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Abstract

Decision trees are representations of discrete functions with widespread applica-
tions in, e.g., complexity theory and data mining and exploration. In these areas it
is important to obtain decision trees of small size. The minimization problem for
decision trees is known to be NP-hard. In this paper the problem is shown to be
even hard to approximate up to any constant factor.

1. Introduction

Decision trees are one of the simplest representations of discrete functions. Roughly, a decision
tree queries properties of the given input in an adaptive way, i.e., the queries may depend on
the results of previous queries. Eventually, the result has to be output merely depending on
the results of the queries. We are interested in decision trees that may query the values of the
input variables; however, more general queries like comparison of numbers also lead to useful
representations. Furthermore, we focus on decision trees for Boolean functions.

More formally, a decision tree consists of internal nodes and leaves. Each node except the root
has exactly one incoming edge. Each internal node is labeled by a Boolean variable and has
an outgoing 0-edge and an outgoing 1-edge. Each leaf is labeled by 0 or 1. The evaluation of
the represented function starts at the root. At each internal node labeled by xi the computation
proceeds at the node reached via the outgoing c-edge if xi takes the value c. Eventually, a leaf
is reached and the label of the leaf is the value computed. The path from the root to the leaf
that is chosen for the input x is also called the computation path for x. In the drawings 0-edges
are shown as dashed lines and 1-edges as solid lines. It is easy to verify that the example of a
decision tree in Fig. 1 represents the function f(x1, x2, x3) = x̄1x2 ∨ x1x̄2x3.

The basic complexity measures of decision trees are their depth and their size. The depth cor-
responds to the computation time and the size corresponds to the size of the representation by
a decision tree. In complexity theory the relation between the size and the depth of a decision
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Figure 1: An example of a decision tree for f(x1, x2, x3) = x̄1x2 ∨ x1x̄2x3.

tree and various complexity measures for Boolean functions has been explored. E.g., sensi-
tivity and certificate complexity are polynomially related to the depth of decision trees; for an
overview see Buhrman and de Wolf [1]. The relation between the size of decision trees and the
size of DNFs and CNFs was considered by Ehrenfeucht and Haussler [2] and Jukna, Razborov,
Savický and Wegener [10]. Another application of decision trees (with generalized queries)
is the proof of the Ω(n log n) lower bound for comparison-based sorting of n items and for
geometric problems (Knuth [11], Preparata and Shamos [13]).

Much research has been done in the automatic construction of decision trees from data. The
goals are to reduce the representation size of the data as well as to deduce properties from
the data, e.g., to discover whether the data can be partitioned into disjoint classes of objects
or to find methods to classify new data with as few queries as possible. This has many ap-
plications, e.g., in computational learning theory (see below), in biology (classification of un-
known species), machine fault location or questionnaire design. For an overview we refer to
Murthy [12].

We discuss the scenario of computational learning theory. There the goal is to determine an
unknown function, which is called the concept, from a set of examples, i.e., inputs together
with the values the function takes for these inputs. One tries to find a function that coincides
with the given examples and has, e.g., a small-size decision tree. If the decision tree is small,
it is likely that the function represented by the decision tree coincides with the concept also on
many inputs not given as examples. In fact, decision trees are the core of learning systems,
see e.g. Quinlan [14]. The theoretically best learning algorithm for decision trees is due to
Ehrenfeucht and Haussler [2]. The question for PAC-learnability of decision trees was con-
sidered by Hancock, Jiang, Li and Tromp [8]. They show the problem of finding a minimal
decision tree consistent with a given set of examples to be hard to approximate, which implies
the nonlearnability of decision trees in the PAC-learning model. We recall that a polynomial
time approximation algorithm for some minimization problem always has to compute a legal
solution; however, the size of the output may be larger than the minimum size by some constant
factor, which we call the performance ratio.
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It is convenient to define the size of a decision tree as the number of its leaves. The considered
problem is defined as follows:

MinDT

Instance: A decision tree representing some function f : {0, 1}n → {0, 1}.
Problem: Compute a decision tree for f of minimum size.

For decision trees with generalized queries the corresponding minimization problem was shown
to be NP-hard by Hyafil and Rivest [9]. The stronger NP-hardness result for MinDT was shown
by Zantema and Bodlaender [17]. They also raise the question for an approximation algorithm
for MinDT. We solve their question by proving the following result.

Theorem 1: If there is a polynomial time approximation algorithm with a constant performance
ratio for MinDT, then P = NP.

Zantema and Bodlaender [17] prove their NP-hardness result by a reduction from the indepen-
dent set problem for bounded-degree graphs. The reduction seems not to be approximation
preserving. Hancock, Jiang, Li and Tromp [8] prove the hardness of approximating a minimum
decision tree consistent with a set of examples by a reduction from the problem of computing a
shortest monomial consistent with a set of examples combined with a self-improving property
of minimization algorithms for decision trees. However, the minimization of decision trees rep-
resenting a function describing a single monomial is trivial such that their reduction does not
work for MinDT. On the other hand, a similar self-improving property is also helpful for us to
prove a stronger nonapproximability result.

A representation of Boolean functions related to decision trees are Binary Decision Diagrams
(BDDs), where the condition of fan-in 1 of each node is relaxed. This allows subgraphs of
the representation to be shared. A nonapproximability result for minimizing so-called Ordered
BDD (OBDDs) was shown in Sieling [15]; however, the proof of the nonapproximability result
is based on the sharing of subgraphs such that it cannot be adapted to MinDT.

A dynamic programming algorithm for exact minimization of decision trees with an exponential
run time was presented by Guijarro, Lavı́n and Raghavan [6]. Their algorithm is similar to an
algorithm for minimizing OBDDs due to Friedman and Supowit [4].

Our hardness result is proved in three steps. First, we define a covering problem and provide
an approximation preserving reduction from a variant of satisfiability (Section 3). This proves
that polynomial time approximation schemes for the covering problem imply P = NP. After-
wards, we provide an approximation preserving reduction to MinDT (Section 4). Finally, we
use a self-improving property of approximation algorithms for MinDT to show that polynomial
time approximation algorithms for MinDT can be converted to polynomial time approximation
schemes for MinDT (Section 5).
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2. Preliminaries

For the definitions of approximation algorithms and approximation schemes we follow Garey
and Johnson [5]. Let Π be a minimization problem. For an instance I for Π let OPT (I) denote
the value of an optimal solution of I . Let A be an algorithm that for given I only computes legal
solutions for I and let A(I) denote the value of the solution computed by A on the instance I .
The algorithm A is called approximation algorithm with the performance ratio R iff for all
instances I it holds that A(I)/OPT (I) ≤ R. A polynomial time approximation scheme for Π
is an algorithm B with an extra input ε. For all instances I and all ε > 0 the algorithm B has to
compute an output with a value B(I) such that B(I)/OPT (I) ≤ 1 + ε. The run time of B has
to be polynomial in the length of I but may arbitrarily depend on ε.

Our nonapproximability result is based on a nonapproximability result for the satisfiability prob-
lem. It is convenient to consider the following special variant of satisfiability. We recall that an
algorithm for a promise problem does not have to check whether the promise is fulfilled. If the
promise is fulfilled, the algorithm has to work correctly, and otherwise it may behave arbitrarily.

εGap3SAT5

Instance: A set X = {x1, . . . , xn} of variables and a set C = {C1, . . . , Cm} of clauses, where
each clause consists of exactly 3 literals, no variable occurs more than once in each
clause and each variable occurs exactly five times.

Promise: If (X,C) is not satisfiable, for each setting of the variables at least ε|C| clauses are
not satisfied.

Problem: Is there a satisfying assignment to the variables?

We remark that from the requirements on the instances of εGap3SAT5 the equality m = 5n/3
easily follows. The following hardness result is due to Feige [3].

Theorem 2: For some ε > 0 the problem εGap3SAT5 is NP-hard.

Let T be a decision tree. Then |T | denotes the number leaves of T . The subtree of a node v
of T is the decision tree whose root is v and which consists of all nodes reachable from v. We
call T reduced if on each path from the root to a leaf each variable is queried at most once. It
is well-known that decision trees can be reduced in linear time by removing multiple tests of
variables, see e.g. Wegener [16].

3. A Nonapproximability Result for SetSelection

We first define a covering problem, which we call SetSelection, and prove afterwards that a
polynomial time approximation scheme for SetSelection implies P = NP. This is an intermedi-
ate step in our proof of the hardness of MinDT. The restrictions on the instances are helpful to
make the reductions easier.
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SetSelection

Instance: A finite set P , sets D1, . . . , Dr ⊆ P and sets S1, . . . , Sl ⊆ {D1, . . . , Dr} with the
following properties:
(S1) ∀j ∈ {1, . . . , r} : |Dj | = 2 and ∀i ∈ {1, . . . , l} : |Si| ≤ 6.
(S2) For each i, j ∈ {1, . . . , r}, i 6= j, there are k, k′ ∈ {1, . . . , l} such that

Di ∈ Sk, Dj /∈ Sk, Di /∈ Sk′ , Dj ∈ Sk′ .
(S3) For each i ∈ {1, . . . , r} there are k, k′ ∈ {1, . . . , l}, k 6= k′, such that

Di ∈ Sk ∩ Sk′ .
(S4) For each p ∈ P and each Si it holds that p is contained in none, exactly

one or in all sets in Si.
Problem: Compute a sequence Si(1), . . . , Si(k) ∈ {S1, . . . , Sl} such that no set occurs more

than once in the sequence, ∀j ∈ {1, . . . , r} : Dj ∈ Si(1) ∪ · · · ∪ Si(k) and the goal
function

k∑

q=1

∣
∣
∣
∣
∣
∣

⋃

D∈Si(q)\(Si(1)∪···∪Si(q−1))

D

∣
∣
∣
∣
∣
∣

is minimal.

SetSelection is a covering problem where the objects D1, . . . , Dr have to covered by the sets
S1, . . . , Sl. However, the goal function also depends on the order of the covering sets. An
object Di contributes to the goal function only for its first occurrence. “Similar” sets Dj in the
same Si(·) contribute less to the goal function since the contribution only depends on the size
of the union of the Dj ∈ Si(·). We mention that the task to compute a permutation of the sets
S1, . . . , Sl minimizing the goal function is equivalent to the above definition since appending
the remaining sets to the covering sequence does not change the value of the goal function. In
the following we use the terms D-sets and S-sets to distinguish the different types of sets in
instances for SetSelection.

Theorem 3: If there is a polynomial time approximation scheme for SetSelection, then P = NP.

Proof: Let ε > 0 be chosen such that εGap3SAT5 is NP-hard. We provide a reduction from
εGap3SAT5. Let (X,C) be an instance of εGap3SAT5. Let Y (i) denote the set of indices of
clauses containing xi or x̄i. By the definition of εGap3SAT5 it holds that |Y (i)| = 5. We now
construct an instance for SetSelection. The construction is depicted in Fig. 2. Let

P = {ai, bi | 1 ≤ i ≤ n} ∪ {cj, dj | 1 ≤ j ≤ m}.

For each i ∈ {1, . . . , n} there is a D-set Di = {ai, bi} and for each j ∈ Y (i) there are D-sets
Dj

xi
= {bi, cj} and Dj

x̄i
= {ai, cj}. Furthermore, for each j ∈ {1, . . . ,m} there is the D-set

DCj
= {cj, dj}. For each i ∈ {1, . . . , n} there are the S-sets

Sxi
= {Di} ∪ {Dj

xi
|j ∈ Y (i)} and Sx̄i

= {Di} ∪ {Dj
x̄i
|j ∈ Y (i)}.

Let xu(j), xv(j) and xw(j) be the variables that occur (negated or not) in the jth clause Cj . For
each clause Cj there are exactly seven S-sets according to the following case distinction.
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Figure 2: The D- and S-sets for the variable x1 and the clause Cj = x1 ∨ x2 ∨ x̄3. We assume
that x1 occurs in the clauses Cj(1), . . . , Cj(5).
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S000
j = {DCj

, Dj
xu(j)

, Dj
xv(j)

, Dj
xw(j)

}, if Cj 6= xu(j) ∨ xv(j) ∨ xw(j),

S001
j = {DCj

, Dj
xu(j)

, Dj
xv(j)

, Dj
x̄w(j)

}, if Cj 6= xu(j) ∨ xv(j) ∨ x̄w(j),

S010
j = {DCj

, Dj
xu(j)

, Dj
x̄v(j)

, Dj
xw(j)

}, if Cj 6= xu(j) ∨ x̄v(j) ∨ xw(j),

S011
j = {DCj

, Dj
xu(j)

, Dj
x̄v(j)

, Dj
x̄w(j)

}, if Cj 6= xu(j) ∨ x̄v(j) ∨ x̄w(j),

S100
j = {DCj

, Dj
x̄u(j)

, Dj
xv(j)

, Dj
xw(j)

}, if Cj 6= x̄u(j) ∨ xv(j) ∨ xw(j),

S101
j = {DCj

, Dj
x̄u(j)

, Dj
xv(j)

, Dj
x̄w(j)

}, if Cj 6= x̄u(j) ∨ xv(j) ∨ x̄w(j),

S110
j = {DCj

, Dj
x̄u(j)

, Dj
x̄v(j)

, Dj
xw(j)

}, if Cj 6= x̄u(j) ∨ x̄v(j) ∨ xw(j),

S111
j = {DCj

, Dj
x̄u(j)

, Dj
x̄v(j)

, Dj
x̄w(j)

}, if Cj 6= x̄u(j) ∨ x̄v(j) ∨ x̄w(j).

This means the following: If in Cj the variables xu(j), xv(j) and xw(j) occur (negated or not),
there is the set S

zu(j)zv(j)zw(j)

j iff Cj is satisfied by the assignment z. In Fig. 2 the set S100
j for the

clause Cj = x1 ∨ x2 ∨ x̄3 is indicated by a dashed line. The set S001
j , which is indicated by a

dotted line, is the set that does not exist for this clause.

It is easy to verify that the constructed sets form a valid instance of SetSelection and that this
instance can be computed from (X,C) in polynomial time. Theorem 3 follows from two lem-
mas.

Lemma 4: If (X,C) is satisfiable, the constructed instance of SetSelection has a solution with
the value 46n/3.

Lemma 5: If (X,C) is not satisfiable, each solution of the constructed instance of SetSelection
has a value of at least 46n/3 + εn/3.

We first show that the lemmas imply Theorem 3. Let us assume that there is a polynomial time
approximation scheme A for SetSelection. Then we can construct a polynomial time algorithm
for εGap3SAT5 in the following way. Let (X,C) be an instance for εGap3SAT5. We construct
in polynomial time an instance I for SetSelection as described above and apply the polynomial
time approximation scheme A to I for the performance ratio 1 + δ, where δ < ε/46. If (X,C)
is satisfiable, by Lemma 4 there is a solution for I with a value of at most 46n/3 and, hence,
the value of the output of A is bounded above by (1 + δ) · 46n/3. If (X,C) is not satisfiable,
by Lemma 5 all solutions of the constructed instance of SetSelection have a value of at least
46n/3 + εn/3. Hence, also the output of A has at least this value, which, by the choice of δ, is
larger than (1+δ) ·46n/3. Hence, we can distinguish satisfiable and non-satisfiable instances of
εGap3SAT5 in polynomial time, which by Theorem 2 implies P = NP. Altogether, the proofs
of Lemmas 4 and 5 imply Theorem 3. 2

Proof of Lemma 4: Let z1, . . . , zn be a satisfying assignment for (X,C). We choose the fol-
lowing S-sets as a solution for the constructed instance of SetSelection, where the ordering of
these sets is not important since the sets are disjoint. If zi = 1, we choose Sxi

, and otherwise
Sx̄i

. For each of these sets the term in the sum of the goal function is 7. For each clause Cj

containing the variables xu(j), xv(j) and xw(j) (negated or not) we choose S
zu(j)zv(j)zw(j)

j . This set
exists in the constructed instance since Cj is satisfied by the assignment z. For each of these
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sets the term in the sum of the goal function is 5. Altogether the goal function takes the value
7n + 5m = 46n/3.

It remains to show that all D-sets are covered by our selection. The sets Di are covered by Sxi

or Sx̄i
, resp. Similarly DCj

is covered by the set S
zu(j)zv(j)zw(j)

j . Finally, each set Dk
xi

is covered
by Sxi

, if zi = 1, and otherwise by S
zu(j)zv(j)zw(j)

j where j is chosen such that the kth occurrence
of xi is in the jth clause. The analogous statement holds for Dk

x̄i
. 2

Proof of Lemma 5: Let a solution L for the constructed instance of SetSelection be given.
First we observe that we may exchange neighbored S-sets in the solution without changing the
value of the goal function if these S-sets are disjoint.

Since Di is only contained in Sxi
and Sx̄i

, for each i at least one of these two S-sets is contained
in L. If only Sxi

occurs or if Sxi
occurs before Sx̄i

, we choose zi = 1, and otherwise zi = 0.
Similarly for each j ∈ {1, . . . ,m} at least one of the sets S•

j has to be contained in L in order
to cover DCj

. We reorder the sequence L such that for each i ∈ {1, . . . , n} either Sxi
or Sx̄i

is
among the first n elements of the sequence.

W.l.o.g. let zi = 1, i.e., Sxi
occurs before Sx̄i

or only Sxi
occurs. We successively exchange Sxi

with its direct predecessor in L without increasing the goal function. If Sxi
and its predecessor

are disjoint, the goal function does not increase by the exchange as remarked above. Since
Sx̄i

does not occur before Sxi
, these sets are not exchanged. Then the only possibility of non-

disjoint sets is Sxi
∩ S•

j = {Dj
xi
}. Let T be the union of the S-sets in L before S•

j . Before
exchanging S•

j and Sxi
the terms in the sum of the goal function for S•

j and Sxi
are

∣
∣
∣
∣
∣
∣
∣

⋃

D∈S•

j
\T

D

∣
∣
∣
∣
∣
∣
∣

and

∣
∣
∣
∣
∣
∣
∣

⋃

D∈Sxi
\(T∪S•

j
)

D

∣
∣
∣
∣
∣
∣
∣

, resp.

After exchanging Sxi
with its predecessor S•

j the terms are

∣
∣
∣
∣
∣
∣
∣

⋃

D∈S•

j
\(T∪Sxi

)

D

∣
∣
∣
∣
∣
∣
∣

and

∣
∣
∣
∣
∣
∣

⋃

D∈Sxi
\T

D

∣
∣
∣
∣
∣
∣

, resp.

It suffices to consider the effect of Dj
xi

to these two terms of the sum. If Dj
xi
∈ T , the terms do

not change. Otherwise Dj
xi

= {bi, cj} is removed from the union for S•
j . Since bi does not occur

in any other D-set in S•
j , the term for S•

j decreases by one. On the other hand, the term for Sxi

increases by only one (for cj), since bi is already contained in the union for Sxi
. Altogether, the

value of the goal function does not increase.

Finally, we use an accounting argument to prove the lower bound on the value of the goal
function. There are accounts for each variable xi, each clause Cj and each set D•

xi
and D•

x̄i
. The

contributions to the goal function are distributed to these accounts and the accounts are summed
up separately.

W.l.o.g. zi = 1. By the reordering of L we know that Sxi
covers all sets D•

xi
. Hence, Sxi

contributes 7 to the goal function. This contribution is distributed in the following way. Each

8



covered set D•
xi

is charged 1 and xi is charged 2. If L also contains Sx̄i
and q sets D•

x̄i
are

covered by Sx̄i
, the contribution of Sx̄i

is q + 1. Then each of the covered sets is charged
1 + 1/q, which is bounded below by 1 + 1/5 because of q ≤ 5.

We consider the set Sν
j . If this is the first one among the sets S•

j in L, it covers DCj
and q ≤ 3

sets Dj
• and contributes q +2 to the goal function. Then Cj is charged 2 and each of the covered

sets Dj
• is charged 1. If Sν

j is not the first set among S•
j , it covers q sets Dj

• and contributes q+1.
One of the covered sets is charged 2 and the other ones 1.

The crucial observation is that for each clause Cj not satisfied by (z1, . . . , zn) there is at least
one set Dj

• not covered by the first set S•
j . Hence, at least one of these sets is charged at least

1 + 1/5. By the assumption that (X,C) is not satisfiable and by the promise, there are at least
εm non-satisfied clauses. Hence, there are at least εm sets Dj

• that are charged at least 1 + 1/5.
The remaining sets Dj

• are charged at least 1. Altogether, there are 10n sets Dj
•. Each variable

and each clause are charged 2. The sum of all accounts and, therefore, the value of the goal
function is bounded below by

εm ·
(

1 +
1

5

)

+ (10n − εm) · 1 + (n + m) · 2 =
46n

3
+

εn

3
.

2

4. A Weak Nonapproximability Result for MinDT

In this section we provide an approximation preserving reduction from SetSelection to MinDT.

Theorem 6: If there is a polynomial time approximation scheme for MinDT, then P = NP.

Proof: We assume the existence of a polynomial time approximation scheme A for MinDT and
construct a polynomial time approximation scheme B for SetSelection. Then from Theorem 3
the claim follows. Let I = (P,D1, . . . , Dr, S1, . . . , Sl) be the instance for B and let 1 + ε be
the required performance ratio. W.l.o.g. let ε ≤ 1.

Furthermore, w.l.o.g. we assume r ≥ 27/ε. Otherwise r and l ≤ 2r are bounded above by
constants such that I can be solved in constant time using an exhaustive search. We derive two
simple lower bounds on the value Vopt of an optimal solution for I . Since each S-set contains at
most 6 D-sets, a covering consists of at least r/6 S-sets. Each of these sets contributes at least
2, the size of the D-sets, to the goal function; hence,

Vopt ≥ r/3. (1)

Second, if Vopt < 9/ε, Eq. (1) implies r/3 < 9/ε and r < 27/ε in contradiction to the above
assumption. Hence,

Vopt ≥ 9/ε. (2)

From I we construct an instance T for MinDT. Let c = l(r + 1) and u = 2(r + 1)c. The
function f represented by T is defined as a disjunction of r + 1 monomials over the following
|P |c + u + l variables:
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1. For each a ∈ P there are c variables a1, . . . , ac, which we call a-variables.

2. There are u variables b1, . . . , bu, which we call b-variables.

3. There are l selection variables s1, . . . , sl.

For each set Di = {a, a′} there is the monomial

mi = a1 ∧ · · · ∧ ac ∧ a′1 ∧ · · · ∧ a′c ∧
∧

j|Di∈Sj

sj ∧
∧

j|Di /∈Sj

s̄j.

Furthermore, the (r + 1)-th monomial m∗ is defined by

m∗ = s̄1 ∧ · · · ∧ s̄l ∧ b1 ∧ · · · ∧ bu.

We remark that each monomial contains all selection variables. Finally,

f = m1 ∨ · · · ∨ mr ∨ m∗.

In the following lemmas we collect some properties of decision trees for f .

Lemma 7: If m is among the monomials in the definition of f and if x ∈ m−1(1), in each
decision tree for f all variables contained in m are queried on the computation path for x.

Proof: We recall that mm′ is called consensus of the two monomials xim and x̄im
′, if mm′ 6=

0. The iterated consensus method computes all prime implicants of a function given as a dis-
junction of monomials. In particular, a disjunction of monomials consists of all prime impli-
cants of the represented function if there is no consensus and no monomial m′ can be obtained
from another monomial m′′ by deleting literals in m′′. For more details we refer to Hachtel and
Somenzi [7].

Property (S2) of the definition of SetSelection implies that for different monomials mi and mi′

there are two selection variables s and s′ such that s occurs positively in mi and negatively in mi′

and the opposite holds for s′. Hence, there is no consensus of such monomials. Property (S3)
implies that each monomial mi has at least two positive literals of selection variables such that
there is no consensus of m∗ and any mi either. Obviously no monomial mi or m∗ can be
obtained from another of these monomials by deleting literals. As remarked above this implies
that all monomials m1, . . . ,mr,m

∗ are prime implicants of f and that there are no further prime
implicants. Moreover, for each input x ∈ f−1(1) there is at most one prime implicant m such
that x ∈ m−1(1).

Now assume contrary to the claim that for x ∈ m−1(1) there is a variable x̂ that occurs in m
but is not queried on the computation path for x. Let m̂ be the monomial consisting of the tests
performed on the computation path for x. Then m̂ is an implicant of f , which does not contain
x̂. Let m̃ be a prime implicant of f that we obtain from m̂ by deleting literals. Then m and m̃
are different prime implicants of f , because x̂ is only contained in m, and x ∈ m−1(1)∩m̃−1(1)
in contradiction to the last statement of the previous paragraph. 2
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Figure 3: The decision tree constructed from a solution for SetSelection.

The next lemma shows how to obtain a decision tree for f from a solution for I and provides a
relation between the size of the decision tree and the value of the solution.

Lemma 8: Let Si(1), . . . , Si(k) be a solution with the value V for I . Then a decision tree T for
f with the following properties can be computed in polynomial time. T contains at most cV
nodes labeled by a-variables and has size at most cV + c + u + 1. In particular, each such
decision tree has a size of at most 2cr + c + u + 1.

Proof: The decision tree T is depicted in Fig. 3. At the root si(1) is tested, at the 0-successor
the variable si(2) and so on up to si(k). At the 0-successor of this node in the same way the
remaining selection variables, which we call si(k+1), . . . , si(l), are tested. In order to distinguish
those tests of selection variables in the top of the decision tree from other tests of selection
variables we call these nodes special si(·)-nodes. At the 0-successor of the special si(l)-node,
the b-variables are tested for 1. The rectangles in Fig. 3 denote computations of the conjunction
of the corresponding variables.

The 1-successor of the special si(q)-node is reached for all inputs x, where si(1), . . . , si(q−1) take
the value 0 and si(q) the value 1. These are in particular the inputs x ∈ m−1(1) for monomials
m containing s̄i(1), . . . , s̄i(q−1) and si(q). These monomial are generated from the D-sets in
Si(q) \ (Si(1) ∪ · · · ∪ Si(q−1)). For q > k there are no such monomials since all D-sets are
covered by Si(1), . . . , Si(k). Hence, the 1-successors of the special si(k+1)-, . . . , si(l)-nodes are
leaves labeled by 0.

Let q ≤ k. At the 1-successor of the special si(q)-node the monomials mi, where Di ∈ Si(q) \
(Si(1)∪· · ·∪Si(q−1)), are evaluated. First, the a-variables contained in all considered monomials
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are tested for 1. Here we exploit that the a-variables only occur positively. Afterwards, we test
the selection variables. Because of property (S2) for different monomials different nodes are
reached. Finally, we test the a-variables only contained in a single monomial for 1. Because of
property (S4) there are no a-variables contained in more than one but not all monomials. Hence,
the number of nodes labeled by a-variables equals

c ·
∣
∣
∣
∣
∣
∣

⋃

D∈Si(q)\(Si(1)∪···∪Si(q−1))

D

∣
∣
∣
∣
∣
∣

.

Summing up for q = 1, . . . , k, we obtain the total number of nodes labeled by a-variables to be
equal to cV .

The number of nodes labeled by b-variables is obviously u. For each monomial m there is
exactly one computation path in the constructed tree that is chosen for all inputs x ∈ m−1(1).
Hence, we may crudely estimate the number of nodes labeled by selection variables by the
number of selection variables times the number of monomials. Then we obtain the upper bound
cV + u + (r + 1)l = cV + c + u on the total number of internal nodes and the upper bound
cV + c + u + 1 on the number of leaves.

For the last statement of the lemma we observe that the value of each solution of SetSelection is
bounded above by 2r because each of the r D-sets may only once contribute a term of 2 to the
goal function. Plugging this estimate in the bound on the number of leaves leads to the claim.

2

Finally, we show how to obtain a solution for I from a decision tree for f .

Lemma 9: If there is a decision tree T for f with at most N leaves, there is a solution for I
with a value of at most (N − u − 1)/c, which can be computed from T in polynomial time.

Proof: We rearrange the given decision tree T in such a way that on the path starting at the
root and following the 0-edges the selection variables si(1), . . . , si(k) are tested such that the
sequence Si(1), . . . , Si(k) is a solution for I . We shall prove the upper bound (N − u − 1)/c on
the value of this solution.

We say that T has the Property P (q) if the first q nodes on the path starting at the root and
following the 0-edges are labeled by selection variables si(1), . . . , si(q). In particular, each tree
has the empty property P (0). We show how to construct a decision tree Tnew for f with the
property P (q + 1) from a decision tree Told for f with the property P (q) if Si(1), . . . , Si(q) do
not cover all D-sets. Furthermore, Tnew is not larger than Told. W.l.o.g. Told is reduced.

Let v1 be the (q + 1)-th node on the path from the root following the 0-edges, i.e., the first
node not labeled by a selection variable. We successively name nodes and subtrees of Told, see
also the left part of Fig. 4. Let i = 1. While vi is labeled by a b-variable, w.l.o.g. bi, give the
1-successor of vi the name vi+1 and the subtree of the 0-successor of vi the name Ti. Let vt+1

be the last node named in this way. Then vt+1 is labeled by some variable y, which is either
an a-variable or a selection variable; in the former case also t = 0 is possible. Let T ′ and T ′′

denote the 0- and 1-successor of vt+1, resp.
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Figure 4: Construction of a decision tree Tnew with the property P (q + 1) from a decision tree
Told with the property P (q).
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Case 1: The node vt+1 is labeled by an a-variable.
Since Si(1), . . . , Si(q) are not a solution for I , there is a set Dj /∈ Si(1) ∪ · · · ∪ Si(q). Since mj

does not contain any b-variable, there are inputs x1, . . . , xt ∈ m−1
j (1) for which T1, . . . , Tt are

reached, resp. Lemma 7 in particular implies that T1, . . . , Tt are not empty. Furthermore, there
are inputs x′, x′′ ∈ (m∗)−1(1) such that T ′ and T ′′ are reached for x′ and x′′, resp. Lemma 7
implies that in T ′ and T ′′ as well all b-variables except b1, . . . , bt are queried. Hence, Told has at
least 2u = 2cr + u + 2c nodes and can thus be replaced by the tree constructed in Lemma 8 for
an arbitrary solution for I , which even has the Property P (l).

Case 2: The node vt+1 is labeled by a selection variable si(q+1) := y.
We replace Told by the tree Tnew shown in the right part of Fig. 4. Then Tnew is obviously not
larger than Told and has the property P (q + 1). It remains to show that Tnew computes the
function f . We prove that for all inputs x the following statement holds.

For x a 1-leaf of Told is reached. ⇔ For x a 1-leaf of Tnew is reached.

For inputs x where at least one of the variables si(1), . . . , si(q) takes the value 1 the claim is
obvious. Hence, it suffices to consider inputs x for which in Told the node v1 is reached.

If-part: If in Told the subtree T ′ is reached, we have y = 0 and b1 = · · · = bt = 1. Hence, also
in Tnew the subtree T ′ is reached. Similar arguments show the same for the subtree T ′′.

Finally, assume that in Told the subtree Ti is reached. Hence, b1 = · · · = bi−1 = 1 and bi = 0. If
y = 0, also in Tnew the subtree Ti is reached. Hence, let y = 1. Since y is a selection variable,
the considered input x ∈ f−1(1) is covered by one of the monomials m1, . . . ,mr, which do not
contain any b-variable. Hence, Told still computes 1 if we replace in x the values of bi, . . . , bt

by 1. Then in Told the subtree T ′′ is reached. Since on each computation path each variable is
tested at most once, in T ′′ the variables bi, . . . , bt are not tested. Hence, also Tnew computes the
value 1 independent from the values of bi, . . . , bt.

Only-if-part: By the same arguments as above, in Told a 1-leaf is reached if in Tnew a 1-leaf in
T ′ or in Ti is reached. It remains the case that in Tnew a 1-leaf in the subtree T ′′ is reached. Then
y = 1. Since in Told each variable is tested at most once on each computation path, the variables
b1, . . . , bt are not tested in T ′′. Let x′ be the input obtained from x by replacing b1, . . . , bt by
1. Then for x′ the same computation path as for x is chosen, i.e., T ′′ computes a 1 also for x′.
By the definition of f the subfunction f|y=1 does not essentially depend on b1, . . . , bt, which
implies f(x) = f(x′). Finally, Told computes for x′ the same value as Tnew. Hence, f(x) = 1
and Told computes a 1 for x.

Eventually, we reduce Tnew. By iteration of the whole procedure we can construct a decision
tree T for f with the property P (k) such that Si(1), . . . , Si(k) cover all D-sets. From this solution
for I we compute a lower bound on the number of nodes in T that are labeled by a-variables.

Consider the subtree at the 1-successor of the special si(q)-node of T . This subtree is reached
for all inputs x ∈ m−1

j (1) if mj contains s̄i(1), . . . , s̄i(q−1) and si(q). By Lemma 7 the number of
a-variables in these monomials is a lower bound on the number of nodes labeled by a-variables
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in the considered subtree. Hence, there are at least

c

∣
∣
∣
∣
∣
∣

⋃

D∈Si(q)\(Si(1)∪···∪Si(q−1))

D

∣
∣
∣
∣
∣
∣

nodes labeled by a-variables in this subtree. Summing up over the different subtrees we obtain
a lower bound on the number of nodes labeled by a-variables. Furthermore, there are at least
u nodes labeled by b-variables. On the other hand, the sum of these lower bounds is bounded
above by the number of internal nodes of the given decision tree, i.e., N − 1. Hence,

u + c
k∑

q=1

∣
∣
∣
∣
∣
∣

⋃

D∈Si(q)\(Si(1)∪···∪Si(q−1))

D

∣
∣
∣
∣
∣
∣

≤ N − 1,

which implies that the constructed solution for I has a value of at most (N − u − 1)/c. 2

We complete the proof of Theorem 6 by providing the polynomial time approximation scheme
B. We have already shown how to obtain a decision tree T from I . We apply the polynomial
time approximation scheme A to T for the performance ratio 1+ε/36. Let T ∗ denote the result.
By the choice of the performance ratio, |T ∗| ≤ (1 + ε/36)|Tmin|, where Tmin is a minimal
decision tree for f .

From an optimal solution with the value Vopt for I we may construct a decision tree of size at
most cVopt + c + u + 1 by Lemma 8. Hence, |Tmin| ≤ cVopt + c + u + 1 and

|T ∗| ≤
(

1 +
ε

36

)

(cVopt + c + u + 1).

By Lemma 9 we can construct from T ∗ a solution for I with a value of at most

V ∗ ≤ |T ∗| − u − 1

c
≤ (1 + ε/36)(cVopt + c + u + 1) − u − 1

c

= Vopt + 1 +
u

c
+

1

c
+

εVopt

36
︸ ︷︷ ︸

≤εVopt/3

+
ε

36
︸︷︷︸

≤1

+
uε

36c
︸︷︷︸

≤εVopt/3

+
ε

36c
︸︷︷︸

≤1

−u

c
− 1

c

≤ Vopt +
2ε

3
Vopt + 3 ≤ Vopt(1 + ε).

For the last inequality we exploit Voptε/3 ≥ 3 which follows from Eq. (2). We discuss the
other inequalities: εVopt/36 ≤ εVopt/3 is obvious. From ε ≤ 1 the inequalities ε/36 ≤ 1 and
ε/(36c) ≤ 1 easily follow. Finally, uε/(36c) ≤ εVopt/3 follows from the definition of u, from
r ≥ 1 and from Eq. (1). Altogether, we obtain a polynomial time approximation scheme for
SetSelection. Together with Theorem 3 the claim of Theorem 6 follows. 2
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5. The Self-Improving Property of Approximation Algorithms for MinDT

We prove the following result.

Theorem 10: If there is a polynomial time approximation algorithm with a constant perfor-
mance ratio for MinDT, there is also a polynomial time approximation scheme for MinDT.

It is easy to see that Theorems 6 and 10 imply Theorem 1.

Proof of Theorem 10: The proof of Theorem 10 is based on the following lemma on the con-
struction of minimal decision trees for parities of functions. Let DT(f) denote the size of a
minimal decision tree for f .

Lemma 11: Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} be Boolean functions that are
defined on disjoint sets of variables. Then DT(f ⊕ g) = DT(f) · DT(g). Furthermore, from a
decision tree T for f ⊕ g decision trees Tf and Tg can be constructed in polynomial time such
that |Tf ||Tg| ≤ |T |.

Proof of Lemma 11: The proof of DT(f ⊕ g) ≤ DT(f) ·DT(g) is simple. Start with minimal
decision trees Tf and Tg for f and g. First observe that we obtain a decision tree for ḡ by
replacing the labels c of the leaves of Tg by c̄. Now replace in Tf each leaf labeled by c by
a decision tree for c ⊕ g. Let T ∗ denote the resulting tree. Obviously it computes f ⊕ g and
|T ∗| = |Tf ||Tg|.
For the proof of DT(f ⊕ g) ≥ DT(f) · DT(g) we first note that the claim is obvious if f or
g is a constant function. Hence, let f and g be nonconstant. We start with a decision tree T
for f ⊕ g and modify this tree without increasing the size or changing the represented function.
Eventually, we obtain a decision tree T ∗ consisting of a decision tree for f where the leaves are
replaced by copies of a decision tree for g, or the similar decision tree, where the roles of f and
g are exchanged. It is easy to obtain from T ∗ decision trees Tf and Tg for f and g such that
|Tf ||Tg| ≤ |T ∗| ≤ |T |. If T is minimal, the claim follows. Moreover, we obtain a polynomial
algorithm for constructing Tf and Tg.

W.l.o.g. T is reduced. Let f be defined over the set X = {x1, . . . , xn} of variables and g
over Y = {y1, . . . , ym}. We partition the set of internal nodes of T into regions, where two
internal nodes v and v′ are contained in the same x-region, if both v and v ′ are labeled by an
x-variable and all nodes on the unique path between v and v ′ are labeled by x-variables, where
we neglect the direction of the edges. Similarly we define y-regions. A region has the rank 0 iff
the outgoing edges only lead to leaves. A region has the rank r iff the maximum of the ranks of
the regions reached via the outgoing edges is r − 1.

Let R1 be a region of rank 1. Since f and g are nonconstant, such a region exists in T . If the root
of R1 is also the root of T , then T is already the desired decision tree T ∗ and the claim follows.
Otherwise, the root of R1 has a predecessor, which is contained in some region R2. W.l.o.g. let
R2 be an x-region and R1 be a y-region. Then the nodes reached by the edges leaving R1 are
contained in x-regions or are leaves. We call these x-regions or leaves S1, . . . , Sk. The situation
is also depicted in Fig. 5. By the definition the rank of the x-regions among S1, . . . , Sk is 0, i.e.,
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x-region R2
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Figure 5: The arrangement of the regions.

the outgoing edges only lead to leaves. Let f1, . . . , fk be the functions computed at the roots
of S1, . . . , Sk. We claim that for all i ∈ {2, . . . , k} : (f1 = fi ∨ f1 = f̄i), i.e., these functions
coincide up to polarity.

Consider the evaluation of f1. This function only depends on some set X ′ of x-variables that
are tested in S1. Hence, on the computation path leading to S1 some set of y-variables has
to be tested in such a way that by the corresponding setting of these variables the function g
becomes a constant. Let X ′′ = X \ X ′. From the x-variables only those in X ′′ are tested in T
before reaching S1 since T is reduced. Then for the evaluation of all functions f1, . . . , fk the
variables in X ′′ get the same values. On the other hand, the y-variables tested before reaching
S1, . . . , Sk have different values such that also g may take different values. Hence, f1, . . . , fk

coincide merely up to polarity. In particular, they are not constant, i.e., there is no subtree
among S1, . . . , Sk that merely consists of a leaf.

Assume w.l.o.g. that S1 is not larger than S2, . . . , Sk and that S1 has l leaves. We “exchange”
R1 and S1. Let q1, . . . , ql denote the labels of the leaves of S1. Let pi := f1 ⊕ fi, i.e., 0, if these
functions are equal, and otherwise 1. In a new copy of S1 we replace the leaves by disjoint
copies of R1, where the ith leaf in the jth copy gets the label pi ⊕ qj . It is easy to see that the
resulting decision tree has kl leaves and computes the same function as the subtree consisting of
R1 and S1, . . . , Sk. Hence, we may replace the subtree of R1 by this new decision tree without
increasing the size.

After the exchange the number of regions has become smaller since R2 and the copy of S1 are
merged into one x-region. Hence, we may iterate this procedure until there is no longer a region
of rank 2. Then we obtain the desired decision tree T ∗. 2

We continue the proof of Theorem 10. Let a polynomial time approximation algorithm A for
MinDT with the performance ratio c be given. We show how to construct a polynomial time
approximation algorithm B with the performance ratio

√
c. Hence, for each ε > 0 a constant
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number of iterations of this procedure suffice to obtain a polynomial time approximation algo-
rithm with a performance ratio of at most 1+ε. Hence, we get a polynomial time approximation
scheme for MinDT.

Let T be the input for B and let f denote the function represented by T . Let g be a copy of f on
a disjoint set of variables and let T ′ be a decision tree for f ⊕g, which can easily be constructed
from T . We apply A to T ′ and obtain a decision tree T ′′. By the second statement of Lemma 11
from T ′′ a decision tree for f with size at most

√

|T ′′| can be constructed in polynomial time,
which is the output.

By Lemma 11 and the bound c on the performance ratio of A we have OPT (f)2 = OPT (f ⊕
g) ≥ A(f⊕g)/c = |T ′′|/c. This implies

√

|T ′′| ≤ √
c ·OPT (f). Hence, B is an approximation

algorithm with the performance ratio
√

c. 2
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[10] Jukna, S., Razborov, A., Savický, P. and Wegener, I. (1999). On P versus NP ∩ co-NP for
decision trees and read-once branching programs. Computational Complexity 8, 357–370.

[11] Knuth, D.E. (1973). The Art of Computer Programming, Vol. 3: Sorting and Searching.
Addison Wesley.

18



[12] Murthy, S.K. (1998). Automatic construction of decision trees from data: a multi-
disciplinary survey. Data Mining and Knowledge Discovery 2, 345–389.

[13] Preparata, F.P. and Shamos, M.I. (1985). Computational Geometry. Springer.

[14] Quinlan, J.R. (1986). Induction of decision trees. Machine Learning 1, 81–106.

[15] Sieling, D. (2002). The nonapproximability of OBDD minimization. Information and
Computation 172, 103–138.

[16] Wegener, I. (2000). Branching Programs and Binary Decision Diagrams, Theory and Ap-
plications. Society for Industrial and Applied Mathematics.

[17] Zantema, H. and Bodlaender, H.L. (2000). Finding small equivalent decision trees is hard.
International Journal of Foundations of Computer Science 11, 343–354.

19
ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092



