\text{def}}{=} E[(-1)\sum_{i \in I} X_i] = \Pr[\oplus_{i \in I} X_i = 0] - \Pr[\oplus_{i \in I} X_i = 1] = 2\Pr[\oplus_{i \in I} X_i = 0] - 1$$

Clearly, for any (ϵ, k)-approximation X, the bias of the distribution X on every non-empty subset of size at most k is bounded above by ϵ. On the other hand, if X has bias at most ϵ on every non-empty subset of size at most k then X is an $(2^{k/2} \cdot \epsilon, k)$-approximation (see [7] and the Appendix in [2]).

Since we are willing to give up on $\exp(k)$ factors, we state our results in terms of distributions of bounded bias.

Theorem 2.1 (Upper Bound): Let $X = (X_1, \ldots, X_n)$ be a distribution over $\{0,1\}^n$ such that the bias of X on any non-empty subset of size up to k is at most ϵ. Then X is $\delta(n,k,\epsilon)$-close to some k-wise independent distribution, where $\delta(n,k,\epsilon) \overset{\text{def}}{=} \sum_{i=1}^{k} \binom{n}{i} \cdot \epsilon \leq n^k \cdot \epsilon$.

The proof appears in Section 3.1. It follows that any (ϵ, k)-approximation is $\delta(n,k,\epsilon)$-close to some $(0,k)$-approximation. We show that the above result is nearly tight in the following sense.

Theorem 2.2 (Lower Bound): For every n, every even k and every ϵ such that $\epsilon > 2^{k/2}/n^{(k/4) - 1}$ there exists a distribution X over $\{0,1\}^n$ such that

1. The bias of X on any non-empty subset is at most ϵ.

2. The distance of X from any k-wise independent distribution is at least $\frac{1}{2}$.

The proof appears in Section 3.2. In particular, setting $\epsilon = n^{-k/5}/2$ (which, for sufficiently large $n \gg k \gg 1$, satisfies $\epsilon > 2^{k/2}/n^{(k/4) - 1}$), we obtain that $\delta(n,k,\epsilon) \geq 1/2$, where $\delta(n,k,\epsilon)$ is as in Theorem 2.1. Thus, if $\delta(n,k,\epsilon) = f(n,k) \cdot \epsilon$ (as is natural and is indeed the case in Theorem 2.1) then it must hold that

$$f(n,k) \geq \frac{1}{2\epsilon} = n^{-k/5}$$

A similar analysis holds also in case $\delta(n,k,\epsilon) = f(n,k) \cdot \epsilon^{1/\Omega(1)}$. We remark that although Theorem 2.2 is shown for an even k, a bound for an odd k can be trivially derived by replacing k by $k - 1$.

3 Proofs

3.1 Proof of Theorem 2.1

Going over all non-empty sets, I, of size up to k, we make the bias over these sets zero, by augmenting the distribution as follows. Say that the bias over I is exactly $\epsilon > 0$ (w.l.o.g., the bias is positive); that is, $\Pr[\oplus_{i \in I} X_i = 0] = (1 - \epsilon)/2$. Then (for $p \approx \epsilon$ to be determined below), we define a new distribution $Y = Y_1 \cdots Y_n$ as follows.
1. With probability $1 - p$, we let $Y = X$.

2. With probability p, we let Y be uniform over the set \(\{ \sigma_1 \cdots \sigma_n \in \{0,1\}^n : \oplus_i \sigma_i = 1 \} \).

Then \(\Pr[\oplus_i Y_i = 0] = (1 - p) \cdot ((1 + \epsilon)/2) + p \cdot 0 \). Setting \(p = \epsilon/(1 + \epsilon) \), we get \(\Pr[\oplus_i Y_i = 0] = 1/2 \) as desired. Observe that \(\Delta(X, Y) \leq p < \epsilon \) and that we might have only decreased the biases on all other subsets. To see the latter, consider a non-empty \(J \neq I \), and notice that in Case (2) \(Y \) is unbiased over \(J \). Then

\[
\left| \Pr[\oplus_i Y_i = 1] - \frac{1}{2} \right| = \left| \left((1 - p) \cdot \Pr[\oplus_i X_i = 1] + p \cdot \frac{1}{2} \right) - \frac{1}{2} \right|
\]

\[
= (1 - p) \cdot \left| \Pr[\oplus_i X_i = 1] - \frac{1}{2} \right|
\]

The theorem follows. □

3.2 Proof of Theorem 2.2

On one hand, we know (cf., [2], following [5]) that there exists \(\epsilon \)-bias distributions of support size \((n/\epsilon)^2\). On the other hand, we will show (in Lemma 3.1) that every \(k \)-wise independent distribution, not only has large support (as proven, somewhat implicitly, in [6] and explicitly in [3] and [1]), but also has a large min-entropy bound. It follows that every \(k \)-wise independent distribution must be far from any distribution that has a small support, and thus be far from any such \(\epsilon \)-bias distribution. Recall that a distribution \(Z \) has min-entropy \(m \) if \(\Pr[Z = \alpha] \leq 2^{-m} \) holds for every \(\alpha \). (Note that min-entropy is equivalent to \(\| \log_2 \|D_Z\|_\infty \|, \) where \(\| \|_\infty = \max_i |v_i| \).)

Lemma 3.1 For every \(n \) and every even \(k \), any \(k \)-wise independent distribution over \(\{0,1\}^n \) has min-entropy at least \(-\log_2(k^k n^{-k/2}) \).

Let us first see how to prove Theorem 2.2, using Lemma 3.1. First we observe, that a distribution \(Y \) that has min-entropy \(m \) must be at distance at least \(1/2 \) from any distribution \(X \) that has support \(2^m/2 \). This follows because

\[
\Delta(Y, X) \geq \Pr[Y \in (\{0,1\}^n \setminus \text{support}(X))] = 1 - \sum_{\alpha \in \text{support}(X)} \Pr[Y = \alpha] \geq 1 - |\text{support}(X)| \cdot 2^{-m} \geq \frac{1}{2}
\]

Now, letting \(X \) be an \(\epsilon \)-bias distribution (i.e., having bias at most \(\epsilon \) on every non-empty subset) of support \((n/\epsilon)^2\) and using Lemma 3.1 (while observing that \(\epsilon > 2k^{k/2}/n^{(k/4)-1} \) implies \((n/\epsilon)^2 < 2^m/2 \) for \(m = \log_2(n^{k/2}/k^k) \)), Theorem 2.2 follows. In fact we can derive the following corollary.

Corollary 3.2 For every \(n \), every even \(k \), and for every \(k \)-wise independent distribution \(Y \), if distribution \(X \) has support smaller than \(n^{k/2}/2k^k \) then \(\Delta(X, Y) \geq \frac{1}{2} \).

Proof of Lemma 3.1: Let \(Y \) be a \(k \)-wise independent distribution, and \(\alpha \) be a string maximizing \(\Pr[Y = \alpha] \). Assume (w.l.o.g., by shifting/XORing \(Y \) by \(\alpha \)) that \(\alpha \) is the all-zero string. We consider the \(k \)-th moment of \(Y \); i.e., \(E[(\sum_i (Y_i - 0.5))^k] \).
Upper bound: Following standard manipulation, we let \(Z_i = Y_i - 0.5 \), (note that \(\mathbb{E}[Z_i] = 0 \)) and write
\[
\mathbb{E} \left[\left(\sum_i Z_i \right)^k \right] = \sum_{i_1, \ldots, i_k \in [n]} \mathbb{E}[Z_{i_1} \cdots Z_{i_k}] .
\] (1)

Observe that all (r.h.s) terms in which some index appears only once are zero (i.e., if for some \(j \) and all \(h \neq j \) it holds that \(i_j \neq i_h \) then \(\mathbb{E} [\prod_{h} Z_{i_h}] = \mathbb{E}[Z_{i_j}] \cdot \mathbb{E}[\prod_{h \neq j} Z_{i_h}] = 0 \)). All the remaining terms are such that each index appears at least twice. The number of these terms is bounded above by \(\binom{n}{k/2} \cdot (k/2)^k < (k/2)^k \cdot n^{k/2} \), and each contributes at most 1 to the sum. Thus, Eq. (1) is strictly smaller than \((k/2)^k \cdot n^{k/2}\).

Lower bound: We write the formal expression for expectation (of the l.h.s of Eq. (1)).
\[
\mathbb{E} \left[\left(\sum_i Z_i \right)^k \right] = \mathbb{E} \left[\left(\left(\sum_i Y_i \right) - (n/2) \right)^k \right]
\]
\[
\quad = \sum_{\sigma_1 \cdots \sigma_n \in \{0,1\}^n} \Pr[(\forall i) \ Y_i = \sigma_i] \cdot \left(\left(\sum_i \sigma_i \right) - (n/2) \right)^k
\]
\[
\quad \geq \Pr[(\forall i) \ Y_i = 0] \cdot (-n/2)^k
\]

where we use the fact that all terms are non-negative (because \(k \) is even).

Combining the two bounds on Eq. (1), we infer that \((n/2)^k \cdot \Pr[Y = 0^n] < (k/2)^k \cdot n^{k/2}\), and we get \(\Pr[Y = 0^n] < ((k/2)^k \cdot n^{k/2})/(n/2)^k = k^k n^{-k/2}\). The lemma follows.

\[\square \]

References

