Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 55 (2002)

Derandomizing Polynomial Identity Tests Means
Proving Circuit Lower Bounds
(Preliminary Version)

Valentine Kabanets* Russell Impagliazzo!
Department of Computer Science Department of Computer Science
University of California, San Diego University of California, San Diego
La Jolla, CA 92093-0114 La Jolla, CA 92093-0114
kabanets@cs.ucsd.edu russell@cs.ucsd.edu

February 25, 2003

Abstract

We show that derandomizing Polynomial Identity Testing is, essentially, equivalent to proving
circuit lower bounds for NEXP. More precisely, we prove that if one can test in polynomial time
(or, even, nondeterministic subexponential time, infinitely often) whether a given arithmetic
circuit over integers computes an identically zero polynomial, then either (i) NEXP ¢ P/poly
or (ii) Permanent is not computable by polynomial-size arithmetic circuits. We also prove a
(partial) converse: If Permanent requires superpolynomial-size arithmetic circuits, then one can
test in subexponential time whether a given arithmetic formula computes an identically zero
polynomial.

Since Polynomial Identity Testing is a coRP problem, we obtain the following corollary: If
RP = P (or, even, coRP C N.5oNTIME(2""), infinitely often), then NEXP is not computable
by polynomial-size arithmetic circuits. Thus, establishing that RP = coRP or BPP = P would
require proving superpolynomial lower bounds for Boolean or arithmetic circuits. We also show
that any derandomization of RNC would yield new circuit lower bounds for a language in NEXP.

Our techniques allow us to prove an unconditional circuit lower bound for a language in
NEXPRP: we prove that either (i) Permanent is not computable by polynomial-size arithmetic
circuits, or (i) NEXPR® ¢ P/poly.

Finally, we prove that NEXP ¢ P/poly if both BPP = P and the low-degree testing is in P;
here, the low-degree testing is the problem of checking whether a given Boolean circuit computes
a function that is close to some low-degree polynomial over a finite field.

Keywords: derandomization, circuit lower bounds, BPP, NEXP, polynomial identity test-

ing.

*Research supported by a Postdoctoral Fellowship from the Natural Sciences and Engineering Research Council
of Canada
TResearch supported by NSF Award CCR-0098197 and USA-Tsrael BSF Grant 97-00188

ISSN 1433-8092

Contents

1 Introduction
1.1 Derandomization from circuit lower bounds
1.2 Polynomial Identity Testing L o e
1.3 Extending hardness-randomness tradeoffs 0.
1.4 Ourresults e e
1.5 Our techniques L e e e e e e
1.6 Why weren’t these results obtained before?

2 Preliminaries
2.1 Complexity classes L
2.2 Arithmetic circuits L L e e e e e e e
2.3 Polynomial identity testing and self-correctiono,
2.4 The Nisan-Wigderson designs e

3 Testing an Arithmetic Circuit for Permanent
3.1 Case of arithmetic circuits over Z without divisions
3.2 Case of arithmetic circuits over Q with divisions
4 Circuit Lower Bounds via Derandomization
4.1 TIf ACIT can be derandomized o v v v v v ..
4.2 TIf RP can be derandomized,
4.3 1If AFIT or SDIT can be derandomized
4.4 TIf RNC can be derandomized
5 A Hard Language in NEXPRP
6 Low-Degree Testing and Derandomization
6.1 Testing a Boolean circuit for Permanent
6.2 Derandomization of MA L.
6.3 Circuit lower bounds e
7 Conditional Derandomization of Polynomial Identity Tests
7.1 Finding roots of multivariate polynomials
7.2 Generalized NW generator
7.3 Algebraic hardness-randomness tradeoffs
7.4 Derandomization from EXP £ NPRP
8 Conclusions

10
10
12

13
13
15
15
16

16

17
17
19
20

20
20
22
23
25

26

1 Introduction

1.1 Derandomization from circuit lower bounds

In the early 1980’s, Yao [Yao82, BH89| showed that one-way functions whose inverses have high
average-case circuit complexity can be used to construct pseudorandom generators, which suffice
for the derandomization of such probabilistic complexity classes as RP and BPP. Yao’s approach
to derandomization was extended to Boolean functions by Nisan and Wigderson [NW94], and sig-
nificantly strengthened in a sequence of papers [BFNW93, IW97, ACR98, STV01, ISW99, ISWO00,
SUO01, Uma02], which replaced the assumption of high average-case circuit complexity with that of
high worst-case circuit complexity. For instance, Impagliazzo and Wigderson [IW97] showed that
BPP = P, provided that some language in E = DTIME(2O(”)) requires Boolean circuits of size 2™,

These results showing that computational hardness can be used as a source of computational
pseudorandomness, termed hardness-randomness tradeoffs, are considered as evidence that BPP
can be derandomized. However, in order to derandomize BPP using such an approach, one would
need to prove superpolynomial circuit lower bounds for some language in EXP. Establishing su-
perpolynomial lower bounds for general models of computation (such as Boolean circuits) is one
of the biggest challenges in complexity theory that has withstood several decades of sustained ef-
fort by many researchers. If proving superpolynomial circuit lower bounds is indeed necessary for
derandomizing BPP, then it seems unlikely that such a derandomization result will be obtained in
the near future.

This raises an obvious question: Can we derandomize BPP without proving superpolynomial
circuit lower bounds? It is well-known that derandomizing BPP using a pseudorandom generator (as
in Yao’s original approach) does indeed require proving that EXP ¢ P/poly [ISW99]. On the other
hand, Impagliazzo, Kabanets, and Wigderson [IKW02] showed that derandomizing promise-BPP
would require proving that NEXP ¢ P/poly; here, the derandomized algorithm for a promise-BPP
problem is allowed to be nondeterministic subexponential-time.

These results may explain why no unconditional derandomization of promise-BPP has been
achieved so far. However, they leave open the case of BPP. Presumably, it is possible to derandomize
BPP without derandomizing promise-BPP. However, our results show that even derandomizing RP
requires a circuit lower bound of some form.

1.2 Polynomial Identity Testing

Deriving general consequences from the assumption BPP = P seems difficult due to the apparent
lack of BPP-complete problems. However, we focus on a particular BPP problem, and argue that
derandomizing this problem implies a circuit lower bound.

One of the most natural problems in BPP (in fact, in coRP) is Polynomial Identity Testing:
Given an arithmetic circuit, decide if it computes the identically zero polynomial. By the well-
known Schwartz-Zippel lemma [Sch80, Zip79, DL78], evaluating a degree d multivariate polynomial
on an tuple of random elements from a finite subset S yields a probabilistic algorithm whose
error probability is at most d/|S|. The importance of this problem is witnessed by a plethora
of its applications to perfect matching [Lov79, MVV87, CRS95], equivalence testing of read-once
branching programs [BCW80], multiset equality testing [BK95], primality testing [AB99, AKS02],
a number of complexity-theoretic results on probabilistically checkable proofs [LFKN92, Sha92,
BFL91, AS98, ALM198], as well as sparse multivariate polynomial interpolation [Zip79, GKS90,
CDGKY91, RBI1].

Recently, a number of probabilistic algorithm for the polynomial identity testing were proposed

that use fewer random bits than the standard Schwartz-Zippel algorithm [CK97, LV98, AB99,
KS01]. In the first two papers, the identity testing problem is solved by probabilistically searching
for non-zeros of a given multivariate polynomial. Chen and Kao [CK97] argue that a randomly
chosen rational approximation of a certain irrational point is likely to be a non-zero of any polyno-
mial of specified total degree; generalizing this idea, Lewin and Vadhan [LV98] consider a randomly
chosen polynomial approximation of a certain infinite power series.

While the algorithms in [CK97, LV98, AB99, KS01] achieve some saving in randomness com-
pared with the original Schwartz-Zippel algorithm, they do not imply that Polynomial Identity
Testing can be derandomized in the strong sense. That is, it is still a big open problem to come up
with a deterministic polynomial-time (or, even, nondeterministic subexponential-time) algorithm
for Polynomial Identity Testing.

The deterministic polynomial-time algorithm for Primality Testing discovered by Agrawal,
Kayal, and Saxena [AKS02] achieves derandomization of a very special case of Univariate Poly-
nomial Identity Testing. One may hope that similar techniques will be useful to obtain deran-
domization of the general problem of Polynomial Identity Testing. However, our results show that
this seemingly innocuous problem is, in fact, basically equivalent to the classic, notoriously diffi-
cult problem of proving arithmetic circuit lower bounds. For instance, we show that designing a
(nondeterministic) subexponential-time algorithm to test whether a given symbolic determinant is
identically zero is as hard as proving superpolynomial arithmetic formula lower bounds.

1.3 Extending hardness-randomness tradeoffs

Originally, hardness-randomness tradeoffs were aimed at derandomizing BPP algorithms. Goldreich
and Zuckerman [GZ97] showed that the same hardness assumptions imply the derandomization of
the class MA introduced by Babai [Bab85, BM88]. Klivans and van Melkebeek [KM99] extended the
tradeoffs to another class introduced by Babali, the class AM, as well as to some other randomized
algorithms, e.g., the Valiant-Vazirani hashing technique [VV86].

On the other hand, no hardness-randomness tradeoffs were known for the algebraic (rather than
Boolean) complexity setting. There are at least two reasons why one might be interested in such
algebraic tradeoffs. The first reason is purely esthetic. Showing that hardness-randomness tradeoffs
hold in another complexity setting would be another indication of the fundamental nature of the
idea of converting computational hardness into computational pseudorandomness.

The second reason is a bit more practical. Suppose that it is eventually shown that Permanent
requires superpolynomial-size arithmetic circuits. It would be important to know whether such
lower bounds could be used to derandomize some algebraic algorithms. Of course, it is doubtful
that derandomized algorithms derived from circuit lower bounds should be useful in practice, but
even just proving their existence is interesting.

A final motivation is that it shows another example of duality between meta-algorithms for a
model and lower bounds for that same model. Often, the techniques used to prove lower bounds
for some class of circuits also yield positive results for algorithms taking such circuits as inputs.
For example, [LMN93] give a learning algorithm for constant-depth circuits based on lower bounds
for such circuits; [PSZ97, PPZ99, PPSZ98] develop a new algorithm for k-SAT and a new lower
bound for depth-3 circuits, using the same technique analyzing the solution space of CNF’s. In
his thesis, Zane [Zan98] made the interesting empirical point that progress on meta-algorithms
is linked to progress in lower bounds. A few formalizations of this principle are known, e.g.,
natural proofs [RR97] (“a natural lower bound yields a cryptanalysis tool”) or hardness-randomness
tradeoffs. Here, we get a formal statement of such a connection for arithmetic circuits: Identity

testing for arithmetic circuits can be derandomized if and only if lower bounds can be proved.

1.4 Our results

In this paper, we show that derandomizing Polynomial Identity Testing is essentially equivalent to
proving superpolynomial circuit lower bounds for NEXP. More precisely, we prove that if one can
test in polynomial time (or, even, nondeterministic subexponential time, infinitely often) whether
a given arithmetic circuit over integers computes an identically zero polynomial, then either (i)
NEXP ¢ P/poly or (ii) Permanent is not computable by polynomial-size arithmetic circuits. This
implies that proving that RP = ZPP or BPP = P is as hard as proving superpolynomial circuit
lower bounds for NEXP!

We also consider a special case of Polynomial Identity Testing, Symbolic Determinant Identity
Testing: Given a matrix A of constants and variables, decide whether the determinant of A is an
identically zero polynomial. We show that any nontrivial derandomization of this problem would
also yield new formula lower bounds. Since this problem belongs to the class coRNC, we conclude
that derandomizing RNC is as hard as proving formula lower bounds.

For the converse direction, we extend the known hardness-randomness tradeoffs to the algebraic-
complexity setting by showing the following. The Polynomial Identity Testing of n-variate poly(n)-
degree polynomials computed by poly(n)-size arithmetic circuits can be done deterministically in
subexponential time, provided that Permanent (or some other family of exponential-time com-
putable multivariate polynomials) has superpolynomial arithmetic circuit complexity.

Our techniques allow us to obtain an unconditional circuit lower bound for the complexity class
NEXPRP: we show that either NEXPRP ¢ P /poly or Permanent is not computable by polynomial-
size arithmetic circuits. Thus, NEXPRP is the smallest known uniform complexity class that is
proved to contain a language of superpolynomial (Boolean or arithmetic) circuit complexity.

We also prove that a certain version of Polynomial Identity Testing can be derandomized under
the assumption that EXP # NPRP. This is similar to the result of Babai, Fortnow, Nisan, and
Wigderson [BFNW93] saying that BPP can be derandomized under the assumption that EXP # MA.
Our assumption is weaker since, by a straightforward argument, NPRP C MA.

Finally, we point out the relevance of the Low-Degree Testing (i.e., testing whether a given
function is sufficiently close to some low-degree polynomial) to the problem of showing implications
such as “BPP = P = NEXP ¢ P/poly”. Namely, we prove that NEXP ¢ P/poly, provided that
both BPP = P and the Low-Degree Testing can be done deterministically in polynomial time.

1.5 Our techniques

Circuit lower bounds from RP = P The proof that the assumption RP = P implies circuit
lower bounds is fairly simple. The main ingredients are the implication NEXP C P/poly = NEXP =
MA [IKWO02] as well as the downward self-reducibility of the Permanent.

Here is a brief outline of our argument. The main idea is that testing whether a given arith-
metic circuit is a correct circuit for the Permanent of n X n integer matrices can be reduced to n
polynomial identity tests for multivariate polynomials represented by arithmetic circuits. On the
other hand, testing whether a given arithmetic circuit computes an identically zero polynomial is
a coRP problem, by the Schwartz-Zippel lemma. Hence, testing whether a given arithmetic circuit
computes the Permanent is a coRP-problem.

Thus, any nontrivial (i.e., subexponential-time) derandomization of coRP yields an algorithm
for testing whether an arithmetic circuit computes the Permanent. Assuming that the Permanent

is computable by polynomial-size arithmetic circuits, we get a nondeterministic subexponential-
time algorithm for the Permanent: we simply guess a polynomial-size arithmetic circuit for the
Permanent and check the correctness of our guess.

Finally, the assumption that NEXP C P/poly yields that NEXP = MA [IKW02] and so, by the
results of Valiant [Val79b] and Toda [Tod91], we conclude that the Permanent is NEXP-complete,
contradicting the Nondeterministic Time Hierarchy theorem.

Derandomization of Polynomial Identity Testing from circuit lower bounds The con-
ditional derandomization result for the Polynomial Identity Testing is proved by combining the
Nisan-Wigderson generator [NW94] with the straight-line factorization algorithm for multivariate
polynomials by Kaltofen [Kal89].

As in [CK97, LV98], we consider the search problem: Given a multivariate polynomial f over
a field F, find its non-zero if it exists. The points at which we evaluate f will be chosen with the
help of a “hard” function, a multivariate polynomial p of high arithmetic circuit complexity, using
the combinatorial designs of Nisan and Wigderson [NW94]. As a result, we convert the polynomial
f into a new polynomial g on significantly fewer variables and of total degree polynomial in the
total degrees of f and p. The polynomial g will have the property that ¢ = 0 iff f = 0. Then we
look for a non-zero of g by a “brute-force” deterministic algorithm; the saving in running time is
achieved since g has few variables.

The proof of correctness of our construction involves showing that any polynomial f for which
our derandomization procedure fails to produce a non-zero can be used in designing a small arith-
metic circuit for the supposedly hard polynomial p. Roughly speaking, if our NW generator based
on p fails for a polynomial f, then p is a root of a certain polynomial f derived from f. Thus, an
arithmetic circuit for p can be found by factoring the polynomial f , using [Kal89].

1.6 Why weren’t these results obtained before?

As the reader might gather from the outlines in the preceding subsection, the proofs of our main
results are rather simple. One may wonder why it took the pseudorandomness community so long
to find them. For example, all the necessary ingredients for the conditional derandomization of
Polynomial Identity Testing, the Nisan-Wigderson generator [NW94] and the Kaltofen factoring
algorithm [Kal89], have been known for more than a decade.

In the case of derandomizing Polynomial Identity Tests, the main reason it was not done before
seems that people tried to get a “full” pseudorandom generator for the algebraic complexity setting,
and were bogged down trying to come up with a good definition of such a generator.

In the case of proving circuit lower bounds from the assumption BPP = P, the stumbling block
(at least for the authors of the present paper) was in focusing only on Boolean (and ignoring
algebraic) circuit complexity. In turn, that was because of the lack of known algebraic-complexity
hardness-randomness tradeoffs.

Organization of the paper. We give the necessary background in Section 2. Section 3 contains
the results about testing correctness of arithmetic circuits for the Permanent. In Section 4, we
derive circuit lower bounds for NEXP from the assumption that variants of Polynomial Identity
Testing can be derandomized. In Section 5, we obtain an unconditional circuit lower bound for
a function in NEXPRP, In Section 6, we look at the problem of Low-Degree Testing (LDT), and
establish some implications of the assumption that LDT can be done in deterministic polynomial

time. In Section 7, we present conditional derandomization of Polynomial Identity Testing. Some
concluding remarks are contained in Section 8.

2 Preliminaries

2.1 Complexity classes

We use the standard definitions of complexity classes RP, BPP, RNC, PH, EXP, NEXP, #P, and
P/poly [Pap94]; we define SUBEXP = Mo TIME(2™") and, similarly, NSUBEXP = N.5oNTIME(2™).
The class MA [Bab85, BM88] contains exactly those languages L that satisfy the property: there
is a polynomial-time computable predicate R(z,y,z) and a constant ¢ € N such that, for every
z € {0,1}",

z € L= 3y : Pr,[R(z,y,2z) =1] > 2/3, and
z ¢ L=VYy: Pr,[R(z,y,2) =1] < 1/3,

where g, z € {0,1}". For a complexity class C, its “infinitely-often” version, io-C, is defined as the
set of all languages L over an alphabet ¥ for which there is a language M € C over ¥ such that
LN¥"=MnNX" for infinitely many n € N.

Recall that the Permanent of an n x n matrix A = (a; ;) of integers is defined as Perm(A4) =
Yo ITi=1 @i (i), where the summation is over all permutations o of {1,...,n}. We need the follow-
ing results by Valiant and Toda that together show that Perm over Z is PH-hard.

Theorem 1 ([Val79b]). Perm is #P-complete.
Theorem 2 ([Tod91]). PH C P#P.

We say that Perm is computable in NP if the following language is in NP:
{(M,v) | M is a 0-1 matrix and v = Perm(M)}.

The definition for other nondeterministic complexity classes is similar.
Babai, Fortnow, and Lund obtained the following.

Theorem 3 ([BFL91]). EXP C P/poly = EXP = MA.

Theorem 3 was extended to the class NEXP by Impagliazzo, Kabanets, and Wigderson.
Theorem 4 ([IKWO02]). NEXP C P/poly = NEXP = MA.

Since MA C PH, by combining Theorems 1, 2, and 4 we obtain the following.
Corollary 5. If NEXP C P/poly, then Perm is NEXP-complete.

We shall also need the following result of Babai, Fortnow, Nisan, and Wigderson.

Theorem 6 ([BFNW93]). If MA € io-NTIME(2™) for some € > 0, then EXP = MA C P/poly.

2.2 Arithmetic circuits

We consider arithmetic circuits whose gates can be labeled by 4+, —, X, and <+; multiplication by
constants is also allowed. The size of a circuit is determined by the number of its gates together
with the sizes of all constants used by the circuit. An arithmetic circuit where each gate has fan-out
at most one is called an arithmetic formula.

We will consider arithmetic circuits both over the set Z of integers and over a (finite or infinite)
field F. When the ground (finite) field is not sufficiently large, we shall need to evaluate the
circuit on an extension field. For instance, given an arithmetic circuit computing a polynomial
f € F[z1,...,z,] over some field F = GF(q) for a prime power g, one can efficiently evaluate the
polynomial f at points from an extension field GF(q*) of GF(q), for some k € N, provided that this
extension field can be efficiently constructed from the ground field F. Also, since every elementary
field operation in GF(¢*) can be efficiently simulated using the operations from the ground field
GF(q), an arithmetic circuit computing f over GF(q*) of size s gives rise to an arithmetic circuit
for f over GF(q) of size poly(s, k). In other words, the arithmetic circuit complexity of f over a
ground field F and over a “small” extension field of I are polynomially related.

We will need the following simple lemma that bounds the degree of a polynomial computed by
an arithmetic circuit (or formula) of a given size.

Lemma 7. An arithmetic circuit (respectively, formula) of size s on input variables x1,...,Zn
computes a polynomial of total degree at most 2° (respectively, s).

Proof. Every multiplication gate in an arithmetic circuit can at most double the degree of the
resulting polynomial, and so the total degree is bounded by 2°. In the case of arithmetic formulas,
each multiplication gate can at most add the degrees of its two subformulas; hence, the total degree
of the resulting polynomial is bounded by s. U

2.3 Polynomial identity testing and self-correction

We will consider multivariate polynomials over some integral domain, e.g., the ring Z of integers.
The degree of a monomial x‘fl . ..xzk is defined as Zle d;; the total degree of a polynomial is
defined to be the maximum degree over all its monomials.

We shall be interested in the following versions of Polynomial Identity Testing Problem.

Arithmetic Circuit Identity Testing Problem (ACIT)
Given: An arithmetic circuit C' computing a polynomial p(z1,...,Z,).
Decide: Is p =07

Arithmetic Formula Identity Testing Problem (AFIT)
Given: An arithmetic division-free formula F' computing a polynomial p(z1,...,z,).
Decide: Is p =07

Symbolic Determinant Identity Testing Problem (SDIT)
Given: An n x n matrix A over ZU {z1,...,Zp}-
Decide: Is the determinant Det(A4) = 07

Note that, for an n X n matrix A of indeterminates, Det(A) is a degree n polynomial. This
polynomial is computable by a polynomial-size arithmetic circuit, using Gaussian elimination; the
circuit can be made division-free by [Str73] (see also [Kal92] for a more efficient division-free al-
gorithm). Thus, the problem of testing whether the determinant of a given symbolic matrix is
identically zero is a very natural special case of Polynomial Identity Testing.

The following result is due to Schwartz and Zippel.

Lemma 8 ([Sch80, Zip79, DL78]). Let p(x1,...,2,) € Flz1,...,2,] be any non-zero polynomial
of total degree d over an integral domain F. Let S CT be any finite subset. Then

d
Taes [p(a’)] |S|
Building upon [Sch80], Ibarra and Moran obtained the following result, whose proof is included
for completeness.

Lemma 9 ([IM83]). ACIT over Z is in coRP.

Proof. By Lemma 7, a given arithmetic circuit C' computes an n-variate polynomial p of total
degree at most 2°, where n,s € O(|C|). Let S = {1,...,2°°}. We would like to test whether
C(a) = 0 for a randomly chosen n-tuple a € S™, and accept iff the equality holds. Obviously, if
p = 0, then we would accept with probability one. On the other hand, if p # 0, then, by Lemma, 8,
we would accept with probability at most 2°/ 25" < 275,

The only problem is that, since p can have degree 2%, the value of p on a given n-tuple a € S™
can be as big as 23228, double-exponential in s; obviously, such a value cannot be computed in time
poly(s). The way out is to use modular arithmetic: carry out the computation of p(a) modulo a
random number m € [2°,25°).

Clearly, if p(a) = 0, then p(a) =0 mod m for every m. To analyze the probability that p(a) =0
mod m for a random m when p(a) # 0, we consider two cases: (i) m is composite, and (ii) m is
prime. By the Prime Number Theorem, the fraction of primes in the given interval [232,253] is at
least s, and so the probability that case (i) occurs is at most 1 —s~*. On the other hand, at most
2% of the primes in our interval can divide p(a) # 0; therefore, the probability that p(a) = 0 modulo
a random prime from our interval is at most 275", Consequently, the probability that p(a) = 0
mod m for a random m € [28”,25°] when p(a) # 0 is at most (1 — s™%) + 275" <1 — 575,

Thus, if p =0, then p(a) =0 mod m for every a and m. On the other hand, if p # 0, then

Pr,mp(a) =0 mod m] <27°+ (1 — 3—5) <1—s75.

By repeating the calculations for s7 independently chosen m’s and accepting iff p(a) = 0 modulo
every m, this error probability can be made less than 1/2. O

By Lemma 8 and the well-known fact that the determinant of an integer matrix is computable
in NC? [Chi85], we immediately obtain the following.

Corollary 10. SDIT is in coRNC.

Another important property of polynomials is their robustness, as witnessed by the following
result due to Beaver, Feigenbaum, and Lipton; for completeness, we include the proof. Recall that
two functions f,g : F* — F, over a finite field F, are said to be e-close, for some € > 0, if f(a) = g(a)
for all but an e fraction of points a € F"*.

Lemma 11 ([BF90, Lip91]). For a finite field F, let f : F* — F be a function that is e-close to
some n-variate polynomial p of total degree d. Then there is a probabilistic poly(n,d)-time algorithm

that, given oracle access to f, computes p(a) on every point a € F™ with high probability, provided
that e < 1/(4(d + 1)) and |F| > d + 1.

Proof. Consider the following randomized algorithm. Given an input a € F", choose a point b € F”
uniformly at random, and evaluate f(a + tb) for d + 1 distinct values of ¢ € F \ {0}. Using these
values, interpolate the univariate polynomial ¢(¢), and return the value ¢(0).

For the analysis, note that the point a + tb, for every fixed ¢ € F \ {0}, is uniformly distributed
in F*. Hence, the probability that f(a + tb) = p(a + tb) for all d + 1 values of ¢ is at least
1—(d+1)e > 3/4. Since the restriction of p to the line {a+tb | t € F} is a univariate polynomial in
t of degree at most d, it follows that ¢(¢) = p(a + tb) with probability greater than 3/4. Thus, with
probability greater than 3/4, the described algorithm will output ¢(0) = p(a), as required. O

2.4 The Nisan-Wigderson designs

Our derandomization procedure for ACIT will use a generalization of the Nisan-Wigderson gener-
ator [NW94] that is based on the following construction of combinatorial designs.

Lemma 12 ([NW94]). For every m,n € N, n < 2™, there exists a family of sets S1,...,Sy, C
{1,...,1} such that

1. 1 € O(m?%/logn),
2. forall1 <i< n,|S;)|=m, and
3. foralll1<i<j<m, |SiNS; <logn.

Such a family can be constructed deterministically in time poly(n,2").

3 Testing an Arithmetic Circuit for Permanent

3.1 Case of arithmetic circuits over Z without divisions

Let p, be a polynomial on n? variables {xi,j}gjzl over Z. If p, computes Perm of n x n integer

matrices, then appropriate restrictions of p, will compute Perm on ¢ X i integer matrices, for
1 <7 < n: we can just place an 7 X ¢ matrix A in the lower right corner, assigning 1 to the diagonal
variables above A and 0 to the rest of variables. Let p; denote such a restriction of p, to i X %
matrices, for 1 < ¢ < n. It follows immediately from the definition of Perm that

pi(z) = z, (1)
and, foralll <7 < n,
i
pi(X) =z pia(X), (2)
j=1

where X is a matrix of i? variables Tk, and X is the jth minor of the matrix X along the first
row.

Conversely, by induction on %, if arbitrary polynomials p1, ..., p, satisfy all the identities given
by (1) and (2) above, then each p; computes Perm of i x ¢ matrices over Z, for 1 < i < n.

This reasoning leads us to the following.

Lemma 13. The language

Acp ™ {C'| C is an arithmetic circuit computing Perm of integer matrices}

s polynomial-time many-one reducible to ACIT.

10

Proof. Let p, be a polynomial on n? variables {$i,j}§fj:1 computed by a given arithmetic circuit

C. Let p; be the restrictions of p, to 7 x ¢ matrices of variables, defined so that if p,, = Perm, then
each p; computes Perm on % X ¢ matrices.
Testing equation (1) and equations (2), for each 1 < i < n, is equivalent to testing whether

and .
1
def
hi(X) = pi(X) =z pio1(X;) = 0.
j=1

Equivalently, we need to test whether

h(X17X2a"'7Xnay) d:ef hl(Xl) X yn—l + h2(X2) X yn—2 +- +hn(Xn) = 07

where X' is a set of i2 variables (new for each 1 < i < n), and ¥ is a new variable.
Clearly, C' computes Perm of n x n integer matrices iff h = 0. Also note that the polynomial h
is computable by an arithmetic circuit of size poly(|C|), since every h; is. O

Corollary 14. If ACIT over Z is in NSUBEXP, then the language ACP of Lemma 13 is also in
NSUBEXP.

Proof. This is immediate from Lemma 13. O

Corollary 15. Suppose that ACIT over Z is in NSUBEXP. If Perm over Z is computable by
polynomial-size arithmetic circuits (over Z, without divisions), then Perm € NSUBEXP.

Proof. If Perm is computable by polynomial-size arithmetic circuits, then, for each n € N, we can
nondeterministically guess a poly(n)-size arithmetic circuit C' computing Perm on n X n integer
matrices. Since, by our assumption, testing whether C is indeed computing Perm can be done
in NSUBEXP by Corollary 14, we can verify in nondeterministic subexponential time that the
guessed arithmetic circuit indeed computes Perm over Z. Once we have such a circuit, we can
deterministically evaluate it at a given 0-1 n X n matrix in polynomial time, by doing all operations
modulo a sufficiently large number, e.g., modulo 2"1°8"+1 since the value of Perm on a 0-1 n x n
matrix is at most 2"1°6”. Hence, we conclude that Perm can be computed in nondeterministic
subexponential time. O

By modifying the proof of Corollary 15, one can easily show the following.

Corollary 16. Suppose that ACIT over Z is in NP. If Perm over Z is computable by polynomial-
size arithmetic circuits, then Perm € NP.

Finally, we observe that the proof of Lemma 13 immediately yields the following.
Lemma 17. The language

AFp Y {F | F is an arithmetic formula computing Perm of integer matrices}

18 polynomial-time many-one reducible to AFIT.
Thus, we obtain the following version of Corollary 15.

Corollary 18. Suppose that AFIT over Z is in NSUBEXP. If Perm over Z is computable by
polynomial-size division-free arithmetic formulas, then Perm € NSUBEXP.

11

3.2 Case of arithmetic circuits over Q with divisions

Here we will argue that if ACIT over Z can be derandomized, and if Perm over Q has polynomial-
size arithmetic circuits (possibly using divisions), then we still get the conclusion that Perm of 0-1
matrices is in nondeterministic subexponential time.

Note that, in general, a given arithmetic circuit C over Q with divisions computes a rational
function f/g, where f and g are polynomials over Z. The assumption that C computes Perm
means that f = gPerm. This implies, for any input integer matrix M such that g(M) # 0, we
have f(M)/g(M) = Perm(M). The problem is that C may be undefined on a particular matrix M
whose permanent we want to compute.

Fortunately, we can use the following result by Strassen [Str73]; Kaltofen [Kal88, Section 7]
provides an alternative proof.

Theorem 19 ([Str73]). Given an arithmetic circuit C (over Q with divisions) of size s computing
a degree d polynomial f(z1,...,%,), and a point @ = (a1,...,an) € Z"™ such that C is defined at @,
one can construct, in time poly(s,d,|d|), a new circuit C' such that

1. C' also computes f,
2. the only divisions in C' are by constants (independent of the input to C').

Corollary 20. If there is a family of polynomial-size arithmetic circuits, over Q with divisions,
computing Perm, then there is a family of pairs of polynomial-size division-free circuits (C7,C3)
over Z such that C§ computes an integer constant ¢ # 0, and CT = cPerm over all n X n integer
matrices.

Proof. For any arithmetic circuit C' of size s computing a rational function f/g, where f,g are
polynomials over Z, we get that both f and g are also computable by arithmetic circuits of size
poly(s): we can associate with each gate of C a pair of new gates, one for the numerator and the
other for the denominator, and then simulate C' using these pairs of gates. Hence, the denominator
g has bounded degree 2P°Y($) by Lemma 7. It follows by Lemma 8 that there is a tuple of integers
(a1,...,an) at which g is non-zero, and such that the bit complexity of each a; is polynomial in s.
We conclude that the size of a “good” point @ at which a given arithmetic circuit C of size s (over
Q, with divisions) is defined is bounded by a polynomial in s.

Assuming that a poly(n)-size circuit C computes Perm of n x n matrices, we can obtain from C
by Theorem 19 a new poly(n)-size circuit C' for Perm such that the numerator of C' computes an

integer polynomial h(z1,...,z,) and the denominator computes an integer constant ¢ # 0. Both
the numerator and the denominator of C’ are computable by division-free arithmetic circuits over
Z of size poly(|C'|). O

Now, suppose that we have such a pair of poly(n)-size division-free arithmetic circuits C; and
C, over Z, where C; computes an n’-variable polynomial and Cy computes some constant c¢. We
want to check C;(X) = cPerm(X) over integers, where X is an n X n matrix of variables.

Let us define (as in the previous subsection) restrictions C?, 1 < i < n, of Cy so that if C;
computes cPerm over Z, then each C* computes cPerm of 4 x ¢ integer matrices. Now, equations (1)
and (2) become C!(z) = cz, and CH(X) = > %_, z1,C* 1(X;) for 2 < i < n. Note that all these
are polynomial identity tests for polynomial-size division-free arithmetic circuits over Z. Thus, if
ACIT over Z can be derandomized, then we can test whether C1(X) = cPerm(X) over Z.

Finally, once we successfully verified that a given circuit C; computes cPerm, we would like to
be able to compute Perm(M) for every particular 0-1 matrix M efficiently. The obvious problem is

12

that, as we evaluate C1 (M) and compute ¢ using Cs, we may get intermediate integer values whose
bit complexity is exponential in the sizes of C; and C5. If we use modular arithmetic modulo some
m, we need to make sure that m does not divide ¢ (so that we can compute C;(M)/c mod m).
If we have a prime m > 2 that does not divide ¢, then we can recover Perm(M). It is not clear
how to find such a prime efficiently deterministically, but it is easy to find m nondeterministically:
guess an (n?)-bit prime m together with its polylog(m)-size certificate of primality (which exists
by Pratt’s result [Pra75]), simulate the computation of the circuit C2 modulo m, accepting iff the
result is non-zero.
These arguments yield the following strengthening of Corollary 15.

Theorem 21. Suppose that ACIT over Z is in NSUBEXP, and that Perm of n X n matrices over

Q is computable by polynomial-size arithmetic circuits over Q with divisions. Then Perm is in
NSUBEXP.

Proof. First, for any given n, we nondeterministically guess two polynomial-size division-free arith-
metic circuits C; and Cy over Z, where C; depends on n? variables, and Cy has no input variables
(and so C5 just computes some integer constant ¢). We also guess a prime on’ <m < 2/Cal?+n?
together with its primality certificate, and test that ¢ Z 0 mod m; the latter test can be done
efficiently by evaluating the circuit Cy modulo m. If ¢ # 0, such a prime m always exists (since
c< |CQ|2|C2|). If the primality certificate for m is correct, and if ¢ Z 0 mod m, then we continue;
otherwise we reject.

By Corollary 20, we know that if Perm is computable by a polynomial-size arithmetic circuit
(over Q, with divisions), then there exist two division-free polynomial-size circuits C; and Co over
7Z such that Co computes a non-zero integer constant ¢ and C; = cPerm. We can test whether
C1(X) = cPerm(X) for n x n integer matrices X, by verifying identities (1) and (2) (modified
as described in our discussion above), using the assumed nondeterministic subexponential-time
algorithm for ACIT over Z. If all these identities hold, then we know that C1(M) = cPerm(M)
for every 0-1 matrix M. Moreover, we can compute Perm(M) by simulating the computation of
C1(M)/c modulo our previously guessed prime m; remember that m was chosen so that ¢ Z 0
mod m and that Perm(M) < m, for any 0-1 matrix M. O

Similarly, we can strengthen Corollary 16.

Theorem 22. Suppose that ACIT over Z is in NP and that Perm is computable by polynomial-size
arithmetic circuits over Q with divisions. Then Perm € NP.

4 Circuit Lower Bounds via Derandomization

4.1 If ACIT can be derandomized

Definition 23. We say that NEXP is computable by polynomial-size arithmetic circuits if the
following two conditions hold:

1. NEXP C P/poly, and
2. Perm over Q is computable by polynomial-size arithmetic circuits (possibly with divisions).

If, in the definition above, condition (1) holds for NEXP N coNEXP rather than NEXP, we will
say that NEXP N coNEXP is computable by polynomial-size arithmetic circuits.

13

Theorem 24. If ACIT over Z is in NTIME(2™) for every € > 0, then NEXP is not computable by
polynomial-size arithmetic circuits.

Proof. Suppose, for the sake of contradiction, that ACIT € N.5oNTIME(2™), and NEXP is com-
putable by polynomial-size arithmetic circuits. It follows by Theorem 4 and Corollary 5 that
NEXP = coNEXP and Perm is NEXP-complete. On the other hand, by Theorem 21, we have that
Perm € NTIME(2"), for every € > 0. Hence, we obtain that coNEXP C NTIME(2"), which is
impossible by the following simple diagonalization argument. On an input z of length n, simulate
the zth nondeterministic Turing machine M, on z for 2" steps, and reject iff M, accepts; note
that a co-nondeterministic Turing machine can easily “flip” the decision of the nondeterministic
machine M,. Since we can assume that each nondeterministic Turing machine has descriptions of
size n for all sufficiently large n € N, we obtain our result. O

Assuming stronger derandomization of ACIT, we can strengthen the conclusion of Theorem 24.

Theorem 25. If ACIT over Z is in NP, then NEXPNcoNEXP is not computable by polynomial-size
arithmetic circuits.

Proof. If Perm is not computable by polynomial-size arithmetic circuits, then we are done. Thus,
let us suppose that Perm is computable by polynomial size arithmetic circuits.

We know by Theorems 1 and 2 that Perm is PH-hard. On the other hand, our assumptions
imply, by Theorem 22, that Perm € NP. This means that PH = NP = coNP. Hence, by padding, we
have that NEXP = coNEXP = NEXP NcoNEXP. Appealing to Theorem 24 concludes the proof. [

With extra care, we also obtain the “infinitely often” version of Theorem 24.

Theorem 26. If ACIT over Z is in io-NTIME(2™") for every e > 0, then NEXP is not computable
by polynomial-size arithmetic circuits.

Proof. Suppose that NEXP is computable by polynomial-size arithmetic circuits. Then, by Theo-
rem 4 and Corollary 5, we have NEXP = EXP and Perm is EXP-complete.

A closer look at the proof of Theorem 21 reveals that if ACIT € Nsgio-NTIME(2""), then
Perm € io-NTIME(2™)/O(logn), for every ¢ > 0. Indeed, for a given input size n, the output of
the many-one reduction of Lemma, 13 has size n¢ for some fixed constant d. We can use an advice
string of size (d 4 1)logn to encode the “good” input size between n¢ and (n + 1)¢ at which a
given NTIME(2™) algorithm for ACIT is correct; if there is no good input size in this interval, then
the advice string can be arbitrary. By padding up the output of our many-one reduction so that
it is of the “good” size, we can construct a correct polynomial-size arithmetic circuit for Perm in
nondeterministic subexponential time, for infinitely many input sizes, using logarithmic advice.

Next we will argue that

EXP C io-NTIME(2"")/log?n (3)

for every € > 0. Recall that, by our assumption, Perm is EXP-complete. This means that every
language L € EXP is reducible to Perm of 0-1 matrices in time n°. We can use O(logn)-size
advice string to encode the “good” input size in the interval between n°s and (n + 1)°4 at which
our NTIME(2"")/O(log n)-time algorithm for Perm is correct. Then we can pad up to the “good”
size all the queries to Perm made by the reduction from L to Perm. By combining the advice
strings of the reduction and the algorithm for Perm, we conclude that

L € io-NTIME(2™") /¢, logn

14

for some constant ¢} dependent on L. Since logZn > clogn for every constant ¢ whenever n gets
large, the inclusion (3) follows.

Finally, to derive a contradiction, we employ an argument from [IKW02]. Note that the existence
of a universal Turing machine for NTIME(2") and the assumption that NEXP C P/poly imply that
there is a fixed constant ¢y such that

NTIME(2™)/ log® n C SIZE(n).

It follows that EXP C io-SIZE(n), which is impossible by a simple diagonalization argument. [

4.2 If RP can be derandomized

Since ACIT over Z is in coRP by Lemma 9, we immediately obtain the following results.

Corollary 27. If coRP C io-NTIME(2™) for every ¢ > 0, then NEXP is not computable by
polynomial-size arithmetic circuits.

Proof. This is immediate from Lemma 9 and Theorem 26. O

Corollary 28. IfcoRP C NP, then NEXPNcoNEXP is not computable by polynomial-size arithmetic
circuits.

Proof. This is immediate from Lemma 9 and Theorem 25.]

Corollary 29. If BPP = P or if RP = ZPP, then NEXPNcoNEXP is not computable by polynomial-
size arithmetic circuits.

Proof. If BPP =P or if RP = ZPP, then coRP C NP, and the result follows by Corollary 28. O

4.3 If AFIT or SDIT can be derandomized

Here we show that the existence of nontrivial algorithms for solving even a special case of Polynomial
Identity Testing (e.g., AFIT or SDIT) would also yield (slightly weaker) circuit lower bounds for
NEXP. We need the following definition.

Definition 30. We say that NEXP is computable by polynomial-size arithmetic formulas if the
following two conditions hold:

1. NEXP C P/poly, and
2. Perm over Z is computable by division-free polynomial-size arithmetic formulas.
First, we prove the following.

Theorem 31. If AFIT over Z is in io-NTIME(2™) for every € > 0, then NEXP is not computable
by polynomial-size arithmetic formulas.

Proof. The proof is analogous to that of Theorem 26, except for using Lemma 17 instead of
Lemma 13. O

Next, we shall argue that any nontrivial derandomization of SDIT also leads to circuit lower
bounds for NEXP. To this end, we prove that AFIT is many-one reducible to SDIT.

Theorem 32. AFIT is polynomial-time many-one reducible to SDIT.

15

The proof of Theorem 32 relies on the following result of Valiant [Val79a)] (see also [Gat87]).

Theorem 33 ([Val79a]). There is a deterministic polynomial time algorithm that, given an arith-
metic formula of size s computing a polynomial f € Z[x1,...,zy,], outputs an (s +2) x (s + 2)
matriz A over ZU{x1,...,z,} such that Det(A) = f.

Proof of Theorem 32. The requisite polynomial-time many-one reduction is the algorithm from
Theorem 33. O

Thus, if SDIT can be done in nondeterministic subexponential time, then, by Theorem 32, so
can AFIT, and hence, by Theorem 31, we conclude that NEXP is not computable by polynomial-
size arithmetic formulas. Actually, using the ideas from the proof of Theorem 26 (introducing
appropriate advice strings), we can prove the following, slightly stronger, statement.

Theorem 34. If SDIT is in io-NTIME(2™) for every ¢ > 0, then NEXP is not computable by
polynomial-size arithmetic formulas.

4.4 If RNC can be derandomized

Usually, the question whether the class RNC can be derandomized is stated as whether RNC ZNC.
However, it is not yet known whether an even much weaker derandomization of RNC is possible,
?

e.g., RNC C SUBEXP. The next result shows that resolving this question would require a proof of
new circuit lower bounds.

Corollary 35. If coRNC C io-NTIME(2™) for every € > 0, then NEXP is not computable by
polynomial-size arithmetic formulas.

Proof. The proof is immediate from Corollary 10 and Theorem 34. O

5 A Hard Language in NEXP®®

Currently, the smallest complexity class known to contain a language of superpolynomial Boolean
circuit complexity is MA-EXP, the exponential-time analogue of the class MA. The following result
is due to Buhrman, Fortnow, and Thierauf.

Theorem 36 ([BFT98]). MA-EXP ¢ P/poly.

While we cannot strengthen Theorem 36, we can prove that a (seemingly) smaller complexity
class than MA-EXP contains a language of superpolynomial arithmetic circuit complexity. Namely,
we show the following.

Theorem 37. At least one of the following holds:
1. Perm owver Z is not computable by polynomial-size arithmetic circuits, or
2. NEXPRP ¢ P /poly.

First, observe that NPBPP C MA by a fairly straightforward argument. Hence, by padding,
we have that NEXPBPP C MA-EXP, and so Theorem 37 shows the existence of a hard language
in a smaller complexity class than MA-EXP. As a side remark, we want to point out that MA C
NPPromise-RP (the proof is implicit in [BF99]); hence, MA-EXP C NEXPPromiseRP

For the proof of Theorem 37, we shall need the following.

16

Lemma 38. If Perm is computable by polynomial-size arithmetic circuits, then Perm € NPRP.

Proof. By Lemmas 9 and 13, we know that the problem of testing whether a given arithmetic circuit
computes Perm of integer matrices is many-one reducible to the coRP problem ACIT. Hence, we
can nondeterministically guess a small arithmetic circuit for Perm and test its correctness with
access to the RP oracle. It follows that Perm € NPRP. O
Theorem 39. If NEXP is computable by polynomial-size arithmetic circuits, then NEXP C NPRP.
Proof. Recall that our assumption that NEXP is computable by polynomial-size arithmetic circuits
means that both NEXP C P/poly and Perm is computable by polynomial-size arithmetic circuits.
The former yields, by Corollary 5, that Perm is NEXP-complete. By Lemma 38, the latter implies
that Perm € NPRP which concludes our proof.]

We are now ready to give a proof of Theorem 37.

Proof of Theorem 37. Assume NEXP is computable by polynomial-size arithmetic circuits. By
Theorem 39, NEXP C NPRP. By padding, NEE C NERP, where NEE = NTIME(22°™). Since
EE ¢ P/poly [Kan82], our claim follows. O

Later we shall need the following result that is similar to Theorem 39.
Theorem 40. If EXP is computable by polynomial-size arithmetic circuits, then EXP C NPRP.

Proof. The proof is analogous to that of Theorem 39. If EXP C P/poly, then EXP = MA by
Theorem 3; hence, by Theorems 1 and 2, we conclude that Perm is EXP-complete. Now, if Perm
is computable by polynomial-size arithmetic circuits, then Perm € NPRP by Lemma 38. O

6 Low-Degree Testing and Derandomization

6.1 Testing a Boolean circuit for Permanent

In Section 3, we showed how to test in probabilistic polynomial time whether a given arithmetic
circuit computes the Permanent. The main reason our probabilistic algorithm is a coRP-style
algorithm is that we are dealing with an arithmetic circuit, and hence, we know that the given
circuit computes some polynomial of total degree bounded by the size of the circuit. If we could
deterministically test whether a given Boolean circuit computes a polynomial of low degree, then
we would be able to adapt our arguments from Section 3 in the Boolean (rather than arithmetic)
setting. We formalize this idea below.

The problem of Low-Degree Testing consists in checking whether a given function f : F* — F
(e.g., represented by a Boolean circuit) is close to some “low-degree” polynomial p(z1,...,T,)
over a finite field F. This problem has been extensively studied in the context of program testing
and probabilistically checkable proofs (see, e.g., [RS96] and the references therein). We state the
Low-Degree Testing as the following promise problem.

Low-Degree Testing Problem (LDT)

Positive inputs: A Boolean circuit computing a function f : F* — F that agrees with some degree
d polynomial over a finite field F.

Negative inputs: A Boolean circuit computing a function f : F* — F that is not 1/k-close to
any degree d polynomial over F.

17

The known randomized algorithms for low-degree testing [BFL91, FGL196, RS96, AS98, ALM ™98,
RS97, AS97] imply that LDT is in promise-BPP. It is not known if LDT is hard for promise-BPP.
We will argue below that if LDT can be solved in deterministic polynomial time, and if BPP = P,
then NEXP ¢ P/poly.

We say that LDT can be done in polynomial time if there is a deterministic polynomial-time
algorithm accepting all positive inputs and rejecting all negative inputs. More precisely, there must
exist a constant ¢y € N and a deterministic Turing machine 7" such that, given d,k € N and a
Boolean circuit C' of size s computing a function f : F* — F, where F is a finite field of size at least
(d + k + s)®, the machine T runs in time poly(s, d, k,n,log |F|), accepting if C is a positive input,
and rejecting if C is a negative input to LDT.

Next we describe algorithm TEST (see Algorithm 1 below) whose properties will be useful in
deriving the main results of this section.

INPUT: (gq,C, M,b), where ¢ € N is given in unary, C is a Boolean circuit with n?logq inputs, M
is an n X n matrix of elements from Z/qZ, and b € Z/qZ.

1. Deterministically test if ¢ is a prime, and that ¢ > (n 4+ n? + |C|)%. If ¢ is not a prime, then
REJECT.

2. Viewing C as a circuit on input n X n matrices over GF(q), define C;, 1 < 7 < n, to be the
restriction of C to 4 X 1 matrices over GF(q) satisfying the property: If C computes Perm of
n X n matrices over GF(g), then each C; computes Perm of ¢ x ¢ matrices over GF(g). For
every 1 < i < m, run the deterministic LDT algorithm on C; for F = GF(q), d = i, and
k =n?. If any C; is rejected by the LDT algorithm, then REJECT.

3. Probabilistically test that equations (1) and (2) hold for the functions f; computed by C;,
1 € i € n, when matrix elements are chosen uniformly at random from GF(q). If any C; fails
the test, then REJECT.

4. Apply Lemma 11 to C, getting a randomized circuit C that computes a degree n polynomial
over GF(q). Probabilistically test if C(M) = b. If the equality holds, then ACCEPT; otherwise,
REJECT.

Algorithm 1: TEST

The properties of Algorithm TEST are summarized in the following lemma.

Lemma 41. 1. Algorithm TEST is a BPP algorithm.

2. If C is a Boolean circuit correctly computing Perm of n x n matrices over GF(q), then the
tuple (q,C, M,C(M)) is accepted by TEST with probability one.

3. If a tuple (q,C, M,b) is accepted by TEST with probability at least 3/4, then Perm(M) = b
mod gq.

Proof. Clearly, the running time of TEST is polynomial in ¢,n,|C|. We need to argue that every
input to TEST is accepted or rejected with high probability.

Observe that Steps 1 and 2 of TEST are deterministic. If an input is not rejected after these
first two steps, then we know that C;’s compute functions f; that are 1/n2-close to some (uniquely
determined) degree i polynomials p; over the finite field GF(g). At this point there are three
possibilities:

18

I. for some 1 < i < n, p; Z Perm of i x ¢ matrices over GF(q),
IT. all p;’s compute Perm, and Perm(M) = b mod ¢, and
IT1. all p;’s compute Perm, and Perm(M) #Z b mod g.

Below we shall argue that in cases I and III, TEST rejects with probability close to one, and in
case II, TEST accepts with probability close to one.

In Step 3, n polynomial identity tests are run on f;’s. Since each f; is 1/n2-close to a polynomial
pi, we can assume, with probability at least 1 —1/n, that all these tests are run on the polynomials
p;. If at least one of p;’s is different from Perm, then this will be detected with probability at least
1—1/n. Hence, if all p;’s compute Perm, then Step 3 will pass with probability at least 1 —1/n; if,
on the other hand, at least one of the p;’s is not equal to Perm, then Step 3 will fail with probability
at least (1 —1/n)2>1-2/n.

If Step 3 did not fail with high probability, then the circuit C' correctly computes Perm(M) with
probability close to one. Thus, Step 4 decides if Perm(M) = b mod ¢q correctly with probability
close to one.

Thus, we have proved claim 1 of the lemma. Claim 2 is obvious. Claim 3 follows since TEST
accepts with high probability only in case II. O

By analogy with Corollary 15, we obtain the following.

Corollary 42. Suppose that BPP C NSUBEXP and that LDT can be done in polynomial time. If
Perm € P/poly, then Perm € NSUBEXP.

Proof. Observe that our assumptions imply that the language L(TEST) of the BPP algorithm TEST
of Lemma 41 is in NSUBEXP. The following is a nondeterministic subexponential-time algorithm
for Perm.

Let M be a given n X n integer matrix; for simplicity, let us assume that each entry of M can
be described using at most n bits, and so the value Perm(M) can be described using at most n3
bits. We nondeterministically guess a polynomial-size Boolean circuit C' for Perm of n x n matrices
with n-bit integer entries. Let C? be the Boolean circuit computing the value of C' modulo the ith
prime ¢; in the interval [|C|?,|C|®], for 1 < i < n*; the Prime Number Theorem guarantees that
there are sufficiently many primes in the chosen interval. Note that, if C' is indeed a correct circuit
computing Perm over integers, then each C* is a correct circuit computing Perm modulo g;.

Let M; = M mod ¢;, for 1 < i < n*. We nondeterministically guess b = Perm(M), and, for
each 1 <1 < n4, we set b; = b mod ¢;. Then we nondeterministically check in subexponential time
whether (g;, C?, M;,b;) € L(TEST). If these tests pass for every i, then we output b; otherwise, we
reject.

Note that by claim 3 of Lemma 41, any output value b will be such that b; = Perm(M) mod g;,
for all 5. Hence, by the Chinese Remainder Theorem, we have that b = Perm(M).

By claim 2 of Lemma 41, all tests (g;, C%, M;,b;) € L(TEST) will pass for the correct circuit C
computing Perm and the value b = Perm(M). Thus, our nondeterministic algorithm will always
output b = Perm(M). O

6.2 Derandomization of MA

In general, it is not known whether the assumption that BPP = P should imply any derandomization
of the class MA. However, under the additional assumption that the LDT is easy, we get the
following.

19

Theorem 43. Suppose that LDT can be done in polynomial time. If BPP C NSUBEXP, then
MA C io-NTIME(2"), for every e > 0.

Proof. Suppose, for the sake of contradiction, that MA ¢ io-NTIME(2"°) for some € > 0. Then, by
Theorem 6, we have EXP = MA = PH C P/poly. Since Perm € EXP, we get that Perm over Z has
polynomial-size Boolean circuits. It now follows by Corollary 42 that Perm € NSUBEXP.

Since Perm € EXP and Perm is PH-hard by Theorems 1 and 2, we have that Perm is EXP-
complete. Consequently, we get that MA = EXP C NSUBEXP. A contradiction. O

Remark 44. It is possible to prove a version of Theorem 43 with the class MA being replaced by
promise-BPP (or the class APP introduced in [KRCO00]). That is, the assumptions of Theorem 43
imply that promise-BPP can be computed in nondeterministic subexponential time, infinitely often.
It is an interesting open question whether one can achieve a deterministic subexponential-time
simulation of promise-BPP under the assumptions that both BPP = P and LDT is in P.

6.3 Circuit lower bounds

As a corollary of Theorem 43, we obtain the following result: if both LDT and BPP can be
derandomized, then NEXP does not have polynomial-size Boolean circuits.

Theorem 45. Suppose that LDT can be done in polynomial time. If BPP C NSUBEXP, then
NEXP ¢ P/poly.

Proof. By Theorem 43, we get from our assumptions that MA C io-NTIME(2"). This implies that
NEXP # MA.

Indeed, suppose that NEXP = MA. Then NEXP = EXP = coNEXP C io-NTIME(2"). But a
simple diagonalization argument shows that coNEXP ¢ io-NTIME(2").

Finally, since NEXP # MA, the result follows by Theorem 4. U

Theorem 45 strengthens one of the results in [[KWO02] saying that if promise-BPP can be de-
randomized, then NEXP ¢ P/poly. This is because the assumption that promise-BPP can be done
in deterministic polynomial time implies that both BPP = P and that LDT is in deterministic
polynomial time.

7 Conditional Derandomization of Polynomial Identity Tests

7.1 Finding roots of multivariate polynomials

Our derandomization procedure will use the existence of an efficient algorithm for the following
problem of finding roots of multivariate polynomials over a field F, where F is either a finite field
GF(q") of prime characteristic ¢, or the field Q of rationals.

Root Finding

GIVEN: An arithmetic circuit computing a non-zero polynomial g(z1,...,Z,,y) of total degree d
over a field F.

FIND: A list of arithmetic circuits which contains a circuit for every polynomial p(z1,...,z,) such
that

0.

g(xla"' axn,p(xla"' ,xn))

We need the following result of Kaltofen.

20

Theorem 46 ([Kal89]). There is a probabilistic polynomial-time algorithm that, given an arith-
metic circuit of size s computing a polynomial f € Fz1,...,z,] of total degree at most d, with
probability at least 3/4 outputs the numbers e; > 1 and irreducible polynomials h; € Flz1, ..., z,],
1 < < r, given by arithmetic circuits of size poly(s,d,log |F|) such that

r
F=11Ir
=1

In case the characteristic g of F divides any e;, i.e., ¢ = qkieg with €, not divisible by q, the

ki
algorithm returns €, instead of e;, and the corresponding arithmetic circuit computes hg instead of
hi. For F = Q, the sizes of produced arithmetic circuits are poly(s,d,a), where a is the mazimum
size of a coefficient of f.

We also use the following basic fact.

Lemma 47 (Gauss). For a field F, let f(z1,...,%n,y) € Flz1,...,2n,y] and p(z1,...,2,) €
Flz1,...,zy,] be any polynomials such that

0.

f(mla .. 7*T’n7p(xla .. axn))
Then y — p(z1,-..,%y) is an irreducible factor of f(x1,...,Zn,y) in the ring Flz1,...,z,,y].
Now we can prove that the Root Finding problem is efficiently solvable.

Corollary 48. The root finding problem for a polynomial g € F[z1,...,x,,y] of total degree d
computable by an arithmetic circuit of size s can be solved probabilistically in time poly(s,d,log|F|);
for F = Q, the running time is poly(n,d, a), where a is the mazimum size of a coefficient of g.

Proof. For the case of F = Q, this follows immediately from Lemma 47 and Theorem 46. Indeed,
with high probability, the algorithm of Theorem 46 will produce a small arithmetic circuit comput-
ing y — p(x1,...,2,). Substituting 0 for y, and multiplying by —1, we obtain an arithmetic circuit

for p(x1,...,2y5)-
For the case of a finite field F = GF(q") for some prime ¢, the same reasoning as above gives
us a small arithmetic circuit for p(x1,...,z,), provided that the multiplicity e of the linear factor

y — p(z1,...,oy) of g is not divisible by the characteristic ¢ of the field F. If ¢ does divide
e, ie., if e = ¢Fe’ where € is not divisible by ¢, we will get an arithmetic circuit computing
P(x1,y.xn) =p(ae,. .., mn)qk. By raising the function p to the power ¢*~*, we obtain an arithmetic
circuit computing a function that agrees with the polynomial p over the entire field F; since we
do not know k, we output a circuit for every 0 < k < t. The size of the new arithmetic circuit
increases by at most polylog(|F|). O

Remark 49. In the case of a finite field F = GF(q') of characteristic g, the proof of Corollary 48
does not guarantee the existence of a small arithmetic circuit that is identically equal to the requisite
n-variate polynomial p. Instead, we are guaranteed to have a small arithmetic circuit computing
a function that coincides with the polynomial p at all tuples from F". For precisely this reason,
whenever we talk about the arithmetic circuit complexity of polynomials over finite fields, we shall
adopt the functional viewpoint: the complexity of a polynomial p over a finite field F is defined as
the size of a smallest arithmetic circuit that agrees with p over the entire domain F”.

21

7.2 Generalized NW generator

First, we define a generalization of the NW generator to arbitrary fields. It is given oracle access
to a supposedly hard polynomial p, and will be denoted NWP. The algorithm for NW? is described
below (see Algorithm 2). We should point out that such a generalization of the NW generator was
used earlier by Raz, Reingold, and Vadhan [RRV99] in the context of randomness extractors.

Below, for an [-tuple a = (a1,...,a;) and a subset S C {1,...,l} of size m, we denote by a|g
the m-tuple of the elements of ¢ indexed by the set S.

PARAMETERS: [,m,n € N.
INPUT: a = (a1,...,a;) € F', where F is a field.
ORACLE ACCESS: p(Z1,...,Zm) € Flz1,...,25].

1. For given m,n € N, construct the set system Si,...,S, as given by Lemma 12.

2. Output (p(a|s,),---,p(als,)) € F".

Algorithm 2: Generator NW?

Given an n-variate polynomial f of total degree d; over a field IF, we will search for non-zeros of
f among the outputs of the NW generator. Let NW? be the NW generator based on an m-variate
polynomial p of total degree dj,, where m < n. For [given by Lemma 12, we enumerate all [-tuples
a = (ai,...,q;), where each a; € S C F for a subset S of the field F with |S| > d;d,, and check
whether f(NW?(a)) # 0. The running time of this procedure is at most = 2“0g‘5(, not counting
the time of oracle calls to p.

Suppose that the polynomial f # 0, but we have not found any zero of f among the outputs
of the NW generator based on a polynomial p. We shall argue that p can then be computed by a
“small” arithmetic circuit. This is made precise in the following lemma.

Lemma 50. Let f € Flyi,...,yn) and p € Flz1,...,zy5] be any non-zero polynomials of total
degrees dy and dy,, respectively, where |F| > ddp. Let f be computable by an arithmetic circuit of
size s, let S C T be any set of size |S| > dydp, and let | € N be given by Lemma 12. Suppose that
f(NWP(a)) = 0 for all a € S'.

Then the polynomial p is computable by an arithmetic circuit of size poly(m,n,dy,dy, s,log |F|, M),
where M < (dp + 1)°8™: when p is a multilinear polynomial, we have M < n. For the case F = Q,
the size is poly(m,n,dy,d,, s,a, M), where a is the mazimum size of a coefficient in f and p.

Proof. Our proof is in two parts. First, by a “hybrid” argument, we obtain from f a non-zero
polynomial g(z1,...,Zm,y) such that p(zi,...,zy) is a y-root of this polynomial g. Then we
appeal to Corollary 48 to conclude that p is computable by an arithmetic circuit with required
parameters.

I. HYBRID ARGUMENT. We define the following collection of polynomials:

b gO(~T1,---;$l,y1;---,yn) :f(yla"'ayn)a

e for 1 < [< n, gi(xla e T Y1, - ’yn) = gi—l(xla .. axlap((a’-lﬂ .. a:L'l)'Si)’yi-I-la v ayn)

Observe that g;(x1,...,Z;, Yit1,---,Yn) is obtained from f by replacing the first ¢ variables in
f by the polynomials p((z1,...,)|s;) for 1 < j <i. Thus, gy(z1,...,21) = F(NWP(z1,...,31)).

The [-variate polynomial g, is of total degree at most D = dyd,. Since g,, vanishes on S where
|S| > D, we have, by Lemma 8, g, = 0.

22

If go # 0, but g, =0, then there must be the smallest 0 < 7 < n such that g; # 0 but g;+1 = 0.
Since g;(Z1,---, %1, Yit1s---,Yn) Z 0, we can fix the variables y;19,...,y, as well as the variables
zj for 7 € S;11 to some field elements from the set S C F so that the restricted polynomial
Gi(%j1,---,%j,,Yi+1) remains a non-zero polynomial. For notational convenience, let us denote this
new polynomial by g(z1,...,Zm,y)-

II. FACTORING. Thus, we have that g(z1,...,zm,y) Z0, but g(z1,...,Zm,p(z1,...,2Zm)) = 0.
Hence, by Corollary 48, the polynomial p is computable by an arithmetic circuit of size polynomial
in the degree of g, the size of an arithmetic circuit computing g, and either log|F|, for a finite field
F, or the maximum size of a coefficient of g, for F = Q.

The degree of g is at most D. The arithmetic circuit for g can be obtained from that of f together
with at most n circuits computing the restrictions of p, where each restriction is a polynomial of
degree at most d;, on at most log n variables (by condition (3) of Lemma 12). Every such polynomial
contains at most M = (d, + 1)!°6™ distinct monomials, and so can be computed by an arithmetic
circuit of size poly(M). In the case where p is a multilinear polynomial, its restrictions to logn
variables will have at most 21°6™ = p distinct monomials. Thus, the size of an arithmetic circuit
computing g is at most s + npoly(M), and the conclusion of the lemma follows. O

7.3 Algebraic hardness-randomness tradeoffs

We shall state our conditional derandomization result for ACIT where the given arithmetic circuit
C computes an n-variate polynomial of total degree poly(n). Clearly, this condition is satisfied in
the case of polynomial-size arithmetic formulas by Lemma, 7.

Theorem 51. Let p = {pm}m>0 be a family of exponential-time computable multilinear non-zero
polynomials py, € Z[x1,...,Zm] such that the mazimum coefficient size of py, is in poly(m). Suppose
that the arithmetic circuit complezity of p over Q is sp(m) for some function sp : N — N.

Let C be a poly(n)-size division-free arithmetic circuit over Z computing an n-variate polynomial
fn € Zly1,--.,yn] of total degree ds(n) € poly(n) and mazimum coefficient size in poly(n). Then,
for all sufficiently large n, testing whether f, = 0 can be done deterministically in time

1. 2™ for any € > 0, if sp(m) € me ()
2. 2POVIg(n) if 5 (m) € om®®
Proof. (1) For m = n¢, Lemma 12 gives [< n?. Let S be a subset of Z of size at least nd; € poly(n).

The size of the set S is at most (nd f)l < o If p is computable on an input of size w in
time 2¥°, for some fixed constant ¢, then running the generator NW? on the set S' takes time
|Sl|2”3“ < 2. We enumerate all elements of S!, computes the output ¥ of NWP? on each, and
then evaluate the circuit C at . We output “f,, is non-zero” iff C'(7) # 0 for some 7.

Note that by our assumption about the degree and the coefficient sizes of p,,, the outputs 7
of NW? will have bit size at most poly(n). Also, by our assumption about the degree and the
coefficient sizes of f,,, the values f,(7) will have bit sizes bounded by poly(n), and hence they can
be computed by simulating C' on 7 modulo Z”d, for some sufficiently large constant d. Thus, we
can test whether f,(7) = 0 in deterministic time poly(n), for every output 7 of the generator.

Since € can be arbitrarily small, this leads to a subexponential-time deterministic algorithm for
testing whether f,, = 0. By Lemma 50, this testing algorithm must succeed for f,, since otherwise
the arithmetic circuit complexity of p would be polynomial.

(2) We can choose m = (logn)?, for some sufficiently large d to be specified later. This choice
yields the NW generator on [< (logn)?? variables, where, as above, each variable assumes values

23

in a set S C F of size at least nd; € poly(n). Thus, running the NW generator takes time 2(logn)® d,

for some constant ¢/. If this generator fails for f, then, by Lemma 50, p,, is computable by an
arithmetic circuit of size n*, for some constant & independent of d. Since d can be arbitrarily large,
the failure of the NW generator on f would imply that p,, is computable by arithmetic circuits of
size 2™ for any € > 0, contrary to our assumption on the hardness of p. O

A version of Theorem 51 for the case of finite fields F also holds.

Theorem 52. Let p = {pm}tm>0 be a family of exponential-time computable multilinear non-
zero polynomials py, € Flz1,...,xym] for some finite field F. Suppose that the arithmetic circuit
complezity of p over F is s,(m) for some function sp : N — N.

Let C be a poly(n)-size division-free arithmetic circuit over F computing an n-variate polynomial
fn of total degree d¢(n) € poly(n). Then, for all sufficiently large n, testing whether f, =0 can be
done deterministically in time

1. 2™ for any € > 0, if s,(m) € m*();
9. 2PoIoB(n) if 5 (m) € 2m™ .

Proof Sketch. The proof is similar to that of Theorem 51. If the field F is small (less than a
polynomial in n), then we need to go to an extension field of F in order to have a polynomial-size
subset S of field elements. Since we only need a O(logn)-degree extension of F, we can find such
an extension in deterministic time poly(n) by exhaustive search. O

For AFIT, we obtain the following.

Corollary 53. Let p = {pm}m>0 be a family of exponential-time computable multilinear non-zero
polynomials py, € Z[x1,...,Zm] such that the mazimum coefficient size of py, is in poly(m). Suppose
that the arithmetic circuit complezity of p over Q is sp(m) for some function sp : N — N.

Let F be a poly(n)-size division-free arithmetic formula over Z computing an n-variate poly-
nomial fn, € Zy1,...,yn)- Then, for all sufficiently large n, testing whether f, = 0 can be done
deterministically in time

1. 2™ for any € > 0, if sp(m) € m*();

9. 2PoIog(n) ir o (m) € 2m™

Proof. Note that an arithmetic formula F' of poly(n) size computes a polynomial f of poly(n) degree
(by Lemma 7). The coefficient sizes of f are also bounded by poly(n) (by an argument similar to
the proof of Lemma 7). Hence, we can apply Theorem 51 to F. O

Remark 54. Theorem 51 is stated for the assumption of almost everywhere high circuit complexity
of a given polynomial p. The infinitely often versions of the tradeoffs also hold. That is, if p has
high arithmetic circuit complexity infinitely often, then the polynomial identity testing problem is
easy also infinitely often.

We can now establish a weak converse of Theorems 31 and 34.

Theorem 55. If NEXP is not computable by polynomial-size arithmetic circuits, then both AFIT
and SDIT are in io-[NTIME(2™)/n€] for every e > 0.

The proof of Theorem 55 will use the following result implicit in [TKW02].

24

Lemma 56 ([IKWO02]). If NEXP ¢ P/poly, then coRP C io-[NTIME(2"")/n€] for every e > 0.

Proof of Theorem 55. If Perm is not computable by polynomial-size arithmetic circuits, then both
AFIT and SDIT are in io-TIME(2™) for every € > 0, by Theorem 51. On the other hand, if
NEXP ¢ P/poly, then both AFIT and SDIT are in io-[NTIME(2™) /n¢] for every ¢ > 0, by Lemma 56
and the fact that both AFIT and SDIT are coRP problems. O

We should point out that, unlike in the Boolean circuit complexity case (cf. [IW97]), the as-
sumption of 2%™) arithmetic circuit complexity for polynomials p,, does not seem to imply a
polynomial-time derandomization procedure. The reason is that even though we can get an NW
generator from O(logn) to n variables, each variable assumes values from some set of size poly(n),
and we need to enumerate all O(logn)-tuples of field elements of bit-size O(logn) each. Thus, we
still get only quasipolynomial-time algorithm in this case.

We also would like to remark that, as one might suspect, a “uniform” version of Theorem 51
can be proved, along the lines of [IW98]; the details are omitted.

7.4 Derandomization from EXP # NPR?
Babai, Fortnow, Nisan, and Wigderson show that BPP can be derandomized if EXP # MA.

Theorem 57 ([BFNW93]). At least one of the following holds:
1. BPP Cio-TIME(2™) for every e > 0, or
2. EXP = MA C P/poly.

Here we show that a certain version of Polynomial Identity Testing can be derandomized if
EXP £ NPRP.

Theorem 58. At least one of the following holds:
1. AFIT is in io-TIME(2™") for every e > 0, or
2. EXP = NPRP,

Proof. If AFIT cannot be done in deterministic subexponential time, then it follows by Corollary 53
that Perm over Z is computable by polynomial-size arithmetic circuits. Also, since AFIT is in
coRP C BPP, the lack of derandomization for AFIT means that BPP is not in io-TIME(2™) for
some €. Hence, by Theorem 57, we know that EXP C P/poly.

Thus we have that EXP is computable by polynomial-size arithmetic circuits, and the conclusion
EXP = NPRP follows from Theorem 40. U

Note the following difference between Theorems 57 and 58. Our Theorem 58 says that if a
particular BPP problem cannot be derandomized, then we get a deeper collapse for EXP; the collapse
is deeper since, as we mentioned earlier, NPBPP C MA. Thus, we get weaker derandomization, or
a stronger collapse.

25

8 Conclusions

We proved the necessity of circuit lower bounds for achieving even weak derandomization of RP
and BPP. Thus any general derandomization results for RP would need to be preceded by a
proof of a superpolynomial circuit lower bound for some language in NEXP. This relation between
derandomizing RP and proving circuit lower bounds for NEXP may explain the lack of unconditional
derandomization results for RP.

It is worth pointing out that although Kabanets [Kab01] proved an unconditional derandom-
ization result for RP in a certain “uniform” setting, the condition of “uniformity” makes the result
in [Kab01] too weak for Corollary 27 to be applicable.

The results in the present paper do not rule out that ZPP = P can be proved without having
to prove any circuit lower bounds first. This leaves some hope that unconditional derandomization
of ZPP could be achieved.

Also, on the positive side, one can view our results as providing another approach towards
establishing circuit lower bounds — through derandomization. As we have seen, finding an (even
nondeterministic) subexponential-time algorithm for Polynomial Identity Testing would yield non-
trivial circuit lower bounds.

We conclude with some open problems. Can our result “NEXP is computable by polynomial-size
arithmetic circuits = BPP € N¢s0io-NTIME(2"°)” be strengthened to get “BPP = NEXP” in the
conclusion? If so, then this would say that even proving that NEXP # BPP is impossible without
proving superpolynomial circuit lower bounds.

Does the assumption BPP = P imply Boolean circuit lower bounds for NEXP? Does the same
assumption imply (possibly arithmetic) circuit lower bounds for EXP, rather than NEXPNcoNEXP?

Regarding the low-degree testing, we ask the following questions. Does the assumption that
there is a deterministic polynomial-time algorithm for LDT imply any circuit lower bounds for
NEXP? The answer is positive if one could show that LDT is hard for promise-BPP. This motivates
the question: Is LDT hard for promise-BPP? The related question is to decide whether the assump-
tions that both BPP = P and LDT is in P should imply that promise-BPP C promise-SUBEXP.

Our final question concerns the conditional derandomization of the Polynomial Identity Test-
ing. Assuming the existence of polynomials of high arithmetic circuit complexity, can one test
whether a univariate polynomial of degree d is identically zero in deterministic time sublinear (e.g.,
polylogarithmic) in d?

Acknowledgements We want to thank Allan Borodin for answering our questions about alge-
braic complexity, as well as for suggesting that we consider the problem of zero testing of symbolic
determinants. We are especially thankful to Erich Kaltofen for answering our questions about his
results. We would like to thank Dieter van Melkebeek for commenting on an early version of this
paper. We also wish to thank Avi Wigderson for his encouragement.

References

[AB99] M. Agrawal and S. Biswas. Primality and identity testing via Chinese remaindering.
In Proceedings of the Fortieth Annual IEEE Symposium on Foundations of Computer
Science, pages 202-209, 1999.

26

[ACR9S]

[AKS02]
[ALM™*98]

[AS97]

[AS98]

[Bab85]

[BCWSO]

[BF90]

[BF99)

[BFL91]

[BFNW93]

[BFT98]

[BHS89)

[BK95]

[BMSS]

AE. Andreev, A.E.F. Clementi, and J.D.P. Rolim. A new general derandomization
method. Journal of the Association for Computing Machinery, 45(1):179-213, 1998.
(preliminary version in ICALP’96).

M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Manuscript, 2002.

S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and
the hardness of approximation problems. Journal of the Association for Computing
Machinery, 45(3):501-555, 1998. (preliminary version in FOCS’92).

S. Arora and M. Sudan. Improved low-degree testing and its applications. In Proceedings
of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 485495,
1997.

S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP.
Journal of the Association for Computing Machinery, 45(1):70-122, 1998. (preliminary
version in FOCS’92).

L. Babai. Trading group theory for randomness. In Proceedings of the Seventeenth
Annual ACM Symposium on Theory of Computing, pages 421-429, 1985.

M. Blum, A.K. Chandra, and M.N. Wegman. Equivalence of free Boolean graphs can
be tested in polynomial time. Information Processing Letters, 10:80-82, 1980.

D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. In Proceedings
of the Seventh Annual Symposium on Theoretical Aspects of Computer Science, volume
415 of Lecture Notes in Computer Science, pages 37-48, Berlin, 1990. Springer Verlag.

H. Buhrman and L. Fortnow. One-sided versus two-sided error in probabilistic com-
putation. In C. Meinel and S. Tison, editors, Proceedings of the Sizteenth Annual
Symposium on Theoretical Aspects of Computer Science, volume 1563 of Lecture Notes
in Computer Science, pages 100-109. Springer Verlag, 1999.

L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover
interactive protocols. Computational Complezity, 1:3-40, 1991.

L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Complezity, 3:307-318, 1993.

H. Buhrman, L. Fortnow, and L. Thierauf. Nonrelativizing separations. In Proceedings
of the Thirteenth Annual IEEE Conference on Computational Complexity, pages 8-12,
1998.

R. Boppana and R. Hirschfeld. Pseudo-random generators and complexity classes. In
S. Micali, editor, Randomness and Computation, volume 5 of Advances in Computing
Research, pages 1-26. JAI Press, Greenwich, CT, 1989.

M. Blum and S. Kannan. Designing programs that check their work. Journal of the
Association for Computing Machinery, 42:269-291, 1995.

L. Babai and S. Moran. Arthur-Merlin games: A randomized proof system, and a
hierarchy of complexity classes. Journal of Computer and System Sciences, 36:254—
276, 1988.

27

[CDGK91] M. Clausen, A. Dress, J. Grabmeier, and M. Karpinsky. On zero-testing and inter-

[Chi85]

[CK97]

[CRS95]

[DL78]

[FGL*96]

[Gat87]

[GKS90]

(GZ97]

[TKW02]

[IM83]

[ISW99)

[ISW00]

[TW97]

polation of k-sparse multivariate polynomials over finite fields. Theoretical Computer
Science, 84(2):151-164, 1991.

A_.L. Chistov. Fast parallel evaluation of the rank of matrices over a field of arbitrary
characteristic. In Fundamentals of Computation Theory, volume 199 of Lecture Notes
in Computer Science, pages 63—79. Springer Verlag, 1985.

7. Chen and M. Kao. Reducing randomness via irrational numbers. In Proceedings of
the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 200-209,
1997.

S. Chari, P. Rohatgi, and A. Srinivasan. Randomness-optimal unique element isola-
tion with applications to perfect matching and related problems. SIAM Journal on
Computing, 24(5):1036-1050, 1995.

R.A. DeMillo and R.J. Lipton. A probabilistic remark on algebraic program testing.
Information Processing Letters, 7:193-195, 1978.

U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Interactive proofs and
the hardness of approximating cliques. Journal of the Association for Computing Ma-
chinery, 43(2):268-292, 1996. (preliminary version in FOCS’91).

J. von zur Gathen. Feasible arithmetic computations: Valiant’s hypothesis. Journal of
Symbolic Computation, 4:137-172, 1987.

D.Yu. Grigoriev, M. Karpinsky, and M.F. Singer. Fast parallel algorithms for sparse
multivariate polynomial interpolation over finite fields. SIAM Journal on Computing,
19(6):1059-1063, 1990.

O. Goldreich and D. Zuckerman. Another proof that BPPCPH (and more). Electronic
Colloguium on Computational Complezity, TR97-045, 1997.

R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy witness: Ex-
ponential time vs. probabilistic polynomial time. Journal of Computer and System
Sciences, 65(4):672-694, 2002. (preliminary version in CCC’01).

O.H. Ibarra and S. Moran. Probabilistic algorithms for deciding equivalence of straight-
line programs. Journal of the Association for Computing Machinery, 30(1):217-228,
1983.

R. Impagliazzo, R. Shaltiel, and A. Wigderson. Near-optimal conversion of hardness
into pseudo-randomness. In Proceedings of the Fortieth Annual IEEE Symposium on
Foundations of Computer Science, pages 181-190, 1999.

R. Impagliazzo, R. Shaltiel, and A. Wigderson. Extractors and pseudorandom gen-
erators with optimal seed length. In Proceedings of the Thirty-Second Annual ACM
Symposium on Theory of Computing, pages 1-10, 2000.

R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits: Deran-
domizing the XOR Lemma. In Proceedings of the Twenty-Ninth Annual ACM Sympo-
stum on Theory of Computing, pages 220-229, 1997.

28

[TW98]

[Kab01]

[Kal88]

[Kalg9)

[Kal92]

[Kan82]

[KM99]

[KRCOO]

[KS01]

[LFKN92]

[Lip91]

[LMN93]

[Lov79]

[LVYS]

[MVV87]

R. Impagliazzo and A. Wigderson. Randomness vs. time: De-randomization under a
uniform assumption. In Proceedings of the Thirty-Ninth Annual IEEE Symposium on
Foundations of Computer Science, pages 734-743, 1998.

V. Kabanets. Easiness assumptions and hardness tests: Trading time for zero error.
Journal of Computer and System Sciences, 63(2):236-252, 2001. (preliminary version
in CCC’00).

E. Kaltofen. Greatest common divisors of polynomials given by straight-line programs.
Journal of the Association for Computing Machinery, 35(1):231-264, 1988.

E. Kaltofen. Factorization of polynomials given by straight-line programs. In S. Micali,
editor, Randomness and Computation, volume 5 of Advances in Computing Research,
pages 375-412. JAI Press, Greenwich, CT, 1989.

E. Kaltofen. On computing determinants of matrices without divisions. In P.S. Wang,
editor, Proceedings of the 1992 International Symposium on Symbolic and Algebraic
Computation (ISSAC’92), pages 342-349, 1992.

R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information
and Control, 55:40-56, 1982.

A. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential size
proofs unless the polynomial hierarchy collapses. In Proceedings of the Thirty-First
Annual ACM Symposium on Theory of Computing, pages 659—-667, 1999.

V. Kabanets, C. Rackoff, and S. Cook. Efficiently approximable real-valued functions.
Electronic Colloguium on Computational Complezity, TR00-034, 2000.

A. Klivans and D. Spielman. Randomness efficient identity testing of multivariate
polynomials. In Proceedings of the Thirty-Third Annual ACM Symposium on Theory
of Computing, pages 216223, 2001.

C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof
systems. Journal of the Association for Computing Machinery, 39(4):859-868, 1992.

R. Lipton. New directions in testing. In J. Feigenbaum and M. Merrit, editors,
Distributed Computing and Cryptography, pages 191-202. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, Volume 2, AMS, 1991.

N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform and
learnability. Journal of the Association for Computing Machinery, 40(3):607-620, 1993.

L. Lovasz. On determinants, matchings and random algorithms. In L. Budach, editor,
Fundamentals of Computing Theory. Akademia-Verlag, Berlin, 1979.

D. Lewin and S. Vadhan. Checking polynomial identities over any field: Towards a
derandomization? In Proceedings of the Thirtieth Annual ACM Symposium on Theory
of Computing, pages 438-447, 1998.

K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as matrix inversion.
Combinatorica, 7(1):105-113, 1987.

29

[NW94]

[Pap94]

[PPSZ98]

[PPZ99)

[Pra75]

[PSZ97]

[RBY1]

[RR97]

[RRV99]

[RS96]

[RS97]

[Sch80]

[Sha92]

[Str73]

[STVO1]

[SU01]

N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of Computer and
System Sciences, 49:149-167, 1994.

C.H. Papadimitriou. Computational Complezxity. Addison-Wesley, Reading, Mas-
sachusetts, 1994.

R. Paturi, P. Pudlak, M.E. Saks, and F. Zane. An improved exponential-time algorithm
for k-SAT. In Proceedings of the Thirty-Ninth Annual IEEE Symposium on Foundations
of Computer Science, pages 628-637, 1998.

R. Paturi, P. Pudldk, and F. Zane. Satisfiability coding lemma. Chicago Journal of
Theoretical Computer Science, 1999. (preliminary version in FOCS’97).

V.R. Pratt. Every prime has a succinct certificate. SIAM Journal on Computing,
4:214-220, 1975.

R. Paturi, M.E. Saks, and F. Zane. Exponential lower bounds for depth 3 Boolean
circuits. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of
Computing, pages 86-91, 1997.

R.M. Roth and G.M. Benedek. Interpolation and approximation of sparse multivariate
polynomials. STAM Journal on Computing, 20(2):291-314, 1991.

A_A. Razborov and S. Rudich. Natural proofs. Journal of Computer and System
Sciences, 55:24-35, 1997.

R. Raz, O. Reingold, and S. Vadhan. Extracting all the randomness and reducing
the error in Trevisan’s extractors. In Proceedings of the Thirty-First Annual ACM
Symposium on Theory of Computing, pages 149-158, 1999.

R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252-271, 1996.

R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In Proceedings of the Twenty-
Ninth Annual ACM Symposium on Theory of Computing, pages 475-484, 1997.

J.T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the Association for Computing Machinery, 27(4):701-717, 1980.

A. Shamir. TP=PSPACE. Journal of the Association for Computing Machinery,
39(4):869-877, 1992.

V. Strassen. Vermeidung von Divisionen. Journal fir die Reine und Angewandte Math-
ematik, 264:182-202, 1973.

M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the XOR

lemma. Journal of Computer and System Sciences, 62(2):236-266, 2001. (preliminary
version in STOC’99).

R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new pseudo-
random generator. In Proceedings of the Forty-Second Annual IEEE Symposium on
Foundations of Computer Science, pages 648-657, 2001.

30

[Tod91] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing,
20(5):865—-877, 1991.

[Uma02] C. Umans. Pseudo-random generators for all hardnesses. In Proceedings of the Thirty-
Fourth Annual ACM Symposium on Theory of Computing, pages 127-134, 2002.

[Val79a] L. Valiant. Completeness classes in algebra. In Proceedings of the Eleventh Annual
ACM Symposium on Theory of Computing, pages 249-261, 1979.

[Val79b] L. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8:189-201, 1979.

[VV86] L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions. Theoretical
Computer Science, 47:85-93, 1986.

[Yao82] A.C. Yao. Theory and applications of trapdoor functions. In Proceedings of the Twenty-
Third Annual IEEE Symposium on Foundations of Computer Science, pages 80-91,
1982.

[Zan98] F. Zane. Circuits, CNFs, and Satisfiability. PhD thesis, UCSD, 1998.

[Zip79] R.E. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of an
International Symposium on Symbolic and Algebraic Manipulation (EUROSAM’79),
Lecture Notes in Computer Science, pages 216-226, 1979.

31

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

