On the Security of Modular Exponentiation
with Application to the Construction of Pseudorandom Generators*

Oded Goldreich
Department of Computer Science
and Applied Mathematics
Weizmann Institute of Science
Rehovot, Israel.
oded@wisdom.weizmann.ac.il

Vered Rosen
Department of Computer Science
and Applied Mathematics
Weizmann Institute of Science
Rehovot, Israel.
veredr@wisdom.weizmann.ac.il

August 4, 2002

Abstract

Assuming the intractability of factoring, we show that the output of the exponentiation
modulo a composite function \(f_{N,g}(x) = g^x \mod N \) (where \(N = P \cdot Q \)) is pseudorandom, even
when its input is restricted to be half the size (i.e. \(x < \sqrt{N} \)). This result is equivalent to
the simultaneous hardness of the upper half of the bits of \(f_{N,g} \), proven by Håstad, Schrift and
Shamir. Yet, we provide a different proof that is significantly simpler than the original one. In
addition, we suggest a pseudorandom generator that is more efficient than all previously known
factoring-based pseudorandom generators.

Keywords: Modular exponentiation, discrete logarithm, hard core predicates, simultaneous se-
curity, pseudorandom generator, factoring assumption.

*This write-up is based on the Master Thesis of the second author (supervised by the first author).
1 Introduction

One-way functions play an extremely important role in modern cryptography. Loosely speaking, these are functions which are easy to evaluate but hard to invert. A number theoretic function which is widely believed to be one-way, is the exponentiation function over a finite field. Its inverse, the discrete logarithm function, is the basis for numerous cryptographic applications. Most applications use a field of prime cardinality, though many of them can be adapted to work in other algebraic structures as well.

A concept tightly connected to one-way functions is the notion of hard-core predicates, introduced by Blum and Micali [BM]. A polynomial-time predicate \(b \), if all efficient algorithm, given \(f(x) \), can guess \(b(x) \) with success probability only negligibly better than half. Blum and Micali showed the importance of hard-core predicates in pseudorandom bit generation. Specifically, they showed that the modular exponentiation function over a field of prime cardinality, \(f_{P,g}(x) = g^x \mod P \), has a hard-core predicate, and used it in order to construct a pseudorandom bit generator. The study of hard-core predicates of \(f_{P,g} \) has culminated in the work of Håstad and Näslund [HN], showing that all bits of \(f_{P,g} \) are individually secure.

1.1 Hard core functions

The concept of a hard-core function (or the simultaneous security of bits) is a generalization of hard-core predicates. Intuitively, a sequence of bits associated to a one-way function \(f \) is said to be simultaneously secure, if no efficient algorithm can gain any information about the given sequence of bits in \(x \) when only given \(f(x) \). Proving the simultaneous security of a sequence of bits (rather than a single bit) in \(f_{P,g} \) is a desirable result, enabling the construction of more efficient pseudorandom generators as well as improving other applications. However, the best known result regarding the simultaneous security of bits in \(f_{P,g} \) is due to Long and Wigderson [LW], Kaliski [Kal] and Peralta [P], who showed that \(O(\log n) \) bits are simultaneously secure, where \(n \) is the size of the modulus \(P \).

Stronger results were demonstrated when the modulus was taken to be a composite, thus allowing to relate (simultaneous) hardness of bits in the argument to the factoring problem. Denote by \(f_{N,g} \) the exponentiation modulo a composite function, defined as \(f_{N,g}(x) = g^x \mod N \), where \(N \) is an \(n \)-bit composite equal to the multiplication of two large primes and \(g \) is an element in the multiplicative group mod \(N \). Håstad, Schrift and Shamir showed that under the factoring intractability assumption, all the bits in \(f_{N,g} \) are individually hard, and that the upper \(\lceil \frac{n}{2} \rceil \) bits and lower \(\lceil \frac{n}{2} \rceil \) bits are simultaneously hard [HSS].

In the same setting (and under the same assumption that factoring is hard), we show that no efficient algorithm can tell apart \(f_{N,g}(r) \) from \(f_{N,g}(R) \), where \(r \) is a random \(\lceil \frac{n}{2} \rceil \)-bit string and \(R \) is a random \(n \)-bit string\(^1\). That is, one can work with an exponent \(x \) of half the size, and still obtain an element that “seems random” to all efficient algorithms. Note that all the cryptographic tools that use exponentiation in \(\mathbb{Z}_N^* \) (and base their security on the discrete logarithm assumption) can greatly benefit from this fact, since the time consumed for exponentiation grows linearly with the size of the exponent (and is thus cut by a factor of two). Our result is in fact equivalent to the result of Håstad et. al. [HSS] on the simultaneous hardness of the upper \(\lceil \frac{n}{2} \rceil \) bits of \(f_{N,g} \). Nevertheless, we give an alternative proof for it while using some of their ideas and techniques. Our approach significantly simplifies the proof given in [HSS] and sheds new light on it.

\(^1\)As a matter of fact, in the exact formulation of our result, \(R \) is uniformly distributed over the range of naturals smaller than the order of \(g \) (on the group \(\mathbb{Z}_N^* \)). However, the above claim (with \(R \) uniformly distributed in \(\{0,1\}^n \)) holds as well, as an implication of Theorem 3.4.
We mention that our work also implies that no efficient algorithm can tell apart \(f_{N,g}(r \cdot 2^k) \) from \(f_{N,g}(R) \), where \(r \) and \(R \) are as above and \(k \) is polynomial in \(n \). For details, see [R]. In particular, when taking \(k \) to be \(\lceil \frac{n}{2} \rceil \), this result is equivalent to the simultaneous hardness of the lower \(\lceil \frac{n}{2} \rceil \) bits of \(f_{N,g} \).

Another implication of our work (to be further discussed below) is the construction of a pseudorandom bit generator based on the computational indistinguishability of \(f_{N,g}(r) \) from \(f_{N,g}(R) \). Our generator is somewhat more efficient than all previously known factoring-based pseudorandom generators.

1.2 An efficient Pseudorandom generator

The notion of a pseudorandom bit generator, introduced by Blum and Micali [BM], plays a central role in cryptography. It enables the user to expand a short random seed into a longer sequence of bits, that can be used in any efficient application instead of a truly random bit sequence. Blum and Micali presented a pseudorandom bit generator based on the discrete log problem. Using the fact that the exponentiation function over a field of prime cardinality has a hard-core predicate, they suggested an iterative generator that yields one bit of output per each exponentiation. Furthermore, they conceived a general paradigm that constructs an iterative pseudorandom generator, given any length preserving one-way permutation \(f \), and a hard-core predicate \(b \) for \(f \).

The Blum-Blum-Shub pseudorandom generator [BBS], hereafter referred to as the “BBS generator”, is based on the above paradigm, taking \(f \) to be the modular squaring function, where the modulus \(N \) is a Blum integer. Since, as shown by Rabin [R1], the problem of factoring \(N \) can be reduced to the problem of extracting square roots in the multiplicative group mod \(N \), the function \(f \) is a one-way function assuming the intractability of factoring Blum integers. Additionally, Blum, Blum and Shub showed that \(f \) induces a permutation over the set of quadratic residues in the multiplicative group mod \(N \), and using the results of Alexi et.al. [ACGS] and Vaziran and Vazirani [VV], this implies that the least significant bit constitutes a hard-core predicate for \(f \). The BBS generator is by far more efficient than the Blum-Micali generator. In particular, for every polynomial \(P(\cdot) \), the BBS generator stretches an \(n \)-bit seed into a \(P(n) \)-bit pseudorandom string using \(P(n) \) modular multiplications.

Another generator whose pseudorandomness is based on factoring, was suggested by Hastad, Schrift and Shamir [HSS], and will be referred to as the “HSS generator”. The HSS generator relies on the simultaneous hardness of half of the bits in the exponentiation modulo a composite function \(f_{N,g} \). Loosely speaking, the HSS generator takes an \(n \)-bit random seed \(x \) (where \(n \) is the size of the modulus \(N \)), and outputs \(f_{N,g}(x) \) followed by the lower half of the bits of \(x \). Observe that from an \(n \)-bit seed, the HSS generator obtains \(1.5n \) bits of output, using \(n \) modular multiplications on the worst case, and \(0.5n \) modular multiplications on the average case (when assuming that the terms \(g^{2^0}, \ldots, g^{2^n} \) are pre-computed together with the other parameters of the generator).

Even though our main result is equivalent to the simultaneous hardness of half of the bits in \(f_{N,g} \), our result gives rise to a pseudorandom generator that is (in a sense) more natural than the HSS generator, as well as more efficient than it. Informally, we suggest a generator that takes a random seed \(x \) of size \(\lceil n/2 \rceil \), and outputs \(f_{N,g}(x) \). Observe that our generator doubles the length

\(^2\)A Blum integer is equal to the multiplication of two primes of equal size, each congruent to 3 mod 4.

\(^3\)The Blum-Micali generator obtains each bit of output at the cost of one modular exponentiation that is implemented by \(n \) modular multiplications, as opposed to one modular multiplication per output bit needed by the BBS generator.

\(^4\)As a matter of fact, in order to achieve true pseudorandomness, universal hashing is applied. The actual construction will be presented in Section 4.
of its input. In particular, it obtains n bits of output from an $0.5n$-bit seed using $0.5n$ modular multiplications on the worst case, and $0.25n$ modular multiplications on the average case (once again, assuming that the terms $g^{29}, \ldots, g^{[n/2]}$ are pre-computed).

The following table compares the three factoring based generators discussed above, each having the same security parameter n (the size of the modulus N). Note that the “cost” column refers to the average number of multiplications done in every application of the generator, and the “amortized cost” column refers to the average number of multiplications divided by the number of additional output bits of the generator (i.e., the amortized cost is the cost divided by the difference between the output length and the seed length).\[5\]

<table>
<thead>
<tr>
<th></th>
<th>seed length</th>
<th>output length</th>
<th>cost</th>
<th>amortized cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBS construction</td>
<td>n</td>
<td>$P(n)$</td>
<td>$P(n)$</td>
<td>$\frac{P(n)}{P(n)-n}$ ≈ 1</td>
</tr>
<tr>
<td>HSS construction</td>
<td>n</td>
<td>$1.5n$</td>
<td>$0.5n$</td>
<td>$\frac{0.5n}{1.5n-n} = 1$</td>
</tr>
<tr>
<td>Our construction</td>
<td>$0.5n$</td>
<td>n</td>
<td>$0.25n$</td>
<td>$\frac{0.25n}{n-0.5n} = 0.5$</td>
</tr>
</tbody>
</table>

We mention that our generator (as well as the HSS generator) has an efficient parallel implementation in time $O(\log n)$.\[6\] This is opposed to the BBS generator which is not known to have a fast parallel implementation (i.e., any faster than the straightforward sequential implementation).

Another pseudo-random generator that is related to our work was proposed independently by Genarro [Ge]. This generator is proved to be secure assuming that discrete exponentiation modulo a prime is hard to invert even when the exponent is of poly-logarithmic length (this assumption is called Discrete-Log with Short Exponents and in short, the DLSE-Assumption). Genarro’s generator is more efficient than ours: Given a prime modulus of size n, every l modular multiplications yield $n - l - 1$ bits of output, where l is poly-logarithmic in the size of n. However, Gennaro’s generator is based on a strong and relatively new assumption (compared to the Factoring Assumption which has undergone years of extensive research). We mention that, as it was shown in [OW], the DLSE-Assumption is not secure for a random prime modulus, so that one needs to restrict the primes to safe primes. Both generators (Gennaro’s and ours) are based on a similar observation, except that ours is an immediate implication of our main result (Theorem 3.2) and Gennaro’s generator is an immediate implication of the DLSE-Assumption.

1.3 Organization

The rest of this work is organized as follows. Basic definitions and notations are given in Section 2. In Section 3 we state and prove the main theorem (regarding the pseudorandomness of exponentiation with a short exponent), show its equivalence to the [HSS] result and discuss the difference between the two proofs. In Section 4 we address the issue of constructing a pseudorandom gener-

5. Above, we compare the various generators with respect to the same security parameter. Still, one might consider a comparison with respect to the same seed length. In order to do that we must normalize the input/output sizes of our generator so that its seed length will be n. Thus, the output produced by our generator will be of length $2n$, the cost will be $0.5n$ and the amortized cost will again be 0.5 multiplications per an additional output bit. Note, however, that the size of the security parameter in our construction will be twice its size in the BBS and the HSS constructions. Thus, our construction will be safer. On the other hand, each multiplication will involve twice as big numbers.

6. The parallel implementation uses $[n/2]$ processors $P_1, \ldots, P_{[n/2]}$, where the input of each processor P_i is the i’th bit of the seed, s_i, and the output is the multiplication of the values $g^{2^{i-1}s_i}$ contributed by each processor.
ator based on results as ours and [HSS]. The issues addressed may be of general interest beyond the specific hard problem on which our construction is based (i.e. factoring).

2 Preliminaries

2.1 General

Probability Ensembles: Let I be a countable index set. A probability ensemble indexed by I is a sequence of random variables indexed by I. Namely, $X = \{X_i\}_{i \in I}$, where the X_i’s are random variables, is a probability ensemble indexed by I.

In our applications, we use \mathbb{N} as an index set, and let each X_n (in an ensemble of the form $\{X_n\}_{n \in \mathbb{N}}$) range over strings of length n. In particular, we denote by U_n the random variable that is uniformly distributed over $\{0,1\}^n$.

Statistical Difference: A basic notion from probability theory is the statistical difference between probability ensembles $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$. The statistical difference measures the distance between distributions and is defined to be

$$SD(X_n, Y_n) = \frac{1}{2} \cdot \sum_{\alpha} |\Pr[X_n = \alpha] - \Pr[Y_n = \alpha]|$$

Probability ensembles $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ are called statistically close if their statistical difference is negligible in n (we say that a function $\mu : \mathbb{N} \to [0,1]$ is negligible if for every positive constant c and all sufficiently large n’s, $\mu(n) < \frac{1}{n^c}$).

Computational Indistinguishability: A weaker notion of closeness between probability ensembles is the notion of indistinguishability by all efficient algorithms. When no efficient algorithm (that may be probabilistic) can tell apart the two ensembles, we call them computationally indistinguishable. Formally,

Definition 2.1 We say that two ensembles $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ are computationally indistinguishable, if for every probabilistic polynomial-time algorithm D, for every positive constant c and for all sufficiently large n’s

$$|\Pr[D(X_n, 1^n) = 1] - \Pr[D(Y_n, 1^n) = 1]| < \frac{1}{n^c}$$

A notation: Let A be a finite set, then $a \in_R A$ denotes that the element a is uniformly chosen from the set A (i.e. with probability $\frac{1}{|A|}$).

2.2 The Factoring Assumption

We denote by N_n the set of all n-bit integers $N = P \cdot Q$, where P and Q are two odd primes of equal size. The collection N_n can be sampled efficiently. Specifically, given input 1^n, it is possible to pick a random element in N_n in polynomial time (using a polynomial number of coin tosses).

The problem of factoring integers is widely believed to be intractable. Integers belonging to the set N_n are considered to be particularly hard to factor. Note that N_n is a non-negligible fraction of all n-bit integers. Currently, the best algorithm known can factor an integer picked randomly from N_n in (heuristic) running-time of $e^{1.92n^{1/3}\log^{2/3}n}$ [LLMP]. We use the following assumption.
Assumption 1 (Factoring Assumption) Let A be a probabilistic polynomial-time algorithm. Then, for every constant $c > 0$ and all sufficiently large n’s

$$Pr[A(P \cdot Q) = P] < \frac{1}{n^c}$$

where $N = P \cdot Q$ is selected uniformly from N_n.

2.3 The group Z_N^*

For a composite N, denote by Z_N^* the multiplicative group that consists of all the naturals which are smaller than N and are relatively prime to it. We represent the elements in Z_N^* by binary strings of size $n = \lceil \log N \rceil$. Further notations we use are:

- Let $x < N$, and let $1 \leq j \leq i \leq n$. We denote by x_i the i’th bit in the binary representation of x, and by $x_{i,j}$ the substring of x including the bits from position j to position i.
- Denote by $\text{ord}_N(g)$ the order of an element g in Z_N^*; that is, the minimal $k \geq 1$ for which $g^k = 1 \pmod{N}$.
- Denote by $\langle g \rangle$ the subgroup of Z_N^* generated by g. That is, $\langle g \rangle$ is the set of all elements of the form $g^x \pmod{N}$ for some $x < N$.
- Denote by P_n the set of pairs $\langle N, g \rangle$ where $N \in N_n$ and $g \in Z_N^*$. Note that P_n is efficiently samplable.

We now define the \textit{exponentiation modulo a composite} function and its inverse the \textit{discrete logarithm modulo a composite} function.

Definition 2.2 Let $\langle N, g \rangle$ be a pair in P_n. We define the exponentiation modulo a composite function $f_{N, g} : \{0, 1\}^* \rightarrow \langle g \rangle$ to be $f_{N, g}(x) = g^x \pmod{N}$.

Definition 2.3 Let $\langle N, g \rangle$ be a pair in P_n. We define the discrete log modulo a composite function $DL_{N, g} : \langle g \rangle \rightarrow \{0, \text{ord}_N(g)\}$, where $DL_{N, g}(y)$ is defined to be the unique natural $x < \text{ord}_N(g)$ for which $f_{N, g}(x) = y$.

3 Exponentiation with a short exponent is pseudorandom

We introduce two probability ensembles, which we show to be computationally indistinguishable assuming the intractability of factoring.

Definition 3.1 Let $\langle N, g \rangle$ be a uniformly distributed pair in P_n. Let R be uniformly distributed in $[0, \text{ord}_N(g)]$ and r be uniformly distributed in $\{0, 1\}^{\lceil \log N \rceil}$. We denote by Full$_n$ the distribution $\langle N, g, g^R \pmod{N} \rangle$ and by Half$_n$ the distribution $\langle N, g, g^r \pmod{N} \rangle$.

Theorem 3.2 Suppose that factoring is intractable. Then, the ensembles $\{\text{Half}_n\}_{n \in N}$ and $\{\text{Full}_n\}_{n \in N}$ are computationally indistinguishable.
\[
\begin{align*}
\frac{n}{2} & \leq m \leq n \quad (1) \\
& \text{---------------------------} \\
& \text{---------------------------} \quad (2) \\
i \geq \frac{n}{2} & \quad (3)
\end{align*}
\]

Figure 1: We denote random bits by \(^* \) and the length of the binary expansion of \(\text{ord}_N(g) \) by \(m \). Eq. (1), (2), (3) show the exponents of \(\text{Half}_n \), \(\text{Full}_n \) and the hybrid \(H^i_n \), respectively.

3.1 Proof Outline

We use the hybrid technique in order to prove the indistinguishability of \(\text{Full}_n \) and \(\text{Half}_n \). We define hybrid distributions \(H^i_n \) and show that, assuming the intractability of factoring, for every \(i \geq \frac{n}{2} \), the distributions \(H^i_n \) and \(H^{i+1}_n \) are computationally indistinguishable.

Definition 3.3 Let \(\langle N, g \rangle \) be a uniformly distributed pair in \(P_n \), and let \(x \) be uniformly distributed in \(\{0,1\}^l \). We denote by \(H^i_n \) the distribution \(\langle N, g, g^x \mod N \rangle \) (see Figure 1).

Clearly, the distribution \(H^{[n/2]}_n \) is identical to \(\text{Half}_n \). In Subsection 3.4 we show that the hybrid \(H^{n+\omega(\log n)}_n \) is statistically close to \(\text{Full}_n \). Thus, in order to establish Theorem 3.2, it is sufficient to prove the following result.

Theorem 3.4 Suppose that Factoring is intractable. Then, for \(i \geq \lceil n/2 \rceil \), the distributions \(H^i_n \) and \(H^{i+1}_n \) are computationally indistinguishable.

We begin the proof of Theorem 3.4 by restricting the hybrid distribution defined above to a specific choice of \(N \) and \(g \). Specifically,

Definition 3.5 Let \(\langle N, g \rangle \) be any pair in \(P_n \) and let \(x \) be uniformly distributed in \(\{0,1\}^l \). We denote by \(H^i_{N,g} \) the distribution \(\langle g^x \mod N \rangle \).

We prove that a polynomial-time algorithm \(D \) that distinguishes \(H^i_{N,g} \) and \(H^{i+1}_{N,g} \) with a non-negligible advantage can be transformed into a polynomial-time algorithm \(D' \) that is able to extract discrete-log of elements of the form \(g^x \mod N \) where \(|x| \leq i + 1 \), with respect to these \(N \) and \(g \). That is:

Lemma 3.6 Let \(\langle N, g \rangle \) be a pair in \(P_n \) and let \(i \) be polynomial in \(n \). There exists an explicit transformation from a polynomial-time algorithm \(D \) that distinguishes \(H^i_{N,g} \) and \(H^{i+1}_{N,g} \) with a non-negligible advantage to a polynomial-time discrete-log finder \(D' \), that on input of the form \(g^x \mod N \), where \(|x| \leq i + 1 \), finds \(x \) with overwhelming probability.

The last ingredient in the proof of Theorem 3.4 relies on the connection between factoring \(N \) and computing discrete logarithm modulo \(N \). It is well-known that in order to factor \(N \) it is sufficient to compute \(S = DL_{N,g}(g^N \mod N) \), for a random \(g \in \mathbb{Z}_N^* \). An important feature of \(S \) is that its size (denoted \(|S| \)) is relatively small, specifically, \(|S| = \lceil \frac{n}{2} \rceil + 1 = \lceil \log^2 N \rceil + 1 \) (see Section 3.2 for further details). Using Lemma 3.6, contradiction to Theorem 3.4 implies ability to compute \(S \) and thus factor \(N \).
3.2 Factoring versus Discrete Logarithm in Z_N^*

As mentioned above, there is a tight connection between factoring N and revealing the discrete logarithm of a suitably chosen element in Z_N^*. Specifically, in order to factor a random integer $N = P \cdot Q$ in \mathbb{N}, it is sufficient to find the discrete log of $g^N \mod N$ for a randomly chosen $g \in Z_N^*$. This is due to the following trivial fact:

Fact 1 Let (N, g) belong to P_n (say that $N = P \cdot Q$). Then, if $ord_N(g) > P + Q - 1$, then the discrete logarithm $S \overset{def}{=} DL_{N,g}(g^N)$ is equal to $P + Q - 1$.

Proof: Recall that the order of g divides the order of the group Z_N^*, which equals $\varphi(N) = (P - 1)(Q - 1)$. Therefore, $g^N \equiv g^{\varphi(N)} \equiv g^{P + Q - 1} \pmod{N}$. Consequently, if $ord_N(g) > P + Q - 1$ then $S = P + Q - 1$. □

The following proposition, established by Håstad et al. [HSS], asserts that an element chosen uniformly in Z_N^* is very likely to be of high order:

Proposition 3.7 (Håstad et al.) Let (N, g) be uniformly distributed in P_n, where $N = P \cdot Q$. Then, for every k,

$$
\Pr \left[\text{ord}_N(g) < \frac{1}{n^k} \cdot (P - 1)(Q - 1) \right] \leq O \left(\frac{1}{n^{(k-1)/3}} \right)
$$

The only use we make of the above proposition, is to show that with very high probability, $ord_N(g)$ cannot be too small. Specifically, Proposition 3.7 implies that with overwhelming probability $ord_N(g)$ is greater than $P + Q - 1$. Therefore, as was first observed by Chor [Chor], if we obtain S then we can solve the two equations $P + Q - 1 = S$ (according to Fact 1) and $P \cdot Q = N$ for the unknowns P and Q and thus factor N.

3.3 Transforming a hybrid distinguisher into a discrete-log finder

The proof of Lemma 3.6 is basically a reduction. We show how to use the algorithm D that distinguishes $H_{N,g}$ and $H_{N,g}^{i+1}$ as an oracle that gives us information on the $(i + 1)^{st}$ bit of an $(i + 1)$-long exponent. We then show how to manipulate g^x in order to extract x.

3.3.1 Using D to discover the $(i + 1)^{st}$ bit of the exponent

Assume that for some non-negligible ϵ the following holds:

$$
\left| \Pr[D(N, g, g^x) = 1|x \in_R \{0,1\}^i] - \Pr[D(N, g, g) = 1|x \in_R \{0,1\}^{i+1}] \right| \geq \epsilon \quad (1)
$$

Observe that

$$
\Pr[D(N, g, g^x) = 1|x \in_R \{0,1\}^{i+1}] = \frac{1}{2} \cdot \Pr[D(N, g, g^x) = 1|x \in_R \{0,1\}^i] + \frac{1}{2} \cdot \Pr[D(N, g, g^{2^i+x}) = 1|x \in_R \{0,1\}^i] \quad (2)
$$

From 1 and 2 we obtain the following:

$$
\left| \Pr[D(N, g, g^x) = 1|x \in_R \{0,1\}^i] - \Pr[D(N, g, g^{2^i+x}) = 1|x \in_R \{0,1\}^i] \right| \geq 2\epsilon \quad (3)
$$
Denote by $\overline{H}_{N,g}$ the distribution g^{2i+x} where x is drawn uniformly from $\{0,1\}^t$. Another way to state Inequality 3 is to say that the distinguisher D has advantage at least 2ε in distinguishing the distributions $H_{N,g}^i$ and $\overline{H}_{N,g}^i$. Let β and γ be the acceptance probabilities of D on input taken from $H_{N,g}^i$ and $\overline{H}_{N,g}^i$, respectively. That is, let

$$\beta \overset{\text{def}}{=} \Pr[D(N, g, g^x) = 1 | x \in_R \{0,1\}^t]$$

and

$$\gamma \overset{\text{def}}{=} \Pr[D(N, g, g^{2i+x}) = 1 | x \in_R \{0,1\}^t]$$

Without loss of generality assume that $\gamma > \beta$. Note that γ (respectively β) denotes the probability that the ”1-answer” given by D is correct (respectively wrong); i.e., the $(i+1)^{\text{st}}$ bit is indeed 1. A good approximation of β and γ can be easily obtained (in polynomial-time) by performing a-priori tests on D, using samples taken from $H_{N,g}^i$ and $\overline{H}_{N,g}^i$.

In the sequel we will use the distinguisher D as an oracle, that enables us to “peek” into a 1-bit window on the $(i+1)^{\text{st}}$ location of an unknown exponent of length $(i+1)$. Specifically, we will use D in order to derive the $(i+1)^{\text{st}}$ bit of an $(i+1)$-bit string x, given g^x. This is straightforward in case $\gamma = 1$ and $\beta = 0$, but we’ll show how to extract valuable information also in the general case of $\gamma > \beta$.

3.3.2 Discovering x – a naive implementation

Suppose for a moment that we had a “perfect” oracle, that given input $Z = g^x$, where x is of length $(i+1)$, would supply us, with success probability 1, the $(i+1)^{\text{st}}$ bit of x. It would then enable us to extract x, using two simple operations:

Shifting to the left: By squaring Z we shift x by one position to the left.

Zeroing the jth bit: By dividing Z by g^{j-1} we zero the jth position in x, in case it is known to be 1.

Therefore, we can extract x from the most significant to the least significant bit by “moving” it under the $(i+1)^{\text{st}}$ window. Specifically, we query the oracle and determine the $(i+1)^{\text{st}}$ bit of x and zero it in case it equals 1. Next, we shift x by one position to the left, query again the oracle to discover the next bit, and so on.

However, as the oracle might give us erroneous answers and all we are guaranteed is that there is a $\gamma - \beta$ gap (which is greater than 2ε) between the probability to get a correct 1-answer and the probability to get an erroneous 1-answer, our implementation needs to be more careful.

When dealing with a general oracle, randomize our queries to the oracle and learn the correct answer by comparing the proportion of 1-answers with β and γ. A straightforward way to learn the $(i+1)^{\text{st}}$ bit of x given $Z = g^x$, would be to query the oracle on polynomially many random multiples $Z \cdot g^r$ for known r_k’s chosen uniformly from $\{0,1\}^t$, and based on the fraction of 1-answers to decide between 0 and 1. However this approach fails, since despite our knowledge of r_k, we cannot tell whether a carry from the addition of the i least significant bits of the known r_k and the unknown x effects the $(i+1)^{\text{st}}$ bit of their sum. Thus we cannot gain any information on the $(i+1)^{\text{st}}$ bit of x from the answer of the oracle on $Z \cdot g^r$.
3.3.3 Discovering x – the actual implementation

We now give a rough description of a procedure that resolves this difficulty and computes x. Let us make our life easier and assume for start that x is of length $i - m$, where m is logarithmic in n (say, $m = \lceil \log \frac{n}{\epsilon} \rceil$). We first show how to extract discrete logs of exponents x of that size.

Let l be an index going down from $i - m$ to 1. The procedure consists of $i - m$ stages (a stage for each value of l), where on each stage we create a list L_l which is a subset of $\{0, \ldots, 2^{i-m-l+1} - 1\}$ such that L_l will contain candidates for the $|x| - l + 1 = i - m - l + 1$ most significant bits of x.

We want two invariants to hold for the list L_l:

1. L_l contains an element e such that $x - e \cdot 2^l$ belongs to the set $\{0, \ldots, 2^{l-1}\}$. In other words, we want e to equal $x_{i-m,l}$ (i.e. $x_{i-m} \ldots x_{l+1}x_l$).

2. The size of L_l is small; that is, it contains up to a polynomial number of values (where the polynomial is set a-priori).

Thus, on the last stage (when the index l equals 1), we will have a list of polynomial size that contains x.

The values in each list are kept sorted. The transition from the $(l + 1)^{st}$ list to the l^{th} list is done as follows: We first let L_l contain all the values v such that $v = 2u$ or $v = 2u + 1$ where u is in L_{l+1}, thus making the size of L_l twice the size of L_{l+1}. Obviously, by this we maintain the first invariant specified above. In case the size of L_l exceeds the polynomial bound we fixed, we use repeatedly the **Trimming Rule** in order to throw candidates out of L_l until we are within the maximal size allowed. We stress that the Trimming Rule never throws away the correct candidate (i.e., $x_{i-m,l}$).

3.3.4 Keeping the size of L_l bounded

Suppose that we decide to trim L_l whenever the difference between the largest candidate in it, denoted by v^l_{\max}, and the smallest candidate in it, denoted by v^l_{\min}, exceeds a certain polynomial, say 2^m (recall that $m = \lceil \log \frac{n}{\epsilon} \rceil$ and since ϵ is non-negligible, we have that 2^m is polynomial in n). At least one of the values v^l_{\max} and v^l_{\min} is not the correct value $x_{i-m,l}$. Therefore, the trimming rule (to be defined in the sequel) may throw one of them out of the list. For this purpose, we are going to define a new target x' (see Sect. 3.3.5), for which g^x can be efficiently computed given $Y = g^x$, v^l_{\max} and v^l_{\min}. We will examine a certain position in it (that is dependent on l), henceforth referred to as the **crucial position** (and shortly denoted cp). Essentially, x' will have the following properties:

1. If v^l_{\min} is the correct candidate (i.e. $x_{i-m,l} = v^l_{\min}$) then the cp-bit in x' is 0, so are m bits to its right, and so are all the bits to its left.

2. If v^l_{\max} is the correct candidate (i.e. $x_{i-m,l} = v^l_{\max}$) then the cp-bit in x' is 1, the m bits to its right are all 0’s, and so are all the bits to its left.

Consequently, in these two situations we will be able to perform the randomization we wanted. We first shift x' to the left until the cp-bit is placed in the $(i + 1)^{st}$ location (by repeated squaring). We then multiply the result by g^r for some randomly chosen $r \in \{0, 1\}^i$. The probability to have a carry into the $(i+1)^{st}$ location from the addition of r and the shifted x', is no more than $\frac{1}{2m}$ (a carry

\footnote{We assume that $i \geq m$, since for $i < m$ we can find x simply by trying all possibilities.}

\footnote{The Trimming Rule and its analysis are exactly the same as in [HSS].}
might occur only when \(r_{i+1} = 11 \ldots 1 \). Hence, by using a polynomial number of queries to the oracle (with independently chosen \(r \)'s) we are able to deduce the value of the \(cp \)-bit by comparing the fraction of 1-answers with \(\beta \) and \(\gamma \).

As the value of the \(cp \)-bit is revealed, we can discard one of the candidates \(v^l_{\text{min}} \) or \(v^l_{\text{max}} \) from the list: If the value of the \(cp \)-bit is 1 then we are guaranteed that \(v^l_{\text{min}} \) is not correct, and if the value of the \(cp \)-bit is 0 then we are guaranteed that \(v^l_{\text{max}} \) is not correct.

Note that in case neither \(v^l_{\text{max}} \) nor \(v^l_{\text{min}} \) are correct, we cannot ensure that \(m \) bits to the right of the \(cp \)-bit in \(x' \) will be zeroes, so a carry may reach the \((i+1)^{th}\) position. Thus we can get the frequency of 1-answers altogether different from \(\beta \) and \(\gamma \). Yet in that case, it is ok for the trimming rule to discard either one of the extreme values from the list.

We proceed with a formal presentation of the proof.

3.3.5 Definition of \(x' \) and \(cp \)

In order to trim the list \(L_l \), we define the new secret \(x' \) (which is a function of \(l, x, v^l_{\text{min}} \) and \(v^l_{\text{max}} \)) to be

\[
x' = \left\lfloor \frac{2^{2m}}{v^l_{\text{max}} - v^l_{\text{min}}} \right\rfloor \cdot (x - v^l_{\text{min}} \cdot 2^l)
\]

Note that \(g^{x'} \) can be efficiently evaluated given \(Y = g^x \), \(v^l_{\text{min}} \) and \(v^l_{\text{max}} \). The Crucial Position in \(x' \) is defined to be

\[
cp = l + 2m + 1
\]

Recall that \(l \leq i - m \) and so \(cp \leq i + m + 1 \). However, we need to have \(cp \leq i + 1 \), whenever we apply the trimming rule. This can be assured, because we trim \(L_l \) whenever the difference between the extreme values in it exceeds \(2^m \), which happens only for indices \(l \leq i - 2m \). Thus, we have that \(cp \leq 2m + 1 = i + 1 \).

3.3.6 The actual algorithms and their analysis

We first describe the procedure “find x” that on input \(\langle N, g \rangle \in P_n \), index \(i \) (the index of the hybrid for which the acceptance probability of \(D \) on \(H_{N,g}^l \) and \(\overline{H}_{N,g}^l \) differs by more than \(2\varepsilon \)) and \(Y = g^x \) where \(|x| = i - m \), finds \(x \). We proceed with an analysis of the procedure, which leads us to the exact formulation of the trimming rule.

Procedure “Find x”:

On input \(\langle N, g \rangle \in P_n \), index \(i \) and \(Y = g^x \) where \(|x| = i - m \), execute the following steps:

1. Let \(L_{i-m} = \{0, 1\} \).

2. For \(l = i - m - 1 \) to 1 do the following:

 (a) Let \(L_l \triangleq \{2u, 2u + 1 : u \in L_{l+1}\} \).

 Order the resulting list from the largest element \(v^l_{\text{max}} \) to the smallest element \(v^l_{\text{min}} \).

 (b) If \(v^l_{\text{max}} - v^l_{\text{min}} > 2^m \) (we are guaranteed that \(v^l_{\text{max}} - v^l_{\text{min}} \leq 2 \cdot 2^m \) by the previous stage) use the trimming rule (to be specified) repeatedly until the difference between the largest element in the list and the smallest one is no more than \(2^m \).

3. Check all values \(v \in L_1 \) and see whether \(g^v \) equals \(Y \). If such a value is found, then it is \(x \).
Two facts: We turn to make two observations which lead us to the formulation of the rule by which we trim L_t (assuming that $2^m < v_{\text{max}}^{t} - v_{\text{min}}^{t} \leq 2^{m+1}$):

Fact 2 Suppose that v_{min}^{t} indeed equals $x_{i-m,t}$. Then, the cp-bit in x' is 0, all the bits to its left are 0’s, and $m-1$ bits to its right are 0’s as well.

Fact 3 Suppose that v_{max}^{t} indeed equals $x_{i-m,t}$. Then, the cp-bit in x' is 1, all the bits to its left are 0’s, and so are $m-2$ bits to its right.

Proof:(of Fact 2) Using $v_{\text{max}}^{t} - v_{\text{min}}^{t} > 2^{m}$, observe that

$$x' = \left[\frac{2^{2m}}{v_{\text{max}}^{t} - v_{\text{min}}^{t}} \right] \cdot \left(v_{\text{min}}^{t} \cdot 2^{t} + x_{t,1} - v_{\text{min}}^{t} \cdot 2^{t} \right)$$

$$\leq 2^{m} \cdot x_{t,1}$$

$$\leq 2^{m+1}$$

$$= 2^{cp-m-1}$$

(See Figure 2). □

Figure 2: The structure of x' when v_{min}^{t} equals $x_{i-m,t}$.

Proof:(of Fact 3) Observe that

$$x' = \left[\frac{2^{2m}}{v_{\text{max}}^{t} - v_{\text{min}}^{t}} \right] \cdot \left(v_{\text{max}}^{t} \cdot 2^{t} + x_{t,1} - v_{\text{min}}^{t} \cdot 2^{t} \right)$$

$$= \left[\frac{2^{2m}}{v_{\text{max}}^{t} - v_{\text{min}}^{t}} \right] \cdot \left(\left(v_{\text{max}}^{t} - v_{\text{min}}^{t} \right) \cdot 2^{t} + x_{t,1} \right)$$

$$= 2^{2m+1} + \delta \cdot (v_{\text{max}}^{t} - v_{\text{min}}^{t}) \cdot 2^{t} + \left[\frac{2^{2m}}{v_{\text{max}}^{t} - v_{\text{min}}^{t}} \right] \cdot x_{t,1}$$

where $\delta = \left[\frac{2^{2m}}{v_{\text{max}}^{t} - v_{\text{min}}^{t}} \right] - \frac{2^{2m}}{v_{\text{max}}^{t} - v_{\text{min}}^{t}} \in [0, 1]$.

Let $U_1 = \delta \cdot (v_{\text{max}}^{t} - v_{\text{min}}^{t}) \cdot 2^{t}$ and let $U_2 = \left[\frac{2^{2m}}{v_{\text{max}}^{t} - v_{\text{min}}^{t}} \right] \cdot x_{t,1}$.

We can write x' as

$$x' = 2^{cp-1} + U_1 + U_2$$

Recall that $2^m < v_{\text{max}}^{t} - v_{\text{min}}^{t} \leq 2^{m+1}$. Therefore, $U_1 \leq 2^{m+1+t} = 2^{cp-m}$ and $U_2 \leq 2^{m+t} = 2^{cp-m-1}$.

Also, both $U_1, U_2 \geq 0$. Thus, $U_1 + U_2 \in [0, 2^{cp-m+1})$.

Consequently x' is of the following form (see Figure 3):

- The cp-bit in x' is 1 and all the bits to its left are 0’s.
- The $m-2$ bits to the right of the cp-bit in x' are 0’s.

□

We now formally state the trimming rule:
\[x' = \begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 1 \\
\uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\
0 & 0 & 0 & ? & ? & ? \\
\end{array} \]
\[cp \quad cp - m + 1 \]

Figure 3: The structure of \(x' \) when \(v_{\text{max}}^i \) equals \(x_{i-m,1} \).

Trimming Rule (on the current list \(L_l \) with \(v_{\text{min}}^i \) and \(v_{\text{max}}^i \)):

1. Compute \(Y' = g^{x'} = (Y \cdot g^{-v_{\text{min}}^i \cdot 2^j})^e \) where \(Y = g^x \) and \(e = \left\lfloor \frac{22m}{v_{\text{max}}^i - v_{\text{min}}^i} \right\rfloor \).

2. Shift \(x' \) by \(i + 1 - cp \) bits to the left (by computing \(Y'' = (Y')^{2^{i+1-cp}} \)), thus placing the crucial position (i.e. \(cp \)) in \(x' \) on location \(i + 1 \).

3. Pick \(t(n) = \frac{\log n}{\epsilon} \) random elements \(r_1, \ldots, r_{t(n)} \in \{0, 1\}^{i-m} \).

4. For each \(1 \leq k \leq t(n) \) query the oracle on \(Y'' \cdot g^{r_k} \pmod{N} \) and denote by \(b_k \) its answer (i.e. \(b_k = D(g^{x'\cdot 2^{i+1-cp} + r_k}) \)). Denote by \(M \) the mean \(\frac{\sum_{k=1}^{t(n)} b_k}{t(n)} \).

5. If \(M \leq (\beta + \frac{2m}{2}) \) discard the candidate value \(v_{\text{max}}^i \) from the list \(L_l \). Otherwise (i.e. when \(M > (\beta + \frac{2m}{2}) \)) discard the candidate value \(v_{\text{min}}^i \).

Using the Chernoff bound one can show that the error probability of the trimming rule (i.e. the probability that the correct value will be discarded from the list) is exponentially small (for the exact proof see Appendix A). Note that for every index \(l \), the transition from the \(l+1 \)’th list to the \(l \)’th list is done in polynomial-time, and thus the procedure “Find x” together with the Trimming Rule runs in polynomial-time. Thus, we have showed how to extract discrete-log of exponents \(x \) of size \(i - m \).

In order to complete the proof of Lemma 3.6, we still need to explain how we can extract discrete-log of exponents \(x \) of size \(i + 1 \). Remember that \(m \) was chosen to be logarithmic in \(n \) \((m = \lceil \log \frac{n}{2} \rceil)\). We can simply try all combinations for the \(m + 1 \) most significant bits of \(x \). For each such combination try to zero these bits in \(x \) and run the procedure “Find \(x' \). For one of these combinations this will work and \(x \) will be found in the list \(L_{i-m} \). Since “Find \(x \)” runs in polynomial-time and since the number of combinations \(2^{m+1} \) is polynomial, \(x \) can be derived with overwhelming probability in polynomial-time.

3.3.7 Proof of Theorem 3.4

We now show that the hybrids \(H_n^i \) and \(H_n^{i+1} \) are indistinguishable assuming intractability of factoring. Specifically, Theorem 3.4 can be derived from the following claim:

Claim 3.7.1 Suppose that the gap between the acceptance probability of \(D \) on the hybrids \(H_n^i \) and \(H_n^{i+1} \) is greater than \(\epsilon \). Then, with probability at least \(\epsilon/8 \) we can factor a composite \(N \), uniformly distributed in \(N_1 \).

Proof: Let \(W_n \subseteq P_n \) be the set of pairs \(\langle N,g \rangle \) in \(P_n \) for which it holds that \(D \) distinguishes \(H_{N,g}^i \) and \(H_{N,g}^{i+1} \) with advantage at least \(\frac{\epsilon}{8} \). For a pair \(\langle N,g \rangle \) uniformly chosen from \(P_n \) (where \(N \) is equal to \(P \cdot Q \)) the following two facts hold:
1. With probability greater than $\frac{1}{2}$, the pair $\langle N, g \rangle$ belongs to the set W_n.

2. With overwhelming probability $\text{ord}_N(g) > P + Q - 1$.

The first fact can be established from a standard averaging argument and the second fact from Proposition 3.7. Therefore, given a random $N = P \cdot Q$ in N_n, we can pick g uniformly in Z_N^* and with probability higher than $\frac{1}{2}$ both of the above conditions hold (i.e. $\langle N, g \rangle \in W_n$ and $\text{ord}_N(g) > P + Q - 1$). Recall now that factoring N is possible by finding the discrete-log of $S = DL_{N,g}(g^N)$. According to Fact 1, we have that $S = P + Q + 1$, so by revealing S we can factor N. Since $\langle N, g \rangle \in W_n$, we can extract discrete-logs of elements of the form $g^x \mod N$, where $x \in \{0, 1\}^{i+1}$, with overwhelming probability (using Lemma 3.6). Thus, with probability at least $\frac{1}{2}$ (over the uniform distribution of $N \in N_n$ and our algorithm’s coin tosses), we extract S (using the fact that the size of S is $[n/2] + 1 \leq i + 1$) and factor N. □

Remark: In fact, Theorem 3.4 holds even for i’s such that $i \geq \lceil n/2 \rceil - O(\log n)$ (rather than $i \geq \lceil n/2 \rceil$). Given such $i \leq \lceil n/2 \rceil$, we try all combinations for the $m + 1 + \lceil n/2 \rceil - i$ most significant bits of S (instead of just $m + 1$ such bits). The total number of combinations remains polynomial in n, so this leaves us with polynomial running time.

3.4 Proof of Main Theorem

We now turn back to Theorem 3.2, and prove it using Theorem 3.4.

Recall how the distributions Half_n and Full_n were defined (see Definition 3.1). Clearly, the hybrid $H_n^{[n/2]}$ is identical to Half_n. Note that the distribution $H_n^{n+\omega(\log n)}$ is statistically close to Full_n, as asserted by the following claim:

Claim 3.7.2 The distributions Full_n and $H_n^{n+\omega(\log n)}$ are statistically close.

Proof: Let M denote $2^{n+\omega(\log n)}$. M can be written as $k \cdot \text{ord}_N(g) + r$ where k is an integer and $0 \leq r < \text{ord}_N(g)$. We now calculate the statistical difference between the distributions Full_n and $H_n^{n+\omega(\log n)}$. Note that the second equality below is implied from the fact that in $f_{N,g}(x)$ the exponent x is reduced modulo $\text{ord}_N(g)$.9

$$SD(\text{Full}_n, H_n^{n+\omega(\log n)}) = \frac{1}{2} \sum_{\alpha \in [0, \text{ord}_N(g))] \left| \Pr[\text{Full}_n = \alpha] - \Pr[H_n^{n+\omega(\log n)} = \alpha] \right|$$

Using the fact that $\frac{k}{M} \leq \frac{1}{\text{ord}_N(g)} \leq \frac{k+1}{M}$ we may remove the absolute values and rewrite the above equation as:

$$\frac{1}{2} \left[r \cdot \left(\frac{k+1}{M} - \frac{1}{\text{ord}_N(g)} \right) + (\text{ord}_N(g) - r) \cdot \left(\frac{1}{\text{ord}_N(g)} - \frac{k}{M} \right) \right]$$

9Thus, for each element $0 \leq x < r$ there will be $k+1$ congruent elements (modulo $\text{ord}_N(g)$) in the range $[0..M-1]$, and for each element $r \leq x < \text{ord}_N(g)$ there will be k congruent elements in $[0..M-1]$.

13
\[\frac{1}{2} \left(\text{ord}_N(g) - 2r \right) \cdot \frac{r}{M \cdot \text{ord}_N(g)} + \frac{r}{M} \]

where the inequality uses \(r \geq 0 \). Since \(\frac{r}{M} < \frac{N}{M} \leq \frac{2^n}{2^{n+\omega(\log n)}} \), we have that \(\text{SD}(\text{Full}_n, H_n^{n+\omega(\log n)}) \) is negligible in \(n \). \(\square \)

Consequently, if there exists a probabilistic polynomial-time algorithm \(D \), that distinguishes the ensemble \(\text{Half}_n \) from \(\text{Full}_n \), then \(D \) distinguishes (almost) as well \(\text{Hal}_n \) from \(H_n^{1.5n} \).

Assume now that the gap between the acceptance probability of \(D \) on the extreme hybrids \(H_n^{[n/2]} \) and \(H_n^{1.5n} \) is greater than \(\delta \) (where \(\delta \) is non-negligible). We construct an algorithm \(A \) that factors integers uniformly distributed in \(N \). On input \(N \), algorithm \(A \) picks a random \(i \) in \(\{[\frac{n}{2}], \ldots, 1.5n\} \) and runs the procedure “Find \(x \)” on \((N, i) \). By Claim 3.7.1, the probability that “Find \(x \)” indeed factors \(N \), is greater than one eight of the gap between the acceptance probabilities of \(D \) on \(H_n^{i} \) and \(H_n^{i+1} \), for a random \(i \) as above. Observing that the expected gap between the \(i^{th} \) and \((i + 1)^{st} \) hybrids is at least \(\delta/n \), we derive a contradiction to Assumption 1. \(\blacksquare \)

Remark: The above proof actually establishes the indistinguishability of \(\text{Hal}_n \) and \(H_n^{\delta(n)} \) for any \(l(n) = n + \omega(\log n) \) such that \(l(n) \leq \text{poly}(n) \).

3.5 Equivalence to the HSS result

Theorem 3.2 is actually equivalent to the result by [HSS] on the simultaneous hardness of the upper \([n/2] \) bits in the exponentiation function \(f_{N,g} \). In order to show that, we discuss first an alternative version of Theorem 3.2. Recall the hybrid \(H_n^{\delta(n)} \) defined in the proof of Theorem 3.2, including triplets \(\langle N, g, g^R \rangle \), where \(\langle N, g \rangle \) is uniformly distributed in \(P_n \) and \(R \) is uniformly distributed in \(\{0, 1\}^{\delta(n)} \). For any function \(l : N \rightarrow N \) such that \(l(n) \in \{ n + \omega(\log n), \ldots, \text{poly}(n) \} \) (e.g., \(l(n) = 1.5n \)), let us denote \(H_n^{\delta(n)} \) by \(\text{Full}_n \). The following is a corollary from Theorem 3.2 and from Claim 3.7.2.

Corollary 3.8 The probability ensembles \(\{ \text{Hal}_n \}_{n \in N} \) and \(\{ \text{Full}_n \}_{n \in N} \) are computationally indistinguishable.

We show that Corollary 3.8 is equivalent to the result of [HSS]. But first, let us give the exact formulation of their result.

Definition 3.9 Let \(\langle N, g \rangle \) be uniformly distributed in \(P_n \), let \(x \) be uniformly distributed in \(\{0, 1\}^{\delta(n)} \) and let \(r \) be uniformly distributed in \(\{0, 1\}^{\lceil \frac{n}{2} \rceil} \). We define the following probability distributions:

\[X_n \overset{\text{def}}{=} \langle N, g, f_{N,g}(x), x_{\lceil n/2 \rceil} \rangle \]

and

\[Y_n \overset{\text{def}}{=} \langle N, g, f_{N,g}(x), r \rangle \]

Theorem 3.10 (Håstad et al.) The probability ensembles \(\{ X_n \}_{n \in N} \) and \(\{ Y_n \}_{n \in N} \) are computationally indistinguishable.\(^{10}\)

\(^{10}\) Actually, the definition of simultaneous hardness of the upper \(\left\lceil \frac{n}{2} \right\rceil \) bits of \(f_{N,g} \) is wrong in [HSS]. Their definition states that the two distributions \((\tilde{x}_{n, [n/2]}, Z) \) and \((r, Z) \) are computationally indistinguishable, where \(Z = g^r \) (for \(x \in R Z_n \)), \(\tilde{x} = DL_{N,g}(Z) \) and \(r \in \{0, 1\}^{\lceil n/2 \rceil} \). However, this definition is flawed: At least the most significant bit in the first distribution, \(\tilde{x}_n \), will be always 0, since \(\text{ord}_N(g) \) is always smaller than \(N/2 \). Hence the above two distributions can be easily distinguished.
3.5.1 The Equivalence

Theorem 3.11 Theorem 3.10 holds if and only if Corollary 3.8 holds.

Proof: We show how to transform a probabilistic polynomial-time algorithm D that distinguishes the ensemble $\{X_n\}$ from $\{Y_n\}$ into a probabilistic polynomial-time algorithm D' that distinguishes the ensemble $\{Half_n\}$ from $\{Full_n\}$, and vice versa.

Transforming D into D': On input $\langle N, g, y \rangle$, pick z uniformly from $\{0,1\}^{l(n)-\lceil n/2 \rceil}$ and run D on $\langle N, g, y \cdot g^{2^{\lceil n/2 \rceil}} \rangle$, z. Return D's answer as output. Observe that

1. If $\langle N, g, y \rangle$ is taken from $Half_n$, then $y = g^r$ where $r \in \{0,1\}^{\lceil n/2 \rceil}$. Therefore, we have that $\langle N, g, g^{2^{\lceil n/2 \rceil}} \rangle$ is distributed as X_n.
2. If $\langle N, g, y \rangle$ is taken from $Full_n$, then $y = g^R$, where $R \in \{0,1\}^{l(n)}$. Let U_m denote a uniformly distributed m-bit string and let \approx denote statistical closeness. Then

$$ (U_{l(n)} + z \cdot 2^{\lceil n/2 \rceil}) \text{ mod } ord_N(g) \approx U_{l(n)} \text{ mod } ord_N(g) $$

Therefore, $\langle N, g, g^{2^{\lceil n/2 \rceil}} \rangle$ is statistically close to Y_n.

Thus, Theorem 3.10 is implied by Corollary 3.8.

Transforming D' into D: On input $\langle N, g, y, z \rangle$, run D' on $\langle N, g, y/g^{2^{\lceil n/2 \rceil}} \rangle$ and output D's answer. Observe that

1. If $\langle N, g, y, z \rangle$ is taken from X_n, then $y = f_{N,g}(x) = g^x$ and $z = x_{l(n)-\lceil n/2 \rceil}$. Therefore, $y/g^{2^{\lceil n/2 \rceil}} = g^{x^{\lceil n/2 \rceil}}$ and thus $\langle N, g, y/g^{2^{\lceil n/2 \rceil}} \rangle$ is uniformly distributed in $Half_n$.
2. If $\langle N, g, y, z \rangle$ is taken from Y_n, then $y = f_{N,g}(x) = g^x$ and z is independent of x. Note that

$$ (U_{l(n)} - z \cdot 2^{\lceil n/2 \rceil}) \text{ mod } ord_N(g) \approx U_{l(n)} \text{ mod } ord_N(g) $$

Therefore, $\langle N, g, y/g^{2^{\lceil n/2 \rceil}} \rangle$ is statistically close to $Full_n$.

Thus, Theorem 3.10 implies Corollary 3.8.

■

Further discussion of the above equivalence is given in [R, Sec. 3.3.3].

3.5.2 Discussion

Our proof of Theorem 3.2 simplifies to a great extent the proof given by [HSS] to Theorem 3.10. The main reason for this is that we use an oracle that distinguishes between the hybrids H^i_n and H^{i+1}_n, instead of an oracle that predicts the ith bit of x, given $f_{N,g}(x)$. Unlike [HSS], we can use i's as big as we want, avoid the difficulties with biased bits and eliminate the dependence on the order of g in the basic procedure (Lemma 3.6). More specifically:

- Unlike in [HSS], we do not require that the order of g in Z_n^* will be very high (i.e. greater than $\frac{1}{Q} \cdot (P-1)(Q-1)$. Theorems 3.2 and 3.4 only require that the order of g will be greater than $P + Q - 1$, while for Lemma 3.6 the order of g is irrelevant.
• We do not need to consider separately the \(O(\log n) \) most significant bits as done in [HSS] (where a very complex proof is given for these bits).

• As a consequence from the different nature of the oracles, the randomization conducted by us (randomizing the bottom \(i \) bits) is different from the randomization done in [HSS] (randomizing the full range \([0, \text{ord}_N(g))\)). Therefore many of the difficulties encountered in [HSS] are not relevant in our proof. For example, we do not need to avoid a wrap around the order of \(g \).

4 Application to Pseudorandom Generators

An immediate application of Theorem 3.2 yields an efficient factoring-based pseudorandom generator which nearly doubles the length of its input. An additional tool used is a construction by Goldreich and Wigderson of a tiny family of functions which has good extraction properties [GW]. We also discuss how the parameters of the generator (a composite \(N \in \mathbb{N}_n \) and an element \(g \in \mathbb{Z}_N^* \)) can be chosen in a randomness-efficient way (which is polynomial-time). In particular, we present a method of choosing a random \(n \)-bit prime using only a linear number of random bits. This translates to a hitting problem which can be solved efficiently using methods described in [G2].

4.1 Our construction versus the HSS construction

Looking at Theorem 3.2, the first construction that comes to mind is a "pseudorandom generator" that takes a seed \(r \) of length \(\lceil n/2 \rceil \) and outputs \(g^r \mod N \) (for a fixed pair \(\langle N, g \rangle \) in \(P_n \)). However, the output of the above so-called "pseudorandom generator" is not really pseudorandom. Even though it is computationally infeasible to distinguish between it and the distribution \(g^R \mod N \) for a random \(R \) in \([0, \text{ord}_N(g))\), we are not guaranteed that it cannot be easily told apart from the uniform distribution on \(n \)-bit strings. The same applies for a "pseudorandom generator" implied directly by Theorem 3.10 (of [HSS]), which takes a seed \(x \) of length \(n \), and outputs \(g^x \mod N \) followed by \(x_{\lceil n/2 \rceil,1} \) (again, for fixed \(\langle N, g \rangle \) in \(P_n \)).

Denote by \(\text{Half}_{N,g} \) the distribution \(g^r \mod N \), where \(r \) is uniformly distributed over strings of length \(\lceil n/2 \rceil \), and by \(\text{Full}_{N,g} \) the distribution \(g^R \mod N \), where \(R \) is uniformly distributed over \([0, \text{ord}_N(g))\). Observe that the "amount of randomness" that \(\text{Full}_{N,g} \) encapsulates in it is high, in the sense that it does not assign a too large probability mass to any value. More formally, we measure the "amount of randomness" in terms of min-entropy (cf. [CG]).

Definition 4.1 Let \(X \) be a random variable. We say that \(X \) has **min-entropy** \(k \), if for every \(x \) we have that \(\Pr(X = x) \leq 2^{-k} \).

The distribution \(\text{Full}_{N,g} \) has min-entropy greater than \(\kappa \), where

\[
\kappa \overset{\text{def}}{=} \kappa(N, g) \overset{\text{def}}{=} \lfloor \log(\text{ord}_N(g)) \rfloor
\]

The following fact is an immediate consequence of Proposition 3.7:

Fact 4 Let \(\langle N, g \rangle \) be uniformly distributed in \(P_n \), then \(\kappa \leq n - \frac{1}{2} \log^2 n \) with negligible probability.

Using hash functions which have good extracting properties, we are able to "smoothen" the distribution \(\text{Full}_{N,g} \), and extract from it an almost uniform distribution over strings of length \(n - \log^2 n \). To be more formal, we use a family of functions \(F \) having an extraction property,
satisfying that for all but an ϵ fraction of the functions in F, a distribution over strings of length n having min-entropy $n - \frac{1}{\epsilon} \log^2 n$ is mapped to a distribution over strings of length $n - \log^2 n$ which is ϵ-close to uniform (we refer to ϵ, which is generally taken to be negligible in n, as the quality parameter of the extraction property achieved by F). The price we pay for the use in extractors, is reflected in a lower expansion factor of the pseudorandom generators. Specifically, we need to use a part of the random seed in order to choose a random function in the family F that we are using.

Håstad et al. [HSS] used a universal family of hash functions [CW] in their construction of a pseudorandom generator. The quality parameter achieved by this family of functions is exponentially small in n (and therefore has the best possible quality). However, a universal family of hash functions has to be large: exponential in n. Thus the number of random bits needed to generate (and represent) a function in this family is polynomial in n, resulting in a considerably large loss in the expansion factor of their generator.

Instead, we use an explicit construction due to Goldreich and Wigderson [GW] of a family of functions, which exhibits a trade-off between the size of the family and the quality parameter ϵ of the extraction property it achieves. Specifically, they demonstrate a construction of a family of functions of size $\text{poly}(n/\epsilon)$ achieving the extraction property with quality ϵ. Taking, for example, $\epsilon = n^{-\log n}$, yields a family of functions of very good quality (not exponentially small in n but still negligible in n), where each function in the family can be represented using $O(\log^2 n)$ bits.

4.1.1 The HSS construction

We present now the construction of the HSS pseudorandom generator. Even though the expansion factor of the HSS generator can be increased using the function families of [GW], we present the original construction that uses universal hashing.

Construction 4.2 ([HSS]): Let $H_n^{\alpha = \log^2 n}$ be a universal family of hash functions which maps n-bit strings to $(n - \log^2 n)$-bit strings, and suppose that every $h \in H_n^{\alpha = \log^2 n}$ is represented using $2n$ bits. The mapping $G_{N,g}^{HSS} : \{0,1\}^{3n} \rightarrow \{0,1\}^{3 \cdot 5n - O(\log^2 n)}$ is defined as follows.\(^{11}\)

Let $x \in \{0,1\}^n$ and let $h \in H_n^{\alpha = \log^2 n}$. Then,

$$G_{N,g}^{HSS}(h,x) \overset{\text{def}}{=} (h, h(g^x), x_{[n/2],1})$$

Note that applying the hash function causes a loss of $O(\log^2 n)$ bits in the length of the output. Therefore, the fact that $[n/2]$ bits are simultaneously hard in $f_{N,g}$ (and not just $O(\log^2 n)$) is essential for the construction of $G_{N,g}^{HSS}$, since the addition of the $[n/2]$ least significant bits to the output of the generator more than compensates for the loss of $O(\log^2 n)$ bits. Observe that the expansion factor obtained by the HSS-construction is approximately $\frac{\log 3}{2}$ (whereas using the [GW] construction one can improve it to approximately $\frac{3}{2}$).

4.1.2 Our construction

We now present our construction of a pseudorandom generator achieving an expansion factor of nearly 2. But first we give the exact formulation of the relevant result of [GW] (the construction itself is presented in Appendix C).

Theorem 4.3 ([Extractors for High Min-Entropy [GW]]): Let $k < n$ and $m < n-k$ be integers, and $\epsilon > \max\{2^{-m-O(k)/O(1)}, 2^{-(n-m-O(k))/O(1)}\}$. (In particular, $m < n - O(k)$.) There exists a family of functions, each mapping $\{0,1\}^n$ to $\{0,1\}^m$, satisfying the following:

\(^{11}\)In fact, in the HSS construction, N is restricted to be the multiplication of two safe primes, see [HSS].
• each function is represented by a unique string of length $O(k + \log(\frac{1}{\epsilon}))$.
• there exists a logspace algorithm that, on input a description of a function f and a string x, returns $f(x)$.
• for every random variable $X \in \{0,1\}^n$ of min-entropy $n - k$, all but an ϵ-fraction of the functions f in the family satisfy

$$SD(f(X), U_m) \leq \epsilon$$

In particular, taking $k = \frac{1}{3} \log^2 n$, $m = n - \log^2 n$ and $\epsilon = n^{-\log n}$, Theorem 4.3 implies the existence of a family of functions F, mapping $\{0,1\}^n$ to $\{0,1\}^m$, where each function $f \in F$ can be represented by a string of length $O(\log^2 n)$. We are now ready to exhibit our construction of a pseudorandom generator which uses the family F.

Construction 4.4 We define the mapping $G_{N,g} : \{0,1\}^{[\frac{n}{3}]+O(\log^2 n)} \to \{0,1\}^n$ as follows:
Let $x \in \{0,1\}^{[\frac{n}{3}]}$ and $f \in F$. Then,

$$G_{N,g}(f,x) \overset{def}{=} (f, f(g^x \mod N))$$

Theorem 4.5 $G_{N,g}$ is a pseudorandom generator.

Proof: Obviously $G_{N,g}$ is efficiently computable (since every $f \in F$ can be evaluated in polynomial time). Let F denote the random variable obtained by selecting uniformly a function f from the family F (although bearing the same name, it will be clear from the context whether we mean the random variable F or the function family F). Observe that

$$G_{N,g}(U^{[\frac{n}{3}]+O(\log^2 n)}) \equiv (F, F(Half_{N,g}))$$

$$U_n \equiv (F, U_m)$$

Consider now the hybrid $(F, F(Full_{N,g}))$. The theorem is directly implied from the following two claims:

Claim 4.5.1 The ensembles $\{F, F(Half_{N,g})\}_{n \in \mathbb{N}}$ and $\{F, F(Full_{N,g})\}_{n \in \mathbb{N}}$ are computationally indistinguishable.

Proof: The existence of an efficient distinguisher D between the above ensembles implies the existence of an efficient distinguisher D' between the ensembles $Half_n$ and $Full_n$: On input $\langle N, g, y \rangle$, the distinguisher D' picks an extractor f uniformly from F and outputs D''s answer on input $(f, f(y))$. □

Claim 4.5.2 The ensembles $\{F, F(Full_{N,g})\}_{n \in \mathbb{N}}$ and $\{(F, U_m)\}_{n \in \mathbb{N}}$ are statistically close.
Proof: The third property of Theorem 4.3, ensures that for all but an ϵ-fraction of the functions f in F, the statistical difference between the ensembles $F(Full_{|N,g})$ and U_m is bounded from above by ϵ. Thus, the statistical difference between $(F,F(Full_{|N,g}))$ and (F,U_m) is no more than 2ϵ. Since ϵ was taken to be $n^{-\log n}$, we have that the ensembles $(F,F(Full_{|N,g}))$ and (F,U_m) are statistically close. □

Increasing the expansion factor of the generator. The pseudorandom generator described above almost doubles the length of its input. However, such a small expansion factor has limited value in practice. Still, it is well known that even a pseudorandom generator G producing $n + 1$ bits from an n-bit seed can be used in order to construct a pseudorandom generator G' having any arbitrary polynomial expansion factor (see e.g. [G, Sec. 3.3 Thm. 3.3.3]). Unfortunately, the cost of the latter transformation is rather high: Producing each bit in G''s output requires one evaluation of G. Nevertheless, since our generator $G_{N,g}$ has an expansion factor of nearly 2 to start with, we can do better than that: $G_{N,g}$ can be used to construct a generator $G'_{N,g}$ having an arbitrary polynomial expansion factor, such that for every $n/2 - O(\log^2 n)$ bits of output, one evaluation of $G_{N,g}$ is required. We remark that the issue of increasing the expansion factor of $G_{N,g}$ is relevant mostly due to the need to randomly pick the parameters N and g, which requires $O(n)$ additional random bits (as will be explained in the subsequent subsection). Our suggestion is to pick randomly N and g, set them once and for all, and construct a pseudorandom generator having a large expansion factor using this specific $G_{N,g}$. This way the cost of picking N and g becomes negligible (compared to our “profit” from the new generator). We describe now in general one uses a generator $G : \{0,1\}^n \rightarrow \{0,1\}^{n+\ell(n)}$ (for an integer function l) to construct a generator $G' : \{0,1\}^n \rightarrow \{0,1\}^{l(n)p(n)}$, for any arbitrary polynomial $p(\cdot)$.

Construction 4.6 Let $l : N \rightarrow N$ be an integer function satisfying $l(n) > 0$ for every $n \in N$, let $p(\cdot)$ be a polynomial and let $G : \{0,1\}^n \rightarrow \{0,1\}^{n+\ell(n)}$ be a deterministic polynomial-time algorithm. Define $G'(s) = \tau_1 \ldots \tau_{p(n)}$, where $s_0 \overset{\text{def}}{=} s$, the string s_i is the n-bit long suffix of $G(s_{i-1})$ and τ_i is the $l(n)$-bit long prefix of $G(s_{i-1})$, for every $1 \leq i \leq p(n)$ (i.e., $\tau_is_i = G(s_{i-1})$).

Theorem 4.7 If G is a pseudorandom generator then so is G'.

Theorem 4.7 is a generalization of Theorem 3.3.3 proven in [G] (regarding a generator producing $n + 1$ bits from an n bit seed). Observe that for every $l(n)$ output bits of G', one evaluation of G is required. Using our generator $G_{N,g}$ as the building block, we obtain a generator $G'_{N,g}$ that expands input of size $n/2 + O(\log^2 n)$ to output of size n^c using approximately $\frac{n^c}{n/2}$ applications of $G_{N,g}$.

4.2 An efficient choice of the parameters (N and g)

In order to actually use the generator $G_{N,g}$ we need to generate the parameters N and g from a primary seed in an “efficient” way, where by “efficient” we mean that both the running time and the amount of randomness used should be as small as possible. The major challenge is to generate efficiently two uniformly distributed primes P and Q, in order to obtain a random $N = P \cdot Q$ in N_n.

A random element g in Z_N can be chosen using $O(n)$ random coins by picking a random number in $\{0,1\}^{n+\log^2 n}$ and reducing it modulo N (only with negligible probability the element obtained will not be relatively prime to N). We describe now a general method by which we can pick a random n-bit prime in polynomial time, using only a linear number of random coins.
The trivial algorithm to choose a random n-bit prime is to repeat the following two stages until a prime x is output.

1. Choose a random integer x in $\{0,1\}^n$.
2. Test whether x is a prime. If it is, stop and output x.

Since the density of primes in $\{0,1\}^n$ is approximately $\frac{1}{n}$, the expected number of times that the above loop is performed is approximately n. Even assuming that we have a deterministic primality test, the above algorithm requires an expected $O(n^2)$ random bits. We now show how to perform poly(n) dependent iterations of the loop using only $O(n)$ random bits (rather than doing $O(n)$ independent iterations using $O(n^2)$ random bits). We will use, however, a probabilistic primality tester of Bach [Bach], which is a randomness-efficient version of the Miller-Rabin [M, R2] primality tester.

Theorem 4.8 (randomness efficient primality tester [Bach]): There exists a probabilistic polynomial time algorithm that on input P uses $|P|$ random bits so that if P is a prime then the algorithm always accepts, and otherwise (i.e. P is a composite) the algorithm accepts with probability at most $\frac{1}{\sqrt{n}}$.

Combining the above procedures, we have

Corollary 4.9 There exists a probabilistic polynomial-time algorithm that uses $2n$ random coins such that

1. with probability $\Theta(\frac{1}{n})$ outputs an n-bit prime. Furthermore, the probability to output a specific prime is 2^{-n}.
2. with probability $1 - \Theta(\frac{1}{n}) - \exp(-n)$ outputs a special failure sign, denoted \perp.
3. with probability at most $2^{-n/2}$ outputs a composite.

We refer to the algorithm guaranteed from Corollary 4.9 as a black-box. We associate every string $s \in \{0,1\}^{2n}$ with the output of the black-box given s as its random coins. Denote by W the set of strings in $\{0,1\}^{2n}$ that are associated with an n-bit prime. Corollary 4.9 implies that the density of W within $\{0,1\}^{2n}$ is $\Theta(\frac{1}{n})$. The problem of uniformly picking an n-bit prime translates to a hitting problem, where we need to find a string $s \in W$ (which is subsequently used as random input for the black-box in order to yield a prime). An additional requirement is that the distribution of primes obtained in this way will be very close to uniform. Our goal is to find an algorithm that hits W, whose randomness complexity is linear in n. The methods we use are described in the survey of Goldreich [G2] on samplers and will be adapted to (and analyzed in) our specific setting.

A pairwise-independent hitter Our first attempt uses a pairwise independent sequence of m uniformly distributed strings in $\{0,1\}^{2n}$. Such a sequence can be generated in the following way: We associate $\{0,1\}^{2n}$ with $F \overset{df}{=} \text{GF}(2^{2n})$, and select independently and uniformly $s, r \in F$. We let the i'th element in the sequence be $e_i = s + i \cdot r$ (with the arithmetic of F). It can be easily seen that the generated sequence is indeed pairwise-independent.

\footnote{Note that the number of pairwise independent strings one can generate in this way is limited to $2^{2n} - 1$.}
Theorem 4.10 (A pairwise-independent hitter): Let δ be an error parameter satisfying that $1/\delta$ is polynomial in n. There exists an efficient algorithm that uses $4n$ random coins for which the following holds:

- The probability to output a prime is at least $1 - \delta$.
- The probability to output a composite is at most $\exp(-n)$.
- (With probability $\delta - \exp(-n)$ a failure sign ⊥ is output.)
- The probability to output a specific prime is at least 2^{-n} and at most $\frac{n}{\delta} \cdot 2^{-n}$.

Proof: We generate $m \overset{\text{def}}{=} \frac{n}{\delta}$ pairwise-independent samples e_1, \ldots, e_m each uniformly distributed in $\{0,1\}^{2n}$, and run the black-box using each of the e_i's as random bits. Clearly, this procedure is efficient, since m is polynomial in n. Let

$$\zeta_i \overset{\text{def}}{=} \begin{cases} 1 & \text{if the black-box (using e_i as random bits) outputs a prime} \\ 0 & \text{otherwise} \end{cases}$$

Corollary 4.9 implies that the expectation of ζ_i is $\frac{1}{n}$. Using Chebishev’s Inequality we have

$$\Pr \left(\sum_{i=1}^{m} \zeta_i = 0 \right) \leq \Pr \left(\left| \frac{m}{n} \sum_{i=1}^{m} \zeta_i \right| \geq \frac{m}{n} \right) \leq \frac{m \cdot \frac{n}{m} \left(1 - \frac{1}{n} \right)}{(\frac{m}{n})^2} \leq \delta$$

Regarding the probability to output a composite, using a union bound we get

$$\Pr \left[\text{a composite is output} \right] = \Pr \left[\exists i \text{ s.t. } e_i \text{ yields a composite} \right] \leq \sum_{i=1}^{m} \Pr [e_i \text{ yields a composite}] \leq \frac{n}{\delta} \cdot \exp(-n) = \exp(-n)$$

where the last inequality follows from the third item of Corollary 4.9 and from the fact that for every i the point e_i is uniformly distributed over $\{0,1\}^{2n}$.

As for the probability that a specific prime p is output, the first item of Corollary 4.9 implies that for every i, the probability that p is output using e_i as random coins is exactly 2^{-n} (since e_i is uniformly distributed). Thus,

$$\Pr [p \text{ is output}] \geq \Pr [e_1 \text{ yields } p] = 2^{-n}$$

On the other hand, using a union bound,

$$\Pr [p \text{ is output}] \leq \sum_{i=1}^{m} \Pr [e_i \text{ yields } p] = \frac{n}{\delta} \cdot 2^{-n}$$

If we were willing to settle with a polynomially small error δ (i.e., $\delta = \frac{1}{\text{poly}(n)}$) then the above algorithm would be sufficient for us. However, in order to achieve an overwhelming probability of success (i.e., $\delta = 2^{-n}$) we must take a somewhat more complex approach, which involves random walks on expander graphs (for definition and construction of expanders as well as the major theorem concerning random walks on expanders see Appendix B).
A combined hitter. From the pairwise independent hitter emerges another hitting problem: Let W' be the set of strings in $\{0, 1\}^{4n}$, that when supplied to the pairwise-independent hitter (with a constant error parameter δ) as a random seed, makes it hit W (i.e. yield a prime). From the first item of Theorem 4.10 we get that the density of W' within $\{0, 1\}^{4n}$ is greater than $1 - \delta$. Our new goal is to hit W' with an overwhelming probability of success.

In order to do that, we generate a random walk on an expander with vertex set $\{0, 1\}^{4n}$, and use each of the vertices along the path as a seed for the pairwise-independent hitter. Taking advantage of the hitting property of expanders (see appendix B), we will have that a random walk of linear length (in n) will be sufficient in order to hit W'. Details follow.

Theorem 4.11 There exists an efficient algorithm which uses $O(n)$ random coins such that the following holds:

- The probability that no prime is output is $\exp(-n)$.
- The probability that a composite is output is $\exp(-n)$.
- The probability that a specific prime is output is at least 2^{-n} and at most $O(n^2) \cdot 2^{-n}$.

Proof: We use an explicit construction of expander graphs with vertex set $\{0, 1\}^{4n}$, degree d and second eigenvalue λ such that $\lambda/d < 0.1$. We generate a random walk of (edge) length n on this expander using $O(n)$ random coin flips ($4n$ bits are used to generate the initial vertex and $\log d$ bits are used to obtain each additional vertex on the path). We use each of the vertices s_1, \ldots, s_n along the path as random coins for the pairwise-independent hitter which makes $m = 3n$ trials (i.e., for every $1 \leq i \leq n$ we generate a pairwise-independent sequence $e_{i,1}, \ldots, e_{i,m}$ from s_i and run the black-box using each one of the $e_{i,j}$'s as random bits). Recall that W' was defined to be the set of coin tosses which make the pairwise-independent hitter output a prime. From Item 1 of Theorem 4.10 (with $\delta = 1/3$) we have that $|W'|/2^{4n} \geq \frac{2}{3}$. Using Theorem B.2, the probability that all vertices of a random path reside outside of W' is bounded from above by $(0.34 + 0.1)^n < 2^{-n}$. Thus,

$$\Pr[\text{no prime is output}] < 2^{-n}$$

Let us now compute the probability to output a composite.

$$\Pr[\text{a composite is output}] = \Pr[\exists i \text{ s.t. } s_i \text{ yields a composite}]$$

$$\leq \sum_{i=1}^{n} \Pr[s_i \text{ yields a composite}]$$

$$\leq n \cdot \exp(-n)$$

where the last inequality follows from the second item of Theorem 4.10 and from the fact that, for every i, the seed s_i is uniformly distributed.

In order to bound the probability that a specific prime p is output, observe that for every i and j, the point $e_{i,j}$ (i.e., the j'th point in the sequence of pairwise-independent strings generated from s_i) is uniformly distributed in $\{0, 1\}^n$. Thus,

$$\Pr[p \text{ is output}] \geq \Pr[e_{i,j} \text{ yields } p] = 2^{-n}$$

On the other hand, applying a union bound we get

$$\Pr[p \text{ is output}] \leq \sum_{i=1}^{n} \sum_{j=1}^{m} \Pr[e_{i,j} \text{ yields } p] = n \cdot m \cdot 2^{-n} = 3n^2 \cdot 2^{-n}$$
4.2.1 Using almost uniformly distributed primes

Although the algorithm guaranteed from Theorem 4.11 does not yield uniformly distributed \(n \)-bit primes, the distribution of the primes it outputs is close to being uniform, in a sense that is quite sufficient for our needs: Denote by \(D_n \) the distribution of composites \(N = P \cdot Q \) in \(N_n \) obtained by picking the primes \(P \) and \(Q \) using the algorithm of Theorem 4.11, and consider a slightly different factoring assumption, in which \(N \) is distributed according to \(D_n \). Observe that the revised factoring assumption holds if and only if the original factoring assumption (with \(N \) uniformly distributed in \(N_n \)) holds: Let \(A \) be a probabilistic polynomial-time algorithm. Then, according to the third item of Theorem 4.11,

\[
\sum_{N \in N_n} \frac{\Pr[A \text{ factors } N]}{2^n} \leq \Pr[A \text{ factors } N | N \sim D_n] \leq \frac{\sum_{N \in N_n} \Pr[A \text{ factors } N]}{2^n / \text{poly}(n)}
\]

(6)

where \(N \sim D_n \) means that \(N \) is drawn according to the distribution \(D_n \).

Note that the size of \(N_n \) is approximately \(\frac{2^n}{n^2} \). Therefore,

\[
\Pr[A \text{ factors } N | N \in R N_n] = \frac{n^2}{2^n} \sum_{N \in N_n} \Pr[A \text{ factors } N]
\]

(7)

From 6 and 7 we have that

\[
\frac{\Pr[A \text{ factors } N | N \in R N_n]}{n^2} \leq \Pr[A \text{ factors } N | N \sim D_n] \leq \frac{\Pr[A \text{ factors } N | N \in R N_n]}{n^2 / \text{poly}(n)}
\]

(8)

Thus, \(A \) does not violate the original factoring assumption if and only if it does not violate the revised factoring assumption.

Another important observation is that in all our theorems (and in particular, in Theorem 3.2), the values \(N \) and \(g \) are fixed throughout the whole proof. Thus, these theorems still hold when considering any distribution whatsoever of \(N \) (and \(g \)), provided that factoring is intractable for such a distribution.

Therefore, we have that under the standard factoring assumption (with \(N \) uniformly distributed in \(N_n \)), all our theorems hold even when the distribution of \(N \) is taken to be \(D_n \), and the distribution of \(g \) is uniform over \(Z_N^* \).
References

Advances in Cryptology: Proceedings of CRYPTO '86, 1987, pp. 84-103. Arjen K. Lenstra,

[OW] P. C. Van Oorschoot and M. Wiener, On Diffie-Hellman key agreement with short exponents,

[P] R. Peralta, Simultaneous security of bits in the discrete log, Advances in Cryptology - EURO-

[R1] M. O. Rabin, Digitalized signatures and public-key functions as intractable as factorization, Technical

[R2] M. O. Rabin, Probabilistic algorithm for testing primality, Jour. of Number Theory, Vol. 12, 1980,
pp.128-138.

[R] V. Rosen, On the security of modular exponentiation, Technical Report MCS00-20, Faculty of
Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel, 2000. See

Appendix A: Exact Analysis of Theorem 1

We show that the probability of error by the trimming rule is exponentially small. Suppose we want to trim the list L_j and that v_j^{trunc} is the correct value $x_{i-m,j(i)}$ (the analysis in the case where v_j^{max} is the correct value is analogous). Let δ denote x' shifted by $i + 1 - c \cdot p$ positions to the left, that is, let $\delta = x' \cdot 2^{i+1-c \cdot p}$. By Fact 2 we have that $\delta \leq 2^{i-m}$ (since $x' \leq 2^{p-m-1}$). Recall that b_k is the oracle answer on the query $g^\delta + r_k$ (see Step (3) of the trimming rule). Let us bound the expectation of b_k:

$$E(b_k) = \Pr \left[D(g^{r_k + \delta}) = 1 \mid 0 \leq r_k \leq 2^i - 1 \right]$$

$$= \Pr \left[D(g^{r_k + \delta}) = 1 \mid 0 \leq r_k \leq 2^i - 1 - \delta \right] \cdot \Pr \left[0 \leq r_k \leq 2^i - 1 - \delta \right] +$$

$$\Pr \left[D(g^{r_k + \delta}) = 1 \mid 2^i - 1 - \delta < r_k \leq 2^i - 1 \right] \cdot \Pr \left[2^i - 1 - \delta < r_k \leq 2^i - 1 \right]$$

Let $w_k = r_k + \delta$. Then,

$$\Pr \left[D(g^{r_k + \delta}) = 1 \mid 0 \leq r_k \leq 2^i - 1 - \delta \right] = \Pr \left[D(g^{w_k}) = 1 \mid \delta \leq w_k \leq 2^i - 1 \right]$$

$$\leq \frac{2^i}{2^\delta} \cdot \Pr \left[D(g^{w_k}) = 1 \mid 0 \leq w_k \leq 2^i - 1 \right] = \frac{\beta \cdot 2^i}{2^\delta}$$

and therefore

$$E(b_k) \leq \frac{\beta \cdot 2^i}{2^\delta} \cdot \frac{2^i \cdot w_k}{2^\delta} + 1 \cdot \frac{\delta}{2^\delta} = \beta + \frac{\delta}{2^\delta}$$

A standard application of Chernoff bound yields:

$$\Pr \left[\text{discard } v_j^{\text{trunc}} \right] = \Pr \left[\sum_{k=1}^i b_k > (\beta + \frac{\delta}{2^\delta}) \cdot t \right]$$

$$\leq \Pr \left[\left| \sum b_k - E(\sum b_k) \right| > (\beta + \frac{\delta}{2^\delta}) \cdot t - E(\sum b_k) \right]$$

$$= \Pr \left[\left| \sum b_k - E(\sum b_k) \right| > \lambda \cdot E(\sum b_k) \right]$$

for $\lambda = \frac{(\beta + \frac{\delta}{2^\delta}) - E(\sum b_k)}{E(\sum b_k)}$.

Since

$$\frac{x^2 E(\sum b_k)}{6} = \frac{\left(\beta + \frac{\delta}{2^\delta} \right) y - E(\sum b_k) \right)^2}{6 \cdot E(\sum b_k)} \geq \frac{\left(\beta + \frac{\delta}{2^\delta} \right) y - (\beta + \frac{\delta}{2^\delta}) t}{6 \cdot (\beta + \frac{\delta}{2^\delta})}$$

$$= \frac{\left(\frac{2^i - \delta}{2^i} \right)^2}{6 \cdot (\beta + \frac{\delta}{2^\delta})} \cdot t \geq \frac{(\frac{2^i - \delta}{2^i})^2}{6 \cdot (\beta + \frac{\delta}{2^\delta})} \cdot t \geq \frac{n^c}{2^\delta}$$

Therefore, the probability of discarding v_j^{trunc} from the list L_j is smaller than 2^{-n}. As mentioned above, a similar argument holds for the second case, where the correct candidate is v_j^{max} since for every $1 \leq j \leq i - m$ we use repeatedly the trimming rule for no more than 2^m times, the overall probability of error is exponentially small.

Appendix B: Expanders and Random Walks

We now define expander graphs and families of expander graphs and describe an explicit construction of expanders due to Gabber and Galil [GG]. We also state the major theorem concerning random walks on expanders. Our exposition follows that of Goldreich in [G2].
B.1 Expanders

An \((N, d, \lambda)\)-expander is a \(d\)-regular graph with \(N\) vertices so that the absolute value of all eigenvalues (except the biggest one) of its adjacency matrix is bounded by \(\lambda\). A \((d, \lambda)\)-family is an infinite sequence of graphs so that the \(n^{th}\) graph is a \((2^n, d, \lambda)\)-expander. We are interested in explicit constructions of such families of graphs, which are efficiently constructible, by which we mean that there exists a polynomial-time algorithm that on input \(n\) (in binary), a vertex \(v\) and an index \(i \in \{1, \ldots, d\}\), returns the \(i^{th}\) neighbor of \(v\).

Gaber and Galil presented such a construction of a \((d, \lambda)\)-family of expanders, for \(d = 8\) and for some \(\lambda < 8\) [GG]. Their expanders, however, are defined only for graph sizes which are perfect squares (i.e., only for even \(n\)’s).

Construction B.1 [Gaber-Galil] Let \(n = 2m\). The graph \(G_n\) is defined as follows: The vertex set includes all pairs in \(Z_m \times Z_m\), and each node \((x, y)\) is connected to the four nodes \((x + y, y), (x + y + 1, y), (x, x + y)\) and \((x, x + y + 1)\).

In our applications we use (parameterized) expanders satisfying \(\frac{\lambda}{d} < \alpha\) and \(d = \text{poly}(1/\alpha)\), where \(\alpha\) is an application-specific parameter. Such (parameterized) expanders are also efficiently constructible. For example, we may obtain them by taking paths of length \(O(\log 1/\alpha)\) on an expander as in construction B.1. Specifically, given a parameter \(\alpha > 0\), we obtain an efficiently constructible \((D, \lambda)\)-family satisfying \(\frac{\lambda}{D} < \alpha\) and \(D = \text{poly}(1/\alpha)\) as follows. We start with a constructible \((8, \lambda)\)-family, set \(k \overset{\text{def}}{=} \log_{8/\lambda}(1/\alpha) = O(\log 1/\alpha)\) and consider the paths of length \(k\) in each graph. This yields a constructible \((8^k, \lambda^k)\)-family, and both \(\frac{\lambda^k}{8^k} < \alpha\) and \(8^k = \text{poly}(1/\alpha)\) indeed hold.

B.2 Random walks on Expanders

A fundamental discovery of Ajtai, Komlos, and Szemerédi [AKS] is that random walks on expander graphs provide a good approximation to repeated independent attempts to hit any arbitrary fixed subset of sufficient density (within the vertex set). The importance of this discovery stems from the fact that a random walk on an expander can be generated using much fewer random coins than required for generating independent samples in the vertex set. Precise formulations of the above discovery were given in [AKS, CoWi, GILVZ] culminating in Kahale’s optimal analysis [Kah, Sec. 6].

Theorem B.2 (Expander Random Walk Theorem [Kah, Cor. 6.1]): Let \(G = (V, E)\) be an expander graph of degree \(d\) and \(\lambda\) be an upper bound on the absolute value of all eigenvalues, save the biggest one, of the adjacency matrix of the graph. Let \(V'\) be a subset of \(V\) and \(\rho \overset{\text{def}}{=} |V'|/|V|\). Then the fraction of random walks (in \(G\)) of (edge) length \(\ell\) which stay within \(V'\) is at most

\[
\rho \cdot \left(\rho + (1 - \rho) \cdot \frac{\lambda}{d} \right)^\ell
\]

Appendix C: Tiny Families of Functions

We now present the explicit construction of Goldreich and Wigderson of tiny families of functions designed for random variables with high min-entropy. Our exposition is taken from [GW].
We describe a construction of a family of functions, each mapping \(\{0,1\}^n \) to \(\{0,1\}^m \), such that all but an \(\epsilon \)-fraction of them, map random-variables having min-entropy \(n-k \) to a distribution whose distance from the uniform distribution is bounded by \(\epsilon \).

The construction uses an efficiently constructible expander graph, \(G \), of degree \(d \) (power of two), second eigenvalue \(\lambda \), and vertex set \(\{0,1\}^m \), so that \(\frac{\lambda}{d} \leq \frac{\epsilon^2}{2^{2m}} \) (and \(d = \text{poly}(2^k/\epsilon) \)). For every \(i \in [d] \) \(\overset{\text{def}}{=} \{1,2,\ldots,d\} \) and \(v \in \{0,1\}^m \), denote by \(g_i(v) \) the vertex reached by moving along the \(i \)th edge of the vertex \(v \). The construction uses as well a universal hashing family, denoted \(H \), that contains hash functions each mapping \((n-m) \)-bit long strings to \([d] \).

Construction C.1 The family of functions, denoted \(F \), is as follows: For each hashing function \(h \in H \), we introduce a function \(f \in F \) defined by

\[
 f(x) \overset{\text{def}}{=} g_{h(\text{lsb}(x))}(\text{msb}(x))
\]

where \(\text{lsb}(x) \) returns the \(n-m \) least significant bits of \(x \in \{0,1\}^n \), and \(\text{msb}(x) \) returns the \(m \) most significant bits of \(x \).

Namely, \(f(x) \) is the vertex reached from the vertex \(v \overset{\text{def}}{=} \text{msb}(x) \) by following the \(i \)th edge of \(v \), where \(i \) is the image of the \(n-m \) least significant bits of \(x \) under the function \(h \).

As proven in [GW], Construction C.1 above satisfies the requirements of Theorem 4.3 (stated in Section 4).