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Abstract. By the breakthrough work of Hastad, several constraint satisfaction problems are now known
to have the following approzimation resistance property: satisfying more clauses than what picking a
random assignment would achieve is NP-hard. This is the case for example for Max E3-Sat, Max E3-Lin
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this is also the case for 2-CSPs over larger, non-Boolean domains. This question is still open, and is
equivalent to whether the generalization of Max 2-SAT to domains of size d, can be approximated to a
factor better than (1 — 1/d?).
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size d with three variables per constraint, is approximation resistant, for every d > 3. In the Boolean
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Equal Sat with three variables per constraint. Our approximation algorithm implies that a wide class
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1 Introduction

In a breakthrough paper, Hastad [10] studied the problem of giving approximate solutions to max-
imization versions of several constraint satisfaction problems. An instance of a such a problem is
given as a set of variables and a collection of constraints, i.e., functions from some domain to {0,1},
on certain subsets of variables, and the objective is to find an assignment to the variables that sat-
isfies as many constraints as possible. An approximate solution of a constraint satisfaction program
is simply an assignment that satisfies roughly as many constraints as possible. In this setting we are
interested in proving either that there exists a polynomial time algorithm producing approximate
solutions, i.e., solutions that are at most some constant factor worse compared to the optimum, or
that no such algorithms exist.

In this paper we will study the common special case where each individual constraint depends on
a fixed number k of the variables—this case is usually called the Max k-CSP problem and the size of
the instance is given as the total number of variables that appear in the constraints. The complexity
of the constraint satisfaction problem (CSP) is determined by the precise set of constraints that may
be posed on subsets of k variables, and accordingly we get various families of Max k-CSP problems.
For each such CSP, there exists a very naive algorithm that approximates the optimum within a
constant factor: The algorithm that just guesses a solution at random. In his paper, Hastad [10]
proved the very surprising fact that this algorithm is essentially the best possible efficient algorithm
for several constraint satisfaction problems, unless P = NP. The proofs unify constructions from
interactive proof systems with harmonic analysis over finite groups and give a general framework for
proving strong impossibility results regarding the approximation of constraint satisfaction programs.

Hastad [10] suggests that predicates with the property that the naive randomized algorithm
is the best possible polynomial time approximation algorithm should be called non-approrimable
beyond the random assignment threshold; we also use the phrase approximation resistant to refer to
the same phenomenon.

Definition 1. A solution to a mazimization problem is c-approximate if it is feasible and has
weight at least o times the optimum. An approximation algorithm has performance ratio « if it
delivers a-approzimate solutions in polynomial time.

Definition 2. A CSP is said to be approximation resistant or non-approximable beyond the ran-
dom assignment threshold if, for any constant € > 0, it is NP-hard to compute a (p+¢)-approzimate
solution, where p is the expected fraction of constraints satisfied by a solution guessed uniformly at
random.

Clearly, understanding which predicates are approximation resistant is an important pursuit. The
current knowledge is that for Boolean CSPs, which understandably have received the most attention
so far, there is a precise understanding of which CSPs on ezactly three variables are approximation
resistant: All predicates that are implied by parity have this property [10, 17]. It is known that no
Boolean CSP over two variables is approximation resistant; this is a corollary of the breakthrough
Goemans-Williamson algorithm [8]. For the case of four or more variables, very little is known;
therefore it seems to be a good approach to first understand the situation for two and three variables.

Accordingly, we are interested in the situation for CSPs with two and three variables over larger,
non-Boolean, domains. In particular, it is a really intriguing question whether every CSP over two
variables can be approximated better than random, no matter what the domain size is. The central
aim of this paper is to study this question. We are not able to resolve it completely, but we conjecture
that the answer to the question is yes.



1.1 Formal definitions of some CSPs

Before discussing our results, we will need to define some of the CSPs that we will be concerned
with in this paper. A specific k-CSP problem is defined by the family of constraints that may be
imposed on subsets of k variables. Allowing arbitrary constraints gives the most general problem,
which we call Max Ek-CSP(d). In this paper, d refers to the domain size from which the variables
may take values, with d = 2 corresponding to the Boolean case. Over domain size d, a constraint
is simply a function f:[d]¥ — {0,1}, where [d] = {0,1,...,d — 1}. Equivalently, a constraint f can
be viewed as a subset of [d]¥ consisting of all inputs which it maps to 1.

The Max Ek-Sat(d) problem is defined by the constraint family {f C [d]* : |f| = d* — 1}, i.e.,
the family of all constraints having just one non-satisfying assignment. Max Ek-NAE-Sat(d) is the
problem where the constraints assert that the specific variables are not all equal, except that we also
allow translates of variables, e.g., for the two variable case, a constraint can assert 1+1 # z2+3 (the
addition being done modulo d); this is the analog of complementation of Boolean variables. In the
Max Ek-Lin(d) problem, the constraint family is given by all linear constraints: {Lin(a1,...,ax,c) :
aj, ¢ € [d]} where Lin(av,...,ak,¢) = {(z1,...,2x) : > ; @izi = ¢ mod d}. The Max Ek-LinInEq(d)
problem is defined by the family of all linear inequations: {f C [d]* : [d]* \ f is a linear constraint}.

For the two variable case, we define the constraint satisfaction problems Max BIJ(d) and Max
Co-BLJ(d) which are generalizations of Max E2-Lin(d) and Max E2-LinInEq(d) respectively. Let
Sq be the set of all bijections from [d] to [d]. For each m € Sg, define the 2-ary constraint fr 4 =
{(a,b) € [d]? : b = w(a)}. Now define the family BLJ(d) = {frq : ® € Sy4}; we call the CSP
associated with this family Max BIJ(d). The problem Max Co-BIJ(d) is obtained by constraints
which are complements of those in BIJ(d), i.e., a constraint is of the form n(z1) # =z for some
bijection m defined over [d]. It is clear that these problems generalize Max E2-Lin(d) and Max
E2-LinInEq(d) respectively.

For the three variable case, we define the problem Max E3-NAE-Sat(G) for finite Abelian
groups G. For each triple (g1,92,93) € G* define the constraint Ny, 4,4, = {(z1,72,73) € G* :
=(g121 = 9272 = g3z3)}. Now define the family NAE(G) = {Ny, g,.45 : (91, 92,93) € G*}; we denote
by Max E3-NAE-Sat(G) the CSP associated with this family of constraints. Note that the group
structure is indeed present in the problem since the constraints involve multiplication by elements
from G. In fact, we are able to prove in this paper that Max E3-NAE-Sat(Z,) is approximation
resistant while we are unable to determine the approximability of Max E3-NAE-Sat(Z; x Z).

It is an interesting open question to determine what kind of hardness holds for the restricted
version of Max E3-NAE-Sat(G) where group multipliers are not allowed; for this problem the group
structure is, of course, not present at all. Recently, Khot [13] has shown that Max E3-NAE-Sat(Z3)
is approximation resistant even without group multipliers.

1.2 Our results

Preliminaries: First, we make explicit the easily seen result that an approximation algorithm for
Max E2-Sat(d) with performance ratio better than 1—1/d?, i.e., better than the random assignment
threshold, implies that any CSP over 2 variables can be approximated to within better than its
respective random assignment threshold. In other words, Max E2-Sat(d) is the hardest problem
in this class, and if there is some Max E2-CSP(d) which is approximation resistant, then Max
E2-Sat(d) has to be approximation resistant.

Consequently, our interest is in the approximability of Max E2-Sat(d), specifically to either find
a polynomial time approximation algorithm with performance ratio greater than 1—1/d? or to prove
a tight hardness result that the trivial 1 —1/d? is the best one can hope for. While we are unable to



resolve this question, we consider and prove results for two predicates whose difficulty sandwiches
that of solving Max E2-Sat(d): namely Max Co-BlJ(d) and Max E3-NAE-Sat(Z;). The former
problem is (in a loose sense) the natural 2-CSP which is next in “easiness” after Max E2-Sat(d)
as far as approximating better than the random assignment threshold is concerned. There is an
approximation preserving reduction from Max E2-Sat(d) to Max E3-NAE-Sat(Z;), implying that
Max E3-NAE-Sat(Z;) is a harder problem than Max E2-Sat(d).

Algorithms: For the Max Co-BLJ(d) problem, we prove that it is not approximation resistant by
presenting a polynomial time approximation algorithm with performance ratio 1 —d~! + 0.07d 2.
This result implies that a large class of 2-CSPs, called regular 2-CSPs (defined below), are not
approximation resistant. Viewing a 2-ary constraint C' over domain size d as a subset of [d] x [d],
the constraint is said to be r-regular if for each a € [d], |{z : (z,a) € C}| = {y : (a,y) € C} =7
(the term regular comes from the fact that the bipartite graph defined by C is regular). The
constraint is regular if it is r-regular for some 1 < r < d. A 2-CSP is regular if all the constraints
in the CSP are regular and it is r-regular if all the constraints are r-regular.

Our result for regular 2-CSPs includes as a special case the result of Frieze and Jerrum [7] that
Max d-Cut can be approximated to better than its random threshold. Our performance ratio is
weaker, but our analysis is simpler and gives a more general result. Another special case is the
result for Max E2-Lin(d) where our result actually improves the approximation ratio of Andersson
et al [3]. Recently, Khot [12] gave a simpler algorithm that beats the random assignment threshold
for Max E2-Lin(d) as well as the more general Max BIJ(d) problems—his result is actually more
general and can find a near-satisfying assignment given a near-satisfiable instance, i.e., an instance
where the optimum solution satisfies a fraction 1 — € of constraints. Our approximation algorithm
for Max Co-BIJ(d) is based on a semidefinite programming relaxation, similar to that used for
Max BIJ(d) by Khot [12], combined with a rounding scheme used by Andersson [1, 2] to construct
an approximation algorithm for Max d-Section, the generalization of Max Bisection to domains of
size d. Technically, we view this algorithmic result as the main contribution of this paper.

Inapproximability results: For the Boolean case, d = 2, it is known that Max E3-NAE-Sat can
be approximated to better than random. The GW-algorithm [8] for Max E2-Sat essentially gives
such an algorithm, and the performance ratio was later improved by Zwick [18]. We prove that
for larger domains, the problem becomes approximation resistant; in other words, it is NP-hard to
approximate Max E3-NAE-Sat(Z,) to better than (1 —1/d% +¢) for any d > 3 and any € > 0. This
result rules out the possibility of a non-trivial algorithm for Max E2-Sat(d) that works by reducing
it to Max E3-NAE-Sat(Z,). In fact, we prove that for any finite group G which is not of the form
Zy X Zy X - -+ X Zy, Max E3-NAE-Sat(G) is hard to approximate within a factor (1 —1/|G|? +¢).

We also obtain tight hardness results for CSPs such as Max E3-Sat(d), and Max E3-LinInEq(d).
They are known to be approximation resistant over the Boolean domain [10], and hence one expects
them to be hard for larger domains too. We verify that this is indeed the case. For example,
we prove that for k,d > 3, Max Ek-LinIlnEq(d) is approximation resistant and thus cannot be
approximated within a factor better than (1 —1/d + ¢), for any constant € > 0, in polynomial time
unless P = NP. A simple gadget then gives the tight hardness result of (1 — 1/d* + ¢) for Max
Ek-Sat(d).

We remark that the above hardness results hold with perfect completeness; in other words,
the stated approximation factors are hard to obtain even on satisfiable instances of the concerned
constraint satisfaction problems.
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Figure 1. Semidefinite relaxation of Max Co-BIJ(d) with variable set X. A clause in the Max Co-
BIJ(d) instance is denoted by (z,z’,7) where £ € X and 2’ € X are variables and m: Z; — Z; is a
permutation. The clause is satisfied unless z = j and z’ = 7w (j) for some j € Z,. Each clause (z,z’, )
has a non-negative weight w, ,/ . associated with it.

Conclusions: We are not able to completely resolve the status of the 2-CSP problem over larger
domains. Using reductions, we prove a hardness result of 1 — 2(1/d?) for Max E2-Sat(d), which
compares reasonably well with the (1—1/d?) random assignment threshold. For satisfiable instances
of Max E2-Sat(d), we prove a hardness result of 1—2(1/d®). Nevertheless, we conjecture that there
is an approximation algorithm beating the random assignment threshold for Max E2-Sat(d), and
hence for all instances of 2-CSP.

Organization: We begin with a brief Section 2 highlighting why Max E2-Sat(d) is the hardest
Max E2-CSP(d) problem in terms of beating the random assignment threshold. Next, in Section 3
we prove that every Max Co-B1J(d) problem admits an algorithm that beats the random assignment
threshold, and record some of its consequences. In Section 7, we prove that Max E3-NAE-Sat(G) is
approximation resistant for most groups, including G = Z, (the case of most interest in the context
of Max E2-Sat(d)). Finally, we record results that directly apply to Max E2-Sat(d) in Section 8.

2 The “Universality” of Max E2-Sat(d)

We note that the existence of an approximation algorithm that beats the random threshold for every
2-CSP is equivalent to the existence of such an algorithm for Max E2-Sat(d). Thus, an algorithm
for Max E2-Sat(d) with performance ratio better than (1 — 1/d?) will imply that no 2-CSP is
approximation resistant, thus resolving our conjecture that every 2-CSP is “easy”.

This claim is seen by a “gadget” reducing an arbitrary CSP(d) to Max E2-Sat(d). Given an
instance of any 2-CSP, construct an instance of Max E2-Sat(d) by repeating the following for every
constraint C in the original 2-CSP: For every non-satisfying assignment to C, add one 2SAT(d)
constraint which has precisely this non-satisfying assignment. If an assignment satisfies C' then it
also satisfies all the 2SAT(d) constraints in the gadget, and otherwise it satisfies precisely all but
one of the 2SAT(d) constraints. Using this fact, it is straightforward to show that if Max E2-Sat(d)
can be approximated beyond the random threshold, the above procedure gives an approximation
algorithm that approximates an arbitrary 2-CSP beyond the random threshold. Conversely, if any
2-CSP at all is approximation resistant, then Max E2-Sat(d) must be approximation resistant.



Solve the semidefinite program in Fig. 1.

Denote by uj the vectors obtained from the solution.

For every (z,j) € X x Zy, let v] = uj — %E?;& ug.

Select r from a dn-dimensional N(0,I) Gaussian distribution.
Set gz; = % + K(r, vf) for all (z,j7) € X x Zg.

For each x € X,

— set pgj = qgj if gz € [0,2/d] for all j € Zy;

— set pg; = 1/d for all j € Z; otherwise.

7. For each z € X, let x = j with probability pg;.

S oW N

Figure 2. Approximation algorithm for Max Co-BIJ(d) with variable set X. The algorithm is param-
eterized by the positive constant K.

3 Approximation algorithm for Max Co-BIJ(d)

To construct an approximation algorithm for Max Co-BIJ(d) we combine a modification of the
semidefinite relaxation used by Khot [12] for the Max BIJ(d) problem with a modification of the
randomized rounding used by Andersson |1, 2| for the Max d-Section problem. Recall that a specific
clause in the Max Co-BIJ(d) problem is of the form (z,z,7), where x and z’ are variables in the
Max Co-BlJ(d) instance and 7 is a permutation, and that the clause is satisfied unless z = j
and 2/ = 7(j) for some j. In our semidefinite relaxation of Max Co-BIJ(d) there are d vectors
{ug,...,ug_,} for every variable z in the Max Co-BLJ(d) instance. Intuitively, the vector uf sets
the value of the variable z to 5. To prove that our algorithm beats the random assignment threshold,
we first establish that the semidefinite program in Fig. 1 is a relaxation of Max Co-BLJ(d), then
prove that the rounding scheme proposed in Fig. 2 is well-defined, and finally analyze the expected
performance of the rounding scheme using local analysis.

Lemma 1. The semidefinite program in Fig. 1 is a relazation of Max Co-BIJ(d).

Proof. Suppose that we have an instance of Max Co-BIJ(d) with variable set X. Given an assign-
ment p to the variables in X consider the following configuration of vectors: Let a be a vector of
unit norm and define

av:{ a if j = p(z),

S
5

0 otherwise.

This configuration of vectors is feasible for the semidefinite program in Fig. 1 and the corresponding
value of the objective function is exactly the weight of the satisfied equations in the Max Co-BIJ(d)
instance. .

Lemma 2. Suppose that {u] : (z,j) € X X Z4} is a feasible solution to the semidefinite program
in Fig. 1. Then the barycenter

1 d—1
_ x
by =2 uj
=0
of the vectors {uj : j € Zd};l;é is independent of x.

Proof. The constraints in the semidefinite program imply that |by|? = |by |? = (by,by) =d™2. =



Lemma 3. For any clause (z,z',7) in the Max Co-BIJ(d) instance, the algorithm in Fig. 2 satisfies
(z,2',7) with probability at least

d—1 2,.2
z oz 1 K=r
]:

where K is any positive constant, the vectors uj and u;”,' are as described in the algorithm, B = {r €

R? : |r| < 1/Kd}, and P is the probability distribution of a 2d-dimensional Gaussian with mean
zero and identity covariance matrix.

Proof. Consider an arbitrary clause (4,4, ) and the corresponding values gg; computed by the
algorithm. Let B = {r € R% : |r| < 1/Kd}. When r € B, both g;; and g,s; are in the interval
[0,2/d]; hence the clause (4,4, 7) is satisfied with probability

d—1 d-1 4 1 ,
1= Pujpwragy=1-) (3 + K{r, “ﬂ) (g + K(r, "’?uﬂ)
j=0 Jj=0
1 d—1 ,
=1 ' K? Z(r, v]“?)(r, ’U;?(j)>

=0
given 7 in this ca’se. By the definition of zljf from the algorithm, (r, v )(r, u;f'(j)) = (r,uj —b)(r, uil(j) _
b) = (r,uf)(r, uz ;) — (s uf){r,b) — {r,uz;}(r, b) +(r, b)(r,b) where b is the barycenter of the vectors
u¥ 1 j € Zy}, which is independent of x according to Lemma 2. Therefore
{ 5 -] ds p g
d—1 d—1

—K* Y (r,vf) (r,v%;) = K* (d<r, b)(r,b) = >_(r,u)(r, uﬁ'uﬂ) :

J=0 j=0

To conclude, the probability that the clause is satisfied given r is

1 2 = T ’
-+ K (d(r, b)(r,b) — 3 (r, ut) r, uw(j))> (1)

Jj=0
when r € B. Integrating over B, we can thus bound the probability that the clause is satisfied from
below by
d—1

/B (1 - é LK (d(r, B)(r,b) — 3 (r, u?)(r, u;’(j)>>> aP(r).

=0
To compute the integral of (r,b)(r,b), introduce an orthonormal basis {e;} such that b = e;/d and
write r = ), riey in this basis. Then

/B (r, b)(r, b) dP(r) = % /B r2 dP(r)

where the last integral is actually independent of the basis since both P and B are spherically sym-
/

metric. To compute the integral of (r, uf)(r, u7 ( ])), we proceed similarly: Introduce an orthonormal

basis {ex} such that uf = z1e; and uf(j) = yie1 + ysea. Then

/B(r,uf)(r,ufr’(j))dP(r) :/B(r%azlyl%—rlrgxlyQ)dP(r).



The integral of the second term vanishes since the integrand is odd and the interval is symmetric
around the origin. Therefore

/B (r,uf)(r,uZ;)) dP(r) = w1y /B r2dP(r) = (u?,uZ,) /B r2 dP(r).

To conclude, we can write the probability that the clause is satisfied as @ — cx where

1 K2%?
= 1—= L)dpP
a /B( d—l— 7 )d (r),

c= KQ/ r2 dP(r),
B

d—1

z =3 (uf, ul).

=0
We now find an « such that a — cz > a1 — z). Since the expression (1) is a probability it is

non-negative for every r. Hence a > ¢ > 0 and, since the constraints in the semidefinite program
imply that > 0,
a1 1 K 21"%

a—cxr>a—ar = (I—Z(uf,um’(j)))/B(l—gﬁ- 7 )dP(r). .

§=0

Theorem 1. The algorithm in Fig. 2 with K = 1/v/13d3 is a randomized polynomial time approz-
imation algorithm for Maz Co-BILJ(d) with expected performance ratio 1 —d—* + 0.07d~* and thus
better than the random assignment threshold.

Proof. Consider the algorithm in Fig. 2 applied to an instance of Max Co-BlJ(d). By Lemma 1,
the semidefinite program in Fig. 1 is a relaxation of Max Co-BLJ(d); therefore the optimum value
of the Max Co-BlJ(d) instance can be bounded by

d—1
Z Wy’ 7w (1 - Z(u“;, uw,(])>)

/ y—
z,x’ T 7=0

where the vectors uj are the solution to the program. Now consider the rounding. By Lemma 3,
the clause (z,z',7) is satisfied with probability

d—1 2,.2
/ 1 K T
(1 -3 :0<u;,u;(j)>> /B(l — S+ 1) dP(r)
]:

By Lemmas 21 and 22,

1 K%? 1 0.07
1-= P(r)>1— -+ ——
/B( . )d ()>1- 3+

with the parameter choice K2 = d=2/13. So with this parameter choice, it now follows by linearity
of expectation and the above bound on the optimum value of the Max Co-BILJ(d) instance that the
expected weight of the solution produced by the algorithm is at least a factor (1 —d~! 4+ 0.07d*)
times the optimum value of the Max Co-BIJ(d) instance. .




1. Select a random assignment p to the variables in the instance.

2. Replace each equation az + by = ¢ with the d — 1 inequations
ax + by # ¢; for all ¢; # ¢. Obtain an assignment 7 by running
the algorithm in Fig. 2 on this instance.

3. Pick the best of the assignments p and 7.

Figure 3. Approximation algorithm for Max E2-Lin(d).

3.1 An approximation algorithm for Max E2-Lin(d)

We can use the above algorithm for Max Co-BLJ(d) to construct an algorithm also for Max E2-
Lin(d): Simply replace an equation az + by = ¢ with the d — 1 inequations az + by # ¢; for all
¢; # ¢. Then an assignment that satisfies a linear equation satisfies all of the corresponding linear
inequations and an assignment that does not satisfy a linear equation satisfies d — 2 of the d — 1
corresponding linear equations. This algorithm gives a performance ratio of 1/d + £2(1/d*) which
improves significantly on the previously best known ratio of 1/d + £2(1/d*) [3].

Theorem 2. For all d > 4, the algorithm in Fig. 8 is a randomized polynomial time approrimation
algorithm for Maz E2-Lin(d) with ezpected performance ratio d—' + 0.05d%.

Proof. If the optimum of the instance is smaller than a fraction 1 — 0.05d~2 of all equations, the
random assignment—which satisfies an expected fraction 1/d of all equations—satisfies an expected
fraction
d_ 1 005
1-0.05d3 ~d d*

of the optimum.

If the optimum is larger than a fraction 1—0.05d~2 of all equations, the optimum of the instance
of inequations is at least 1—0.05d~3(d—1)~!. By Theorem 1, our approximation for Max Co-BILJ(d)
from Fig. 2 therefore finds a solution with expected weight at least a fraction

(1 _0.05 ) (d— 1, o.o7> _d-1 002 0003
Bd—1))\ d )" d & di(d—1)

of all inequations. An assignment satisfying a fraction 1/d + « of the equations satisfies a fraction

<1+ )+d—2(1 1 )_d—1+ «a
d %) Td-1\""ad )T Td Ta-1
of the inequations and vice versa; therefore the assignment constructed above satisfies at least an

expected fraction

1 0.02(d—1) 0.0035 1 0.02(d—1—0.0035d 3)
+ - > =+

d d* " d d*
of the equations. The function d—1—0.0035d~3 is increasing in d and for d = 4 it is 3—0.0035/64 >
2.5. Therefore, at least an expected fraction d 1 4-0.05d* of all equations are satisfied when d > 4.

Corollary 1. For alld > 2, there is a polynomial time approzimation algorithm for Max E2-Lin(d)
with expected performance ratio d~'4-0.05d=* and thus better than the random assignment threshold.



Repeat the following for every relation in the Max Co-BIJ(d) instance:

Let R be the bipartite graph defined by the relation.

Let r be the degree of R.

Let R¢ be the complement of R.

Decompose the edges of R¢ into perfect matchings Ry, ..., Rg—,.
Define the relations m; such that dy ~,; do if (di,d2) € R;.

Add the relations my,m9,. .., 74—, to the Max Co-BLJ(d) instance.

S ot W=

Figure 4. Construction of an instance of Max Co-BILJ(d) from an instance of any regular CSP.

1. Select a random assignment p to the variables in the instance.

2. Create an instance of Max Co-BIJ(d) as described in Fig. 4. Obtain
an assignment 7 by running the algorithm in Fig. 2 on this instance.

3. Pick the best of the assignments p and 7.

Figure 5. Approximation algorithm for any regular CSP.

Proof. Algorithms for d = 2 and d = 3 have been provided by Goemans and Williamson [8, 9], for
d > 4 the result follows by Theorem 2 .

3.2 An approximation algorithm for regular 2-CSPs

We can obtain an approximation algorithm for all regular CSPs by a straightforward generalization
of the ideas from the previous section. Given an r-regular 2-CSP, we proceed as follows for every
relation R defining the CSP: Decompose R€, the “bipartite complement” of the graph defined by R,
into (d—r) perfect matchings mh, 7%, . .. ,w?{r. Then let these matchings define the Max Co-BLJ(d)
instance. An assignment that satisfies R satisfies all of the d — r matchings while an assignment
that does not satisfy R satisfies d — r — 1 of them. Run the following two algorithms and take
the assignment producing the largest weight as the result: The first algorithms selects a random
assignment to the variables; the second algorithm runs the above algorithm for Max Co-BIJ(d).

Theorem 3. Foralld > 2 and all1 < r < d—1, the algorithm in Fig. 5 is a randomized polynomial
time approzimation algorithm for r-regular CSPs with expected performance ratio r/d + £2(d=*).

Proof. Consider the result of the algorithm on an arbitrary instance. If the optimum of the instance
is smaller than a fraction 1—0.05(d—r)d=3(d—1)~! of all equations, the random assignment—which
satisfies an expected fraction 7/d of all equations—satisfies an expected fraction
r/d 0.057(d —r)
1—0.05(d —r)d=3(d—1)"1! d*(d—1)

of the optimum.

_l’_

r
>
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If the optimum is larger than a fraction 1 — 0.05(d — r)d=3(d — 1)~! of all constraints, the
optimum of the corresponding instance of Max Co-BLJ(d) is at least a fraction
().()5(d—r)< B d—r—l) _ . 005

d3(d—1) d—r ) = d3d-1)
By Theorem 1, our approximation for Max Co-BIJ(d) from Fig. 2 therefore finds a solution with
expected weight at least a fraction
(1_ 0.05 )(d—l n 0.07) o d—1 N 0.02  0.0035
d3(d—1) d a4 /)  d d* d’(d—1)

of all constraints in the Max Co-BIJ(d) instance. An assignment satisfying a fraction r/d + « of the
constraints in the r-regular CSP satisfies a fraction
d—T(z+a)+M<l_f_a) _d-1, @
d—r\d d—r d - d d—r
of the constraints in the Max Co-BIJ(d) instance and vice versa; therefore the assignment con-
structed above satisfies at least a fraction
oy 0.02(d —r) 0.0035(d —r)

1—

d d d'(d—1)

of the constraints in the r-regular CSP. n

It is not necessary that the various constraints be r-regular for the same r, and a similar argument
also shows that every regular 2-CSP can be approximated in polynomial time beyond its random
assignment threshold.

4 PCPs and inapproximability results: Background

In his seminal paper [10], Hastad introduced a methodology for proving inapproximability results
for constraint satisfaction problems. On a high level, the method can be viewed as a simulation of
the well-known two-prover one-round (2P1R) protocol for E3-Sat where the verifier sends a variable
to one prover and a clause containing that variable to the other prover, accepting if the returned
assignments are consistent and satisfy the clause.

4.1 The 2-prover 1-round protocol
We start with an instance of the NP-hard [4, 6] problem u-gap E3-Sat(5).

Definition 3. u-gap E3-Sat(5) is the following decision problem: We are given a Boolean formula ¢
in conjunctive normal form, where each clause contains exactly three literals and each literal occurs
exactly five times. We know that either ¢ is satisfiable or at most a fraction u < 1 of the clauses
i ¢ are satisfiable and are supposed to decide if the formula is satisfiable.

There is a well-known two-prover one-round (2P1R) interactive proof system that can be applied to
p-gap E3-Sat(5). It consists of two provers, P; and P», and one verifier. Given an instance, i.e., an
E3-Sat formula ¢, the verifier picks a clause C and variable z in C uniformly at random from the
instance and sends C' to P; and x to P». It then receives an assignment to the variables in C from P;
and an assignment to z from P, and accepts if these assignments are consistent and satisfy C. If
the provers are honest, the verifier always accepts with probability 1 when ¢ is satisfiable, i.e., the
proof system has completeness 1, or perfect completeness. It can be shown that the provers can fool
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the verifier with probability at most (2 + u)/3 when ¢ is not satisfiable, i.e., that the above proof
system has soundness (2 + p)/3.

The soundness can be lowered to ((2 + u)/3)" by repeating the protocol u times independently,
but it is also possible to construct a one-round proof system with lower the soundness by repeating
u times in parallel as follows: The verifier picks u clauses (Ci, ..., Cy) uniformly at random from
the instance. For each Cj, it also picks a variable z; from C; uniformly at random. The verifier
then sends (Cy,...,Cy) to Py and (z1,...,2,) to P,. It receives an assignment to the variables in
(C1,...,Cy) from P; and an assignment to (z1,...,x,) from P,, and accepts if these assignments
are consistent and satisfy Cy A--- A C,. As above, the completeness of this proof system is 1, and it
can be shown [15] that the soundness is at most cj;, where ¢, < 1 is some constant depending on
but not on u or the size of the instance.

4.2 Constructing strategies for the provers

In the above setting, the proof is simply an assignment to all the variables. In that case, the verifier
can just compare the assignments it receives from the provers and check if they are consistent and
satisfying. The construction we use to prove that several non-Boolean constraint satisfaction pro-
grams are non-approximable beyond the random assignment threshold can be viewed as a simulation
of the u-parallel repetition of the above 2P1R interactive proof system for u-gap E3-Sat(5). We
use a probabilistically checkable proof system (PCP) with a verifier closely related to the particular
constraint we want to analyze. To find predicates that depend on variables from some domain of
size d and are non-approximable beyond the random assignment threshold, we work with an Abelian
group of order d. That enables us to use representation theory for Abelian groups to analyze our
protocols.

The final verifier expects as proof encodings of the answers of P; and P5 in the Raz 2P1R, and
then checks very efficiently, by making very few queries, that the proof is close to valid encodings
of answers that would have made the 2P1R verifier accept with good probability. To get hardness
results for CSPs over domain size d, the specific encoding used is the so called long G-code, which
will be defined in Sec. 6, for some Abelian group G of order d.

The proof expected by the PCP verifier consists of purported Long G-Codes of the assignments
to the variables in U and W for each possible choice (U, W) of the 2P1R verifier. The PCP design
task thus reduces to designing an “inner” verifier to check if two purported Long G-Codes encode
assignments which are consistent answers for P; and P» in the 2P1R. One designs such a verifier
with an acceptance predicate closely tied to the problem at hand, and its performance is analyzed
using Fourier analysis. The basic strategy here is to show how proofs that make the “inner” verifier
accept with high probability can be used to extract good strategies for P; and P» in the 2P1R
protocol. On a high level, the Fourier expansion of the purported long codes are used to extract
probabilistic strategies for the provers P, and P». We are able to express the acceptance probability
of the verifier in the 2P1R protocol as a sum of certain pairwise products of Fourier coefficients and
these products turn out to be large whenever the “inner” verifier accepts with large probability.

On a slightly more detailed level, let w be the probability that the considered constraint is
satisfied by a random assignment. The aim of our analysis is to prove that it is NP-hard to satisfy
more than a fraction w of the constraints. We do this by proving the contrapositive: If we can
satisfy a fraction w + € of the constraints, for any constant € > 0, we can decide any language
in NP in polynomial time. This follows from the connection between our PCP and the 2P1R
interactive proof system for u-gap E3-Sat(5): We assume that it is possible to satisfy a fraction
w + € for some constant € > 0 and prove that this implies that there is a correlation between the
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tables queried by the verifier in our PCP. We can then use this correlation to explicitly construct
strategies for the provers in the 2P1R proof system for u-gap E3-Sat(5) such that the verifier in
that proof system accepts with probability that is independent of u. By selecting u large enough,
we can then reach a contradiction. The final link in the chain is the observation that since our
verifier uses only logarithmic randomness, we can form a CSP with polynomial size by enumerating
the checked constraints for every possible outcome of the random bits. If the resulting constraint
satisfaction program is approximable beyond the random assignment threshold, we can use it to
decide the NP-hard language u-gap E3-Sat(5) in polynomial time.

5 Representation theory and the Fourier transform

In this section we give a brief account of the representation theory for Abelian groups and the
associated Fourier transform. For more details, we refer the reader to Terras’s book [16]. In this
paper, we always denote groups by the letters ', G and H, members in those groups by lowercase
Roman letters and members in the corresponding dual groups ﬁ', G and H by lowercase Greek
letters.

5.1 Representation theory for Abelian groups

Let G be an Abelian group and G be its dual group, i.e., the group of all homomorphisms from G
to C. A central concept in the representation theory is the action of a member of G on a member
of G. Since the dual groups consists of functions from G to C, such an action is simply the evaluation
of a member of G at a member of G.

Example 1. The group Z, for some positive integer d is isomorphic to the group consisting of powers
of e2™/4 with multiplication as the group operation and 1 as identity. The dual group then consists
of all functions x — z™ for the integers n from 0 to d — 1. The product of the functions z +— z"
and x — ™ is the function x + ™™, where addition is defined modulo d. This implies that the
trivial homomorphism, that maps every group element to 1 and thus is the function z + 20, is the
identity in the dual group.

The above example motivates the following notation in the general case: For g € G and v € G we
let g7 denote y(g). We let multiplication be the group operation in G and addition be the group
operation in G and denote the identities by 1 and 0, respectively. Then we can write the following
identities: g7 g7 = g" "7, glg] = (g192)", (6°)' =¢*" = 979", 977 =(¢7'),¢°=1,1" = 1. We
also need the following symmetry relations:

y_ ) 1G] ify=0, v_ ) 1G] ifg=1,
Z g { 0 otherwise, Z g 0 otherwise.
geG ye€G

5.2 The Fourier transform

Now let f be a function from G to C. Then we can write f as a Fourier series
f(g) = Z f797 (2)
'yEG’
where

fr = é > flg)g™. (3)

geG
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Moreover the following version of Plancherel’s equality holds in this case:
P 1
YA = @ > 1F )P (4)

veG 9eG

6 The long G-code and its Fourier transform

Recall that our construction should simulate the 2P1R game for 3-Sat where the verifier sends
u clauses to one prover and one variable from each clause to the other prover. Our proof, encoded
by the long G-code, should contain these queries for all possible choices of the verifier in the 2P1R
game. Since the verifier in the 2P1R games always rejects if it receives an answer which does
not satisfy the u clauses we can in fact assume that the clause-prover always returns a satisfying
assignment. Our encoding of the proof also reflects this in a way that will now be made explicit.

Definition 4. Let U be a set of variables and denote by {—1,1}V the set of assignments to the
variables in U. The long G-code of some x € {—1,1}V is a function Ayq:{—1,1}V — G defined by

AU,w(f) = f(w)

Definition 5. Let W be a set of clauses and denote by SATY the set of satisfying assignments to
the clauses in W. The long G-code of some y € SATY is a function Awy: SATY — G defined by

Awy(h) = h(y).

Definition 6. A standard written G-proof with parameter u contains for each sequence U of u vari-
ables a string of length |G|*", which we interpret as the table of a function AU:G{_l’l}U - G. It
also contains for each set W of u clauses a string of length |G|™" which we interpret as the table of
a function Aw: GSATY L, .

Definition 7. A standard written G-proof with parameter u is a correct proof for a formula ¢ if
there is an assignment x, satisfying ¢, such that Ay is the long G-code of x|y for any sequence V
of u variables or any sequence V of u clauses.

The verifier in our PCPs will typically select a random sequence W of clauses and then form U
by selecting a variable at random from each clause. It will then query the tables Ay and Aw
in the standard written G-proof at cleverly chosen positions. We analyze the verifier using the
Fourier expansion of the alleged long codes; we therefore need to understand the Fourier transform
of functions from G! to C for some finite set I. Since the Fourier coefficients are used to devise
a strategy for the provers in the 2P1R game, certain Fourier coefficients must be identically zero.
The analysis also needs certain facts regarding the Fourier transform of two functions A:G! — C
and B:G’ — C where there is a projection from J to I. All these identities have already been
obtained by Hastad [10, § 2.6], we only state them here for easy reference.

Let I be a finite set and consider the space G, i.e., the space of all functions from I to G.
This space can be identified with the group F = G/l since a function is simply a table of all its
values for all of the |I| possible inputs. Then the products of two functions is just the products of
the corresponding group elements, and so on. For an element f € F and an element x € I, we let
f(x) denote the coordinate in f corresponding to z. Now let A be a function from F to C. We can
write this function as a Fourier series

A(f) = Z Aafa-

aeﬁ'
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To describe the elements of F', it is convenient to view them as functions from I to G; then we can
write

7o =TI (f (@)@

z€el
The latter expression is well-defined since f(z) € G and a(z) € G.
Definition 8. A function A: F — C is y-homogeneous for vy € G if A(gf) = g7A(f) forallg € G.

Lemma 4. Let F = GIA and suppose that A:F — C is 'y—homogenAeous. Let A, be the Fourier
coefficients of A. Then Ay =0 unless v = > ;craf(i). In particular, Ag =0 if v # 0.

Now let J be a finite set satisfying |I| < |J| and n: J — I be an onto mapping. Consider the space
H=G’. Any f € F, i.e., any function from I to G can then be transformed in a canonical way
to a function from J to G, i.e., to a member of H, by composing it with 7; we denote this new
function by f o 7. Similarly, a 8 € H, i.e., a function from H to C can be associated in a natural
way with a function from F to H, i.e., with a member of F'. We denote this new function by wa(B)
and it is defined in such a way that ng(8), viewed as a homomorphism from F to C, is the map
f = (fom)B. It is easy to see that if & = mg(8) then it holds that a(i) = Yjen—1() B(4) for all
i€ 1.

Lemma 5. Given an Abelian group G, two finite sets I and J such that |I| < |J| and an onto
mapping m:J — I, let F = G! and H = G’. Then, for any 8 € H, (f o w)ﬂ = fra(B),

As we already mentioned, in our case I = {—1,1}V and J = SATY for some sequence W of
u variables and some sequence U formed by selecting a variable from each clause in W. Our
analysis involves the Fourier transform of functions v o Ay and v o Ay and it turns out that we
need those functions to be y-homogeneous. This can be enforced by certain access conventions in
the verifier.

Definition 9. A function A from F to G is folded over G if A(gf) = gA(f) for allg € G.
Lemma 6. If A is folded over G, then yo A is v homogeneous.

We can assume that all tables in the proof are folded since this can be simulated with the following
access convention in the verifier: Partition G into equivalence classes by the relation =, where
f = h if there is g € G such that f = gh, i.e., Yw(f(w) = gh(w)). Write [f] for the equivalence
class of f. Then, whenever the position corresponding to some function h is queried, return gA(f)
where g and f are such that h = gf and f is the chosen representative for [h].

7 Inapproximability results for Max E3-NAE-Sat(G)

In this section, our aim is to prove that unlike the Boolean case, for every d > 3, Max E3-NAE-
Sat(Z,) is approximation resistant. We will actually prove that Max E3-NAE-Sat(G) is approxi-
mation resistant for pretty much every finite Abelian group.

Theorem 4 (Main hardness result). For every constant ¢ > 0 and every finite Abelian group G
that is not isomorphic to Z3* for any positive integer m, it is NP-hard to distinguish instances of
Maz ES3-NAE-Sat(Q) that are satisfiable from instances where at most a fraction (1 —|G|™2 +¢) of
the constraints are simultaneously satisfiable.
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As a warm-up, we first prove the easier result that Max E3-LinInEq(G) is approximation resistant,
even with perfect completeness, for every finite Abelian group of order at least three. This result
can be used together with a simple gadget to prove that Max E3-NAE-Sat(Z3) is approximation
resistant. To prove the same result for all finite Abelian groups, we proceed in three stages: We
first treat all groups of odd order, then Zsm for m > 2, and finally treat all groups by combining
the proofs for the first two cases. In all our protocols we use the following notation:

Convention 1. When analyzing a PCP that tests if some py-gap E3-Sat(5) formula @ is satisfiable,
expectations over U and W range over all sequences W of u clauses from @, with uniform measure,
and all sequences U formed by selecting, uniformly and independently, one variable from each clause
in W. Given U and W, we define the shorthands F = G{I=L1" H = GSAT" and let 7 be the
projection that constructs an assignment in {—1,1}V from an assignment in SATW.

7.1 Intuition behind our PCP constructions

A verifier in a PCP typically first selects sets U and W uniformly at random and then checks a small
number of positions in tables corresponding to U and W. Specifically, the standard way to get a
PCP with three queries is to query one position in a table corresponding to U and two positions in a
table corresponding to W. The three values obtained are then tested to see if they satisfy some given
constraint—such a construction gives a hardness result for the CSP corresponding to the type of
constraint checked. To get a hardness result for Max E3-NAE-Sat(G) the constraint checked by the
verifier therefore has to be a not-all-equal constraint. Moreover, we want the verifier to have perfect
completeness, i.e., to always verify a correct proof. We accomplish this by querying the positions
Ay (f), Aw(h) and Aw (f~'h%e) where f and h are selected uniformly at random and e is selected
such that e(y) is selected independently and uniformly at random from G \ {1}. Here, the function
fth2e is the map y — (f(y|v)) L(h(y))%e(y). For a correct proof of a satisfying assignment, the
answers to these queries will be f(y|v), h(y) and (f(y|v))~'(h(v))?e(y) where y is a satisfying
assignment to the clauses in W. These three values can never be all equal, since f(y|r) = h(y)
implies that (f(y|v))~'(h(y))%e(y) = h(y)e(y) # h(y). Therefore the verifier always accepts a
correct proof and to prove that it accepts a proof corresponding to an unsatisfying assignment with
probability at most 1 — |G|~2 + ¢, where ¢ > 0 is an arbitrary constant, we proceed as follows: The
assumption that the verifier accepts with probability 1 — |G|~ + ¢ implies that a sum of certain
pairs of related Fourier coefficients is large. Those coefficients can be used to devise strategies for
the provers in the u-parallel version of the 2P1R game for p-gap E3-Sat(5), strategies that make
the verifier of that game accept with probability independent of w. This leads to a contradiction
since it is known [15] that this protocol as soundness ¢,;- The precise coupling can be expressed as
follows:

Lemma 7. Given a finite Abelian group G, suppose that v € G \ {0} is arbitrary and that Ay
and Aw are the folded tables of a standard written G-proof with parameter u that corresponds to an
unsatisfiable instance of p-gap E3-Sat(5). Then

> Arg(p)1Bsl?IBI7 | < m,
BeH

Euw

where U, W, F, H, and 7 are as in Convention 1, A = yo Ay, and B = y o Ay, provided that
u > logn/logc,.
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The proof is a standard written G-proof with parameter u:

The verifier acts as follows:

1. Select a sequence W of clauses, each clause uniformly
and independently at random from @.

2. Select a sequence U of variables by selecting one variable
from each clause in W, uniformly and independently.

3. Let m: SAT" — {—1,1}Y be the function that creates
an assignment in {—1,1}V from an assignment in SATW .

4. Let F = G{=11Y and H = GSAT”.

5. Select f € F and h € H uniformly at random.

6. Select e € H such that independently for every y € SATY,
e(y) is uniformly distributed in G\ {1}.

7. Accept if Ay(f)Aw (h)Aw ((fom) thte) #1;
Reject otherwise.

Figure 6. The PCP used to prove optimal approximation hardness for Max E3-LinInEq(G) for any
finite Abelian group G such that |G| > 3. The PCP is parameterized by the constant u and tests if a
p-gap E3-Sat(5) formula @ is satisfiable.

Proof. We use the tables to construct strategies for the provers in the 2P1R game as follows: The
provers first compute the v € G'\ {0} that maximizes

By | 3 1Angio BP0/
BEH
and keep this v fixed.

Given a sequence U of variables, the second prover computes the Fourier coefficients A, selects
an a according to probability distribution given by |[A4|?> and then an z such that a(z) # 0
uniformly; this z is returned to the verifier.

Given a sequence W of clauses, the first prover computes the Fourier coefficients Bg selects a
according to probability distribution given by |Bg|2 and then a y such that 8(y) # 0 uniformly;
this ¥ is returned to the verifier.

The assignment y always satisfies the clauses in W and it is guaranteed to be consistent if
a = () and the second prover happens to select precisely the y that projects onto the z selected
by the first prover. Therefore, the success probability of the above strategy is at least

EU,W[Z | Ane(s)?|Bsl*1BI7 |-
BeH

Since it is known that the soundness of the 2P1R game is at most ¢}, and the above expression is
independent of u, the conclusion follows by selecting u > logn/ log c,,. .

7.2 'Warm-up: Linear inequations

The PCP is described in Fig. 6. The setting is as usual; the verifier first picks u clauses of the 3SAT
instance at random and then a variable from each clause at random. It then queries three positions
in tables in the proof that should correspond to an assignment to the clauses and variables and
accepts if a certain inequation is satisfied. Perfect completeness follows easily:
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Lemma 8. The verifier in Fig. 6 has perfect completeness.

Proof. Suppose that the proof is the correct encoding of some satisfying assignment y. Then
Ay(f) = f(ylv) and Aw(h) = h(y|w), hence

Ay (f)Aw (h)Aw ((f o) 'h"e) = e(ylw) #1

and the verifier accepts. .

Let us now study the error function e selected by the verifier.

Lemma 9. Let e be picked as in Fig. 6 applied to a finite Abelian group of order at least three.
Then |E[ef]| < 27181, where |8 is defined as the size of the support of B3, i.e., the number of y such

that B(y) # 0.

Proof. Since e is selected in such a way that the e(y) are independent,
B[] = I [B[cw)’®]|
yeH

Since g° = 1 for all g € G, the only factors that contribute are those where 8(y) # 0. For those
factors
1 -1
E[(e(y))ﬁ(y)] _ e Z gﬂ(y) - |G|7—1’
9€G\{1}

where the last equality follows since > ¢ g7 = 0 for all v # 0. Hence
[Ble®)) = (161 - 1) < 278 :

The soundness is straightforward to analyze using the now standard methodology introduced by
Hastad [10]. As usual, we assume that the test accepts with probability 1—|G| !+ § and prove that
the tables in the proof must then be correlated. We then use this correlation to extract strategies
for the provers in the 2P1R game.

Lemma 10. Suppose that the verifier in Fig. 6 accepts with probability 1—|G|~*+§ for some § > 0.
Then there exists some v € G \ {0} such that

EU,W[Z | Ang (s 2| Bsl247 1P| > 62,
BeH

where U, W, F, H, and 7 are as in Convention 1, A, are the Fourier coefficients of vyo Ay, and
Bg are the Fourier coefficients of y o Ay .

Proof. The suggested test accepts unless Ay (f)Aw (h)Aw ((f o ) 'h le) = 1, therefore we can
write

Prfaccept] = 1 = 2 B[ X (Au(1) Aw () Aw (f o )01
yeG
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1 1

T E[ > (A Aw () Aw((f o m)"thle) |

v€G\{0}
Now suppose that Prlaccept] > 1 — |G|~ + §; then there exists a y € G such that
B[ (Au (D Aw (W Aw((f o) 17|

Now expand yo Ay and o Ay in their Fourier series for this value of +:

(vo Ay)(f) = Zfiafa, (yoAw)(h) = ZBﬂhﬁ.

> 4.

ack BeH
This gives
S<[B[S S 5 AaBa B B[fon (7 om) e |
“acF B1€H BreH

= EZ Z Z Aaéﬂléﬂ2E[fa—wc(ﬂz)hﬂl—ﬂzeﬂz]]‘

“a€F B1€H BocH

353> AQBIBIE@EV&—M(&)]E[hﬁl—ﬁz]E[eﬂz]H_

el prcH BocH

The first of the inner expectations is zero unless @ = wg(02), the second of the inner expectations
is zero unless 1 — B2 = 0. Putting this together, we get the bound

2
# < B[S Arci B3|
BeH

[ 2
<5\ Aroin B350
L pel

<] (3 Wecon PP ) (3 1558

L “ged BeH

—E| Y [Aeg(ol?|Bs| E)|
BeH

<E|Y [Ango Bl .
BeH

where the equality follows since

. 1 9
S 1Bl = = 3 I(Aw(B) 2 =1
A |H| =
BEH he
by Plancherel’s equality. .

Theorem 5. For every constant € > 0 and every finite Abelian group G such that |G| > 3, it is
NP-hard to distinguish instances of Maz E3-LinInEq(G) that are satisfiable from instances where
at most a fraction (1 — |G|~ + €) of the inequations are simultaneously satisfiable.
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The proof is a standard written Zg-proof with parameter u:

The verifier acts as follows:

Steps 1-6 are as in Fig. 6 applied to G = Zj.

7. Accept if Ay(f), Aw(h) and Aw ((f o )~ th?e) are not all equal;
Reject otherwise.

Figure 7. The PCP used to prove optimal approximation hardness for Max E3-NAE-Sat(Z,) for odd d.
The PCP is parameterized by the constant « and tests if a y-gap E3-Sat(5) formula & is satisfiable.

Proof. Given ¢, select u > 2loge/logc,. Then Lemmas 10 and 7 together imply that the soundness
of the PCP in Fig. 6 has soundness at most 1 — |G|~ +¢. .

Corollary 2. Maz E3-NAE-Sat(Z3) is hard to approzimate within 8/9+¢ with perfect completeness
for any e > 0.

Proof. We reduce Max E3-LinInEq(3), which we know to be hard to approximate within 2/3 with
perfect completeness from Theorem 5 applied to the group Z3, to Max E3-NAE-Sat(Z3). A clause
z+y+z # 0 mod 3 is replaced with the clauses NAE(z, vy, z), NAE(z+2,y+1, z), NAE(z+1,y+2, 2).
If all three NAE clauses are satisfied, then x +y + 2z # 0 mod 3; if x 4+ y 4+ z = 0 two of the NAE
clauses are satisfied. Therefore it is hard to distinguish the case when all the constraints are satisfied
from the case when a fraction
3(2/3 +3¢) +2(1/3 — 3¢)
3
of the constraints are satisfied. .

=8/9+¢

7.3 Case I: Groups of odd order

The PCP is described in Fig. 7. The setting is the same as in Sec. 7.2 but the acceptance predicate
of the verifier is different.

Lemma 11. The verifier in Fig. 7 has perfect completeness.

Proof. Suppose that the proof is the correct encoding of a satisfying assignment. We get two cases:
If Ay(f) = f(y|ly) and Aw(h) = h(y|w) are not equal, the verifier accepts; if f(y|v) = h(y|w),
then Aw ((f o m)"th%e) = h(ylw)e(ylw) # h(ylw) = Aw (h) and the verifier accepts. .

The soundness is a bit more complicated to analyze. As usual, we assume that the test accepts with
probability 1 — |G|™2 + § and prove that the tables in the proof must then be correlated. We then
use this correlation to extract strategies for the provers in the 2P1R game.

Lemma 12. Suppose that the verifier in Fig. 7 accepts with probability 1— |G|2+0 for some § > 0.
Then there exists y1 € G \ {0} and v2 € G\ {0} such that

B | 3 oo PIBsI4 17 | > 6%
BeH

where U, W, F, H, and © are as in Convention 1, A, are the Fourier coefficients of y1 o Ay, and
Bg are the Fourier coefficients of o o Aw .
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Proof. The test accepts unless all three queries return the same value, therefore we can write the

acceptance probability as 1 — 3, E[I;] where I; denotes the indicator for the event that all three
queries return g:

= i S ) o+ o anr)s

71#0 Y270
<1+Z 1AW ((fom)™ lh2e ))” )
Y37#0
We now expand the products and get
— L -1 it
= (1 +7§0(g Ay (1)
+ Y (g Aw(r)” + D (67 Aw ((f o m) ™ h%e))™
Y2#0 ’73760
+ > ) (g MAu(F) " (g T Aw (k)"
7170 727£0
+ 32 D (g Au() (g Aw((f o m) T HhPe)
7707370
+ >0 ) (g7 Aw(h) (g7 Aw((f o ™)~ h%e)) ™
Y2#0 v3£0
DIDY Z<g—1AU(f)>71(g-lAW(h»”(g—lAW((fowrlh%))”).
7170 7270 1370

Let us now consider the contributions of the above terms when we sum I, over all ¢ € G. The
constant term contributes |G|/|G|?> = 1/|G|?. The linear terms vanish since

PIEDY

9€G yeG\{0}
where h is independent of g can be rewritten as
2 W) g =0
yeG\{o}  9€C

where the equality follows since }° . g7 = 0 for every v # 0. The quadratic terms also disappear,
but the argument is somewhat more involved. Consider terms of the first form:

Y3 Y (g Au() " (g Aw ()

gEG 71 #0 72 #£0
— Z Z (AU( ’71 AW 72 Zg—'n 2
Y170 v2#0 geG

For fixed, v and 75 such that 1 + 2 # 0, the inner sum is definitely 0. Therefore, we only have
to care about

> B Ui ] = ¥ ¥ Y B[AuByElent].

v€G\{0} yeG\{0} acF BcH
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The inner expectation above is always zero unless @ = 0 and 8 = 0. Thanks to folding, we always
have Bg = 0 when 3 = 0, therefore all terms of the above form vanish. The terms of the second
form need an additional argument. Expanding them as above, we get

> 3 X B[ ABy (S o) )|
yeG\{0} acF BcH
= > ¥ E[AWG(ﬂ)Bﬁ E[h?] E[eﬂ]]. (5)
v€G\{0} B H

The inner expectation E[h??] is zero as soon as 23 # 0. It is true for groups of odd order that 8 # 0
implies 23 # 0, therefore all terms of the above form vanish. For terms of the third form we get

> X X B[BuBuER (S om) i)

yeG\{0} 1€ H BacH
= Z Z ZE[Bglég2E[f_”c"(ﬂ2)]E[hﬁ1_2ﬂ2]E[eﬂ2]]
¥€G\{0} B1€H BocH
-y ZE[BzﬁéﬁE[f_“G(ﬁ)]E[eﬁ]].
v€G\{0} BeH

The inner expectation E[f~7¢(8)] is zero as soon as wg(8) # 0. Since the tables are folded, Bg =0
for all B8 such that mg(8) = 0, therefore also the terms of the above form vanish. Since we have
killed all unwanted terms, the acceptance probability can then be written

1 1 1 — 2
I-gr—r Y BlAU) (Aw((fom) R (Aw () ™).
Y15y72572
71¢0172¢0173¢0
Y1+72+7v3=0

Suppose that the acceptance probability is at least 1 — |G| 2+ § for some § > 0. Then there exists
1, ¥2 and -y3 such that

B[(Au (£)" (Aw ((f o m)~'h%))™ (Aw ()]
Now expand the expression inside E[-] in a Fourier series for those 71, y2, v3. We get

0 < E-Z > > AaBﬂléﬁzf“((fOW)_the)ﬂ19ﬂ2]

el preH BocH

= E Z Z ch(ﬂl)Bﬁléﬂ2h2ﬂl+ﬂz E[eﬂl]H
BieH BreH

= B[S Apyis BoCios E[eﬂ]H.
BeH

> 4.

Putting the pieces together, we have shown that

< |B[(Au(9) (Aw (W)™ (Aw (7 o 7) 120)) ]
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The proof is a standard written Zg-proof with parameter u:

The verifier acts as follows:

Steps 1-5 are as in Fig. 6 applied to G = Z;.

6. Select e; € H such that independently for every y € SATY,
e1(y) is uniformly distributed in {w*, w‘“"’l}d/ o

Select ey € H such that independently for every y € SATW,

e2(y) is uniformly distributed in {w+!, 4’+2}d/ o
Let € = ejes.

7. Accept if Ay(f), Aw (k) and Aw ((f o w)"Lh2e) are not all equal;

Reject otherwise.

Figure 8. The PCP used to prove optimal approximation hardness for Max E3-NAE-Sat(Z;) where
d = 2™ for integers m > 2. The group Z, is represented by {w’}¢_ a- 1 where w = €?™/¢ and multiplication
is the group operator. The PCP is parameterized by the constant u and tests if a p-gap E3-Sat(5)
formula @ is satisfiable.

2

BeH

2
‘Z Aﬂ'G BﬂC 28 E[e ] ]
pBEH

We now apply Cauchy-Schwartz to rewrite the above bound as
. N 9 A
# <B[( S 1Aroto Bl B ) (3 10257) |
BeH BeH

Since G has odd order, the second factor above can be bounded by

Y10 = Y 1GsP =1, (6)

BeH BeH
where the second equality is Plancherel’s equality. Therefore,

# <E| Y Vrg(o)l?|BsP B
BeH

<E[ X [Anpl Bsl4) .
BeH

Theorem 6. For every constant € > 0 and every finite Abelian group G of odd order, it is NP-hard
to distinguish instances of Max E3-NAE-Sat(G) that are satisfiable from instances where at most a
fraction (1 — |G| ™2 +€) of the constraints are simultaneously satisfiable.

Proof. Given ¢, select u > 2loge/logc,. Then Lemmas 12 and 7 together imply that the PCP in
Fig. 6 has soundness at most 1 — |G|™! + ¢ .
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7.4 Case II: Z; where d = 2™ for integers m > 2

To handle this case we modify the protocol from Sec. 7.3 slightly. We represent Z; as {w’ gz_ol
where w = €2™/¢ and multiplication is the group operator. By representing the elements of the dual
group—recall that they are actually the homomorphisms z + z™ for integers n—as {0, 1,2,...,d—1}
with addition mod d as the group operator, we can still use the syntax g” to denote an element y € Z,
acting on some g € Zy. The only change in the protocol is the way we select error function. Recall
that the fact that the underlying group has odd order was needed at two places in the proof. It
was first needed for the quadratic terms from expression (5) in the proof of Lemma 12 to always
be zero, and it was the necessary to for the first equality in the bound (6) to hold. In the protocol
from Fig. 8, we select the error function in such a way that the proof can be made to work in the
above two places also when G has order 2™ for integers m > 2. Let us first note some properties of
the error functions

Lemma 13. Let e; and ey be selected as in Fig. 8. Then

e1(y)ea(y) #1  with probability 1,

1 ify=0,
_ ) (A+9)/2 ify=d/4,
Bl =4 (1 92 i3/,
0 otherwise.
E[(e2(y))"] = w” E[(e2(y))"],
1 ify=0,
[E[(e1(y)ea(y))]l = § 1/2 ify=d/4 or vy =3d/4,
0 otherwise.
IBl(erea)’)] - { 2P Bw) € (0,414,344} for oy,

Proof. For e; and es selected as in Fig. 8, e1(y)e2(y) can assume the values
: - : - : -/ : -/
w4zw4z +1’ w4z+1w4z +1, w4z+1w4z +1, w4z+1w4z +2’

or, expressed differently,
i gl gl gl
w4(z+z )+1’ w4(z+z )+2’ w4(z+z )+3

bl

for integers 0 < 4,4’ < d/4 — 1. Since w = e?m/d the expressions above are different from 1 if
4(i +14") < d — 3. To prove the second equality, notice that

1+ o d/4-1 14+ W) (1 — e
E[(e1(y))"] = ;F/Q Ig} k= | ;lr(1 —)5047)/2 ! =0

where the second equality is valid when w*? # 1, i.e., when +y is not an integer multiple of d/4. For
the other cases,

El(ex(»)"] = E[1] = 1,
14w/t % 14

E|(e Ay - 2% 1= ,

()" = 2= > 1=
d/a—1

El(e /2 :M 1=0,

(@)= %
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1 + w3d/4 d/4-1
Bl = —5— X 1=
k=0

The third equality follows since ey(y) is distributed as we;(y) and the fourth equality follows since
e1; and ey are selected independently. The fifth equality is an immediate consequence of the fourth.

Lemma 14. Suppose that the verifier in Fzg 8 accepts with probability 1 —d 246 for some § > 0.
Then, there exists v1 € Zg \ {0} and v2 € Zy\ {0} such that

Z |A7rg(ﬂ)|2|Bﬂ|227W| > 527
BeH
B(y)€{0,d/4,3d/4}Vy

Euw

where U, W, F, H, and © are as in Convention 1 with G = Z, A, are the Fourier coefficients of
71 0 Ay, and Bg are the Fourier coefficients of y2 o Aw .

Proof. If we let G = Z; and denote the product ejes by e, the proof proceeds exactly as the proof
of Lemma 12 up to the expression (5):

ooy E[A,rg(mﬁzﬁ E[h?°)E[¢?]|.
Y€G\{0} BeH

The argument used in the proof of Lemma 12 to prove that this expression vanishes is not valid in
this case since it relies on the fact that the domain size is odd. Instead, we use our modified error
function together with some other observations. Consider the term

Ane(5)Bs E[W?°)Elef] = Ay (5B E[h?P) E[e}] E[e5)]

for a fixed 8. We now argue that this term vanishes for every 8. Since E[h?’] = 0 as soon as 23 # 0,
we only need to consider the case when S(y) € {0,d/2} for all y € SAT"Y . If there exists a yo such

that B(yo) = d/2,
E[(e1(40))"#] = E[(e1(y0))*] = 0
by Lemma 13, and therefore

Ef]= ][] Ellei(®)’®]=0.

yESATW

Finally, B g = 0 as soon as [(y) = 0 for all y since the tables are folded, therefore the term vanishes
also in this case. To conclude, all terms of the above form always vanish, for every S.
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The argument used to kill the quadratic forms of the third form in the proof of Lemma 12 is
valid also in this case since it does not rely on any assumption regarding the domain size. Therefore,
the acceptance probability can then be written

- di - di > E[(Au()) ™ (Aw((f o m) T h%e) ™ (Aw (k)]
Y1,72,72
1#0,72#£0,7370

Y1+v2+73=0

Suppose that the acceptance probability is at least 1 — d—2? + § for some § > 0. Then there exists
Y1, v2 and y3 such that

B[(A0 ()" (Aw ((f o )7 h%)) ™ (Aw (1))

Now expand the expression inside E[-] in a Fourier series for those 71, v2, v3. We get

> 4.

2

#<[B[X 5 ¥ AaBnCuso((f omy ey

“a€F B1€H BocH

r 2
=Bl X X Ang(p B Cah® E[eﬁl]H

"B1EH BocH

2

= [B| 32 Avo(s)BaC-a Bl
BeH

= E > Ang(5)BsC 28 E[eﬂ]]
BeH
B(y)€{0,d/4,3d/4}Vy

where the last equality follows from Lemma 13. We now apply the Cauchy-Schwartz inequality to
the above bound:

PEl( 0N M PIBEE) x

BeH
B(y)€{0,d/4,3d/4}Vy

(= ewEe)), @

BeH
B(y)€{0,d/4,3d/4}Vy

2

To bound the second factor above, we collect terms containing the same Fourier coefficient C',Qﬁ.
Notice that each g such that S(y) € {0,d/4,3d/4} for all y maps onto a S’ such that S(y) = 0
implies that '(y) = 0 and B(y) € {d/4,3d/4} implies that §'(y) = d/2. Therefore, |G| = |5'| and
there are 2171 = 218 different B that map onto each " with the property that 8 € {0,d/2} for all y.
To sum up, the second factor above is

S G- Y ks
BeH g cH
B(y)€{0,d/4,3d/4}Vy B'(y)€{0,d/2}Vy
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The proof is a standard written G-proof with parameter u:

The verifier acts as follows:

Steps 1-5 are as in Fig. 6.

6. Select e by selecting independently the components of e(y)
according to Step 6 in Figs. 7 and 8, respectively.

7. Accept if Ay(f), Aw(h) and Aw ((f o 7) th2e) are not all equal;
Reject otherwise.

Figure 9. The PCP used to prove optimal approximation hardness for Max E3-NAE-Sat(G) for any
finite Abelian group G = Go X Zsa1 X Zas X -+- X Zzas where Gy is a finite Abelian group of odd
order and «; > 1 for all . The PCP is parameterized by the constant u and tests if a pu-gap E3-Sat(5)
formula @ is satisfiable.

Inserting the above bound into (7) gives

F<El X e PIBl B
BeH
Bly)e{0,d/4,3d/4}Vy
<E[ X HelIBsP2 ) -
BeH

ﬂ(y)E {0,d/4,3d/4}Vy

Theorem 7. For every constant € > 0 and every d = 2™ where m > 2 is an arbitrary integer, it is
NP-hard to distinguish instances of Max E3-NAE-Sat(Z,) that are satisfiable from instances where
at most a fraction (d=2 4 €) of the constraints are simultaneously satisfiable.

Proof. Given ¢, select u > 2loge/logc,. Then Lemmas 14 and 7 together imply that the PCP in
Fig. 6 has soundness at most 1 — |G| + ¢ .

7.5 Proof of Theorem 4

Remember that every finite Abelian group is isomorphic to some group of the form
Zptln X Zpgz X -+ X Zp?s (8)

where the p; are not necessarily distinct primes and |G| = p$'p5? - - - p%. To prove Theorem 4 we

first combine the protocols of the previous sections to prove the result for groups such that pj* # 2
for all 4 in the expansion (8). This result is then combined with a simple gadget reduction to
complete the proof.

Lemma 15. Suppose that the verifier in Fig. 9 accepts with probability 1— |G| 246 for some é > 0.
Then there exists y1 € G \ {0} and v € G4\ {0} such that

EU,W[Z | Ara(s))?1Bsl?27 1| > 62,
BeH

where G is a finite Abelian group such that pi* # 2 for all i in the expansion (8), U, W, F, H,
and 7 are as in Convention 1, A, are the Fourier coefficients of y1 o Ay, and Bg are the Fourier
coefficients of ~y9 o Ay .
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Proof. Since the proof is very similar to the proofs of Lemmas 12 and 14 we only give the most
important details. From the requirements on G from the formulation of the lemma, we can deduce
that G is isomorphic to a product of the form Gg X Zsa; X Zsas X - -+ X Zgas where G is a finite
Abelian group of odd order and «; > 1 for all 5. Any g € G can thus be written as a tuple
(90, 91,92, -, gs) where go € Go and g; € Zga; for i = 1,2,...,s. Similarly, any v € G can be
decomposed as (o, 71,72, ---,7s) and it then holds that g7 = gl°g{" g3” - - - g2*.

The two critical points of the previous proofs are the quadratic terms of the form (5) and the

application of Plancherel’s equality. Let us first consider the quadratic terms:

> > E[ch(ﬂ)Bﬂ E[h%] E[eﬁ]]-
v€G\{0} e H

Consider an arbitrary term in the sum. Since h is selected uniformly and e is selected component-
wise, the inner expectations can be written as

E[h*%] Ele”] = E[hg™] Elef] f[ E[h7 Elef]
=1

Now we know from the proof of Lemma 12 that E[hgﬂ °] E[ego] = 0 as soon as By # 0. Similarly, we

now from the proof of Lemma 14 that E[h?ﬁi] E[eiﬂi] =0 as soon as ; # 0. And, finally, if 5y =0

and B =B =---=fF; =0, Bg = 0 thanks to folding. Therefore,
> 2 E[Aﬂa(ﬂ)éﬁ E[n*] E[eﬁ]] =0.
v€G\{0} peH

We now turn to the application of the Cauchy-Schartz inequality and Parseval’s equality. With
arguments similar to those in the proofs of Lemmas 12 and 14 it follows that

2

52 < ‘E[Z Am(mgﬂa_wmeﬁ]]

BeH
<B|(( X Vro(s P1BoPIER) ) ( X 1C-asPI EY )|
pel pert

under the assumption that the test in Fig. 9 accepts with probability 1 — |G|~2 + §. In the above
expression, all sums over 3 are over all 8 € H such that for all ¢ € {1,2,...,s} it holds that
Bi(y) € {0,d/4,3d/4} for all y. We now want to bound the last sum using Parseval’s equality. As
in the proof of Lemma 14, we gather terms containing the same C’g:. Since the original sum is only
over 3 € H such that for all i € {1,2,...,s} it holds that §;(y) € {0,d/4,3d/4} for all y, there are,
for each @', at most 2/%'| = 28! different B with the property that —23 = . Therefore, the last
sum can be bounded by

S 1C a6 B[] = Y [Capl?27 P < 3 1Cp? = 1.

BeH BeH el

To conclude, we have shown that

8 <B| Y Virg(o)1BsPIEI) | < B| T 1AegolIBsP27 .
BeH BeH
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Lemma 16. Suppose that, for every constant € > 0, it is NP-hard to distinguish instances of Max
E3-NAE-Sat(G) that are satisfiable from instances where at most a fraction (1 — |G|~2 + €) of the
constraints are simultaneously satisfiable for some finite Abelian group G. Then, for every constant
e >0, it is NP-hard to distinguish instances of Max E3-NAE-Sat(Zy x G) that are satisfiable from
instances where at most a fraction (1— (2|G|)~"2+¢) of the constraints are simultaneously satisfiable.

Proof. Given an arbitrary clause NAE(g;z;, g%, gxxx) from the Max E3-NAE-Sat(G) instance
construct four clauses

NAE((1, 9:)yi, (1,95)5, (1, gx)ys),
NAE((—1,9;)v5, (1,97)y5, (1, 9 )Uk),
NAE((1, 9:)ys, (— ,g])yja (L, 9%)yx),

NAE((1, 9:)vs, (1,95)yj, (—1, gx)yx)

in the Max E3-NAE-Sat(Z, x G) instance for the group Zs x G. Above we use multiplication as
the group operator and represent Zy as {—1,1}.

Given a solution to the Max E3-NAE-Sat(Z; x G) instance, construct a solution to the Max E3-
NAE-Sat(G) in the obvious way. If z, y, and z are not all equal, all four clauses will be satisfied—if
they are all equal, the last three clauses will be satisfied. Therefore, it is hard to distinguish the
case when all constraints are satisfied from the case when a fraction

41 —d2+4e)+3(d2—4e) 4—d?+4e
4 B 4
of the constraints are satisfied. .

=1—(2d)72

8 The status of Max E2-Sat(d)

Although we were not able to completely resolve the status of Max E2-Sat(d) as far as approx-
imability is concerned, we have obtained some evidence regarding its hardness. In this paper, we
resolved the status of the easier Max Co-BI1J(d) problem-——it is not approximation resistant accord-
ing to Theorem 1—and the harder Max E3-NAE-Sat(Z;) problem—it is approximation resistant
according to Theorem 4.

For the Max E2-Sat(d) problem itself, we present some hardness results below. We first prove a
result for domain size 3 and then prove a result for general domains.

Lemma 17. For every constant ¢ > 0, the predicate (x # a) V (y = b) over domains of size 3 is
hard to approzimate within (23/24 + ¢) with perfect completeness.

Proof. Consider the following 2P1R interactive proof system for 3SAT: The first prover is given a
variable and returns an assignment to that variable, the second prover is given a clause and returns
an index of a literal that makes the clause satisfied. The verifier selects a clause at random, then
a variable in the clause at random, sends the variable to P, the clause to P, and accepts unless
P, returns the index of the variable sent to P, and P; returned an assignment that does not satisfy
the literal. It is known that there are satisfiable instances of 3SAT such that it is NP-hard to satisfy
more than 7/8+ ¢ of the clauses, for any constant € > 0 [10]. When the above protocol is applied to
such an instance of 3SAT, the test has perfect completeness and soundness (1—1/24+¢). To obtain
the hardness for the claimed constraint satisfaction problem, we just use the following reduction: z
specifies the name of a clause, y specifies a variable in this clause, a specifies the location of y in

28



z (encoded as 0,1 or 2), and b specifies a Boolean assignment to y (encoded over 0,1,2, where 2 is
meaningless). .

Theorem 8. For every constant € > 0, it is NP-hard to approzimate Maz E2-Sat(3) within 47/48+
€ with perfect completeness.

Proof. Follows from Lemma 17 since (z # a) V (y = b) can be written as a two E2-Sat(3) clauses.

Theorem 9. For every d > 3 and every constant € > 0, Max E2-Sat(d) is hard to approzimate
within a factor of (1 —d~* + €) with perfect completeness.

Proof. We reduce Max E3-Sat(d), which is known to be hard to approximate within (1 —d=2 + de)
with perfect completeness to Max E2-Sat(d). A constraint SAT(z, y, z), which requires that at least
one of z,y, z does not equal 0, is replaced with the constraints SAT(z,t), SAT(x,t+1), SAT(z,t+2),
.oy SAT(z,t+d—3), SAT(y,t +d —2), SAT(z,t +d — 1), where ¢ is an auxiliary variable specific
to this constraint and the additions are done modulo d. If all d 2SAT clauses are satisfied, the
3SAT clause has to be satisfied; if the 3SAT clause is not satisfied we can satisfy d — 1 of the 25AT
clauses. Therefore it is hard to distinguish the case when all the constraints are satisfied from the
case when a fraction 2(d(1 —d™2 4 de) + (d — 1)(d™® — de)) = (1 — d~* + €) of the constraints are
satisfied. .

Theorem 10. Maz E2-Sat(d) is hard to approzimate within a factor 1 — £2(d~?) with non-perfect
completeness. It is also hard to approzimate within a factor 1 — £2(d=3) with perfect completeness
for all d > 3.

Proof. We reduce d-CUT, which is hard to approximate within 1 — 1/34d + ¢ with non-perfect
completeness [11], to Max E2-Sat(d). A clause CUT(z, y) is replaced with the clauses SAT(z+1, y+1)
for all 7 from 0 to d — 1. A d-CUT instance with n constraints corresponds to a 2SAT(d) instance
with dn constraints and an assignment satisfying all but k& 2SAT(d) constraints satisfies all but k
d-CUT constraints.

The hardness result with perfect completeness follows using the above reduction together with
the result of Lemma 18 below which shows a factor 1 — £2(1/d?) inapproximability result for Max
d-CUT with perfect completeness, or in other words Max d-CUT on d-colorable graphs. Combining
with the above gadget that reduces d-CUT to 2SAT(d), we get the claimed 1 — £2(1/d®) hardness
for satisfiable instances of Max E2-Sat(d) for all d > 3. .

Lemma 18. There is a constant v > 0 such that for all d > 3, given as input a d-colorable graph,
it is NP-hard to find a d-cut that cuts a fraction 1 —~y/d* of the edges.

Proof. The reduction is from Max 3-CUT on 3-colorable graphs (i.e., Max 3-CUT with perfect
completeness), which is known to be hard to approximate within a factor (1 — §) for some absolute
constant § > 0 [14]. This already gives the result for d = 3, so assume d > 4. Given a graph
G = (V, E) construct a new weighted graph H as follows. H will contain G as an induced subgraph.
It will further contain (d — 3) new vertices u,us, ..., uq—3, and each u; is connected to each v € V
by an edge of weight d(v), the degree of v in G. Also, between u; and u; for 1 <i < j <d—3, we
add an edge of weight 2m where m is the number of edges in G.*

*For the reduction, it is possible to be more frugal in the size of the weights we assign, but since we are not
optimizing for the value of <y in the statement of the lemma, we chose large enough weights to make the proof very
simple.
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The proof is a standard written G-proof with parameter u:

The verifier acts as follows:

Steps 1-4 are as in Fig. 6.

5. Select f € F and hq,h,...,hx_o € H uniformly at random.

6. Select e € H such that independently for every y € SATW,
e(y) is uniformly distributed in G \ {1}.

7. Define hy_1 = (f o) (hihg - - - hy_3) e

8. Accept if Ay(f) Hf:_f Aw (h;) # 1; Reject otherwise.

Figure 10. The PCP used to prove optimal approximation hardness for Max Ek-LinInEq(G) for any
k > 3 and any finite Abelian group G such that |G| > 3. The PCP is parameterized by the constant u
and tests if a y-gap E3-Sat(5) formula & is satisfiable.

Clearly, H is d-colorable if G is 3-colorable as one can give (d — 3) new colors to the u;’s.
Furthermore, given a d-coloring of H that fails to cut a set of edges of total weight W, we can use
it to find a 3-coloring of G that fails to cut at most W edges. Indeed, given a d-coloring of H, we
can first modify it so that the u;’s receive distinct colors without increasing the weight of the uncut
edges. We can do so since if, say, u; and us receive the same color, then we can recolor us by a color
that is not used by any of u;’s; under the new coloring the edge (u1,u9) of weight 2m is cut, and
the worst that could happen is that all edges (u2,v) become uncut and these have a total weight of
only 2m. Once the u;’s all get distinct colors, in the next step, if some v € V and u; have the same
color, we recolor v using one of the 3 colors not used by w1, us,...,uq—3, until no edge of the form
(v,u;) is uncut. These steps do not increase the weight of the uncut edges since the weight of an
edge (v,u;) is greater than the total weight of all edges incident upon v in G.

We now have a d-coloring of H in which the vertices in V receive three colors distinct from the
(d — 3) colors used to color the u;’s and thus the only uncut edges are those of G. Since the weight
of uncut edges was originally W and could have only decreased in the process of recoloring H, it
follows that there is a 3-coloring of G that leaves at most W uncut (i.e., miscolored) edges.

The total weight of edges of H, say M, is at most d’>m. By the above discussion, if the maximum
3-cut of G cuts at most (1 — §)m edges, then the maximum d-cut of H cuts edges of total weight
at most M — ém < (1 — §/d*)M.

Hence, it is NP-hard to approximate Max d-cut on weighted graphs within a factor of (1 —
2(1/d?)) even with perfect completeness. This is almost the result we want except that we only
showed hardness for weighted graphs. However, one can deduce inapproximability within the same
factor also for unweighted graphs by appealing to a general procedure for getting rid of weights due
to Crescenzi, Silvestri, and Trevisan [5]. .

The result of Theorem 9 is not entirely subsumed by the result of Theorem 10 for satisfiable instances,
since the constant in front of 1/d® implies that the result of Theorem 9 will actually be stronger for
small values of d. An interesting question is whether a factor (1 — £2(d~2)) hardness can be shown
for satisfiable instances of Max E2-Sat(d).

Conjecture. Although we did not completely resolve the status of Max E2-Sat(d), we conjecture
at this point that the problem is not approximation resistant.
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9 The status of Max Ek-Sat(d) for k£ > 3

Theorem 5 generalizes to Max Ek-LinInEq(G) for any k£ > 3 by a small modification to the protocol.
The modified PCP is described in Fig. 10.

Lemma 19. The verifier in Fig. 10 has perfect completeness.

Proof. Suppose that the proof is the correct encoding of some satisfying assignment y. Then

k-1 k—2 k—2
A () T Awh) = ) (T] 1)) ¢ o) ) (TT 1 ) ) )
=e(y) #1
and the verifier accepts. .

Lemma 20. Suppose that the verifier in Fig. 6 accepts with probability 1— |G|~ +§ for some § > 0.
Then there exists some v € G \ {0} such that

EU,W[Z | A ?1Bl? 187 > 62,
BeH

where U, W, F, H, and m are as in Convention 1, A, are the Fourier coefficients of v o Ay, and
Bg are the Fourier coefficients of v o Aw .

Proof. The suggested test accepts unless Ay (f) Hf;ll Aw (h;) = 1, therefore
1 1 k—1 %
———E[ > (AU(f) HAW(hi)) ]
Gl |G| - et
7€G\{0}

If Pr[accept] > 1 — |G|~ + 4 there exists a y € G such that

‘E[(Aﬂf)'EAW(hi)ﬂ

Now expand yo Ay and o Aw in their Fourier series for this value of +:

Z Z Z Z AaBﬁlgﬂ2”'Bﬂk—1

a€F B1eH BocH Br_1€H

E{fajl;[_lzhfi ((f o)t kl:fhi_le)ﬂkl]

=1

Pr[accept] =1 —

> 4.

2 <

2

2
= ‘E[Z Ao By (1= |G|)—‘*']

peH
<E (2 |Ar )21 B5 (1G] — 1)—2lﬂ> (Z |B€ﬂ|2(k—2)>]
pet BeH
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< E[Z |AwG(ﬁ)|2|Bﬁ|2|ﬂ|_1]a
BeH

where the last inequality follows since
ST BPED < N Byt =1
BeH BeH

by Plancherel’s equality. .

The strategy from the case k = 3 now works without modifications.

Theorem 11. For every constant € > 0, every integer k > 3 and every finite Abelian group of order
at least three, it is NP-hard to distinguish instances of Max Ek-LinInEq(G) that are satisfiable from
instances where at most a fraction (1 — |G|™! +€) of the inequations are simultaneously satisfiable.

As a corollary, using a reduction similar to that described in Section 2, we also obtain that Max
Ek-Sat(d) is non-approximable beyond the random assignment threshold.

Corollary 3. For allk > 3 and alld > 2, Maz Ek-Sat(d) is hard to approzimate within (1—d *+¢)
with perfect completeness for any constant € > 0.

Proof. The result for d = 2 follows from a difficult proof due to Hastad [10]. For d > 3, we reduce
Max Ek-LinInEq(G) for some group of order d, which we know is hard to approximate within
1 — d~! with perfect completeness by Theorem 11, to Max Ek-Sat(d). An equation z1---z} # g
is replaced with d* !(d — 1) Max Ek-Sat(d) clauses such that there is one clause for every non-
satisfying assignment to the constraint z;---zx # g. If all Max Ek-Sat(d) clauses are satisfied,
the Max Ek-LinInEq(G) clause is satisfied; if z; - - -z, = g there is one unsatisfied Max Ek-Sat(d)
clause. Therefore it is hard to distinguish the case when all the constraints are satisfied from the
case when a fraction

d*1d—1) - (1 —d™ ' —d*1(d —1)e)

=1-d7*
F—1(d—1) te
of the constraints are satisfied. n
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A Analysis of the algorithm for Max Co-BIJ(d)

Lemma 21. Let r be a 2d-dimensional normal variable with mean zero and identity covariance
matriz. Let B = {r:|r| <1/Kd}. Then,

/B (1 - é + Kjﬁ) dP(r)

K> > 1\ & 1 K2 & 1
_ o1 K ik (1__) 1 K- 1)
it ¢ d g;;mk(fcd)?k T gmk(f{d)%

Proof. We will show that

d—1
2 1
— 1 — ¢~ 1/2(Kd) E : - -
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d
1

2dP(r) = 1 — e~ 1/2(Kd)? -

/Brl (r) € gk!?k(Kd)Qk

Let us start by computing the first integral. The probability distribution for a 2d-dimensional
normally distributed random variable with zero mean and identity covariance matrix is P(r) =
(27)~%e17"/2_ therefore

/dP( )= 1 /1/(Kd) _p2/2/ dS(r) d
B "= (27T)d 0 ¢ rir|=p e

The volume of a 2d-dimensional hypersphere with radius p is 7¢p??/d! and the area of this sphere
is 2d/p times the volume; thus [, _,dS(r) = 2dn¢p?d-1/d! and

dP(r 1/kd 2d—1 fp2/2d
/ ~ o0 1(d 1)/ poe p

With the substitution p?/2 = ¢, pdp = dt,
1 1/(2K2d?)
dP(r) = ——— 4l t dt.
/B )= @ /0 ¢

Using the identity

d d d'
/ tle tdt = —e Z K
the latter integral can be easﬂy evaluated:

1 1/Kd d—1_—t —1/2(K d)? = 1
(d—1)!/0 tretdi=1-e¢ g)k!zk(f(d)?k'

The second integral can be computed with similar techniques. Since B is spherically symmetric,

/BrldP( 2d/ 7|2 dP(r).

Using the fact that the probability distribution for a 2d-dimensional normally distributed random
variable with zero mean and identity covariance matrix is P(r) = (2r)~%e~I""/2  the integral of
interest is

/I ap() =

1
B

1 /1/(Kd) 9 *p2/2/
- e ds(r)d
(2m)? Jo P rilr|=p (r)dp

1 rl/2(Kd)?
=5 / tdet dt
2 Jo

l d tk] t=1/2(Kd)?

—t
Z a
To conclude,

d
1
/B 1dP(r) kzzo K12F (K d)2F
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Lemma 22. Let
L 1

Sn = Z k 2k
= k12K (K d)
With the parameter choice K2 =d 3/13,
K2 1 K? _
— - e /2K’ ((1 - E) Sn_1+ 75;) > 0.07d*.

for all integers d > 2.

Proof. With the choice K2 = d=3/2q, e V/2(Kd)* — g=ad gpg g, = 5¢_ (aki!)k. Let a; = (ad)* /!
Note that all ay are positive and that ax11/ar = ad/k > « for all k < d. Therefore, provided that
a>2andn<d, S, <apsr1 < 2a,, which implies that

(ad)! _ (0e)!

1 K? d—1(ad)? 1 (ad)?
= il A i —- <
(1 d>Sd_1 TS T Tad d S @ S Vand
where the last inequality follows since d! > d%~%/2xd by Stirling’s formula. Therefore
K? —1/2(Kd)? 1 K? - d(ae)d —4
- 1= = )Sp 14+ 8n | >" —e @ L = g4
a° (1-3)smi4n) 2 e im0
where
1
8= % (27) "2 exp((1 — a + Ina)d + 3.5Ind).

All that remains is to select a good «, more precisely, an « such that the exponential function is
decreasing in d. A simple calculation shows that a = 6.5 suffices for all integers d > 2 and gives a
lower bound of G > 0.07. "
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