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Abstract

Locally testable codes are error-correcting codes that admit very efficient codeword tests.
Specifically, using a constant number of (random) queries, non-codewords are rejected with
probability proportional to their distance from the code.

Locally testable codes are believed to be the combinatorial core of PCPs. However, the
relation is less immediate than commonly believed. Nevertheless, we show that certain PCP
systems can be modified to yield locally testable codes. On the other hand, we adapt techniques
we develop for the construction of the latter to yield new PCPs. Our main results are locally
testable codes and PCPs of almost-linear length. Specifically, we present:

e Locally testable (linear) codes in which % information bits are encoded by a codeword
of length approximately k - exp(y/logk). This improves over previous results that either
yield codewords of exponential length or obtained almost quadratic length codewords for
sufficiently large non-binary alphabet.

e PCP systems of almost-linear length for SAT. The length of the proof is approximately
n -exp(y/logn) and verification in performed by a constant number (i.e., 19) of queries, as
opposed to previous results that used proof length n'+@(1/9) for verification by ¢ queries.

The novel techniques in use include a random projection of certain codewords and PCP-oracles,
an adaptation of PCP constructions to obtain “linear PCP-oracles” for proving conjunctions of
linear conditions, and a direct construction of locally testable (linear) codes of sub-exponential
length.
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1 Introduction

We study the existence of (good) error-correcting codes that admit very efficient codeword tests.
Specifically, we require the testing procedure to use only a constant number of (random) queries, and
reject non-codewords with probability proportional to their distance from the code. Such codes may
be thought of as a combinatorial counterparts of the complexity theoretic notion of probabilistically
checkable proofs (PCPs). They were formally introduced by Friedl and Sudan [11]. Here we initiate
a systematic study of this notion.

Some examples: Codeword testing is meaningful only for good codes. In particular, it is easy
to test trivial codes (e.g., for codes containing all possible strings of certain length or, on the
other extreme, for codes containing a single codewords (or very few codewords)). One non-trivial
code allowing efficient testing is the Hadamard code: the codewords are linear functions, and so
codeword testing amounts to linearity testing [7].

The drawback of the Hadamard code is that & bits of information are encoded using a codeword
of length 2%. (The k information bits represent the k coefficients of a linear function {0, 1}* — {0, 1},
and bits in the codeword correspond to all possible evaluation points.)

The question addressed in this work is whether one can hope for a better relation between the
number of information bits, k, and the length of the codeword, denoted n. Specifically, can n be
polynomial or even linear in k¢ For (sufficiently large) non-binary alphabet, Friedl and Sudan [11]
showed that n can be almost quadratic in k. We show that n may be almost-linear in k (i.e.,
n = kH”(l)), even for the binary alphabet.

1.1 Relation to PCP

It is a common belief, among PCP enthusiasts, that the PCP Theorem [1, 2] already provides codes
as we desire. Consider the mapping of standard witnesses for, say SAT, to PCP-oracles. When
applied to an instance of SAT that is a tautology, the map typically induces a good error-correcting
code mapping k information bits to codewords of length poly(k) (or almost linear in k, when
using [17]). The common belief is that the PCP verifier also yields a codeword test. However, this
is not quite true: It is only guaranteed that each passing oracle can be “decoded” to a corresponding
NP-witness, but this does not mean that a passing oracle is (close to) a valid codeword (because
the “decoding” procedure is actually stronger than is standard in coding theory), or that only
codewords pass the test with probability one. For example, part of the PCP oracle is supposed to
encode an m-variate polynomial of individual degree d, yet the PCP verifier will also accept the
encoding of any m-variate polynomial of total degree m-d (and the “decoding” procedure will work
in this case t00).

Still, we show that many known PCP constructions can be modified to yield good codes with
efficient codeword tests. We stress that these modifications are non-trivial and furthermore are
unnatural in the context of PCP. Yet, they yield coding results of the type we seek (e.g., see
Theorem 2.1).

On the other hand, a technique that emerges naturally in the context of our study of efficient
codeword tests yields improved results on the length of efficient PCP proofs. Specifically, we
obtain constant-query PCP systems that utilize oracles that are shorter than known before (see
Theorem 2.3).



1.2 Relation to Locally Decodable Codes

The problem of designing efficient codeword tests seems easier than the question of designing
efficient decoding procedures that allow to recover any desired information bit by reading only a
constant number of bits in the codeword. Our results confirm this intuition:

e We show the existence of almost-linear (i.e., n = k'1t°(1)) length (binary) codes supporting
codeword tests with a constant number of queries. In contrast, it was shown that locally
decodable codes cannot have almost-linear length [16].}

e For large alphabet, we show almost-linear length coordinate-linear codes in which testing
requires only two queries. In contrast, it was shown that coordinate-linear codes with two
query recovery require exponential length [13].

2 Formal Setting

Throughout this work, all oracle machines (i.e., codeword testers and PCP verifiers) are non-
adaptive; that is, they determine their queries based solely on their input and random choices.
This is in contrast to adaptive orcale machines that may determine their queries based on answers
obtained to prior queries. Since our focus is on positive results, this makes our results only stronger.

2.1 Codes

We consider codes mapping a sequence of k input symbols into a sequence of n > k symbols over
the same alphabet, denoted ¥, which may but need not be the binary alphabet. Such a generic
code is denoted by C : ¥ — ¥". Throughout this paper, the integers k and n are to be thought
of as parameters, and ¥ may depend on them. Thus, we actually discuss infinite families of codes
(which are associated with infinite sets of possible k’s), and whenever we say that some quantity
of the code is a constant we mean that this quantity is constant for the entire family (of codes).
Typically, we seek to have ¥ as small as possible, desire that || be a constant (i.e., does not depend
on k), and are most content when ¥ = {0,1} (i.e., a binary code).

Distance between n-symbol sequences over ¥ is defined in the natural manner; that is, for
u,v € X", the distance A(u,v) is defined as the number of locations on which u and v differ (i.e.,
A(u,v) def |{i : uj # v;}|, where u = uy---u, € £" and v = vy ---v, € E™). The distance of a
code C : ©% — X" is the minimum distance between its codewords; that is, min, 2, {A(C(a),C(b))}.
Throughout this work, we focus on codes of “large distance”; specifically, codes C : £ — " of
distance Q(n).

The distance of w € X" from a code C : £¥ — 3" is the minimum distance between w and the
codewords; that is, ming{A(w,C(a))}. An interesting case is of non-codewords that are “relatively
far from the code”, which may mean that their distance from the code is greater than (say) half
the distance of the code.

By a codeword test (for the code C : =¥ — ¥") we mean a randomized (non-adaptive) oracle
machine (called tester) that given oracle access to w € X" (viewed as a function w : {1,...,n} — %)
satisfies the following two conditions:?

If ¢ queries are used for recovery then n = Q(k*+(1/(4=1))

*Both the following conditions may be meaningfully relaxed. For example, the tester may be allowed to err with
small probability in case it is given oracle access to a codeword, and the rejection condition may be restricted to
non-codewords that are relatively far from the code. Since our results are positive, it make sense for us to use the
stronger definition provided below.



e Accepting codewords: For any a € ¥, given oracle access to w = C(a), the tester accepts with
probability 1.

e Rejection of non-codeword: For every w € 3" that is at distance en from C, given oracle
access to w = C(a), the tester rejects with probability Q2(e) — o(1). (The o(1) term can be
avoided if we consider only non-codewords that are at distance more than eyn from the code,
for some constant ¢y > 0.)3

We say that the code C : ¥ — ¥ is locally testable if it has a codeword test that makes a constant
number of queries. Our main result regarding codes is

Theorem 2.1 For every ¢ > 0.5 and infinitely many k’s, there exist locally testable codes with
binary alphabet such that n = exp((logk)¢) - k = k't°0) . Furthermore, these codes are linear and
have distance Q(n).

Theorem 2.1 (as well as Part 2 of Theorem 2.2) vastly improves over the Hadamard code (in which
n = 2%), which is the only locally testable binary code previously known. Theorem 2.1 is proven by
combining Part 1 of the following Theorem 2.2 with non-standard modifications of standard PCP
constructions.

Theorem 2.2 (proven by direct/self-contained constructions):

1. For every ¢ > 0.5 and infinitely many k’s, there exist locally testable codes with non-binary
alphabet > such that n = exp((logk)¢) - k = k'*°D) and log|¥| = exp((logk)®) = ko).
Furthermore, the tester makes two queries.

2. For every ¢ > 1 and infinitely many k’s, there exist locally testable codes binary alphabet such
that n < k°.

In both cases, the codes are linear in a suitable sense and have distance Q(n).

Part 1 improves over the work of Friedl and Sudan [11], which only yields n. = k2t°("), We comment
that (good) binary codes cannot be tested using two queries (cf. [6]). The set of k’s for which such
codes exist is reasonable dense; in both cases, if k is in the set then the next integer in the set is
smaller than k'*+°(1). Specifically, in Part 1 (resp., Part 2), if k is in the set then the next integer
in the set is smaller than exp((log k)%!) - k (resp., O(poly(logk) - k)).

2.2 PCP

A probabilistic checkable proof (PCP) system for a set L is a probabilistic polynomial-time (non-
adaptive) oracle machine (called verifier), denoted V', satisfying

o Completeness: For every x € L there exists an oracle m, so that V', on input z and access to
oracle 7., always accepts z.

e Soundness: For every x ¢ L and every oracle m, machine V', on input z and access to oracle
7, rejects & with probability at least %

3Following this alternative (i.e., of considering only non-codewords that are very far from the code), we may use
an alternative formulation (which is more standard in the “property testing” literature; cf. [19, 12]). Specifically, we
may require that every non-codeword that is at least eon-far from the code be rejected with probability at least 1/2.



As usual, we focus on PCP systems with logarithmic randomness complexity and constant query
complezity. This means that, without loss of generality, the length of the oracle is polynomial in the
length of the input. However, we aim at PCP systems that utilize oracles that are of almost-linear
length. Our main result regarding such PCP systems is

Theorem 2.3 For every c > 0.5, there exists an almost-linear time randomized reduction of SAT to
a promise problem that has a 19-query PCP system that utilizes oracles of length exp((logn)¢)-n =
n o) where n is the length of the input. Furthermore, the reduction maps k-bit inputs to n-bit
inputs such that n = exp((log k)¢) - k = k',

This should be compared to the PCP system for SAT of Polishchuk and Spielman [17] that when
utilizing oracles of length n!'*¢ makes O(1/¢) queries. In contrast, our PCP system utilizing oracles
of length n11t°() while making 19 queries.

3 Direct Constructions of Codes

In this section, we prove Theorem 2.2. Although we do not use any variant of the PCP Theorem,
our constructions are somewhat related to known PCP constructions in the sense that we use
codes (and analysis) that appear (at least implicitly) in the latter. Specifically, we will use results
regarding low-degree tests that were proven for deriving the PCP Theorem [1, 2]. We stress that
we neither use the (complex) parallelization procedure (of [1, 2]) nor the full power of the proof
composition paradigm (of [2], which is more complex than the classical notion of concatenated
codes [10] used below).

3.1 The Basic Code (FS-Code)

Our starting point is a code proposed by Friedl and Sudan [11] based on a low-degree test due to
Rubinfeld and Sudan [19].

Let F be a finite field, and m, d be integer parameters such that (typically) m < d < |F|. Denote
by P, q the set of m-variate polynomials of total degree d over F'. We represent each p € P, 4 by
the list of its (™]%) coefficients; that is, | Py, 4| = \F\(m;d). (For m < d, we use | Py, 4| < |F|(4/™)™)

Denote by L,, the set of lines over F'™, where each line is define by two points a,b € F™;

that is, for a = (a1,...,am) and b = (b1,...,by), the line £,; consists of the set of |F| points

{Lap®) % (a1 +tb1), ey (am + thy)) 1 £ € F}.

We consider the code C : P, 4 — $llml where ¥ = F4t1; that is, C assigns each p € P4 a
(|Lm |-long) sequence of X-values, where each ¥-value corresponds to a different element of L,,. The
element associated with £ € Ly, in the (|L,,|-long) sequence C(p), denoted C(p)y, is the univariate
polynomial that represents the values of the polynomial p : F™ — F on the line ¢; that is, for
ajp € Lm, the univariate polynomial C(p)e, , can be formally written as g,5(2) e P(lap(z)) =
p((a1 + b12), ..., (@m + bz)). Since the polynomial p has total degree d, so does the univariate
polynomial g p-

To evaluate the basic parameters of the code C, let use consider it as mapping X¥ — X", where
indeed n = |Ly,| = |F|*™ and k = log | P, 4|/log |Z|. Note that

- 10g|Pm,d| _ (m;—d) 10g|F| _ (mr_rtd) (1)
log |Z| (d+1)log|F| d+1



which, for m < d, is approximated by (d/m)™/d =~ (d/m)™. Using |F| = poly(d), we have
n = |F|*™ = poly(d™), and so k is polynomially related to n (provided, say, m < v/d). Note that
the code has large distance (since the different C(p)’s tend to disagree on most lines).

The Codeword Test: The test consists of selecting two random lines that share a random point,
and checking that the univariate polynomials associated with these lines yield the same value for the
shared point. That is, to check whether w € $Eml is a codeword, we select a random point r € F™,
and two random lines ¢, ¢" going through r (i.e., #'(¢') = r and £"(t") = r for some ¢',t" € F),
obtain the answer polynomials ¢’ and ¢” (i.e., ¢’ = wy and ¢" = wyr) and check whether they agree
on the shared point (i.e., whether ¢'(¢') = ¢"(¢")). This test is essentially the one analyzed in [1],
where it is shown that (for |F'| = poly(d)) if the oracle is e-far from the code then this is detected
with probability (e).

3.2 Random Truncation of the FS-Code

Our aim is to tighten the relation between k and n. Recall that the gap between them is due to two
sources; firstly, the analysis in [1] required a field F' that is polynomially bigger than the degree d.
This problem can be eliminated using the better analysis of [17], which only requires |F| = (d)
(see [11]). The second problem is that n is quadratic in |F|™, whereas k = o(d™) = o(|F|™). Thus,
to obtain n almost-linear in k, we must use a different code.

We will use a random projection (or “truncation”) of the FS-code on approximately |F|™ of
the coordinates. Let R,, C L,, be a random subset of O(|F|™ log|F|) lines. We consider the code
CRn : Py, q — S/Enl where the element associated with £, € Ry, C Ly, in the sequence CFm (p)
is the univariate polynomial that represents the values of the polynomial p : F™ — F on the line
£4p- When Ry, is (unimportant or) understood from the context, we shorthand C®= by C.

To evaluate the basic parameters of the code C, let use consider it as mapping ¥ — %" where
n = |Rpn| = O(|F|™log|F|) (and as before k = log|Pp, 4//log|%|). Thus, for m < d, we have
k =~ d™!/m™ and, for |F| = O(d), we have n = O(|F|™log|F|) = O(d)™. We highlight two
possible settings of the parameters:

1. Using d = m™, we get k =~ m™ =2m and n = mm2+"(m), which yields n = exp(+/logk) - k and
log |Z| = log |F|%*! ~ dlogd =~ exp(y/Iogk).

2. Letting d = m¢ for constant e > 1, we get k ~ m(€ D™ and n ~ m®™, which yields n ~
ke/(e=1) and log |Z| =~ dlog d ~ (log k).

The Codeword Test: The original codeword test can be extended to the current setting. Specif-
ically, the new test consists of selecting two random lines in R, that share a random point, and
checking that the univariate polynomials associated with these lines yield the same value for the
shared point. (We stress that we first select uniformly a point r € F™, and next select two lines in
R,, that pass through r.) We prove that this codeword test for the randomly-truncated code Cfm
works as well as the codeword test for the basic FS-code.

Lemma 3.1 Let |F| = Q(d) and |F| < exp(m™). Then, for 1—o(1) fraction of the possible choices
of Ry, of size n, the following holds for every w € $": if the distance of w from the code CTm is en
then the probability that the above codeword test rejects is Q(e) — o(1).

Proof sketch: First we reduce the analysis of the above codeword test (which compares the value
given to two intersecting lines) to an analysis of a point-vs-line test that compares the value of



a suitable function f : F™ — F on a random point with the value induced by (the polynomial
associated with) a random line passing through this point. Fixing any R,, and any w € X", we
construct a random function f : F™ — F' by selecting uniformly, for each r € F™, a line £ in R,,
that passes through r and setting f(r) accordingly (i.e., f(r) = we(t) where r = £(t)). We note
that the probability that the original intersecting-lines test accepts w equals the probability that
the point-vs-line test accepts w along with the resulting random f, because the (random) value f(r)
(obtained from f) may be viewed as obtained from a (second) random line that passes through r.
Thus, it suffices to analyze the point-vs-line test as applied to w and the corresponding random
f- This will be done in two stages: In the first stage we relate the distance of w from the code
C = CBm to the distance of f from the set Py, 4, and in the second stage we relate the rejection
probability of w and f to the distance of f from P, 4.

First stage: We will show that for every p € P, 4, the (fractional) distance of f from p approximates
the (fractional) distance of w from C(p). For simplicity, we first assume that R, covers all points
uniformly (i.e., each point in F™ resides appears in exactly |F| - |Ry,|/|F™| lines of R,,). Let
p € Py, q and denote by en the distance of w from C(p); that is, wy # C(p) (= p(¥)) on an ¢ fraction
of the £’s in R,,. For each £ € R,, for which wy # C(p) it is the case that w, disagrees with p on
almost all (i.e., all but d) points that reside on the line £ (because both wy(-) and p(4(-)) are low-
degree polynomials that determine the corresponding values). Since f(r) is defined according to a
random line £ € R,,, that passes through r, it holds that the expected (fractional) disagreement of a
random f with p is at least (1 — (d/|F|)) - e.* Furthermore, since f is define independently on each
point of F™, with probability at least 1 —exp(e|F|™), a random f disagrees with p on at least a /2
fraction of the points. Using the union bound (for all p € Py, 4) and | Py, 4| < |F|C4/™™ « 2¢/F™
(for € > 27™), with very high probability, the distance of a random f from every p € P, 4 (i.e., f’s
distance from P, 4) approximates (up-to an additive term of (¢/2) — o(1)) the distance of w from
the corresponding C(p). We conclude that the expected distance of a random f from the set P, 4
approximates the distance of w from the code C.

Recall that, in the above analysis, we have assumed that R,, covers all points uniformly (i.e.,
each point resides on the same number of lines in R,,). In general, this is not the case. Yet,
with very high probability, a random set R,, cover almost all points in an almost uniform manner.
This “almost uniformity” suffices for extending the above analysis.® Thus, for almost all R,,’s, the
distance of w from the code C®m is well-approximated by the distance of a corresponding random

4Envision a table with row corresponding to lines in R,,, columns corresponding to points, and entries correspond-
ing to pairs such that the pair (r,£) is marked if r resides on ¢, where the marking equals the value of the point r
as determined by the polynomial assigned to the line £. Indeed, exactly |F'| entries in each row are marked. By the
uniformity condition, exactly |F|-|Rm|/|F™| entries in each column are marked. By the hypothesis that ¢ fraction of

the lines don’t fit p, it follows that for an ¢ fraction of the rows, at most d of the entries are marked in agreement with

p (and the rest are marked in disagreement with p). It follows that at least &’ def (1—(d/|F]))-e fraction of all marked

entries are marked in disagreement with p. In other words, &' equals the expected fraction of disagreement among
the marked entries in a random column. But the fraction of disagreements among the marked entries in column r
equals the probability that f(r) # p(r), where f is a random function constructed as above (because f(r) is assigned
at random a value according to a uniformly selected marked entry in column r). Thus, the expected distance of f
from p equals €.

® Alternatively, for almost all R,,’s, there exists a set Sy, C Ly, that covers all points uniformly such that |S,,| =
n = |Ry| and |Ry, N S| = n — o(n). In order to analyze the construction of f based on w with respect to the
code CFm | we consider the construction of g based on u with respect to the code C5™, where u; = w, for every
{ € Ry NS, By the above analysis, the expected distance of g from P, 4 approximates the distance of u from
C%™  which in turn approximates the distance of w from CFm (because u and w as well as C5™ and CFm agree on all
£ € R, N Sp). Finally, observe that the expected fractional distance between g and f is o(1), because for all but an
o(1) fraction of the points r all but an o(1) fraction of the lines of R,, that pass through r are also in S,, and vice
versa.



function f from the set P, 4.

Second stage: We turn to analyze the performance of the point-vs-line test applied to any w € X"
and a corresponding random f : F™ — F (constructed as above). Following [19, 1, 2, 17], we
observe that for each possible function f : F™ — F there exists an optimal strategy of answering
all possible line-queries (such that the acceptance probability of the line-vs-point test is maximized).
Specifically, for a fixed function f, and each line ¢, the optimal way to answer the line-query /£ is
given by the degree d univariate polynomial that agrees with the value of f on the maximum number
of points of £. Thus, the optimal acceptance probability of the line-vs-point test on f depends only
on f (and not on w, which may not be optimal for f). Furthermore, this probability is the average of
quantities (i.e., the agreement of f with the best univariate polynomial) that f associates with each
of the possible lines. Let us denote by Dy(f) the fractional disagreement of f restricted to £ with the
best univariate polynomial. Then, by the relevant results in [1, 2, 17], the average of Dy(f) taken
over all lines (i.e., over Ly,) is linearly related to the distance of f from P, 4. Clearly, the rejection
probability of our test (i.e., the line-vs-point test for lines uniformly selected in R,,, when applied
to w and f as above) is lower-bounded by the average of the Dy(f)’s over the lines in R,, (rather
than over the set of all lines, L,,). Now, for each fized f, with probability 1 — exp(—|Ry|), the
average of the Dy(f)’s (taken over all lines) is approximated (up-to some constant) by the average
taken over a random set R,,. Taking the union bound over all |F|'¥I™ functions f’s we conclude
that, for almost all R,,, the point-vs-line test rejects each f with probability that is linearly related
to the distance of f from P, 4 (because exp(—|Ry,|) - [F|F'™ = o(1)).

By the first stage, for almost all R,,’s, the distance of each w is related to the expected distance
of a corresponding random f from P, 4, whereas by the second stage (for almost all R,,’s) each w
and the corresponding random f is rejected by the point-vs-line with probability that is linearly
related to the distance of f from P, 4. Combining these two facts, the lemma follows. W

F-linearity: The (modified as well as the original) code C is F-linear; that is, the individual
F-elements in the codeword sequence are linear combinations (over F') of the F-elements in the
information being encoded. Equivalently, for every o/,o¢” € F and every p/,p” € P, 4, it holds
that C(a'p’ + a"p")y = 'C(p')e + "'C(p")¢, for every line (Z-coordinate) £. This is the case
because C(a'p’ + o'p"); equals the univariate polynomial (in z) given by (/p' + o"p")(£(2)) =
a'p'(U(2)) + o"p" (£(z)), which in turn equals 'C(p'); + &”'C(p")s.

Conclusion: Using the first parameter-setting (i.e., d = m™), we establish Part 1 of Theorem 2.2.

An alternative construction: To simplify the analysis of the codeword test, we may construct
an alternative code in which C is augmented by an evaluation of the polynomial p on all possible
points (i.e., F™). Furthermore, the augmentation is repeated enough times (i.e., Q((d+1) -log |F|)
times) such that this portion dominates the length of the code (as well as the distance to it).
Using the alternative construction allows to directly apply the analysis of [1, 2, 17] (while confining
ourselves to analyzing the effect of taking a sample R,, of the quantities assigned by f to all possible
lines). On the other hand, using the alternative code will slightly complicate the next subsection.

3.3 Decreasing the alphabet size

The above construction uses quite a big alphabet (i.e., ¥ = F%*1). Our aim in this subsection is to
maintain the above performance while using a smaller alphabet (i.e., F rather than F¢*1), This is
achieved by concatenating the above code (which encodes information by a sequence of n degree d



univariate polynomials over F') with the following inner-code that maps Ft! to F™ | where n' is

sub-exponential in &’ g4 1.

For a (suitable) constant d’, let ¥ = h? and [h] = {1,..,h}. As a warm-up, consider
the special case of d = 2. In this case, the code C' maps bilinear forms in z;'s and y;’s
(with coefficients (c; ;) jejn) to the values of these forms under all possible assignments. That

is, C' : FW 5 pIFP maps the sequence of coefficients (c; ;)i en to the sequence of values
(Va1 00es0 01 00 ) @1 oot b1 oo sbr €F WHET€ Vg oy by by = D0 icip] Gy - @ibj. In general (ie., ar-
bitrary d’ > 1), the inner-code C' : F¥ — F" maps d-linear forms in the variables sets
{z~(1) 21 € A}, {ng’) : 4 € [h]} to the values of these d'-linear forms under all possible assign-

7 (3
ments to these d’'h variables. That is, C' maps the sequence of coefficients (Cil,...,idr)il,...,z’d,e[h] to the

n f val her =
sequence of values (v .oy oy @) @) m o @) @epWherevay o) an

it €lh] Cirnigr * 1=y 6. Thus, (k' = h? and) n' = |F|*" = exp(d - (K')"/¥ log| F]).

Testing the inner-code: A valid codeword is a multi-linear function (in the variable sets
{zz-(l) 11 € [hl}, ..., {z-(d’) : 1 € [h]}); that is, for each j, a valid codeword is linear in the variables

7
zZ(J Vs, Thus, testing whether a sequence belongs to the inner-code amounts to d’ linearity checks.
Specifically, for each j, we randomly select 7 = (rgl), ...,r,(ll), ...,rgd ), ...,r,(ld )) and sgj), ...,sgj), and
0y s 0, R ONNICR ACONL where tz(J) = TZ(J) + Sz@) and tz(] )= TZ(J )
for j' # j. To simplify the analysis, we also let the test employ a total low-degree test (to verify
that the codeword is a multi-variate polynomial of total-degree d').> (The total-degree test uses

d' + 2 queries, and so our codeword test uses 3d' + d' + 2 queries.)

compare vy + % 0 towv

Lemma 3.2 If the distance of w' € F"™ from C' is en' then the probability that the codeword test
for C' rejects is Q).

Proof sketch: If w' ¢ FIF'" (viewed as a function F* — F) is at fractional distance at
least min(e,0.5) from the set of d'h-variate polynomials of total degree d’ then it is rejected with
probability Q(e) by the total-degree test. Otherwise, w' is at distance less than min(e, 0.5) -n' from
such a polynomial, denoted p’, which is unique. By the hypothesis (regarding the distance of w'

from C’), this p’ must be non-linear in some block of variables (i.e., in the zi(] )’s). With probability
1 —(d'/|F]) > 0.9 this non-linearity is preserved when assigning random values to the variables of
all the other blocks. On the other hand, the expected fractional distance between the residual w'
and p’ under such a random assignment is less than 0.5. Thus, under such random assignment,
the expected fractional distance of the residual w' from the set of linear functions in the zZ(J Vs is
at least 0.9 — 0.5 = 0.4. It follows that w' is rejected with constant probability by the j*" linearity

test (because, with probability at least 0.2, the residual w’ is at least 0.2-far from being linear in
the zlgj )’s). B

Testing the concatenated-code: In order to test the concatenated code, we first test (random
instances of) the inner-code and next use self-correction on the latter to emulate the testing of the
outer-code. Specifically, the tester for the concatenated code selects at random two intersecting
lines ¢ and ¢”, and first applies the inner-code tester to the inner-encoding of the polynomials

SWe conjecture that the codeword test operates well also without employing the total-degree test, but the aug-
mented codeword test is certainly easier to analyze.



associated by the outer code to these lines. To emulate the outer-code test, the current tester
needs to obtain the value of these polynomials at some elements of F' (which are determined by
the outer test). Suppose that we need the value of ¢’ (a univariate polynomial of degree d =
h? — 1 over F) at t € F, and that ¢' is encoded by the inner-code. However, the value ¢'(t) =

it sig€[h] qgl,___,id,t(“*1)+(i2*1)h+'"+(id’*1)hd ~' equals the entry of C'(¢') that is associated with

the sequence (£°, ...,t" 1,10, I AUl LU #(h—1)h _1).7 Self-correction of the desired entry is
performed via polynomial interpolation, and requires only d’' + 1 queries. Thus, the concatenated
code can be tested by making O(d’) queries.

Notes: Observe that the inner-code is linear (over F'), and thus so is also the concatenated code.
Furthermore, the codeword test is a conjunction of (O(d’)) linear tests. Alternatively, we may
perform one of these linear tests, selected at random (with equal probability). Regarding the
parameters of the concatenated code, suppose that in the outer-code we use the setting d = m*®
(for constant e > 1), and in the inner-code we use d’ = 2e. Then, we obtain a code that maps F*¥'
to F™' where n &~ k/(¢=1) and n' ~ exp(d'/?) =~ exp((logk)¥/?) = exp(v/logk) = k°V) (using
d ~ (logk)¢). Thus, nn' ~ (kk')¢/(¢=1) and |F| = O(d) ~ (log k)¢ (as before).

3.4 A Binary Code

The last step is to derive a binary code. This is done by concatenating the above code with a
Hadamard code, while assuming that F' = GF(Q’“”). The Hadamard code is used to code elements
of F' by binary sequences of length n” def ok

To test the newly concatenated code, we combine the obvious testing procedure for the
Hadamard code with the fact that all that we need to check for the current outer-code are (a
constant number of) linear (in F') conditions involving a constant number of F-entries. Instead
of checking such a linear condition over F', we check that the corresponding equality holds for
a random sum of the bits in the representation of the elements of F' (using the hypothesis that
F = GF(2"")). Specifically, suppose that we need to check whether ¥, aja; = 0 (in F), for some
known «; € F and oracle answers denoted by a;’s. Then, we uniformly select r € GF(2’C"), and
check whether (r,>"; @;a;) = 0 mod 2 holds, where (u,v) denotes the inner-product modulo 2 of
(the GF(2K") elements) u and v (viewed as k”-bit long vectors). The latter check is performed by
relying on the following two facts:

1. (r,>; 05a;) = > (r, aja;) mod 2.

2. Each (r, aja;) can be obtained by making a single query (which is determined by r and «;) to
the Hadamard coding of a;, because (r, a;a;) is merely a linear combination with coefficients
depending only on «; and r of the bits of a;. (Each bit of aja; € GF(2’“”) is a linear
combination with coefficients depending only on «; of the bits of a;, and (r,v) is a linear
combination with coefficients depending only on r of the bits of v.)

Thus, the emulation of the outer-code test is performed by accessing a constant number of entries
in the inner-code. It follows that the final concatenated code is locally testable. The final code

"That is, we consider the entry of C’'(q’) that is associated with the sequence (agl),...,ag),...,agd ),...,aéd ))

G) — 1Rt I, @, which equals

i j=1%;"

. a’ . j—1
3 ! ) .Hd’ =R » ! ) .tZJ-:l(w—l)h
91 5eees id’ €[hr] q“ ..... gt j=1 - 81 5eens id’ €[h] q” ..... igt .

that satisfies a The value of this entry equals Y

! )
i15eeeyigr €1R] Fitsenigs
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maps {0, 1}¥¥'¥" to {0,1}""'""  where nn' =~ (kk')¢/(¢=1) and n” = 28" = |F| = poly(log k) = k°().
Thus, nn'n" ~ (kk'k")¢/(¢=1), This establishes Part 2 of Theorem 2.2.

Note: Fixing any integer e > 1, the above code can be constructed for any integer h, while
determining k' = he, k" = logO(k') and k ~ (m® )™, where m = (h® — 1)/¢ ~ h. Thus,
K % /g s ple=Dh . pe. log he &~ h{e=Dh The ratio between consecutive values of K is given by

% = O(h)¢ ! < (log K)¢ !, and so the successor of K is smaller than (log K)¢ ! - K.

4 Nearly linear-sized PCPs

In this section we give a probabilistic construction of nearly-linear sized PCPs for SAT. More
formally, we reduce SAT probabilistically to a promise problem recognized by a PCP verifier tossing
(14 0(1)) log n random bits (on inputs of length n) and queries a proof oracle in a constant number
of bits and has perfect completeness and soundness arbitrarily close to % We stress that the
constant number of bits is explicit and small. Specifically, if the o(1) function in the randomness is
allowed to be as large as 1/poly log log n, then the number of queries can be reduced to 16 bits. The
little o(1) function can be reduced to O(/loglogn/logn) for a small cost in the number of queries,
which now goes up to 19 bits. These improvements are obtained by using/improving results of
Harsha and Sudan [15].

We get our improvements by applying the “random truncation” method (introduced in Sec-
tion 3) to certain constant-prover one-round proof systems, which are crucial ingredients in the
constructions of PCPs. Typically, these proof systems use provers of very different sizes, and by
applying the “random truncation” method we obtain an equivalent system in which all provers
have size roughly equal to the size of the smallest prover in the original scheme. At this point,
we reduce the randomness complexity to be logarithmic in the size of the provers (i.e., and thus
logarithmic in the size of the smallest original prover).

Recall that typical PCP constructions are obtained by the technique of proof composition
introduced by Arora and Safra [2]. In this technique, an “outer verifier”, typically a verifier for a
constant prover one round proof system, is composed with an “inner verifier” to get a new PCP
verifier. The new verifier essentially inherits the randomness complexity of the outer verifier and
the query complexity of the inner verifier. Since our goal is to reduce the randomness complexity
of the composed verifier, we achieve this objective by reducing the randomness complexity of the
outer verifier.

As stated above, the key step is to reduce the sizes of the provers. As a warm-up, we first show
that the random truncation method can be applied to any 2-prover one-round proof system, where
the size of one prover is much larger than the size of the second prover, to reduce the size of the
larger prover to roughly the size of the smaller prover.

We then show how to apply the random truncation to the verifier of a specific 3-prover one-round
proof system used by Harsha and Sudan [15]. Their verifier is a variant of the one constructed by Raz
and Safra [18] (see also, Arora and Sudan [3]), which are, in turn, variants of a verifier constructed
by Arora et al. [1]. All these verifiers share the common property of working with provers of
“imbalanced” sizes. We manage to reduce the size of the provers to the size of the smallest one,
and consequently reduce the randomness of the verifier to (1 4+ o(1)) logn (i.e., logarithmic in the
prover size). We stress that this part is not generic but relies on properties of the proof of soundness
in, say, [15], which are abstracted below. Applying the composition lemmas used/developed in [15]
to this new verifier gives us our efficient PCP constructions.
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4.1 MIP verifiers and random sampling

We start by defining a 2-prover 1-round proof system as a combinatorial game between a verifier
and two provers. Below, (2 denotes the space of verifier’s coins, g; denotes its strategy of forming
queries to the ith prover, and P; denote strategies for answering these queries (where all refer to
the residual strategies for a fixed common input).

Definition 4.1 For finite sets Q1,Q2,%, and A, a (Q1,Q2,Q, A)-2IP verifier V is given by func-
tions ¢1 : Q — Q1 and g2 : Q@ — Q2 and Verdict : Q@ x A x A — {0,1}. The value of V,
denote w(V'), is the mazimum, over all functions P1 : Q1 — A and Py : Q2 — A of the quantity
Erq[Verdict(r, P1(q1(7)), Po(q2(r)))]. A 2IP verifier V is said to be uniform if for each i € {1,2},
the distributions {q;()}r—q are uniform over Q;.

Focusing on the case |Q2| > |@Q1, we define a “sampled” 2IP verifier:

Definition 4.2 Given a (Q1,Q2,9, A)-2IP verifier V and set S C Q2, let Qg = {r € Q| q2(r) €
@1} For T C Qg, the (S,T)-sampled 2IP verifier Vg1 is a (Q1,S,T,A)-2IP verifier given by
functions ¢ : T — Q1, ¢h: T — S, and Verdict' : T x Ax A — {0,1} obtained by restricting q1, g2
and Verdict to T'.

In the following lemma we show that a sufficiently large randomly sampled set S from Qs is
very likely to preserve the value of a verifier approximately. Furthermore, the value continues to
be preserved approximately if we pick T' to be a sufficiently large random subset of {2g.

Lemma 4.3 There exist absolute constants ci,co such that the following holds for every
Q1,Q2,92,A, e and v > 0. Let V be an (Q1,Q2,9, A)-uniform 2IP verifier.

Completeness: Any (S,T)-sampled verifier preserves the perfect completeness of V. That is, if
w(V) =1 then, for every S C Q2 and T C Qg, it holds that w(V|s 1) = 1.

Soundness: For sufficiently large S and T, a random (S,T)-sampled verifier preserves the sound-
ness of V up-to a constant factor. Specifically, let Ny = (|Q1|log\A|+log %) and

Ny = 2 (Nl log |A| + log %), and suppose that S is a uniformly selected multiset of size

Ny of Qo, and T is a uniformly selected multiset of size No of Qg. Then, for w(V) <€, with
probability at least 1 — ~ it holds that w(V]s ) < 2e.

Note that the reduction in randomness complexity (i.e., obtaining Ny = O(|Q1])) relies on the
shrinking of the second prover to size N1 = O(|@Q1]). Without shrinking the second prover, we
would obtain Ny = O(|Q2|), which is typically useless (becuase, typically, || = O(|Q2])).

Proof: Assuming that w(V') < €, we focus on the soundness condition. The proof is partitioned
into two parts. First we show that a random choice of S is unlikely to increase the value of the
game to above 3/2e. Next, assuming the first part was ok, we show that a random choice of T
is unlikely to increase the value of the game above 2¢. The second part of the proof is really a
standard argument which has been observed before in the context of PCPs. We thus focus on the
first part, which abstracts the idea of the random truncation from Section 3.

Our aim is to bound the value w(V|sqy), for a randomly chosen S. Fix any prover strat-
egy P : Q1 — A for the first prover. Now note that an optimal function, denoted P,
for the second prover answer each question ¢o € ()2 by an answer that maximizes the ac-
ceptance probability with respect to the fixed P, (i.e., an optimal answer is a string ao that
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maximizes E,cq|g(r)=¢,[Verdict(r, P1(q1(r)),a2)]). We stress that this assertion holds both for
the original 2IP verifier V as well as for any (S,Qg)-sampled verifier.® For every question
g2 € (2, let €, denote the acceptance probability of the verifier V' given that the second ques-
tion is g2 (i.e., €, = Ereqg(r)=q.[Verdict(r, P1(q1(r)), P5(g2))]). By definition (and uniformity)
Egeqsl€q] = Erealegy ] < € The quantity of interest to us is Ercogleg(r)] = Egqesleg] A
straightforward application of Chernoff bounds shows that the probability that this quantity ex-
ceeds (3/2)e is exp(—eN;). Taking the union bound over all possible P;’s, we infer that the prob-
ability that there exists a P, P» such that E,.qg[Verdict(r, Pi(qi(r)), P2(g2(r)))] > (3/2)e is at
most exp(—eNy) - |A[|91]. Thus, using Ny = @ <|Q1| log |A| + log %) (for some absolute constant
c1), it follows that w(Vs,ns) < (3/2)e with probability at least 1 — 2 (over the choices of S). The
lemma follows.’ [

4.2 TImproved 3-Prover Proof System for NP

We now define the more general notion of a constant-prover one-round interactive proof system
(MIP).

Definition 4.4 For positive reals c,s, integer p and functions r,a : Z+ — Z%, we say that a
language L € MIP_ 4[p,r,a] (or, L has a p-prover one-round proof system with answer length a)
if there exists a probabilistic polynomial-time verifier V interacting with p provers Pi,..., P, such
that

Operation: On input = of length n, the verifier tosses r(n) coins, generates queries qi,...,qp to
provers P, ..., B,, obtain the corresponding answers a,...,a, € {0,1}“(”), and outputs a
Boolean verdict that is a function of x, its randomness and the answers ay,...,ap.

Completeness: If x € L then there exist strategies Py, ..., P, such that V accepts their response with
probability at least c.

Soundness: If x ¢ L then for every sequence of prover strategies Pi,...,P,, machine V accepts
their response with probability at most s.

Harsha and Sudan [15] presented a randomness efficient 3-prover one-round proof system with
answer length poly(logn) and randomness complexity (3 + €) log, n, where € > 0 is an arbitrary
constant and n denotes the length of the input. Here we reduce the randomness required by their
verifier to (1 + o(1)) log n.

Before going on we introduce a notion that will be useful in this section — namely, the notion
of a length preserving reduction. For a function £: Zt — Z*, a reduction is £(n)-length preserving
if it maps instances of length n to instances of length at most £(n).

Lemma 4.5 For every e¢ > 0 and functions m(n), £(n) satisfying £(n) =
Q(m(n) M) p 1 +2A/mM)y  SAT  reduces in probabilistic polynomial time, under £(n)-
length preserving reductions to a promise problem II € MIP;[3,(1 + 1/m(n))logn +
O(m(n)logm(n)), m(n)?Mn00/m@)],

8But, the assertion does not hold for most (S,7)-sampled verifiers.

Indeed, we have ignored the effect of sampling Qg; that is, the relation of w(V|s,0) and w(V|s,r), for a random
T C Qs of size N». Here, we fix any choice of P; : @1 — A and P> : S — A. Again, applying Chernoff bounds, we see
that the probability that the restrictions of Qg to T' lead to acceptance with probability more than w(V|s,ag) + (¢/2)
is exp(—eN»). Taking the union bound over all choices of P, and P», we infer that w(V|s,r) > w(V]s,as) + (¢/2)
with probability at most exp(—eNz) - |A|'91FISI Thus, using No = 22 (|S|log |A| + log(1/7)), we conclude that
w(Vl]s,r) L w(Vls,ag) + (¢/2) with probability at least 1 — 2 (over the choices of T').
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Before proving this lemma, let us see some special cases obtained by setting m(n) =
poly(loglogn) and m(n) = +/logn, respectively in the above lemma.

Corollary 4.6 For every u > 0 and every polynomial p, there exists a promise problem 11 €
MIPy ,[3, (14 1/p(loglog n)) -log n, 2P°Y(108108™)] sych that SAT reduces probabilistically to I under
p1+(1/p(loglogn)) _enath preserving reductions.

Corollary 4.7 For every u > 0, there exists a promise problem II € MIPy,[3,(1 +
O((loglogn)/+/Togn)) - logn,20(Vloenloglogn)) = sych SAT reduces probabilistically to TI under
p!tO(loglogn)/v/1ogn) jopath, preserving reductions.

We defer the proof of Lemma 4.5 to Section 4.2.4. Here we give an overview of the proof steps.
We modify the proof of [15] improving it in two steps. The proof of [15] first reduces SAT to a
parametrized problem they call GapPCS under ¢ (n)-length preserving reductions for #(n) = n'*7
for any v > 0. Then they give a 3-prover MIP proof system for the reduced instance of GapPCS
where the verifier tosses (3 + ) log #'(n) random coins.

Our first improvement shows that the reduction of [15] actually yields a stronger reduction
than stated there, in two ways. First we note that their proof allows for smaller values of £(n) than
stated there, allowing in particular for the parameters we need. Furthermore, we notice that their
result gives rise to instances from a restricted class, for which slightly more efficient protocols can
be designed. In particular, we can reduce the size of the smallest prover in their MIP protocol to
roughly £(n) (as opposed to their result which gives a prover of size £(n)'*? for arbitrarily small
). These improvements are stated formally in Lemmas A.2 and A.3 and Corollary A.4.

The second improvement is more critical to our purposes. Here we improve the randomness
complexity of the MIP verifier of [15], by applying a random truncation. To get this improvement
we need to abstract the verifier of [15] (or the one obtained from Corollary A.4). This is done
in Section 4.2.1. We then show how to transform such a verifier into one with (1 + o(1))logn
randomness. This transformation comes in three stages, described in Sections 4.2.2-4.2.4.

4.2.1 Abtracting the verifier of Corollary A.4

The verifier of Corollary A.4 interacts with three provers which we’ll denote P, P;, and P,. We will
let @, @1, and @2 denote the question space of the provers respectively; and we’ll let A, A1, and A,
denote the space of answers of the provers respectively. Denote by V. (r,a, a1, a2), the acceptance
predicate of the verifier on input z, where r denotes the verifier’s coins, and a (resp., a1, as) the
answer of prover f = P (resp., Pi, P»). (Note: The value of V, is 1 if the verifier accepts.) We’ll
usually drop the subscript z unless needed. Let us denote by ¢(r), (resp. g1(r), g2(r)) the verifier’s
query to P (resp., Pi, P») on random string r. We note that the following properties hold for the
3-prover proof system given by Corollary A.4.

1. The acceptance-predicate decomposes: V(r,a,a1,a2) = Vi(r,a,a1) A Va(r,a,as2), where V4
and V, are predicates.

2. Sampleability: The verifier only tosses O(logn) coins. Thus, it is feasible to sample from
various specified subsets of the space of all possible coin outcomes. For example, given
S1 C @1, we can uniformly generate in poly(n)-time a sequence of coins r such that ¢;(r) € S;.

3. Uniformity: The verifier’s queries to prover P (resp. Pj, P,) are uniformly distributed over

Q (resp. Q1,Q2).
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4. If z is a NO-instance, then for V' = V,, for small ¢ and every possible P strategy, there exists
a subset Q' = Q» C @ such that for every Pj, P, the following two conditions holds

(2)
(3)

Pria(r) € @' AVA( F(QU). PL@i(r)] <
lzr[q(r) ¢ Q' AVa(r, f(Q(r), P2(Q2(r))] <

NN

4.2.2 The 3-prover MIP: Stage I

We start by modifying the verifier of Corollary A.4 so that its questions to provers P; and P, are
“independent” (given the question to the prover P). That is, we define a new verifier, denoted W,
that behaves as follows

e Oninput z, let V =V, be the verifier’s predicate and let V; and V5 be as given in Property (1).

e Pick ¢ € @ uniformly and pick coins r; and ro uniformly and independently from the set
{r € Q|q(r) = q}. [Here we use sampleability with respect to a specific set of r’s.]

e Make queries ¢ (which indeed equals ¢(r1) = q(r2)), 1 = q1(r1) and ¢q2 = g2(r2), to P, P,
and P, receiving answers a = P(q), a1 = Pi(q1) and as = Py(g9).

e Accept if and only if Vi(r1,a,a1) A Va(ra, a,as).
Claim 4.8 W has perfect completeness and soundness at most .

Proof: The completeness is obvious, and so we focus on the soundness. Fix a NO-instance z and
any set of provers P, P; and P». Let Q' = Q' be the subset of Q) as given by Property (4) of the
MIP. The probability that W accepts is given by

Pr [EVi(r1) A EVa(re)] (4)

q,T1,72

where EVi(r1) = Vi(r1,P(q), Pi(q1(r1))) and EVa(ra) = Va(re, P(q), Pa(g2(r2))). Note that g =
q(r1) = q(r2), where (¢ and) 1,79 are selected as above. Thus, EV; only depends on r;, and the
shorthand above is legitimate. Note that the process of selecting r1 and ry in (4) is equivalent to
selecting each of them uniformly (though not independently). We thus upper bound (4) by

Prla(r) € Q' A BVi(ra)) + Prla(r) ¢ Q' A EVa(ra)]

Using Property (4), each term above is bounded by €/2 and thus the sum above is upper-bounded
by e. |
4.2.3 The 3-prover MIP: Stage II

In the next stage, the crucial one in our construction, we reduce the size of the provers P; and P,
by a random truncation. For sets S1 C @1 and So C Q2, we define the (S1,S2) restricted verifier
Ws, s, as follows:

e Oninput z, let V' = V,, be the verifier’s predicate and let V; and V5 be as given in Property (1).

e Pick ¢ € @ uniformly and for 7 € {1,2} pick coins r;’s uniformly and independently from the
sets {r € Qlg(r)=qAgi(r)€S;}. If either of the sets is empty, then the verifier simply accepts.
[Here, again, we use sampleability of subsets of the verifier coins.]
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e Make queries ¢ = q(r1) = q(r2), ¢1 = q1(r1) and g2 = g¢2(r2), to P, P; and P;, receiving
answers a = P(q), a1 = Pi(q1) and as = Px(g2).

e Accept if and only if Vi (r1,a,a1) A Va(re, a,as).

As usual it is clear that the verifier Wy, s, has perfect completeness (for every S; and Sp). We
bound the soundness of this verifier, for most choices of sufficiently large sets S; and Sa:

Lemma 4.9 For randomly chosen sets S1,S2 of size O(|Q| max{log|A|,log |Q|}, with probability
at least 4/5, the soundness of the verifier Wg, g, is at most Ge.

Proof: We start with some notation: Let €2 denote the space of random strings of the verifier V
(of Section 4.2.1). For i € {1,2} and a fixed set S;, let A; denote the distribution on Q induced by
picking a random string r € Q uniformly, conditioned on ¢;(r) € S; (i.e., uniform in {r € Q|¢;(r) €
S;}). Similarly, let B; denote the distribution on €2 induced by picking a query ¢ € @ uniformly and
then picking 7; uniformly at random from the set {r € Q|q(r)=¢ A ¢i(r) € S;}. We use the notation
ri<—D to denote that r; is picked according to distribution D. Note that the verifier Wy, s, picks
r1<—B; and ro< Bs (depending on the same random ¢ € Q). In our analysis, we will show that,
for a random S;, the distributions A; and B; are statistically close, where as usual the statistical
difference between A; and B; is defined as maxgcq {Pry,4;[ri € S] — Pr,p;[ri € S]}. We will
then show that the verifier has low soundness error if it works with the distributions A; and As.
This informal description is made rigorous below by considering the following “bad” events (over
the probability space defined by the random choices of Si, S3):

BE1: The statistical difference between A; and Bj is more than e.
BE2: The statistical difference between A9 and B is more than e.

BE3: There exist P, P; such that for Q' = Q' (as in Property (4) of Section 4.2.1)

Pr [(q(r1) € Q) AVi(r1, P(q(r1)), Pr(qi(r1)))] > 2.

r1<Ax
BE4: There exist P, P, such that for Q' = Q% (as in Property (4) of Section 4.2.1)

Pr [(q(r2) € Q") A Va(rz, P(q(r2)), Pa(q2(r2)))] > 2.

ro<—Ag

Below we will bound the probability of these bad events, when S, S2 are chosen at random. But
first we show that if none of the bad events occur, then the verifier Wg, g, has small soundness.
Let (r1,7r2)¢Wsg,,s, denote a random choice of the pair (r;,r2) as chosen by the verifier Wg, ,.
Fix proofs P, P;, P, and let Q' be as in Property (4). Then,

—~
~—

Pr(e, oy ws, s, [Vi(r1, Pla(r1)), Pi(qi(r1))) A Va(ra, P(q(r2)), P2(g2(r2)))]

< Pry e [(g(r1) € Q) AVi(r, P(q(r1)), Pilgi(r1)))]

+ Prry e, [(a(r2) & Q) A Va(re, Pa(r2)), Pa(ga(r )))]
< Pryyea, [(g(r) € Q) AVa(ry, Pla(ry)), Pi(qi(r1)))] +

+ Prryea, [(g(r2) & Q) A Va(ra, P(q(r2)), Pa(ga(r )))] +e¢  [-BEIl and -BE2]
< 6e [-BE3 and —BEA4]

Claim 4.10 The probability of event BE1 (resp., BE2) is at most 1/20.
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Proof: To estimate the statistical difference between A; and B;, note that sampling r; according to
A; is equivalent to the following process: select ri<A; (i.e., r} is selected uniformly in {r|g;(r) € S;}),
set ¢ = ¢(r;), and pick r; uniformly from the set {r|(g(r) =¢) A (¢i(r) € S;)}. Thus, the statistical
difference between A; and B; equals § - >geq |Prria;[q(ri) = q] — Py, p;[q(ri) = g]|, which in
turn equals % DI ‘Prm_ A;lq(ri) =q) — ﬁ‘ To bound this sum, we bound the contribution of
each of its terms (for a random S;). Fixing an arbitrary ¢ € @), we consider the random variable

(et =) A ai(r) €S}
gl = a = e e sl

(as a function of the random choice of S;). The expectation of this quantity is T A simple

application of Chernoff bounds shows that, with probability at least exp(—e|S;|/|Q)|), this random
variable is in (1 + G)I%I Thus, for |S;| = ¢ |Q|log|Q| (where ¢ = O(1/¢)), the probability that

Prya,[q(r) = ¢] is not in [(1 £ e)ﬁ] is at most w. By the union bound, the probability that
such a g exists is at most 21—0, and if no such ¢ exists then the statistical difference is bounded by at
most e. [ |

Claim 4.11 The probability of event BES3 (resp., BE}) is at most 1/20.

Proof: We will bound the probability of the event BE3. The analysis for BE4 is identical. Both
proofs are similar to the proof of Lemma 4.3.
Fix P and let Q' be the set as given by Propery (4) of Section 4.2.1. We will show that

Pr[3m st Pr [(a(rs) € Q) AVilrs, Pla(ra)), Prlas(r))] > 2¢| < ocla 7@ (3)

The claim will follow by a union bound over the |A|/9! possible choices of P. For fixed P (and

thus fixed Q'), note that there is an optimal prover P; = P} that maximizes the quantity e, def

Pry g n=a l(a(r) € Q') A Vi(r,P(q(r)), Pi(q1))] for every ¢i € Q1. Furthermore Eq cq,[€q,] = €
Applying Chernoff bounds, we get that the probability that when we pick |Si| elements from
()1 uniformly and independently, their average is more than twice the expectation is at most
exp(—|S1]). Thus if |S1]| > ¢ |Q|log |A| for some large enough constant ¢, then this probability is

at most 21—0|A\*|Q| as claimed in Equation (5). The claim follows. [ |
Lemma 4.9 follows now since we have that some bad event (i.e., one of the four BEi’s) occurs
with probability at most 4/20, and otherwise the soundness is indeed as claimed. [ |

4.2.4 The 3-prover MIP: Stage III

Having reduced the sizes of the three prover oracles, it is straightforward to reduce the amount of
randomness used by the three provers. Below we describe a reduced randomness verifier W, g, T
where S; C Q; and T C {(r1,72)|(q(r1) = q(r1)) A (gi(r:) € S;, Vi € {1,2})}.

e Oninput z, let V =V, be the verifier’s predicate and let V; and V5 be as given in Property (1).
e Pick (r1,72) € T uniformly at random. [This uses the sampleability property.]

e Compute g = ¢(r1) = q(r2), and make queries ¢, g1 = ¢1(r1) and g2 = ¢a(r2), to P, P; and
Py, receiving answers a = P(q), a1 = Pi(q1) and a2 = Ps(g2).
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e Accept if and only if Vi (r1,a,a1) A Va(re, a,as).

It is obvious that the verifier uses log, || random bits. It is also easy to see (as in the second part
of the proof of Lemma 4.3) that if T is chosen randomly of sufficiently large size then its soundness
remains low. We skip this proof, stating the resulting lemma.

Lemma 4.12 If S1,S2 are chosen randomly of size O(|Q| max{log|A|,log|Q|} and T is chosen
randomly of size O(|Q|log|A| + |S1|log|A1] + |S2|log|As|), then with probability at least 3 that
Ws, s, 7 has soundness at most Te.

Using Lemma 4.12, we now prove Lemma 4.5.

Proof [of Lemma 4.5]: Fix ¢ = ¢/7. Let V be the 3-prover verifier for SAT as obtained from
Corollary A.4. In particular, V has perfect completeness and soundness €. The size of the smallest
prover is ' (n) = m(n)0mm) . p1+00/m(n) the answer length is bounded by m(n)9(1) . nO0 /M)
and V satisfies the properties listed in Section 4.2.1. For sets S1,52,T, let Wg, s, 7 be the verifier
obtained by modifying V' as described in the current section. Consider the promise problem II
whose instances are tuples (¢, S1,S2,T) where an instance is a YES-instance if Wg, s, 7 accepts ¢
with probability one, and the instance is a NO-instance if W, s, 1 accepts with probability at most
€. We note that an instance of II of size N has a 3-prover proof system using at most log, N random
coins, perfect completeness and soundness error 7¢/ = € (since Wg, s, 7 is such a verifier). Now,
consider the reduction that maps an instance ¢ of SAT of length n to the instance (¢, S1,S2,T),
where S;, S, are random subsets of queries of V of size O(¢'(n) - n°(1/™M)) and T is a random
subset of size O(¢'(n) - nO/MM)y . pOO/m(n) = p(n) of the random strings used by the verifier
Ws, s,- This reduction always maps satisfiable instances of SAT to YES-instances of II and, by
Lemma 4.12, with probability at least %, it maps unsatisfiable instances of SAT to NO-instances of

1I. [ |

4.3 Nearly linear PCPs

Applying state-of-the-art composition lemmas to the MIP constructed in the previous subsection
gives our final results quite easily. In particular, we use the following lemmas.

Lemma 4.13 (cf. [3] or [5, 18]) For every p1 > 0 and p < oo, there exists p > 0 and constants
c1,Cg, c3 such that for every r,a: ZT — Z7T,

MIP ,[p,r,a] € MIPy ,, [p+ 3,7 + ¢1 log a, c2(log a)®].

We apply the lemma above repeatedly till the answer lengths become poly logloglogn. Then to
terminate the recursion, we use the following result of [15].

Lemma 4.14 (Lem. 2.6 in [15]) For every ¢ > 0 and p < oo, there ezxists a y > 0 such that for
every rya 1 Zt — 7T,
MIP; ,[p,r,a] C PCPI,%H[T + O(2P%),p+ 7.

Combining the above lemmas with the nearly-linear 3-IP obtained in the previous subsection, we
obtain:

Theorem 4.15 (Our main PCP result):
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1. For every € > 0, SAT reduces probabilistically, under n'+O1/1081080) o ath preserving reduc-

tions to a promise problem II € PCPL%+€[(1 + O(1/loglogn)) - logn, 16].

2. For every € > 0, SAT reduces probabilistically, under n'tOV1gnloglogn) jopnath preserving
reductions to a promise problem Il € PCPL%H[(l + O(loglogn/+/logn)) - logn,19].

Part 2 implies Theorem 2.3.

Proof: The first part is obtained by starting with Corollary 4.6, and applying Lemma 4.13 twice
to get a 9-prover MIP system with answer lengths poly(logloglogn). Applying Lemma 4.14 to
this 9-prover proof system, gives the desired 16-bit PCP. For the second part, we start with Corol-
lary 4.7 and apply Lemma 4.13 thrice, obtaining a 12-prover MIP system with answer lengths
poly(logloglogn). Applying Lemma 4.14 gives the 19-bit PCP. [ |

5 Nearly-linear-sized codes from PCPs

Here we augment the results of Section 3 by constructing nearly-linear-sized locally-testable codes.
We do so by starting with the randomly truncation of the FS-code from Section 3.2, and applying
PCP techniques to reduce the alphabet size (rather than following the paradigm of concatenated
codes as done in the rest of Section 3). Specifically, in addition to encoding individual alphabet
symbols via codewords of smaller alphabet, we also augment the new codewords with small PCPs
that allow to emulate the local-tests of the original code.

5.1 Problems with using a PCP directly

Before turning to the actual constructions, we explain why merely plugging-in a standard (inner-
verifier) PCP will not work. We start with the most severe problem, and then turn to additional
ones.

Non-uniqueness of the encoding: As discussed in the Introduction, the soundness property
of standard PCPs does not guarantee unique encodings of witnesses, but rather that PCP oracles
accepted with high probability can be decoded into some witnesses. Indeed, current PCPs tend to
do exactly this, due to a gap between the canonical oracles (used in the completeness condition) that
encodes information as polynomials of some given individual degree, and the soundness condition
that refers to the total degree of the polynomial.'”

Linearity: We wish the resulting code to be linear, and it is not clear whether this property holds
when composing a linear code with a standard inner-verifier. Since we start with a linear code (and
a linear codeword test), there is hope that the proof oracle added to the concatenated code will
also be linear. Indeed, with small modifications of standard constructions, this is the case.

101 basic constructions of codes, this is not a real problem since we can define the code to be the collection of all
polynomials of a given total degree as opposed to polynomials of specified individual degree bound. However, when
using such a code as the inner code in composition, we cannot adopt the latter solution because we only know how
to construct adequate inner-verifiers for inputs encoded as polynomials of individually-bouded degree (rather than
bounded total degree).
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Other technical problems: Other problems arise in translating some of the standard
“complexity-theoretic tricks” that are used in all PCP constructions. For example, PCP con-
structions are typically described in terms of a dense collection of input lengths (e.g., the input
length must fit |H|™ for some suitable sizes of |[H| and m (i.e., m = O(|H|/log|H]|)), and are
extended to arbitrary lengths by padding (of the input). In our context, such padding, depending
on how it is done, either permits multiple encodings (of the same information), or forces us to
check for additional conditions on the input (e.g., that certain bits of the input are zeroes). Other
complications arise when one attempts to deal with “auxiliary variables” that are introduced in
a process analogous to the standard reduction of verification of an arbitrary computation to the
satisfiability of a 3CNF expression.

This forces us to rework the entire PCP theory, while focusing on unique encodings and on
obtaining “linear PCP oracles” when asked to verify homogenous linear conditions on the input. For
the purposes of constructing short locally testable codes, it suffices to construct verifiers verifying
systems of homogenous linear equations and this is all we’ll do (though we could verify affine
equations equally easily). In what follows, whenever we refer to a linear system, it will be implied
that the constraints are homogenous.

5.2 Inner verifiers for linear systems: Definition and composition

We use PCP techniques to transform linear locally testable codes over large alphabet into ones over
smaller alphabet. Specifically, we adapt the construction of inner-verifiers suct that using it to test
linear conditions on the input-oracles will result in testing linear conditions on the proof oracle.

The basic ingredient of our proofs is the notion of an inner verifier for linear codes. A (p,£) —
(p',¢') inner verifier is designed to transform an F-linear code over an alphabet ¥ = F* that is
testable by p queries, into an F-linear code (of a typically longer size) over an alphabet %/ = Ft
that is testable by p' queries, where typically ¢ < £ (but p' > p). Informally, the inner-verifier
allows to emulate a local test in the given code over X, by providing an encoding (over ¥') of each
symbol in the original codeword as well as auxiliary proofs (of homogenous linear conditions) that
can be verified based on a constant number of queries.

Verifying that a vector satisfies a conjunction of (homogenous) linear conditions is equivalent to
verifying that it lies in some linear subspace (i.e., the space of vectors that satisfy these conditions).
For integer m and field F', we let Lr, denote the set of all linear subspaces of F*. We’ll assume that
such a subspace L € L, is specified by a matrix M € F™"™ such that L = {z € F™|Mz = 0}.
According to convenience, we will sometimes say that a vector lies in L and sometimes say that it
satisfies the conditions L.

Definition 5.1 For a field F, and positive integers p,L,p',¢', and positive reals § and v, a
(F, (p, ) — (p',2'),0,7)-linear inner verifier consists of a triple (E, P, Verdict) such that

e« E:Ft (FZ')" is an F-linear code of minimum distance at least dn over the alphabet F* .

o P: Lrp % (FY? — (FYYN, is a proving function that satisfies the completeness condition
below.

e Verdict is an oracle machine that gets as input L € Lppe and (coins) R € {0,1}" and has
oracle access to p+1 wvectors, denoted X1,..., X, € (Fﬁl)” and Xpq1 € (FZI)N, such that each
oracle call is answered by one F¥ _coordinate of the corresponding oracle vector.'! Machine
Verdict satisfies the following properties:

"That is, query j € [n] (resp., j € [N]) to oracle i € [p] (resp., i = p + 1) is answered by the j** element of X;.
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Queries and Linearity: For every choice of L € Lppe and R € {0,1}", machine Verdict makes
at most p' oracle calls to the oracles X1, ..., Xp11. Furthermore, for every R and L, the
acceptance condition of Verdict is a conjunction of F-linear constraints on the responses
to the queries.

Completeness: If the p first oracles encode a p-tuple of vectors over F* that satisfies L and if
Xpy1 is selected adequately then Verdict always accepts.

That is, for every x1,...,xp € Ftand L € Lrpe such that (z1,...,zp) € L, and for
every R € {0,1}", it holds that Verdict(L, R, E(z1), ..., E(zp), P(L,z1,...,1zp)) = 1.

Augmented Soundness: If the p first oracles are far from encoding a p-tuple of vectors over
F* that satisfies L then Verdict rejects for most choices of R, no matter which Xpy1 18
used. Furthermore, if the p first oracles encode a p-tuple that satisfies L but X1 is far
from the unique proof determined by P then Verdict rejects for most choices of R.
Formally, for Xi,...,X, € (Ftm, Xpt1 € (FOYN, L e Lrpe, and (z1,...,2p) € L, let
e(X1,..., Xpt1,L, 1, ..., zp) denote the mazimum distance of X; from the corresponding
adequate encoding (i.e., E(z;) if i <p and P(L,z1,...,xp) otherwise). That is,

n N

(X1, s Xpr1, Lo, .. mp) = max{m%{A(Xi,E(m))}} ; A(Xpﬂ,P(L,xl,...,xp))}
1€

Then, for every X1,...,X, € (Fél)” and II € (FZI)N,

f}’zr[Verdict(L,R,Xl,...,Xp,H) = 0] Z’y-min{é/Z, min {e(Xl,...,Xp+1,L,:1:1,...,xp)}}

(z1,..yTp)EL
Such a verifier is said to use r coins, encodings of length n and proofs of length N.

Typically, we aim at having N,n and 2" be small functions of £ (i.e., polynomial or even almost-
linear in #). Definition 5.1 is designed to suit our applications. Firstly, the augmented notion of
soundness that refers also to “non-canonical” proofs of valid statements fits our aim of obtaining a
code that is locally checkable (because it guarantees rejection of sequences that are not obtained by
the unique coding transformation). Indeed, this augmentation of soundness is non-standard (and
arguablly unnatural) in the context of PCP. Secondly, Definition 5.1 only handles the verification
of linear conditions, and does so while only utilizing linear tests. Indeed, this fits our aim of
transforming linear codes over large alphabet (i.e., the alphabet FZ) to linear codes over smaller
alphabet (i.e., F¥).

The utility of linear inner verifiers in constructing locally-testable codes is demonstrated by the
following two propositions, which follow immediately from Definition 5.1. The first proposition
merely serves as a warm-up towards the second one.

Proposition 5.2 A (F,(1,£) — (p',#'),d,7)-linear inner verifier implies the existence of a linear
locally-testable code of relatoive distance at most /2 over the alphabet ¥ = FY mapping Ft = $4/*
to X™ form = O(p' - (n+ N)), where n and N are the corresponding lengths of the encoding and
the proof used by the verifier. Specifically, the code is testable with p' queries, with the rejection
probability of a word at distance € from any codeword being at least Q(7 - ¢€).

Proof: Let V = (E, P, Verdict) be the (F,(1,£) — (p',¢'),d,~)-linear inner verifier, where E :
Ft - (FY)" and P : Lpy x F* — FN. Below we assume that n < N (which is typically the
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case).'2 The locally testable encoding E' of a string z € X¢/¢ = F¢ equals the ([N/n] + 1)-long
sequence (E(z),...,E(z), P(L,z)), where L = F* (i.e., L is satisfied by every vector) and E(z) is
replicated [N/n] times. The relative distance of the code given by this encoding is at least §/2.
To test a potential codeword (X7i,...,X [N/n]s Y'), we perform at random one out of two kinds of
tests: With probability % we test that the N/n strings X;’s are replications. We do so by picking
a random index ¢ € [n], and two distinct indices ji,j2 € [N/n], and testing that (X;,); = (Xj,)-
With the remaining probability we pick a random test as per the verifier V', replacing calls to the
first oracle with corresponding probes to one of the first N/n oracles (i.e., one of the X;’s), selected
at random. (Oracle calls to the proof oracle of V' are replaced by corresponding probes to Y.) It
can be verified that words at distance € from codewords are rejected with probability Q(vye). Il

The following proposition will be used to compose locally testable codes over large alphabets
with suitable linear inner verifiers to obtain locally testable codes over smaller alphabets. Specifi-
cally, given a g-query testable F-linear code over the alphabet ¥ = F° we wish to use an adequate
encoding (over ¥/ = F%) and an inner-verifier in order to emulate the local conditions checked by
the test. The latter conditions are subspaces of F9° and so we need a (F, (¢,b) — (p,a), d,y)-linear
inner verifier in order to verify them.

Proposition 5.3 (composing an outer code with an inner-verifier):

e Let C be a locally testable F-linear code over the alphabet ¥ = F° mapping £X to =V, and
suppose that the codeword test uses R coins and q queries.

e Let V = (E, P, Verdict) be a (F,(q,b) — (p,a),d,7)-linear inner verifier, where E : F* —
(Fa)n and P : ['F,q-b X (Fb)q — (Fa)m'

Then, there exists a locally testable code over the alphabet ' = F* mapping XK = whK/a 4o M
for M = O(Nn +2%m). Furthermore, the resulting code has distance at least dnD, where D is the
distance of C.

Proof: The new code consists of two parts (which are properly balanaced). The first part is
obtained by encoding each Y.-symbol of the codeword of C' by the code E, whereas the second part
is obtained by providing proofs (for the inner-verifier) for the validity of each of the 2# possible
checks that may be performed by the codeword test. Specifically, z € Z¥ is encoded by the
sequence

(E(yl)’ aE(yN);P(LORayiOR,Ia v ’yiOR,q)a' .. 7P(L1R7yi1R,la"' ayilR,q))

where y1 -+ yny = C(z), and for every w € {0,1}%, on coins w, the codeword test (for C) probes
locations %1, ..., %w,q and verifies the linear condition L. Indeed, as in the proof of Proposition 5.3,
the above should be modified such that the two parts of the new codeword (i.e., the F-part and
the P-part) have about the same length.!3
Testing the new code is done by emulating the codeword test of C. That is, to test a potential
codeword (X1, ..., Xn; Yyr, ..., Yir), we select uniformly w € {0,1}%, determine the corresponding
condition (iy 1, ..., tw,qg, Lw) checked by the original codeword test, and invoke the inner-verifier V'
on input L, while providing V' with (coins and) oracle access to X;, ,, ..., X;, , and Y. [ |
12Otherwise, one can augment P(L,z) with E(z) and maintain the soundness by testing consistency between the
two copies of E(z) (as done below).

13 As before, the modification is via replication, and the new codeword test should check that the replication is
proper.
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Whereas Proposition 5.3 refers to the composition of an outer code with an inner-verifier yielding
a new code, the following lemma, refers to composing two inner-verifiers yielding a new inner-verifier.
Indeed, we could have worked only with Proposition 5.3 (or alternatively only with Lemma 5.4 and
Proposition 5.2), but it seems more convenient to (have and) work with both.'*

Lemma 5.4 (composition of linear inner-verifiers): Let vy,7v2 < 1. Given a (F,(p,f) —
(P, 2'),61,71)-linear inner verifier and a (F,(p',2") — (p",2"),d2,72)-linear inner verifier, it is
possible to construct a (F, (p,£) — (p",£"), 8102, 717202/6)-linear inner verifier. Furthermore, if the
ith given wverifier uses r; coins, encoding length n; and proof length N;, then the resulting inner
verifier uses r1 + ro coins, encoding length ni - no and proof length Ny - no + 2™ - N.

Proof: We start with the construction. Given a (F, (p,£) — (p',¢'),r1,81,71) inner verifier V; =
(Ey, Py, Verdicty) and a (F, (p',¢') — (p",£"),r2,02,72) inner verifier Vo = (FEs, Py, Verdicty), we
define their composition Vi ® V5 = (E, P, Verdict) as follows

e E: Ft — (FY)m™ is the concatenation of the encoding functions E; : F¢ — (Ff)™ and
’ N . def
Ey : F¥ — (FY)". That is, E(z1,...,2¢) = (B2(y1),---, E2(yn,)), where (y1,...,%n,) =

By(av,...z0).
e P = (P(l),P(Q)) is obtained as follows: Given L,z1,...,zp, the first part of the proof (i.e.,
PO(L, zq,. .. ,Tp)) is the symbol-by-symbol encoding under Ey of Pi(L,z1,...,zp). That
iS, P(l)(Lawla R 7$p) = (EQ(yl)a s 7E2(yN1))’ where (yla s ale) déf Pl(L7$17 R 7'7"1))' The

second part of the proof (i.e., P®) (L, z1,... ,Tp)) consists of 21 blocks corresponding to each
of the 2" possible checks of Verdict;. For each Ry € {0,1}", the block corresponding to R; in
P2 (L,x1,...,xp) is the value Py(Lg,,21,...,%y), Where z1,...,zy denote the p’ coordinates

of Ei(z1),...,Ey(zp) and Pi(L,z1,...,z,) that are inspected by Verdict;(L, Ry,...) and Lg,
is the linear conjunction of F-linear conditions checked by Verdict;.

Note that the proof length is Nj-ng+2"t - Ny, where the first (resp., second) term corresponds
to P (resp., (P@).

e Verdict(L, (R, R2), X1, ..., X,,II) is computed as follows: Let q1,..., gy be the queries that
the function Verdict;(L, Ry,...) makes into its oracles X{,..., X ,II' on randomness Rj,
and let L' denote the conjunction of linear equations it needs to verify on its responses.
Then Verdict now applies the function Verdicto(L', Ro,...) on input L’ to the sub-oracles
corresponding the Fs-encodings of the p’ queries determined by Verdict;. That is, if the
Jth query (i.e., g;) of Verdict; is to X then Verdict identifies the jth oracle of Verdicts
(to be denoted X7') with block g; of X; (which supposedly encodes the corresponding sym-
bol of X]). Otherwise (i.e., the jth query of Verdict; is to II'), Verdict identifies the jth
oracle of Verdict (i.e., X/) with block g; of the first part of II = (II'), II®) (which sup-
posedly encodes the corresponding symbol of II'). Finally, Verdict identifies the proving
oracle of Verdicty (to be denoted II”) with the block of II?) that corresponds to R;, invokes
Verdicto (L', Re, X7, ..., X;)’,,H” ), and Verdict accepts if and only Verdicts accepts.

We now argue that the composition satisfies the required properties. The main issue is the (aug-
mented) soundness requirement. Suppose that Xi,...,X, and X, = (H(l),H(Q)) are p + 1
oracles that are rejected by Vi ® Vo(L,-,...) with probability (y1y202/6) - €, where € < §1ds.

4 An analogous comment may apply to the design of PCP system.
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We need to show that there exist vectors (z1,...,z,) € L such that A(E(z;), X;) < ening and
A(P(L,21,...,p), Xps1) < €N, where N % Ny -y + 271 . Ny,

Let Dy denote a unique decoding function for the inner encoding function F; (i.e., Do(X) =z
if A(E2(z),X) < (62/2) - ne and arbitrary otherwise). Applying this function to each of the n;
blocks of X; € (F¢")"2™  for i € [p], we obtain corresponding Y; € (F*)™ . Similarly, applying this
function to each of the Ny blocks of TI() € (F€")"'M | we obtain Y, € (F¢)M.

For each R, let use denote by po(R;) the probability that on coins (Ry,-) verifier V' rejects the
above oracles, where the probability is taken over V5’s actions. Suppuse that pa(R1) < y202/2, and
consider the p’ input oracles and the proof oracle (i.e., part of II(?)) determined by R;. Then, by
the (basic) soundness of Vo, these p’ sub-oracles (which are blocks in X, ..., X, TI(})) are at relative
distance at most pa(R;)/7v2 from the Ey-encoding of the corresponding blocks in Y7i,...,Y,, Ypi1.
Furthermore, by the augmented soundness (of V2), the corresponding part of 13, denoted Z Ry, 1S
at relative distance at most pa(R1)/7v2 from the value obtained by applying P> to these p’ blocks
(of the Y;’s).

Next, let p1 % Prg, [pa(R1) > 7202/2] Since Eg, [p2(R1)] = (117202/6)e, it follows that p; <
~v1€/3. Now, since € < 4§1dy, the Y;’s are p;/7yi-close to a valid encoding of a p-tuple, denoted
(z1,...,xp), and a corresponding P;-proof (i.e., P(L,x1,...,zp)). We conclude that the Y;’s are at
relative distance at most p;/vy; from the corresponding F(z;)’s (resp., Pi(L,z1,...,2p)). Defining

e2(R1) def p2(R1) /72 if pa(R1) < 7y202/2 and e2(R1) def otherwise, recall that the Y;’s are at relative
distance at most Eg, [e2(R1)] from the corresponding blocks of the X;’s (resp., II(1)). Recall that,
except for a p; fraction of the Ry’s, it holds that po(R1) < 72d2/2, we obtain

A(E(z;), X;)

Ay (B (7:),Y5) + Ao (Es(Y3), X)

<
ning - nd! nin9
Y41
< —+ Elea(R:
4! R1[ ( )]
<

§+ (E‘IW(Rl)/%] +p1> < e

using 71,72 < 1. The same holds with respect to the distance of I(") from P()(L,xy, ..., zp).
Finally, recall that for all but at most an p; fraction of the R;’s, the relative distance between Zg,
(i.e., the corresponding block of H(Q)) and the value obtained by applying P> to the relevant blocks of
the Y;’s is at most e(R;). It follows that the relative distance between TI?) from P®) (L, zy, ..., Zp)
is at most p; + Eg, [e2(R1)], which is bounded by € (as shown above). [ |

5.3 Linear inner verifiers: Two constructions

Throughout the rest of this section, F; el (2). We start by presenting a linear inner verifier that
corresponds to the inner-most verifier of Arora et al. [1]. Things are simpler in our context, since
we only need to prove/verify linear conditions. Here these (linear) conditions refer to p elements of
F¥, and are verified by a (random) linear test that depends on p + 1 bits (at random locations).

Lemma 5.5 There exists ay > 0 such that for every pair of integers p, £, there ezists a (Fa, (p,£) —
(p+1,1), %,’y)—lz’near inner verifier. Furthermore, the length of the encoding is 2¢, the length of the
proof is 2P¢, and the randomness in use equals 2pl.

Proof: The encoding F is just the Hadamard encoding; and the proving function P(L,z1,...,zp)
is also Hadamard encoding, this time of the vector (z1,...,zp). To check whether X1,..., X, € FQZZ
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encodes a vector in the linear subspace L given by a matrix M € F} <Pt the verdict function uni-

formly selects q1,...,qp € F{ and a (random) vector v orthogonal to the subspace L (i.e., a random
linear combination of the rows of M), and verifies that (X1)g, @+ (Xp)g, = (Xp+1)(q1,....qp)@0- The
now standard analysis implies the soundness of this verifier.

The main result in this subsection is an adaptation of the intermediate inner-verifier of Arora
et al. [1, Section 7]. Recall that the latter uses significantly shorter encoding and proofs (and less
randomness) than the simpler Hadamard-based verifier, but verification is based on (a constant
number of) non-boolean answers.

Lemma 5.6 There ezists ay > 0 such that for every pair of integers p, £, there ezxists a (Fa, (p,£) —
(p + 3,poly(log pt)), 1,v)-linear inner verifier. Furthermore, the lengths of the encoding and the
proofs are poly(pf), and the randomness in use equals O(plog¥).

Our construction is a modification of an inner verifier given by Arora et al. [1] (Proof of Theorem
2.1.9, Section 7.5). We thus start by providing an overview of their proof and discuss the main
issues that need to be addressed in adapting their to a proof of Lemma, 5.6.

Overview of the proof of [1, Thm. 2.1.9]. We use the formalism of [15] to interpret the main
steps in the proof of [1]. (In particular, whenever we refer to a step as “standard”, such a step is
performed explicitly in [15].) As a first step in their proof, Arora et al. [1] reduce SAT to a GapPCS
problem (see Appendix for definition). Then, using a low-total-degree test, they give a 3-prover
1-round proof system for NP languages. Finally they observe that the proof system with slight
modifications also works as proofs of properties of concatenated strings. Since the gap problem
that is target of the reduction is critical, let us review the completeness and soundness condition of
the reduction. Recall that an instance of GapPCS consists of a sequence of algebraic constraints on
the values of a function g : F™ — F. Each constraint is dependent on the value of g at (roughly)
only polylogarithmically many inputs. The goal is to find a low-degree polynomial g that satisfies
all or most constraints. In greater detail, the reduction consists of a pair of algorithms A and B,
where A reduces instances of SAT to instances of GapPCS, and B takes as input an instance ¢ of
SAT and an assignment a satisfying ¢ and produces a polynomial g that satisfies all constraints of
A(¢). The properties of the reduction are as follows:

Completeness: If a is an assignment satisfying ¢ then g = B(¢, a) is a degree d bounded polynomial
g that satisfies all constraints of A(¢).

Soundness: If ¢ is not satisfiable, then no total degree d bounded polynomial g satisfies even an €
fraction of the constraints of A(¢).

Since the soundness condition only focusses on degree d polynomials (and not arbitrary functions),
constructing such a reduction turns out to be easier than constructing a full PCP. On the other
hand, by combining this with a low-degree test it is easy to extend the soundness to all functions.

One would hope to use the above reduction directly to get a locally testable code by setting ¢ to
be some formula enforcing the linear conditions L. But as noted earlier, several problems come up:
First, B is not a linear map, but this is fixed easily. The more serious issue is that the soundness
condition permits the existence of low-degree functions that satisfy all constraints that are not of
the form B(a) for any a. Indeed, in standard reductions the only functions of the form g = B(a)
have a bound of d/m in the degree of each variable, but this is not something that the low-degree
test can test. Thus to apply the low-degree test and protocol of [1], we effectively augment the
reduction from SAT to GapPCS so as to get the following soundness condition.
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Modified Soundness: If g is a degree d polynomial that is not of the form ¢ = B(a) for some a
satisfying ¢, then g does not satisfy an e fraction of the constraints of A(¢).

To obtain the modified soundness condition, we need to delve further into the reduction of [1] and
the transformation B implied there. Say that their reduction produces a GapPCS instance on m
variate polynomials.

1. The m-variant polynomial g = B(a) in their transformation has the form ¢(i, %) = g;(¥), for
i € [k], where the g;’s are polynomials (of varying degrees) in m — 1 variables. Furthermore,
¢ is a polynomial of degree k — 1 in the first variable.

2. There exists a sequence of integers (m;);c[x) such that the polynomial g; only depends on the
first m; < m — 1 variables.

3. For every i € [k] there exists a sequence of integers (d; ;) jejm—1) such that g;(¥) has a degree
bound of d; ; < d in its jth variable.

4. The polynomial g must evaluate to zero on some subset of the points (due to some padding
on input variables).

5. Finally, over some subset of the points g evaluates to either 0 or 1. (Note that this condition
is not trivial since we will not be working with F» but some extension field K of F». In
fact over the extension field, these constraints are not even linear. However since K is an
extension of Fy, these conditions turn out to be Fy-linear.)

In what follows we will, in effect, be augmenting the reduction from SAT to GapPCS so as to
include all constraints of the above form. This will force the GapPCS problem to only have
satisfying assignments of the form g = B(a) and thus salvage the reduction. (In actuality, we
will be considering satisfying assignments that are presented as a concatenation of several pieces
that are individually encoded and the constraints of the system we build will be verifying that
the “concatenation” of the various pieces is a satisfying assignment. Furthermore, we will only by
looking at systems of linear equations and not general satisfiability.)

The actual construction (i.e., proof of Lemma 5.6): Recall that we need to describe the
three ingredients in the inner verifier: the encoding function E : F{ — (F{ )", the proving function
P:Fy ¢ (FQZI)N , and the oracle machine Verdict. We start by developing the machinery for the
encoding function and the proving function. We do so by transforming the question of satisfaction
of a system of linear equations into a seqeunce of consistency relationships among polynomials and
using this sequence to describe the encoding and proving function. Fix a linear space L € L, p¢
and vectors z1,...,z, such that (zi,...,z,) € L.

Transforming the linear system. Our first step is to convert L into a conjunction of width-3 linear
constraints (i.e., constraints that apply to at most 3 variables at a time). So we introduce
a vector of auxiliary variables z,.1 on at most n = p%¢? variables and transform L into a
linear space L' of width 3-constraints such that (z1,...,z,) € L if and only if there exists
Zp41 such that (z1,...,2p41) € L'. (Note that L' € Lp, pryy and |z;| = £ if i < p whereas
|Zpt1] = n > £. We'll take care of this discrepency in the next step.)

Low-degree extensions and dealing with padding. The low-degree extension is standard, but we need
to deal with the padding it creates (and with the padding already done above). That is, we
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have to augment the linear system to verify that the padded parts of the input are indeed
all-zero.

We pick a field K = {¢(1 = 0,(2 = 1,...,(k|}, that extends Fy, of sufficiently large size (to be
specified later), and a subset H = {(1,...,(s} of size h = [logn] and let m = [logn/loglogn|
so that A™ > n. Next, we let z; = g;0h" (i.e., we pad z; with enough zeroes so that its
length is exactly h™). Now, we let L” be the Fj-linear constraints indicating that the padded
parts of z are zero, and (z},...,2},,) correspond to the padding of (z1,...,zp+1) € L.

Finally, as usual, we view z} as a function from H™ — {0,1} and let f1,..., fp41: K™ = K
be m-variate polynomials of degree h — 1 in each of the m variables that extend the functions
described by =i, ... ,w; +1- (We note for future reference that the encoding E function for z;
will essentially be the function f;.)

Concatenating the p pieces (standard): Now let f : K™! — K be the function given by f({;,---) =
fi(---)ifi € {1,...,p+ 1} that is a polynomial of degree p in its first variable.

Low-degree extension of L” (standard): Note that L” imposes linear constraints of the form
a1 f(z1) + aaf(z2) + azf(z3) for a1, a0, a3 € {0,1} and 21, 29,23 € {C1,...,(p+1} X H™ on f.
We extend L as a function L : K3(m+D)+3 5 K by letting L" (a1, a2, a3, 21, 22, 23) = 1, for
a1, g, 03 € H and 21,29, 23 € H™H! if the constraint ay f(z1) + aof (22) + a3 f(z3) is imposed
by L”, by letting L"(--+) = 0 for other inputs from H3"t5 and letting L” be a polynomial
of degree h — 1 in all other variables.

We comment that the current step does not rely on L” being a linear function. The linearity
of L" (or rather of the condition a1 f(z1) + aaf(22) + asf(23)) will be used in the next step.

Verifying satisfiability of L” via sequence of polynomials. This part is standard except for rule (Rg)
below which includes an extra check that some elements being considered are 0/1. In fact,
this part corresponds to the “sum check” in [1] (which is one of the two procedures in the
original innner-verifier, the other being a low-degree test).

Let m' = 4m + 8. We define a sequence of polynomials gg,...,gm+1 : K m" _y K, where
go is essentially f; g1 is related to gy by an Fy-linear relationship, and g; is related to g;_1
by a K-linear relationship. The motivation behind these polynomials is the following: g; is
defined so that the condition (z1,...,zp) € L is equivalent to the condition g;(@) = 0 for
every @ € H™ . The polynomials g; relax this condition gradually, giving “gi1(@) = 0 for
every @ € F* x H™ " if and only if “g;(%) = 0 for every @ € F'~1 x H™ "*1”  Thus finally
we have g,y y1 = 0 if and only if (z1,...,2,) € L. We now define these polynomials explicitly.
For o;’s and u;’s from K and z;’s from K™T! let we define:

def

llg

f(z1)

3

(Ro):  q1(z15---,24,00,...,04) = o -go(zi6)> - LM(ay, o, a3, 21, 29, 23)
-1

go(zl,... 3y R4y Q150 ,a4)

=,

+au - (90(240)? — go(240)).

The terms involving go(z40) are meant to verify that go(z40) are always 0/1. These are “op-
tional” in standard PCPs, in that they are not needed to get soundness, but are occasionally
thrown in since they don’t involve much extra work. In contrast, in our case these are nec-
essary to enforce the augmented soundness condition. Note that while this condition is a
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quadratic constraint (regarding go) over K, the map 3 +— 32 is an Fb-linear map over fields of
characteristic two, and so the identity above is indeed F5-linear, despite the quadratic term.

For i =1 to m/, let

h1
(Ri) = Gir1 (W1, oy Ui, Uiy Ui 1, -+, Usmys) = 3 Ul = Gi(Un, ey i1, Gy Uit 1, - - Udm8)-
=0

Merging the different polynomials into a single polynomial g (standard): Now, let g : K™+l 5 K be
the function given by ¢(i,2) = ¢;(2) if i € {0,...,m' + 1} that is a degree m' + 1 polynomial
in the first variable . Assuming h > m' > p, we have that g is a polynomial of individual
degree at most 2h and thus has total degree at most d = 2m’h.

Lines and curves over g (standard): Let gljnes : K2™ 1! — K% be the function describing g re-
stricted to lines. Let w = 2(m/ 4 1)h, £ = wd and let g|curves : C — K¢ be the restriction
of g to some subset C of degree w curves, where C are all the curves that arise in the verdict
function’s computations below.

The encoding and proving functions (standard): Finally, we get to define the encoding and proving
functions. The encoding function E(z;) is the table of values of the function f!: K™ — K*'
where f!(z) = (fi(z),0¢ 1) (i.e., elements of K are being written as vectors from K¢'. The
proving function P(L,z1,...,z,) consists of the triple of functions (¢’, (g|tines)’s 9lcurves), Where
g K™t 5 K and (glines) : K2+ - Kt are the functions g and g|jimes With their
range being mapped, by padding, into K*¢".

We now describe the verdict function. To motivate this, recall that the verdict function, which
essentially has access to oracles for g, gliines, 9|curves and fi,..., fp, needs to verify the following
items:

1. g is a polynomial of degree at most d, gljines is the restriction of g to lines, and g|cyrves is the
restriction of g to curves.

2. The degree of g in its first variable is at most m’ + 1.

3. For i € {1,...,m/ + 1}, then function g; given by g;(u) = g(i,u) is computed correctly from
gi—1 by an application of the rule (R;_1).

4. Verify that g, 11 is identically zero.
5. Verify that gg is a polynomial of degree 0 in all but its first m + 1 variables.

6. Verify that the function f : K™*! — K given by f(z) = go(x,0---0) is a polynomial of degree
at most p in its first variable and a polynomial of degree at most A — 1 in the remaining m
variables.

7. Verify that f(i,---) = fi(---) for every 1 € {1,...,p}.

(Working one’s way upwards, one can see that P(L,z1,...,zp) is the only function to satisfy all
the above constraints.)

We are now ready to describe the verifier’s actions (or to be formal, the Verdict function). The
aim is to emulate a large number of checks (i.e., random verification of all the above conditions) by
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using only p + 3 oracle calls, and still incur only a constant error probability. Specifically, ignoring
condition (1) for a moment, a random test of condition (2) requires m' 4+ 2 points in the domain of
g, condition (3) involves m' + 1 equalities (which refer to m' + 1 different parts of g), condition (5)
involves m' — m equalities (one per each suitable variable in gy), and condition (7) involves p
equalities, each referring to a different function f;. Following [1], all these different conditions will
be checked by retreiving the corresponding (random) g-values from a suitable curve in g|cyrves, and
obtaining the f;-values from the corresponding oracles. Finally, Condition (1) will be tested via an
adequate low-degree test that makes only 2 additional queries. Details follow.

The verifier first picks one random test (to be emulated) per each of the equalities corresponding
to the conditions (2)—(7) above. Specifically, in order to emulate the testing of conditions (2), (5)
& (6), it picks random axis parallel lines (one per each of the relevant variables) and picks O(h)
points on these K™ +1 lines with the intent of inspecting the value of ¢’ at these points. (We stress
that the verifier does not query ¢’ at these points, but rather only determines these points at this
stage.) Similarly, in order to emulate the testing of conditions (3), (4) & (7), it picks random points
from the domain of the corresponding g;’s and f. Having chosen these points, it picks one totally
random point in K™ . All in all this amounts to determining w = O(mh) points in the domain of
g'. The verifier then determines a degree w curve, denoted C, (over K m'“) that passes through
these m points. Next, it picks a random point « on this curve and a random line [ through the
point .

We finally get to the actual queries of the verifier. The verdict function queries ¢’ (), (gines)’({)
and g|eurves(C). Tt verifies that ¢'() is actually in K and (g|ines)’ () is in K@ (as opposed to K*).
It then verifies that the three responses agree at «. Finally, it verifies the values of g’ on the test
points for tests (2)-(7), as claimed by ¢g|curves(C), are consistent with the conditions (2)-(7). In
particular, verifying condition (7) requires one probe each into the oracles X1,..., X,. (Once again
the responses to these probes are elements of K¢ and the verdict verifies that the responses are in
K padded with 0’s.) Thus, in total, we made only 3 + p queries.

This concludes the description of the verifier. We stress that all the “0-padding verifications” are
only intended to guarantee the modified notion of soundness (and are not needed for the standard
notion of soundness). The same holds with respect to the various tests of individual degrees (which
test a degree lower than the (curve-to-line) low degree test). Omitting all these extra test, would
get us back to [1].

The modified soundness of the above verifier is established as usual assuming |K| > poly(£”/e).
In particular, if the function g : K™ *1 — K obtained by ignoring the last £/ — 1 coordinates of
the function ¢’ is not, say .01-close to some polynomial § of total degree d then the low-degree
test will reject with constant probability. If the response of the query to g|curves iS not consistent
with ¢ on all the queried points, then the curve to ¢’ consistency test will detect this with constant
probability. Finally if any of the conditions (2)-(7) is violated, then the final check above detects
with constant probability.

Recall that the oracle machine Verdict makes p + 3 queries in all. The answers it receives are
from K%' and thus ¢, the answer length, equals ¢ log, | K| which is poly log(pf) as required. The
soundness error, 7, is some constant bounded away from 0. Finally, note that all checks by the
verifier are actually K-linear, except for the satisfaction of rule (Rg), which is only F-linear. [l

5.4 Combining all the constructions

We are now ready to prove the main theorem of this section.
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Theorem 5.7 (Theorem 2.1, restated): For infinitely many k, there exists a linear locally-testable

binary code mapping k bits to n def 1. O(\/logkloglog k) pps. Furthermore, the codes has distance Q(n).

Proof: Composing (as per Lemma 5.4) the (F, (p,£) — (p + 3,poly(logp¥f)),1/2,~)-linear inner
verifier of Lemma 5.6 with the (Fs, (p + 3,poly(logpf)) — (p+ 4,1),1/2,)-linear inner verifier of
Lemma 5.5, we obtain that there exist constants 61,71 > 0 such that for every constant p’ and
for every ¢/, there exists an (Fy, (p',¢') — (p' +4,1),d1,~1)-linear inner verifier V;. Furthermore,
V1 uses 11 = O(logp'?') + 2(p' + 3) - poly(log p'¢') = poly(log#') coins, encoding of length n; =
poly(¢') - exp(poly(log p’¢')), and proofs of length m; = poly(n1).

Similarly, for any constant p, composing the verifier of Lemma 5.6 with V7 (while setting p’ =
p+3and ¢ = poly(log¥)),'> we get a (Fy, (p,£) — (p+7,1),52,72)-linear inner verifier V5 for some
02,72 > 0. Furthermore, V5 uses ro = O(logpf) + r1 = O(log¥) + poly(loglog#) coins, encoding of
length ne = poly(£) - ny = poly(£), and proofs of length ms = poly(ns).

Our final step will be to compose (as per Proposition 5.3) the truncated version of the FS-
code (from Section 3.2) with the linear inner verifier V5. Recall that, for any constant ¢ > 1/2,
the truncated version of the FS-code maps (F@t1)K to (F1)N where N = exp(log® K) - K and
|F| = ©(d) < exp(log®K). The corresponding codeword test uses R def logy N + 2loglog | F|
random bits and makes ¢ = O(1) queries. Using F = FQO (DHog2d yd 3 = Fé+l = FZO (dlog d),
we apply Proposition 5.3 to this code (and codeword test) and V5 above, while setting p = g¢,
£ = 0O(dlogd) and b = O(dlogd), where d < exp(log® K) (for any constant ¢ > 1/2). We obtain a
binary linear locally-testable code mapping (F2)X to FM, where M = O(N - ny + 2% - my). Using
R = logy N+0(log log d) and my = poly(ng) = poly(£) = poly(d), we get M = N-exp(O(log® K)) =
K - exp(O(log® K)). The theorem follows. [ |

5.5 Additional remarks

In this section we show that locally testable codes over small alphabets can be modified such that
the tester only uses randomness that is logarithmic in the codeword and only makes three queries.
We stress that the stated modification increases the length of the codewords by a constant factor.
We start with reducing the randomness complexity of the tester.

Proposition 5.8 Let C : ¥ — X" be a code. Then every codeword tester for C can be modi-
fied into one that maintains the same acceptance probabilities up-to an additive term of €, while
preserving the number of queries and using randomness complezity at most O(log(1/€)) + logyn +
log, log, |2].

Proof: The proof follows the standard/easy part of the proof of Lemma 3.1 (and analogous results
in Section 4). Specifically, using the probabilistic method, there exists a set of O(e~2log, |E"|)
possible random-tapes for the original tester so that if the tester restricts its choices to this set
then its acceptance probability on every potential sequence is preserved up to an additive term of
e. (Observe that, with probability 1 — exp(—e?t), a random set of ¢ random-tapes approximates
the acceptance probability for a fixed sequence up to €, and that the number of possible sequences
is |X"|.) The proposition follows. W

Using Proposition 5.8, we show that our main result regarding locally testable codes (i.e., Theo-
rem 2.1) holds also with tester that make only three queries. The latter assertion is an immediate
corollary of the following proposition.

Y5 Thus, r1 = poly(logpoly(logf)) = poly(loglog?) = o(logf) and n1 = exp(poly(logpoly(logf))) =
exp(poly(loglog £)) = £°().
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Proposition 5.9 Let C : ¥ — X" be a locally-testable linear code of distance d = Q(n). Then,
there ezists a linear code C' : ¥F — ROWBIE) of distance at least d that is testable with three
queries.

Proof: By Proposition 5.8, the code C is locally-testable by a tester, denoted T, having randomness

complexity p def logon 4+ O(1) + log, log, |X|. By a slight modification of T (which only increases p
by an additive constant),'® we may assume that 7" checks a single linear combination (determined
by its random-tape) of the oracle answers. We construct a code C’, by augmenting C' with a suitable
encoding of each of the answer tuples obtained by 7" when using a fixed random-tape. Specifically,
for each possible r € {0,1}?, we consider the ¢ = O(1) queries, denoted (i1,...,%4), made by T
and the linear combination (ci,...,c4) € X7 of the answers checked by the tester. For z € ¥" and
r € {0,1}?, we augment C(z) by a block of length ¢ — 1 such that the £th symbol in the block
equals Zﬁi cjxi;. Thus, we obtain a code C' of length n + 27 - (¢ — 1) = n + O(nlog(|%|) over .
The corresponding tester for C’, performs at random (with equal probability) one of the following
two tests:

1. A consistency test:!” The test selects at random a random-tape r for T' and a query (out
of the ¢ queries) that T makes on random-tape r. It checks whether the answer obtained
from the n-symbol prefix of C' matches the value obtain from the block corresponding to 7.
Specifically, suppose that on coins 7 the tester T makes the queries i1, ...,i; € [n] and checks
the linear combination (c1,...,¢4) € X9, and that we decided to check the jth query (where
¢ € [q]). For j > 1, we compare ¢; times the answer obtained from the prefix of C’ (i.e., the
ijth bit of the alledged codeword) to the difference between the jth and j — 1st entries in the
block corresponding to r. For j = 1 we compare the first entry in the block corresponding to
r to the weighted sum of the answers obtained to queries %; and 9.

2. Emulating T: The test selects at random a random-tape r for T" and checks the corresponding
linear condition by obtaining the desired linear combination of the answer bits from the last
entry of the block corresponding to r.

The proposition follows. W

Perspective. Proposition 5.9 indicates that three queries suffice for a meaningful definition of
locally-testable linear codes. This result is analogous to the three-query PCPs available for NP-
sets. In both cases, the constant error probability remains unspecified, and a second level project
aimed at minimizing the error of three-query test arises. Another worthy project refers to the
trade-off between the number of queries and the error probability, which in the context of PCP is
captured by the notion of amortized query complexity. The definition of an analogous notion for
locally-testable codes is less staightforward because one needs to specify which strings (i.e., at what
distance from the code) should be rejected with the stated error probability. One natural choice is
to consider the error probability of strings that are at distance d/2 from the code, where d is the
distance of the code itself.

1811 addition, the detection probability is reduced by a constant factor.

"Indeed, this consistency test is quite weak (but it suffices for our purposes). This consistency test reduces the
rejection probability by a factor of ¢q. Stronger consistency test seem to require more redundent encodings (e.g., one
may use the Hadamard code). But since our focus is on the total length of C’, our choice of a trivial code (which
corresponds to using auxiliary variables) seems best.
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6 Conclusions and Open Problems

Our code constructions are randomized, and so we do not obtain fully-explicit codes. The ran-
domization amounts to selecting a random subspace of random-tapes for certain low-degree tests,
and the probabilistic analysis shows that almost all choices of the subspace will do. A natural
(de-randomization) goal is to provide an explicit construction of a good subspace. For example, in
case of the low-degree test, the goal is to provide an explicit set of O(|F|™) lines that can be used
(as Ry, in the construction of Section 3.2).

As a seemingly easier goal, consider the linearity test of Blum, Luby and Rubinfeld [7]: To
test whether f : G — H is linear, one uniformly selects (z,y) € G x G and accepts if and only if
f(z) + f(y) = f(z +vy). Now, by the probabilistic method, there exists a set R C G x G of size
O(|G|log |H|) such that the test works well when (z,y) is uniformly selected in R (rather than in
G x G).'® The goal is to present an explicit construction of such a set R. Recent progress on this
special case (i.e., derandomization of the BLR test) is reported in [14].

Another natural question that arises in this work refers to obtaining locally-testable codes
for coding k' < k information symbols out of codes that apply to k information symbols. The
straightforward idea of converting k’-symbol messages into k-symbol messages (via padding) and
encoding the latter by the original code, preserves many properties of the code but does not
necessarily preserve local-testability.'®

We have presented locally testable codes and PCP schemes of almost-linear length, where
£ :N — N is called almost-linear if £(n) = n!T°(1)_ For PCP, this improved over a previous result
where for each € > 0 a scheme of length n'*¢ was presented (with query complexity O(1/¢)). Recall
that our schemes have length £(n) = exp(logn)¢) - n, for any ¢ > 0.5. We wonder whether length
£(n) = poly(logn) - n (or even linear length) can be achieved. Similarly, the number of queries in
our proof system is really small, say 16, while simultaneously achieving nearly linear-sized proofs.
Further reduction of this query complexity is very much feasible and it is unclear what the final
limit may be. Is it possible to achieve nearly-linear (or even linear?) proofs with 3 query bits and
soundness nearly 1/27

18For every f : G — H, with probability 1 — exp(—|R|) a random set R will be good for testing whether f is linear,
and the claim follows using the union bound for all |H|'®! possible functions f : G — H.

Indeed, this difficulty (as well as other difficulties regarding the gap between PCPs and codes) disappears if one
allows probabilistic coding. That is, define a code C : ©* — £ as a randomized algorithm (rather than a mapping),
and state all code properties with respect to randomized codewords C(a)’s.
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A The Gap Polynomial-Constraint-Satisfaction Problem

We start by recalling the “Gapped Polynomial Constraint Satisfaction Problem” and introducing
a restricted version of this problem.

Constraint satisfaction problems (CSPs) are a natural class of “optimization” problems where
an instance consists of ¢ Boolean constraints C1, ..., C; placed on n variables taking on values from
some finite domain, say {0,...,D}. Each constraint is restricted in that it may only depend on
a small number w of variables. The goal of the optimization problem is to find an assignment to
the n variables that maximizes the number of constraints that are satisfied. The complexity of the
optimization task depends on the nature of constraints that may be applied, and thus each class of
constraints gives rise to a different optimization problem (cf. [8]). CSPs form a rich subdomain of
optimization problems that include Max 3SAT, Max 2SAT, Max Cut, Max 3-Colorability etc. and
have been easy targets of reductions from PCPs.

Following Harsha and Sudan [15], we consider algebraic variants of CSPs. These problems
come with some syntactic differences: The domain of the value that a variable can take on will be
associated with a finite field F'; the index set of the variables will now by F™ for some integer m,
rather than being the set [n]; and thus an assignment to the variables may be viewed naturally
as a function f : F™ — F. Thus the optimization problem(s) ask for functions that satisfy as
many constraints as possible. In this setting, constraints are also naturally interpreted as algebraic
functions, say given by an algebraic circuit.

The interesting (non-syntactic) aspect of these problems is when we optimize over a restricted
class of functions, rather than the space of all functions. Specifically, we specify a degree bound d
on the function f : F™ — F and ask for the maximum number of constraints satisfied by degree d
polynomial functions f. Under this restriction on the space of solutions, it is easier to establish NP-
hardness of the task of distinguishing instances where all constraints are satisfiable, from instances
where only a tiny fraction of constraints are satisfiable. This motivates the “Gapped Polynomial
CSP”, first defined by Harsha and Sudan [15]. Here we consider a restriction on the class of
instances, where each constraint, in addition to being restricted to apply only to w variables, is
restricted to apply only to variables that lie on some “2-dimensional variety” (i.e., the names/indices
of the variables that appear in a constraint must lie on such a variety). We define this notion first.

A set of points z1, ...,z € F™ is said to lie on a 2-dimensional variety of degree r if there exists
a function Q = (Q1,...,Qm) : F? — F™ where each Q; is a bivariate polynomial of degree r, such
that there exist points y1,...,yx € F? such that z; = Q(y;) for every j € [k].

Definition A.1 (rGapPCS (restricted Gap Polynomial Constraint Satisfaction)) For
€: 2" — RT and r,m,b,q : Z+ — ZT, the promise problem rGapPCS, ;. ., , has as instances
tuples (1",d,k,s, F;C1,...,C}), where d,k,s < b(n) are integers, F is a field of size q(n) and
Cj = (Aj; ng), . ,x,(cj)) is algebraic constraint given by an algebraic circuit A; of size s on k inputs
(4)
1

and the variable names x ,...,:vg) € F™, where for m = m(n) and for every j € [t| the points

{:cz(-j)}i lie on some 2-dimensional variety of degree 1.

YES-instances: (1",d,k,s, F;C1,...,C}) is a YES-instance if there exists a polynomial p : F™ —
F of total degree at most d such that for every j € {1,...,t}, the constraint C; is satisfied by
p; that is, Aj(p(zgj)), .. ,p(mg))) =0.

NO-instances: (1",d,k,s, F;C1,...,C}) is a NO-instance if for every polynomial p of degree d, at
most €(n) -t constraints are satisfied.
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The following lemma, is a slight variant of Lemma 3.16 in [15]. Specifically, while [15] use the
generic fact that any w points lie in a c-dimensional variety of degree cw'/¢, we note that the
specific O(m(n)b(n)) points chosen for each constraint (in the reduction) lie on a 2-dimensional
variety of degree O(m(n)). This is because each constraint refers to O(m(n)b(n)) points that lie
on one out of O(m(n)) lines.

The following lemma simply lists conditions on the parameters which allows GapPCS to be
NP-hard. We describe the actual choice of parameters in a corollary to be described shortly.

Lemma A.2 There exists a constant ¢ and polynomials p1,pe such that for any collection of func-
tions € : Zt — RY and m,r,b,q,0 : Z+ — Z* such that b(n) > logn, (b(n)/m(n))™™ > n,
r(n) > em(n), q(n) > (b(n)/e(n))pi(m(n)), and £(n) > pa(b(n))(g(n))™™), SAT reduces to
rGapPCS, , ., , under £(n)-length preserving reductions,

On the other hand, when applying the MIP system of [15, Section 3.6] to restricted GapPCS
instances, we get:

Lemma A.3 There exists a polynomial p such that ife : Zt — R* and r,m,b,q : Z+ — ZT, satisfy
g(n) > poly(r(n))(b(n)/e(n)) then the promise problem rGapPCS,, ., , has a 3-prover MIP proof
with perfect completeness, soundness O(e(n)), answer length poly(b(n))logq(n), and randomness
O(log N + m(n)logq(n)), where N denotes the size of the GapPCS instance and n denotes the
first parameter in the instance. Furthermore, the size of the first prover oracle is q(n)m(”), and its
answer length is logq(n).

The lemma above allows us to work with the GapPCS problem for an appropriate choice of the
parameters €, m, b, ¢, £. Combining the above two lemmas, we state the resulting corollary regarding
3-prover MIPs for SAT, where we restrict attention to the case of constant ¢ > 0.

Corollary A.4 For every constant € > 0 and m : Z+ — Zt, let £(n) = m(n)O(m(n) . p1+001/m(n))
Then SAT reduces in probabilistic polynomial time under £(n)-length preserving reductions to a
promise problem that has a 3-prover proof system with perfect completeness, soundness €, logarith-
mic randomness, and answer length m(n)o(l) -pOW/m(n) - in which the first prover has size linear
in the instance size.

Proof: Assume without loss of generality that m(n) < logn/(3loglogn). (For larger m(-),
the requirements on both the function ¢(n) and the answer length become weaker.) Set
b(n) = m(n)n'/™™ . Note that this makes b(n) > logn (and (b(n)/m(n))™™ > n) as re-
quired in Lemma A.2. Next, set 7(n) = c¢m(n), where ¢ is from Lemma A.2, and set ¢(n) =
(b(n)/e)poly(m(n)) = poly(m(n))n'/™™ /e such that it satisfies the requirements in both Lem-
mas A.2 and A.3. Finally, set £(n) = poly(b(n))g(n)™™ = poly(m(n)) - nC1/mn) .y (n)Olm(n) .
n - e ™M = O(m(n)Omm) . p1+O00/m(n))  This setting satisfies all the conditions of Lem-
mas A.2 and A.3, which yields a 3-prover proof system for SAT in which the answer lengths
are bounded by poly(b(n)) log g(n) = m(n)?M) .p1/O(m(n)  Furthermore, the size of the first prover
is q(n)™™ < £(n), as required. [ |
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