Electronic Colloquium on Computational Complexity, Report No. 56 (2002)

On the Autoreducibility of Random Sequences

Todd Ebert!, Wolfgang Merkle?, and Heribert Vollmer?

! California State University, Long Beach,
Department of Computer Engineering and Computer Science,
Bellflower Blvd, Long Beach, CA 90840, USA,
e-mail address: ebert@cecs.csulb.edu
2 Ruprecht-Karls-Universitit Heidelberg, Mathematisches Institut,
Im Neuenheimer Feld 294, D-69120 Heidelberg, Germany,
e-mail address: merkle@math.uni-heidelberg.de
3 Universitit Hannover, Theoretische Informatik,
AppelstraBie 4, D-30167 Hannover, Germany,
e-mail address: vollmer@informatik.uni-hannover.de

Abstract. A binary sequence A = A(0)A(1)... is called i.0. Turing-
autoreducible if A is reducible to itself via an oracle Turing machine
that never queries its oracle at the current input, outputs either A(z)
or a don’t-know symbol on any given input z, and outputs A(z) for
infinitely many z. If in addition the oracle Turing machine terminates
on all inputs and oracles, A is called 1.0. truth-table-autoreducible.

We obtain the somewhat counterintuitive result that every Martin-1.6f
random sequence, in fact even every rec-random or p-random sequence, is
1.0. truth-table-autoreducible. Furthermore, we investigate the question
of how dense the set of guessed bits can be when 1.0. autoreducing a ran-
dom sequence. We show that rec-random sequences are never i.o. truth-
table-autoreducible such that the set of guessed bits has positive constant
density in the limit, and that a similar assertion holds for Martin-L4f ran-
dom sequences and i.0. Turing-autoreducibility. On the other hand, our
main result asserts that for any rational-valued computable function r
that goes non-ascendingly to zero, any rec-random sequence is i.o. truth-
table-autoreducible such that on any prefix of length m at least a fraction
of r(m) of the m bits in the prefix are guessed.

We include a self-contained account of the hat problem, a puzzle that
has received some attention outside of theoretical computer science. The
hat problem asks for guessing bits of a finite sequence, thus illustrating
the notion of i.0 autoreducibility in a finite setting. The solution to the
hat problem is then used as a module in the proofs of the positive results
on i.o0. autoreducibility.

1 Introduction

In probability theory one fundamental idea is the concept of independence. A
collection of random variables X, X5, ... is independent if the information ob-
tained from observing the outcome of the variables X; where j # i leaves the
distribution of X; unaffected, in that the a posteriori distribution of X; equals

ISSN 1433-8092

its a priori distribution. Moreover, viewed from a computational standpoint this
idea can be translated as saying that an algorithm whose goal on input ¢ is to
guess or estimate the outcome of X; should not benefit from querying about the
outcome of the X; where j # 1. For example, consider the chance experiment
where the bits of an infinite binary sequence R(0)R(1)R(2) ... are obtained by
successive tosses of a fair coin. If we want to come up with a procedure that
on input ¢ computes the bit R(#) while having access only to the remaining bits
of R but not to R(7), the a posterior: probability of guessing R(7) given knowl-
edge of R(j) for all j # ¢ equals the a prior:i probability of guessing R(7), thus
the chance of success when guessing R(i) cannot be better than 1/2 and the
probability that all bits of R are guessed correctly by the given rule is 0. In par-
ticular, it seems natural to regard the information obtained from observing R(j)
with j # ¢ as unhelpful for guessing R(¢). However, somewhat counterintuitively,
we demonstrate in this paper that their are algorithms that with probability 1
are, infinitely often and without error, capable of guessing the outcome of R(3)
by querying an oracle about the outcomes of R(j), i # j.

For the moment, say an effective procedure with limited access to R as de-
scribed above autoreduces R in case the procedure computes R(¢) for all ¢, and
the procedure i.0. autoreduces R in case the procedure computes R(i) for in-
finitely many i, while for all other inputs the procedure eventually signals igno-
rance about the correct value. Then it appears that for any effective procedure it
is impossible to autoreduce or even to i.0. autoreduce R because at first glance
it would seem certain that in the limit, half of the membership guesses must
be wrong. Indeed, by Corollary 28 below, for almost all sequences R (i.e., with
probability 1) the sequence R cannot be autoreduced. However, and this comes
as a slight surprise, almost all sequences R can be i.0. autoreduced according to
Theorem 19.

But how can it be that almost all sequences can be i.0. autoreduced when
the bits of these sequences, hence in particular all the bits guessed, are chosen
independently of all the other bits? Recall that by the strong law of large num-
bers, with probability 1 the frequency (R(0) + ...+ R(n —1))/n of I’'s in R
converges to 1/2. Furthermore, given a sequence of subsets of the natural num-
bers where the kth set has cardinality k, the Borel-Cantelli Lemma tells us that
with probability 1, at most finitely many of these sets have an empty intersection
with R [34]. This shows that independent random events considered collectively
may possess certain properties with probability one. Thus we may assume that
certain properties are present in almost all sequences, and for appropriate prop-
erties this can be exploited in order to compute certain bits of a sequence. In
summary, the crux of the following investigation rests on determining degrees to
which properties that are present in almost all sequences may be used to occa-
sionally compute the outcome of a random variable by observing the outcomes of
other random variables where the random variables are mutually independent.

Being almost convinced that random sequences might indeed be i.0. auto-
reducible, we might still wonder how we can overcome the obstacle that when
guessing R(i) for given places ¢, necessarily we err half the time. The key obser-

vation is that a procedure that i.0. autoreduces R can decide on its own whether
to make a guess on a certain input 7. Then, by assuming an appropriate prop-
erty that is present in almost all sequences, for all such sequences an effective
procedure may compute infinitely many bits, despite its querying limitations.
Observe in this connection that for the autoreductions to be constructed in the
sequel, for almost all sequences the places that are guessed form a set that is not
computable. Furthermore, the set of guessed bits cannot have constant positive
density in the set of all words.

In what follows, we use the known concept of autoreducibility by oracle Turing
machines for capturing the idea of using a sequence A as oracle in order to
compute A, yet not being able to query A about the bit to be computed. The
concept of i.0. autoreducibility, where just infinitely many bits of A have to be
computed, is modeled by means of oracle Turing machines that, in addition to 0
and 1, may also output a special don’t-know symbol. Moreover, we will consider
restricted concepts of autoreducibility and i.0. autoreducibility that correspond
to various reducibilities considered in recursion theory and complexity theory.
For example, we introduce i.0. tt-autoreducibility, which is defined similarly to
the usual truth-table-reducibility from recursion theory.

Furthermore, we do not just show that almost all sequences can be i.0. au-
toreduced by effective reductions of truth-table type but, and this is more, the
latter assertion holds for all Martin-Lof-random, rec-random, and even p-random
sequences. The positive results on general i.0. autoreducibility are complemented
by negative results on i.0. autoreducibility where for example a positive constant
fraction of all bits has to be guessed correctly. These negative results exhibit in-
teresting interactions between the type of random sequence considered and the
type of autoreduction employed, intuitively speaking.

The aim and scope of this paper can then be summarized as follows. We
try to contribute to the investigation of the question of which types of random
sequences are i.0. autoreducible, at which density, and with respect to which
types of reducibilities.

We conclude this section with an outline of the paper and an overview on
its technical contributions. In Section 2 we state a puzzle, the hat problem,
also known as colored hat problem or prisoners problem. By means of the hat
problem we illustrate how techniques from coding theory can be applied when
trying to autoreduce random sequences. More precisely, we review perfect one-
error-correcting codes and show that these codes can be used to derive optimal
solutions for certain instances of the hat problem. In subsequent sections, the
solutions are then used as basic modules when constructing autoreductions. The
hat problem was introduced by Ebert [17] in order to illustrate the problem of
autoreducing random sequences and has recently become well known outside
of theoretical computer science [31,33]. In an attempt to provide a reference
for the hat problem that is also accessible to readers that are not interested in
applications to autoreducibility, we have tried to make Section 2 self-contained.

In Section 3 we review effective random sequences and related issues in effec-
tive measure theory, and in Section 4 we give formal definitions for the concepts
of autoreducibility that are subsequently used.

In Section 5, we consider i.0. autoreducibility of random sequences. We prove
that every rec-random sequence is i.0. truth-table-autoreducible and, what is
more, 1n fact any p-random sequence is 1.0. truth-table-autoreducible via an
oracle Turing machine that runs in polynomial time. As mentioned above, this
result seems somewhat surprising and even paradoxical in that the machine that
witnesses the autoreducibility has the task of infinitely often guessing a bit of
a random sequence, and guessing correctly each time despite a high chance of
error for each guess. We then show that these results require Turing machines
where the number of queries made for a single input is unbounded. This is
accomplished by proving that no rec-random sequence is i.0. bounded truth-
table-autoreducible, i.e., i.0. autoreducible by an oracle Turing machine that is
restricted to some fixed number of queries, and an analogous result is shown in
a setting of polynomial time-bounds.

In Section 6, we introduce the notion of autoreducibility with density r(m) as
a gauge of how often an oracle machine can guess the bits of a random sequence,
or, in other words, how dense the set of guessed bits can be with respect to
the entire set of bits. A sequence is i.0. autoreducible with density r(m) if it is
i.0. autoreducible such that for all m, at least a fraction of r(m) of the first m bits
of the sequence is guessed. In Theorem 26 it is shown that rec-random sequences
are never 1.0. truth-table-autoreducible with positive constant density (i.e., with
density r(m) = em for some € > 0), and that a similar assertion holds with
respect to Martin-Lof random sequences and 1.0. Turing-autoreducibility. On
the other hand, Theorem 29, our main result, asserts that for any computable
function r that goes non-ascendingly to 0, any rec-random sequence is i.0. truth-
table-autoreducible with density r(m). So we obtain essentially matching bounds
on the density of guessed bits for i.0. truth-table-autoreductions of rec-random
sequences.

Related Work

The current article is a joint full version of conference articles by Ebert and
Vollmer [19] and Ebert and Merkle [18]. The hat problem was originally in-
troduced in the literature by Ebert [17] in order to illustrate the problem of
autoreducing random sequences. The hat problem has led to work in coding
theory [24] since there are instances of the problem for which the optimal so-
lution (code) is not known. Moreover, the hat problem has become well known
outside of theoretical computer science [31,33]. Independently and considerably
earlier, towards the end of the 1980s, Beigel et al [8] considered voting problems
that have a flavor similar to the hat problem. Moreover, Rudich [32] points out
that the hat problem is essentially the same as a variant of the voting problems
called “voting with abstention” and he reports unpublished earlier work on the
latter. The concept of i.0. autoreducibility has been investigated by Stephan et

al. [9], who construct a sequence in exponential time that is not i.o. truth-table-
autoreducible in polynomial time.

Notation

We use standard notation, which is elaborated further in the references [5,10,
11,27].

We consider words over the binary alphabet {0, 1}, which are ordered by
the usual length-lexicographical ordering; the (¢ + 1)st word in this ordering
is denoted by s;, hence for example sy i1s the empty word A. Occasionally, we
identify words with natural numbers via the mapping ¢ — s;.

If not explicitly stated differently, a sequence is an infinite binary sequence
and a class is a set of sequences. A subset A of the natural numbers N is identified
with its characteristic sequence A(0)A(1) ..., where A(z) is 1 if and only if # € A;
notation defined for such subsets is extended to the corresponding sequences;
e.g., an oracle Turing machine may reduce one sequence to another. The term
class refers to a set of sequences.

An assignment is a (total) function from some subset of the natural numbers
to {0,1}. An assignment is finite iff its domain is finite. An assignment with
domain {0,...,n — 1} is identified in the natural way with a word of length n.
For an assignment ¢ with domain {z0 < ... < z,_1}, the word associated with o
is the (unique) word w of length n that satisfies w(i) = o(z) fori =0,...,n—1.

The restriction of an assignment o to a set I is denoted by o|I. In particular,
for any sequence X, the assignment X |/ has domain I and agrees there with X.
For a sequence X and an assignment o, we write (X, o) for the sequence that
agrees with o for all arguments in the domain of & and agrees with X, otherwise.

The class of all sequences is referred to as Cantor space and is denoted
by {0,1}%°. The class of all sequences that have a word z as common prefix
is called the cylinder generated by x and is denoted by z{0,1}°°. For a set W,
let W{0,1}°° be the union of all the cylinders z{0,1}*° where the word « is
in W.

We write Prob[.] for probability measures and E[.] for expected values. Unless
stated otherwise, all probabilities refer to the uniform measure (or Lebesgue mea-
sure) on Cantor space, which is the probability distribution obtained by choosing
the individual bits of a sequence by independent tosses of a fair coin. Usually
we write Prob[A satisfies ...] instead of Prob[{A € {0,1}° : A satisfies ...}] in
case it is understood from the context that the measure is uniform measure with
respect to A.

Logarithms are to base 2. The function (.,.) from N x N to N is the usual
effective and effectively invertible pairing function [37].

2 The hat problem and error-correcting codes

This section features the hat problem, which asks for guessing a single bit of
a randomly chosen finite sequence from the remaining bits, a problem that re-
sembles the task of i.0. autoreducing random infinite sequences. Subsequently,
in constructions that solve the latter task, the hat problem and its solution are
used as a basic module. The hat problem is formulated as a puzzle and as such
has received some attention in the public [31,33].

The hat problem

In the hat problem for a team of n players, a binary sequence of n bits is
chosen by independent tosses of a fair coin. Player i is assigned the ith
bit (or, equivalently, is assigned one of two possible hat colors according
to this bit).

Afterwards, each player may cast a guess on its own bit (or may abstain
from guessing) under the following conditions. The players know the
bits of all other player but not their own bit. Once the game begins, the
players are neither allowed to communicate nor do they know whether
the other players have already guessed. However, the players can meet
for a strategy session before the game begins.

The team wins if and only if there is at least one correct and no incorrect

guess.

At first sight, since each player may only observe events that are independent
of his own hat color, one might expect that the team should have no more than
a 50% chance of winning. However, since they converse before the game, we
demonstrate how collaboration can increase their chances.

Example 1 Consider the hat problem with n = 3 players and suppose the team
agrees on the following guessing strategy. Upon start of the game, each player
observes the hats of his two teammates. If both hats have the same color, then the
player guesses his hat is colored differently. However, if the hats have different
colors, then he passes.

To compute the chances for a win under this strategy, we distinguish two
cases. The first case occurs when all three hats have the same color, i.e., for two
out of the 8 equiprobable assignments. In this case, each player will incorrectly
guess. The second case is exactly two of the three hats are colored the same. Here
exactly one player will venture a guess, this guess is correct and the team wins.
Hence the probability of winning using the above strategy is 1 — 2/8 = 3/4.

Next we want to extend the solution to the hat problem with three players given
in Example 1 to other team sizes. For a given team size n, identify assignments of
colors with words of length n in the natural way; i.e., the players are numbered
from 1 to n and the jth bit of the word represents player j’s hat color. The word
that represents the actual assignment of colors is called the true word. With
the true word understood, there are exactly two words of length n that agree

with player j’s view, the true word and the word that differs from the true word
exactly at the jth position. Call these two words the consistent words of player j.

Specifying a strategy amounts to determining for any player and for any
possible pair of consistent words for this player, whether the player should cast
a vote and if yes, in favor of which of the two consistent words. This means
that a strategy can be pictured as a directed graph G in the following way. The
nodes of the graph are just the possible assignments, i.e., the words in {0, 1}".
The graph contains an edge from u to v if and only if these two nodes may occur
as the consistent nodes of some player and in this situation the player votes in
favor of v. Formally, we have G = (V, E) where

vV ={0,1}", E C {(u,v) | v and v differ exactly in one position }

and for any pair v and v of nodes in V', at most one of the edges (u, v) and (v, u)
isin F.

Consider any strategy and its associated graph, and assume that the strategy
is applied in a situation where the true word is u. The team wins if according to
the given strategy some player casts a vote in favor of u but no player guesses
in favor of a word different from u. In terms of the associated graph, this means
that the team wins on the assignment u if and only if

some edge is pointing to u and no edge is pointing away from wu. (1)

From this characterization of winning assignments we obtain an equivalent for-
mulation of the hat problem as a network problem, which is stated in Remark 2.
Afterwards, we construct solutions to this network problem and translate them
back to the hat problem. The point in considering the network problem is that
the way its solutions work are more easily understood than for the hat problem.

Remark 2 The hat problem can be reformulated as a problem on communication
networks with a hypercube topology, where the nodes of the network correspond
to the possible assignments of hat colors to the players.

In order to obtain an equivalent version of the hat problem with n players, we
consider a network of 2™ processors or nodes. The nodes are connected according
to a hypercube topology [23]. That is, each node is labelled by a unique word of
length n and between any two distinct nodes there is a link if and only if their
labels differ in exactly one bit. The links are capable of transmitting information
in either direction but only in one direction at a time. The task is to give a
pattern of communication such that there is a marimum number of nodes u such
that

some node is sending to u and u is not sending to any node. (2)

A pattern of communication specifies for each link either the status idle or an
orientation, i.e., one of the two possible directions of sending.

Any pattern of communication translates naturally into a strategy for the hat
problem with n players and vice versa. Furthermore, under this translation the
fraction of nodes that satisfy (2) coincides with the success probability of the

strategy. For a proof of the two latter assertions it suffices to observe that the
representation of a strateqy as directed graph is essentially identical to a pattern
of communication, and to compare the conditions (1) and (2).

Ezxample 3. The solution of the hat problem with n = 3 players from Example 1
translates as follows into a solution of the network problem. The network has a
hypercube topology with 23 nodes and the pattern of communication specifies
that

exactly the nodes 000 and 111 are sending, and each of them sends to
all its neighbors in the hypercube.

This way every processor u with label different from 000 and 111 is receiving
but does not send and thus satisfies (2).

In order to extend the solution to the network problem given in Example 3 to
larger networks, we review some notation and facts from coding theory. The
(Hamming) distance d(u,v) of two words u and v of identical length is the
number of positions at which u and v differ. Furthermore, the unit sphere with
center u is the set of all words of the same length that differ from u at most at
one position, i.e., the set

{v:d(u,v) <1}.

The surface of a unit sphere is just the sphere with its center removed.

In the network problem, the set of neighbors of a node w coincides with the
surface of the unit sphere centered at w. Accordingly, the solution to the network
problem from Example 3 can be reformulated as follows.

Exactly the nodes 000 and 111 are sending, and each of them sends to
all nodes on the surface of the unit sphere centered at this node.

The easy idea underlying this solution works also for networks where the pa-
rameter n is larger than 3. Just select a subset C' of all words of length n and
let each node (labelled by a word) in C' send to all nodes that are on the sur-
face of the unit sphere centered at this node but are not in C' themselves. If,
for example, we choose the set C' such that the unit spheres around the words
in C'in are disjoint, then exactly the nodes on the surfaces of these unit spheres
satisfy (2); i.e., these are the nodes that receive but do not send. The fraction of
such nodes becomes maximum among all corresponding choices of C' in case the
unit spheres around the words in C' partition the set of all words of the given
length. Such partitions are studied in coding theory under the name of perfect
one-error-correcting codes.

Definition 4. Any subset of {0,1}" is called a code with (codeword) length n.
A code C with length n is called perfect one-error-correcting if the unit spheres
around the codewords in C form a partition of {0,1}" (i.e., if for any word w of
length n there is exactly one word ¢ € C such that d(w,c) < 1).

For any perfect one-error-correcting code of length n, the number of all words 2™
must be divisible by the unit sphere volume n + 1, hence n 4+ 1 must be a power
of 2. 1t is well known that this necessary condition on the codeword length is
also sufficient [20,40].

Fact 5 Let n be of the form 28 —1 where k > 0 is a natural number. Then there
15 a perfect one-error-correcting code C', of codeword length n. Furthermore, the
codes C,, can be chosen such that their union U{n:nzzk_l C,, 1s decidable in
polynomual time. For example, such codes are given by the well-known family of
binary Hamming codes [}0].

Proof. We identify words and binary vectors in the obvious way, hence the words
of any given length form a vector space under addition modulo 2 and over the
field with two elements. Let M be the k x n binary matrix where fori = 1,...,n,
column i of M is the binary representation of the number i. The matrix M defines
a linear mapping w — Mw from words of length n to words of length k. Let C),
denote the kernel space of this mapping, i.e., the set of all words that are mapped
to 0F. Then C,, is a perfect one-error-correcting code of length n.

For a proof, first observe that trivially every word in the kernel has length n.
Second, any word w of length n is contained in a unit sphere centered at a word
in Cy,. In case Mw is zero, this is obvious. Otherwise, M w appears as a column
of M| say, as column j, hence flipping the jth bit of w results in a word in C,,.
Third, the unit spheres centered at the words in), are mutually disjoint. Fix
any two distinct words u and v in C,,. Then M maps both of u and v to 0* and,
by linearity of matrix multiplication, the same holds for u — v. On the other
hand, M (u—wv) is just the sum over all column vectors j of M such that v and v
differ at the jth position. Now the sum over one or over two distinct column
vectors of M cannot be equal to 0%, hence d(u,v) > 3 and in particular the unit
spheres centered at 4 and v must be disjoint. (The third item is a special form of
a well-known result in coding theory that the minimum distance of a code which
is the kernel space of some matrix M is equal to d, where d is the least number
for which there are d linearly dependent column vectors of M. In our case it is
easy to check that M has 3 linearly dependent vectors, but not 2. Thus (), has
a minimum distance of 3.)

Finally, the problem of deciding if a word belongs to U{n:n=2‘°—1} C), can be
solved in polynomial-time, as essentially it only involves multiplying the input
with a matrix that has moderate size and is easy to compute. O

Remark 6 summarizes the application of error-correcting codes to the hat prob-
lem and the related network problem.

Remark 6 Let n be of the form 28 — 1 for some natural number k > 0 and
consider the hat problem and the network problem with parameter n. Fix a perfect
one-error-correcting code of code word length n and call the words in this code,
as well as the nodes labelled by these words, designated.

A solution to the network problem is given by the following pattern of commu-
nication. By Remark 2, under this pattern of communication exactly the nodes
that are not designated satisfy (2).

Every designated node sends to all its neighbors in the hypercube; the
other nodes do not send.

(That is, every designated node w sends to all nodes on the surface of
the unit sphere centered at w.)

A solution to the hat problem with n players is given by the strategy where
each player behaves according to the following rule. By Remark 2, under this
strategy the team wins exactly for the assignments that are not designated.

In case one of the consistent words is a designated word, venture a guess
according to the assumption that the true word is the other consistent
word; otherwise, pass.

(That is, in case the consistent words are a designated word w and a
word on the surface of the sphere centered at w, guess in favor of the
consistent word on the surface, i.e., the one different from w.)

The fraction of designated words is 1/(n + 1) because the spheres centered at
the designated words partition {0,1}" and each such sphere consists of one des-
tgnated and n other words. Hence if this strategy is applied in the hat problem
with n players, the team wins with probability 1 — 1/(n + 1).

FErample 7. Consider the hat problem with n = 7 players. For the strategy
described in Remark 6, the codewords comprise a fraction of 1/8 of the 128
words in {0,1}7, hence there are 16 codewords and 112 error words and the
team wins with probability 112/128 = 0.875.

In the network problem with parameter n, a node can send at most to n other
nodes, hence among all nodes that send or receive, at least a fraction of 1/(n+1)
nodes must send. The pattern of communication described in Remark 6 achieves
this bound and thus is an optimum solution to the network problem, hence by
the discussion in Remark 2 also the corresponding strategy for the hat problem
is optimum. Remark 8 contains an alternate, somewhat more formal proof for
the optimality of this strategy, which features the idea that for any strategy the
expected number of correct and incorrect guesses is the same.

Remark 8 Let n be of the form n = 2% — 1. For the hat problem with n players,
the probability of success of 1 —1/(n+1) that is achieved by the strategy described
in Remark 6 is optimum.

For a proof, fix any strategy. Recall that the colors of the hats are assigned
according to independent tosses of a fair coin, hence whenever the strategy tells a
player to guess, the probability of a correct guess is exactly 1/2. As a consequence,
the expected number of correct and incorrect quesses per player is the same, and
by linearity of expectation, the same holds for the entire team; i.e., if we define
the random wvariables g. and g; as equal to the number of correct and incorrect
guesses respectively for the entire team, their expected values E[g.] and E[g;]
coincide. Furthermore, if the strategy considered has probability of success of p,
then we have

p < Efg] = E[g;] < (1 —p)n. (3)

10

In (3), the middle equation holds by the preceding discussion, the left-hand in-
equality follows because for each assignment that leads to a win there must be
at least one correct gquess, and the right-hand inequality holds because for any
winning assignment there is no wrong quess, while for any other assignments
there are at most n wrong guesses. So we have p < (1 —p)n, and by rearranging
we obtain p < 1—1/(n+1).

Lenstra and Seroussi [24] discuss applications of coding theory to the hat prob-
lem. They investigate into good strategies for numbers of players that are not of
the form 2¥ — 1 and for more general versions of the hat problem with more than
two colors. For the hat problem with two colors, they show that strategies are
equivalent to covering codes. Their observation is reviewed in Remark 9, where
we give an equivalent formulation in terms of communication patterns for the
network problem.

Remark 9 A code of length n is called a covering code (more precisely, a 1-
covering code) if any word of length n differs at most at one position from some
word in the code. For example, perfect one-error-correcting codes are covering
codes, however, in general the unit spheres centered at the words in a covering
code are not mutually disjoint.

Given a pattern of communication for the network problem with parameter n,
let C' be the set of all nodes that do not satisfy (2); i.e., C' contains the nodes that
are sending or a neither sending nor recewving, and the complement of C' contains
the nodes that recewe but do not send. Then C' is a covering code because the
nodes not in C' are receiving, hence each such node must be at distance at most 1
from a sending node, which then must be a node in C'. Conversely, given any
covering code of length n, there is a pattern of communication where every node
in C' sends to all its neighbors that are not in C' themselves. With this pattern,
exactly the nodes that are not in C satisfy (2).

3 Random sequences

This section gives a brief introduction to the theory of effective measure. We
focus on effective random sequences and related concepts that are used in the
following. For more comprehensive accounts of effective measure we refer to the
references [4,5, 27].

Imagine a casino that offers roulette and consider the sequence of outcomes
red and black that occur in the course of the game. We would certainly not call
this sequence random if there were a method to determine any next bit before
the corresponding drawing has actually taken place. But also if we just knew a
strategy that guarantees winning an unbounded amount of money when starting
with finite initial capital, this would indicate that the sequence is non-random.
So we might be tempted to call a sequence non-random if there is such a strategy.
The problem with this definition is that for any sequence there is a strategy that
wins against this sequence, e.g., the one that works by always predicting cor-
rectly the next bit of the sequence. However, the latter is not a problem for real

11

casinos because for them a sequence is “random enough” if it does not permit a
winning strategy that a gambler can actually play. In general, this suggests to
define randomness relative to a certain class of admissible betting strategies in-
stead of striving for an absolute concept. In what follows, the admissible betting
strategies are just the ones that are computable in a specific model of computa-
tion. A sequence is called random with respect to such a model of computation
if none of the admissible betting strategies leads to an unbounded gain when
playing against this sequence.

In order to formalize the ideas of the preceding paragraph, consider the fol-
lowing gamble. Imagine a player that successively places bets on the individual
bits of an unknown sequence A. The betting proceeds in rounds i = 1,2, Dur-
ing round i, the player receives as input the length ¢ — 1 prefix of A and then,
first, decides whether to bet on the ¢ th bit being 0 or 1 and, second, determines
the stake that shall be bet. The stake might be any fraction between 0 and 1
of the capital accumulated so far; i.e., in particular, the player is not allowed to
incur debts. Formally, a player can be identified with a betting strategy

b:{0,1}* = [-1,1]

where on input w the absolute value of b(w) is the fraction of the current capital
that shall be at stake and the the bet is placed on the next bit being 0 or 1
depending on whether b(w) is negative or non-negative.

The player starts with positive, finite capital. At the end of each round,
in case of a correct guess, the capital is increased by that round’s stake and,
otherwise, is decreased by the same amount. So given a betting strategy b, we
can inductively compute the corresponding payoff function d, by applying the
equations

dp(w0) = dp(w) — b(w) - dp(w), dy(wl) = dp(w) + b(w) - dp(w).
Intuitively speaking, the payoff dy(w) is the capital the player accumulates till

the end of round |w| by betting on a sequence that has the word w as a prefix.
The payoff function d, satisfies the fairness condition

) = st "

We call a function d from words to nonnegative reals a martingale iff d(A) > 0
and d satisfies the fairness condition (4), with dy replaced by d, for all words w.
By the discussion above, for a betting strategy b the function d, is always a mar-
tingale and, conversely, it can be shown that every martingale has the form dp
for some betting strategy b. Hence betting strategies and martingales are es-
sentially equivalent. Accordingly, we extend occasionally notation defined for
betting strategies to martingales and vice versa.

Definition 10. A betting strateqy b succeeds on a sequence A if the correspond-
ing martingale dy 1s unbounded on the prefizes of A; 1.e., if

limsup dp(A|{0,...,n}) = oo.

new

12

In what follows, we will consider computable betting strategies. Any computable
betting strategy b is confined to rational values, and there is a Turing machine
that on input w outputs some appropriate finite representation of b(w).
Computable betting strategies are not only of interest in connection with the
definition of random sequences, but are also the basis of the theory of effective
measure. A betting strategy is said to succeed on or to cover a class iff it succeeds
on every sequence in the class. Ville demonstrated that a class has uniform
measure 0 iff the class can be covered by some, not necessarily effective, betting
strategy [5,42]. This result justifies the following notation. A class has measure 0
with respect to a given class of betting strategies iff it is covered by some betting
strategy in the class. By appropriately restricting the class of admissible betting
strategies, one obtains restricted concepts of measure 0 classes, which come in
handy when investigating classes occurring in recursion theory or complexity
theory. Most of these classes are countable and hence have uniform measure 0,
i.e., from the point of view of uniform measure all these classes have the same
size. However, given a specific class C, we might try to restrict the class of
admissible betting strategies such that the resulting concept of measure 0 class
is interesting in the sense that we can still cover relevant subclasses of C, but not
the class Citself. In the context of recursion theory, this led to the consideration
of computable betting strategies [4,35, 36, 38,43]. In connection with complexity
classes one imposes additional resource-bounds [5, 26,27, 29], e.g., in the case of
the class E of sequences that can be computed in deterministic line time 2,
Lutz proposed to use betting strategies that are computable in polynomial time.

Remark 11 The resources needed to compute a betting strateqy are measured
with respect to the length of the input w, for example, a betting strategy b is
computable in polynomial time if b(w) can be computed in time |w|* for some
constant c.

A prefiz w of a sequence A encodes A(so) through A(s|w—1) and accordingly
on input w, a betling strategy determines a bet on whether x = sy is in the
unknown sequence or not. Qbserve that the length of x is approzimately log |w],
thus for ezample a time bound |w|® translates to a time bound of the form 2°0°1),

After this short digression to effective measure theory we return to the en-
deavor of defining concepts of random sequences via restricted classes of betting
strategies.

Definition 12. A sequence is rec-random if no computable betting strateqy suc-
ceeds on it. A sequence 1s p-random if no betting strategy that is computable in
polynomial time succeeds on this sequence.

Besides p-random and rec-random sequences, we will consider Martin-Lof-random
sequences [28]. Let Wy, Wi, ... be the standard enumeration of computationally
enumerable sequences [37].

Definition 13. A class N is called a Martin-1Lof null class iff there exists a
computable function g: N — N such that for all ¢

1
N C Wyiy{0,1}* and Prob[Wy;{0,1}*] < 5

13

For such a function g, the sequence Wy, Wy(1y, ... is called a Martin-Lof null
cover for N. A sequence is Martin-Lof-random if it is not contained in any
Martin-Lof null class.

Martin-Lof-random sequences have been characterized in terms of martin-
gales by Schnorr [36]. A sequence is Martin-Léf-random if and only if it cannot
be covered by a subcomputable martingale. A martingale d is subcomputable iff
there is a computable function d in two arguments such that for all words w, the

sequence d(w,0),d(w, 1),...is nondecreasing and converges to d(w).
Remark 14 For any sequence X we have
X Martin-Lof-random = X rec-random = X p-random (5)

and both implications are strict.

The first implication in (5) is immediate by the characterization of Martin-
Lof-random sequences in terms of subcomputable martingales and the observation
that for a computable betting strategy the corresponding martingale 1s computable,
too. Likewise, the second implication follows from the definitions of rec-random
and p-random sequences in terms of computable and polynomial-time computable
betting strategies. Furthermore, the second implication is strict because one can
construct a computable p-random sequence by diagonalizing against an appropri-
ate weighted sum of all betting strategies that are computable in polynomial time.
The strictness of the first implication was implicitly shown by Schnorr [36]. For
a proof, it suffices to recall that the prefizes of a Martin-Lof-random sequence
cannot be compressed by more than a constant while a corresponding statement
for rec-random sequences is false [25, Theorem 3.6.1 and Ezercise 2.5.13].

By definition, a class A" has uniform measure 0 if there is a, not necessarily
computable, function g as in Definition 13. Thus the concept of a Martin-Lof null
class is indeed an effective variant of the classical concept of a class that has uni-
form measure 0. In particular, any Martin-Lof null class has uniform measure 0.
By o-additivity and since there are only countably many computable functions,
the union of all Martin-Lof null classes has uniform measure 0. Accordingly, the
class of Martin-Lof random sequences, and hence by Remark 14 also the classes
of rec-random and of p-random sequences, have uniform measure 1. We note in
passing that it can be shown that the union of all Martin-Lof null classes is again
a Martin-Lof null class [15, Section 6.2].

We conclude this section by describing a standard technique for the construc-
tion of betting strategies.

Remark 15 Let I be a finite set and let © be a subset of all partial characteristic
functions with domain I. Then there is a betting strategy that, by betting on places
in I, increases its capital by a factor of 21 /|©| for all sequences B where the
restriction of B to I is in @.

The betting strateqy is best described in terms of the corresponding martin-
gale. The martingale takes the capital available when betting on the least element
of I and distributes it evenly among the elements of @, then computing values
upwards according to the fairness condition for martingales.

14

4 Autoreducibility

For the moment, call a sequence X autoreducible if there is an effective proce-
dure that on input x computes X (z) while having access to the values X(y)
for y # z. Intuitively speaking, for an autoreducible sequence the information
on X(z) is not only stored at x but can also be effectively recovered from the
remainder of the sequence. For example, any computable sequence is autore-
ducible and for an arbitrary sequence Y, the sequence Y (0)Y (0)Y (1)Y (1)...
is autoreducible. In a recursion theoretic setting, the concept of autoreducibil-
ity was introduced by Trakhtenbrot [39]; further investigations showed, among
other results, that autoreducibility is tightly connected to the concepts of mi-
toticity and introreducibility [7,16,21,22]. The concept of autoreducibility was
transferred to complexity theory by Ambos-Spies [1] and subsequently resource-
bounded versions of autoreducibility have been studied by several authors [9,13,
14,41]. Selfreducibility is a special form of autoreducibility where only queries
less than the current input may be asked; it can be shown that certain forms of
selfreducibility characterize certain types of generic sets [2,3,12].

Now consider the question of whether a random sequence can be autoreduc-
ible. By definition, the bits of an autoreducible sequence depend on each other
in an effective way. This suggests that by exploiting the dependencies, we might
come up with an effective betting strategy that succeeds on this sequence. Indeed
Martin-Lof-random sequences are never autoreducible and, similarly, rec-random
sequences are not autoreducible by reductions that are confined to non-adaptive
queries, see Corollary 28 below.

Pushing the issue further, we might ask whether for a random sequence R
it is at least possible to recover some of the values R(z) from the values R(y)
with y # x. Trivially, this is possible for finitely many places z, so let’s con-
sider the case of infinitely many z. For the moment, call a sequence X 1i.o0.
autoreducible if there 1s an effective procedure that for infinitely many inputs z
computes X () while having access to the values X (y) for y # x, whereas for
all other inputs the procedures eventually signals that it cannot compute the
correct value. For example, any sequence that, if viewed as a set, has an infinite
computable subset is i.0. autoreducible, hence in particular any sequence that
corresponds to an infinite computably enumerable set is i.0. autoreducible. Ob-
serve that by a standard diagonalization argument of finite extension type, one
can easily construct a sequence that is computable in the halting problem and
is not i.0. autoreducible.

For an i.0. autoreducible sequence R there are infinitely many places & where
the value of R(z) depends in an effective way on the remainder of the sequence R.
On first sight, the situation looks rather similar to the case of an autoreducible
sequence and indeed 1t 1s tempting to assume that random sequences cannot
be i.0. autoreducible. So the following result is somewhat surprising. Every p-
random sequence is i.0. autoreducible by a reduction procedure that runs in
polynomial time. This and related results are demonstrated in Section 5. In
the remainder of this section, we give formal definitions for various concepts of
autoreducibility.

15

Recall the concept of an oracle Turing machine [10], which is a Turing machine
that during its computation has access to a sequence X, the oracle. In case an
oracle Turing machine M eventually terminates on input « and with oracle X,
let M(X,z) denote the computed value and, otherwise, i.e., if M does not ter-
minate, say that M (X, z) is undefined. But rather than use standard oracle
machines M whose defined outputs M (X, z) belong to {0, 1}, we also allow the
machines to output a special “don’t-know-symbol” L, which has the intended
meaning of signaling that the correct value is not known.

Definition 16. Let M be an oracle Turing machine (with output in {0,1, 1})
and let A, B, and E be sequences. Then M reduces A to B on E if and only if

(1) M(B,z)= A(x) for all @ where M(B,z) # L, and
(1) M(B,z)# L forallz € E.

If an oracle Turing machine M reduces a sequence A to a sequence B on an
infinite set, we say that M infinitely often reduces or, for short, i.0. reduces A
to B. If M reduces A to B on the set of all words, we say that M reduces A
to B. Obviously, the latter notion coincides with the usual concept of reduction
by a {0, 1}-valued oracle Turing machine, where it is required that M (B, z)
agrees with A(z) for all z.

Definition 17. Let M be an oracle Turing machine and let A and F be se-
quences. The set of query words occurring during the computation of M on
input x and with oracle A is denoted by Q(M, A,).

The sequence A is autoreduced on set F by M if M reduces the sequence A
to itself on E and x ¢ Q(M, A, z) for all z. The sequence A is i.0. autoreduced
by M if A 1s autoreduced by M on an infinite set. The sequence A is autoreduced
by M if A is autoreduced by M on the set of all words.

Next we define concepts of autoreducibility that correspond to the standard ef-
fective reducibilities considered in recursion theory [37] and to the standard re-
ducibilities computable in polynomial time considered in complexity theory [10].
More precisely, for

r € {T,tt,btt, btt(k), p-T, p-tt, p-btt, p-btt(k)},

we define the concepts of r-autoreducibility on a set F, of 1.0. r-autoreducibility,
and of r-autoreducibility.

For a start, we consider Turing- or, for short, T-autoreducibility. A sequence
is T-autoreducible on E if it can be autoreduced on £ by some oracle Turing
machine M. A sequence is i.0. T-autoreducible if it is T-autoreducible on an
infinite set and a sequence is T-autoreducible if it is T-autoreducible on the set
of all words.

The definitions for the remaining cases are basically the same, however the
oracle Turing machine M that performs the autoreduction has in addition to
satisfy certain requirements. In particular, in the following M must always be

16

total; i.e., on all inputs and for all oracles, M must eventually finish its compu-
tation. In the case of truth-table-autoreducibility (tt), M has to ask its queries
non-adaptively; i.e., M computes a list of queries that are asked simultaneously
and, after receiving the answers, M is not allowed to access the oracle again.
In the case of bounded truth-table-autoreducibility (btt), the queries have to be
asked non-adaptively while the number of queries that might be asked on a
single input is bounded by a constant. Even more restrictive, in the case of
btt(k)-autoreducibility the number of non-adaptive queries is bounded by the
fixed constant k. The concepts of polynomial time-bounded autoreducibility like
p-T- or p-tt-autoreducibility are defined accordingly where it is required in ad-
dition that M runs in polynomial time.

We conclude this section by some technical remarks on the representation
of oracle Turing machines. By definition, tt-autoreductions are performed by
total oracle Turing machines that query the oracle non-adaptively. Such an or-
acle Turing machine can be conveniently represented by a pair of computable
functions g and h where g(z) gives the set of words queried on input z and
h(z) specifies how the answers to the queries in the set g(z) are evaluated; i.e.,
h(z) tabulates a {0, 1, L}-valued function over k variables. In this situation, we
refer to h(z) as truth-table. Likewise, oracle Turing machines that witness a
p-btt-autoreduction can be represented by pairs of functions g and h that are
computable in polynomial time.

Remark 18. Alternative to the {0,1, L}-valued oracle Turing machine model,
one could use the standard model, in that rather than output “don’t-know”,
the Turing machine would simply query the oracle about the value of 2z, and
output that value. This formulation was originally used by Ebert [17]; a similar
model is used by Arslanov [7], with different notation and in the special case of a
weak truth-table-reduction that infinitely often queries the oracle only at places
strictly smaller than the current input.

We emphasize that the results of this paper hold for both, the {0,1, L}-
valued and the standard model; the main motivation for adopting the former is
that it complies better with the usual classification of reducibilities according to
whether they query the oracle adaptively or non-adaptively, i.e., the definitions
of the various concepts of i.0. autoreducibility of truth-table type preserve the
idea of accessing the oracle only once.

5 Autoreductions of Random Sequences

Next we apply the solution of the hat problem as discussed in Section 2 to the
construction of i.0. autoreductions of rec-random sequences.

Theorem 19. FEvery rec-random sequence is 1.0. tt-autoreducible.

Proof. Fix any rec-random sequence R. Partition the natural numbers into con-
secutive intervals Iy, I, ... where Ij has size [, = 2% — 1. Write R in the form

R=wws... where for all k, |wg| =1k,

17

i.e., wg 1s the word associated with the restriction of R to Ii. Furthermore, for
every k > 0 fix a perfect one-error-correcting code Cj of codeword length I
such that given z, we can decide in polynomial time whether z is in one of the
codes Cf.

In a nutshell, the proof of Theorem 19 works as follows. The code words in Cy
comprise such a small fraction of all words of length I, that in case infinitely
many words wy were in C there would be a computable betting strategy that
succeeds on R. But R is assumed to be rec-random, hence wy is not in Cy for
almost all k. Then in order to construct an oracle Turing machine that witnesses
that R is i.0. tt-autoreducible, we handle the intervals I individually and when
working on I, we simulate the solution of the hat problem with I players. This
way we can compute R(z) for a single place in I whenever wy is not in C.
But the latter is the case for almost all k, thus we are able to autoreduce R as
required. Details follow.

Claim 1 For almost all k, wy is not in Cy.

Consider the following betting strategy. For every k > 0, a portion ay = 1/2F
of the initial capital 1 is exclusively used for bets on words in the interval I. On
each interval I, the betting strategy follows the strategy described in Remark 15
where C plays the role of @; i.e., the capital ai is bet on the event that (the
word associated to) the restriction of the unknown sequence to I is in Cy. By
construction, just a fraction of ap = 1/(lx + 1) of all words of length I, belongs
to C, hence the capital ag increases to 1 for all k£ such that the restriction of the
unknown sequence to I is in Ck. As a consequence, the betting strategy succeeds
on any sequence such that for infinitely many &, the restriction of the sequence
to the interval I is an element of Cj. But no computable betting strategy can
succeed on the rec-random sequence R, hence Claim 1 follows. O

Observe that the proof of Claim 1 depends on the choice of the I only in
so far that as it is required that the sum over the aj, where ay = 1/(ly + 1),
converges.

Next we define an oracle Turing machine M that witnesses that R is1.0. tt-
autoreducible. By Claim 1, fix kg such that wg is not in C} for all k& > kg. On
inputs in the intervals /; through 7g,, M simply outputs L. On any input z in
an interval I with k > kg, M queries the oracle non-adaptively on all words
in I that are different from z. Thereby M determines two words u' and ", and
knows that wyg is equal to one of the words

" and v =u'1u”,

vg = u'0u’
where the uncertainty is with respect to the value of R(z). Then M outputs i
in case v1_; € Cg and v; € Cy and, otherwise, i.e., if neither vy nor vy is in Cy,
M outputs L.

By construction, M is computable, queries its oracle non-adaptively, and
does never query its oracle at the input. On intervals I with k& < kg, M always
outputs L. On any interval Iy with k& > ko, M simulates the strategy for the hat
problem with I players from Remark 6 where Cj, is the set of designated words.

18

For any such interval, wg is not in Cj by choice of kg, hence the discussion in
Section 2 shows that M computes the correct value R(z) at the single input « in
the interval at which wy differs from the closest code word in Cy, while M out-
puts L for all other inputs in the interval. In summary, M i.o. tt-autoreduces R.

O

Subsequently, the statement of Theorem 19 will be strengthened in various
ways. As an immediate improvement, we note that the proof of Theorem 19 can
be adjusted in order to obtain the following stronger but also more technical
version of the theorem. Given a computable function ¢, we call a sequence ¢(m)-
random if no betting strategy that is computable in time O(¢(m)) succeeds on
this sequence, where m denotes the length of the prefix of the unknown set that
a betting strategy receives as input.

Theorem 20. Let b be an unbounded and non-decreasing computable func-
tion. Every m?-random sequence is i.o. tt-autoreducible by an oracle Turing ma-
chine M that on inputs of length n runs in time O(n) and asks at most b(n)
queries.

Proof. The proof of Theorem 20 is rather similar to the proof of Theorem 19. We
just indicate the necessary adjustments. Recall that the i.0. tt-autoreductions, as
well as the betting strategy in the proof of Theorem 19 are built up from modules
that work essentially independently on the intervals I;. The key trick in the proof
of Theorem 20 is to shift the intervals such that the length of the words contained
in them are considerably larger than the length of the corresponding interval.
More precisely, the interval I contains the first I words of length ny, where the
sequence ng, ni,...1is chosen such that we have for all &,

(i) 2™ < mgyr, (i) 2% <my, (i) lx < b(ng).

In addition, we assume that there is a Turing machine that on input 17 uses
at most n steps to decide whether n appears in the sequence ng,ni,... and
if so, to compute the index k with n = ng. Such a sequence can be obtained
by standard methods as described in the chapter on uniform diagonalization
and gap languages in Balcdzar et al. [10]. For example, we can first define a
sufficiently fast growing time-constructible function r : w — w and then let n;
be the value of the i-fold iteration of r applied to 0.

Similar to Claim 1 in the proof of Theorem 19, we can argue that for any m-
random sequence R and for almost all k&, the restriction wg of R to the interval Iy
is not in the code C}. Otherwise, there were a betting strategy similar to the one
used in the proof of the mentioned claim that wins on R;i.e., on any interval I
the strategy bets a fraction of 1/2% of its initial capital on the event that wy
is in C,,. By choice of the ny, this strategy can be chosen to run in time m?2.
Recall in connection with this time bound that the individual bets are specified
as a fraction of the current capital, hence placing the bets related to interval I
requires to compute the outcomes of the bets on the previous intervals.

The sequence R is then i.0. tt-autoreducible by a reduction that simulates
the solution to the hat problem on every interval I, where wyg is not in C. On

19

an input of length n, this reduction runs in time n and asks at most b(n) queries
because of (i1) and (iii), respectively. O

For a proof of the following corollary it suffices to observe that p-random se-
quences are in particular m?-random, while every m?-random sequence in turn
is 1.0. tt-autoreducible in polynomial time according to Theorem 20.

Corollary 21. Every p-random sequence is i.0. p-tt-autoreducible.

The next theorem shows that neither Theorems 19 and 20 nor Corollary 21
extend to i.0. btt-autoreducibility; i.e., the proofs of these results require oracle
Turing machines that ask an unbounded number of queries.

Theorem 22. (a) No rec-random sequence is i.o. btt-autoreducible.
(b) No p-random sequence is i.o. p-btt-autoreducible.

Proof. (a) Fix any sequence A that is i.0. btt-autoreducible. Tt suffices to show
that A is not rec-random, i.e., that there is a computable betting strategy b that
succeeds on A.

Among all oracle Turing machines M = (g, h) that i.o. btt-autoreduce A,
we will consider only the ones that are normalized in the sense that the set
of queries g(z) is empty whenever the truth-table h(z) is constant (i.e., when-
ever h(z) evaluates to the same value for all assignments on g(z)). Further-
more, among all normalized oracle Turing machines that i.0. btt-autoreduce A,
let M = (g, h) be one such that its norm

l= sup |g(x)]
re{0,1}*

is minimum. In case [= 0, M is independent of the oracle and we can com-
pute A(x) for the infinitely many places & where the reduction does not yield L,
hence A is not rec-random and we are done. So assume [> 0.

For any word z, there is a word r(z) > =z such that g(r(z)) has size [
and contains only words strictly larger than z. Assuming otherwise, by hard-
wiring A(z) into M for all z < « and for all z that are contained in one of
the sets g(y) with y < &, we would obtain an oracle Turing machine that again
btt-autoreduces A and has norm strictly smaller than M, thus contradicting the
choice of M. Let 1 be the least word « such that g(x) has size [and for s > 1,
let

Zy41 = r(maxJ;) where J, = {z,}Ug(z;) .

By choice of r, this inductive definition yields an infinite sequence z1, w2,
such that the function s — x, is computable, the sets J; all have size [+ 1, and
any element of J; is less than any element in Js41.

Consider an arbitrary index s. Then h(z;) is not constant because g(z,)
has size I > 0 and M is normalized. Thus there is an assignment on g(z,)
such that h(xz,) evaluates to a value different from L. Let a be the least such
assignment and let 4, be the value obtained by applying the truth-table h(z;)

20

to a. Extend « to an assignment o, on the set J; where o, (z,) = 1 —1,. Observe
that Js; and a; can be computed from s.

We construct now a computable betting strategy b that succeeds on A. The
construction is based on the observation that for all s, the restriction of A to J;
differs from a;. Otherwise, M (A, z,) = i, would differ from A(j,) = 1—i, and M
would not autoreduce A.

The betting strategy b can be viewed as working in stages s = 1,2,....
The bets of stage s are all on places in Js; and use the capital accumulated till
the beginning of stage s for betting against the event that the restriction of
the unknown sequence to Js is equal to a,. Formally, the bets at stage s are
performed according to the strategy described in Remark 15 where @ = @,
contains all assignments on J, that differ from «;. The size of J; is [4+ 1, hence
there are 2!t1 assignments to J, and @, contains a fraction of

21 _q
= 2l+1

of all assignments on Js. As a consequence, if the unknown sequence is indeed A,
then the capital increases by the constant factor 1/§ > 1 during each stage s,
hence b succeeds on A.

(b) Fix any sequence A that is i.o. p-btt-autoreducible. Again it suffices to
show that A is not p-random, i.e., that there is a betting strategy b that is
computable in polynomial time and succeeds on A. The ideas underlying the
construction of b are similar to the ones used in the proof of assertion (a). The
remaining differences relate to the fact that b now has to be computable in
polynomial time and hence cannot perform an essentially unbounded search for
places where the reduction does not yield L.

Fix an oracle Turing machine M = (g, h) that p-btt-autoreduces A. For the
scope of this proof, given a word w, we write x,, for s)y; i.e., if w is viewed as
prefix of a sequence X, then z,, is the first word y such that X (y) is not encoded
into w. Furthermore, we write m,, and n, for the length of w and of z,,. For
any word w, let M, be defined by

My (X, 2) = M((X,w),),

i.e., in order to obtain M, , the word w is hard-wired into M by overwriting the
length m,, prefix of the oracle by w. For all words w, let

J(w) ={zu}U{z: 2z € g(zy) and z,, < z}.

For the scope of this proof, call a word w promising if M,, (X, z,) # L for some
sequence X. For any promising word w, among all such sequences X let X (w)
be the one such that the restriction of X to J(w) \ {2, } is minimum and let =,
be the corresponding restriction. Let i(w) = M, (X (w), z,,) and extend 7, to an
assignment a,, on J(w) by letting a,, (z,,) = 1 —i(w). Similar to the proof of the
first assertion we can argue that for any promising prefix w of A, the restriction
of A to J(w) differs from a,, because otherwise M did not i.0. btt-autoreduce A.

21

We construct now a betting strategy b that is computable in polynomial time
and succeeds on A. Define a partition Ig, 1, ... of the set of all words by

I, ={z:d(s) <|z| <d(s+ 1)} where d(0) =1, d(s+1) =24),

There are infinitely many promising prefixes of A because in particular any pre-
fix w of A where M (A, z,,) # L is promising. In the sequel we assume that there
are infinitely many promising prefixes w of A such that z,, 1s contained in one of
the even intervals Iy, I, ..., and we omit the virtually identical considerations
for the symmetrical case where there are infinitely many promising prefixes w
where z,, is contained in an odd interval.

The betting strategy b works similar to the one used in the proof of as-
sertion (a) and we leave the details of its construction and verification to the
reader. By definition of the intervals I;, we can pick an index sg such that for
all s > so and for all w with ,, in Is,, the set J(w) is contained in the double
interval Io5 U Is541. During stage s, the betting strategy b bets on words in this
double interval as follows. If s < sg or if there is no promising prefix v of the
current input w such that z, is in Is5, abstain from betting. Otherwise, let v;
be the shortest promising prefix of w such that z, is in I5; and bet against the
event that the restriction of the unknown sequence to J(v,) is equal to a,,. In
case the unknown sequence 1s indeed A, there are infinitely many stages where
the otherwise case applies and during each such stage, the capital increases at
least by some constant positive factor. O

The proof of Theorem 22 actually shows that any i.0. p-btt-autoreducible se-
quence can be covered by an m?-martingale. By standard techniques [5], one can
3_martingale that covers all sequences that are covered by an m?-
martingale, hence the class of i.0. p-btt-autoreducible sequences has measure 0

with respect to betting strategies that are computable in polynomial time.

construct an m

Remark 23. Theorem 22 extends by essentially the same proof to truth-table-
reducibilities that may ask an arbitrary number of queries that are strictly
smaller than the current input plus a constant number of queries that are larger.

6 A sharp bound on the density of guessed bits

From Theorem 19 we know that every random sequence is i.0. autoreducible. An
interesting problem involves finding lower and upper bounds to the frequency at
which computable autoreductions may yield bits of a random sequence.

Definition 24. For all m > 0, the density p(E,m) of a set E up to m is defined
by

. |EO{SQ .. .Sm_1}|
= - .

p(E,m) (6)

An oracle Turing machine M i.o. T-autoreduces a sequence X with density r(m)
if M i.o. T-autoreduces X on a set E such that p(E, m) > r(m) for allm > 0

22

(i.e., the density of the set of words x such that M guesses X (z) is always at
least r(m)).

A sequence A is called i.o. T-autoreducible with density r(m) if there is some
oracle Turing machine that i.0. T-autoreduces A with density r(m). Concepts like
i.o. tt-autoreducible with density r(m) are defined in the same manner.

Thus, autoreducibility with density r(m) measures the density of the guessed
bits of an autoreduced sequence A in the sense that the ratio of guessed bits to
bits considered is at least 7(m). It should be noted that the concept of density
is sort of inverse to the previous concept of rate [17] where an autoreduction has
rate r(m) if the mth place guessed is not larger than s, ().

We now study the question of what is the highest density a reducibility
may achieve with random sequences of a certain type. A lower bound on the
achievable density is easily obtained from the proof of Theorem 19, by noting
that the autoreductions employed there obtain densities that depend on the
length of the codewords in the employed error-correcting codes. In Example 25,
we state corresponding bounds that are obtained by choosing the lengths of the
codewords according to specific converging sums. Afterwards, in Theorem 29,
we improve on this bound by elaborating the proof of Theorem 19.

Example 25 Fir any rec-random sequence R. Let ji, js ... be any non-de-
creasing computable sequence such that

oo 1)

Z " < o0, where lj; = 27 — 1 > 0.

k=0 k
Then also the sum over the ﬁ converges, hence as in the proof of Theorem 19
we can find perfect one-error-correcting codes Cy, of codeword length ly, such that

the sequence R can be written as wiws ... where each word wy has length I
and almost all wy are in Cy. Moreover, by hard-wiring finitely many bits of R
plus applying the solution of the hat problem to the words wy, we obtain an
autoreduction of R which guesses exactly one bit of each of the words wy. In this
situation, let E be the set of the bits that are guessed correctly and let p(E, m)
be the density of E defined in (6).

We aim at derwing upper and lower bounds for p(E,m). If we let i(m) be
the mazimum index i such that s; =11 + ...+ 1l; < m, then by construction for
all m we have ' '

i(m) < p(B,m) < i(m) + 1
m m

: (7)

i.e., in order to bound p(F,m) it suffices to bound i(m).

If, as in the proof of Theorem 29, we let l;, = 2% — 1, then s; is 2t! — 1,
and accordingly i(m) and p(E, m) are approzimately logm and log m/m, respec-
tively. In order to improve on this density, we might try to use values for ly that
grow slower. If we fix § > 1, the sum) 1/(klog6 k) converges, hence we might
choose ly, as the least number of the form 27 —1 that is greater or equal to k 10g6 k.
Some easy calculations show that for almost all i, we have i* < s; < 12991, thus,

23

by si(m) < M < Sim)+1,
i(m)? <m < (i(m) +)2 <i(m)?°? | hence m 70 <i(m) < m? .

By (7), for almost all m the density p(E, m) is between m=092 /m and m? /m,
i.e., the achieved density is approrimately equal to 1/ /m.

In what follows, we prove something much stronger than the result from Ex-
ample 25; namely that for any computable function r that goes non-ascendingly
to 0, any rec-random sequence isi.o. truth-table-autoreducible with density r(m).
This result is consummately complemented by our next theorem, which shows
that rec-random sequences are never i.0. truth-table-autoreducible with positive
constant density (i.e., with density 7(m) = em for some ¢ > 0), and that a similar
assertion holds with respect to Martin-Lof random sequences and i.0. Turing-
autoreducibility.

Theorem 26. (a) No rec-random sequence is i.o. tt-autoreducible with positive
constant density.

(b) No Martin-Lof-random sequence is i.o. T-autoreducible with positive con-
stant density.

Proof. Assertions (a) and (b) are proved by showing that if a sequence is i.0. au-
toreducible with constant density, then the sequence cannot be random. In both
cases, the argument relies on Claims 1 and 2 below.

Fix an oracle Turing machine M and a rational g > 0. We want to show that
if M i.0. autoreduces a sequence with density egm, then this sequence cannot be
random; i.e., an appropriate betting strategy succeeds on this sequence. Recall
that the cylinder generated by a word w is the the class w{0, 1}°° of all sequences
that extend w. We argue that for any w, the fraction of sequences in this cylinder
that are i.0. autoreduced by M with density &g is bounded by a constant § < 1,
which does not depend on w. Let € = ¢¢/2 and for any m > 0 let

i(m) = ’V?—‘ , I(m) = {sm, .. ~;Sm+i(m)—1}a (8)

that is, assuming |w| = m, the interval I(m) contains the first i(m) words that
are not in the domain of w. For any sequence X and any finite set I, let

correct(X,I) = [{zel:M(X,z)=X(x)},
incorrect (X, I) Heel M(X,z)=1-X(x)}].

That is, for all inputs @ in I such that M (X, z) is defined and differs from L,
we count for how many of these inputs the guess M (X,) is correct and for how
many it i1s incorrect. In the remainder of this proof and with M and ¢ understood
from the context, we say a sequence X is consistent with a word w of length m

if

(i) X is an extension of w,

(i) for all # in I(m), the value M (X, z) is defined and is computed without
querying the oracle at place z,

(iii) incorrect(X, I(m)) =0,

(iv) correct(X, I(m)) > e|I(m)].

Claim 1 If M i.o. T-autoreduces a sequence with density g, then this sequence
1s consistent with any prefiz of itself.

Proof. Fix any sequence A that satisfies the assumption of the claim and con-
sider any prefix w of A. Then the conditions (i), (ii), and (iii) are satisfied by
definition (recall that M (A, z) is always defined in case M i.0. T-autoreduces A).
If condition (iv) was false, then contrary to our assumption on A the oracle Tur-
ing machine M with oracle A would guess in the interval I(m) and among the m
smaller words in total strictly less than

m+e|l(m)| < 2ell(m)| = eolI(m)] (9)
bits, where the relations in (9) hold by (8) and by choice of . O

For any word w, let the sequence X,, be an extension of w that is obtained by
the chance experiment where the bits of X, that are not already determined
by w are obtained by independent tosses of a fair coin. Let § = 1/(1 + ¢) and
observe that § < 1 due to £ > 0.

Claim 2 For any word w, the probability that X, is consistent with w is at
most §.

Proof. Fix any word w of length m. The key observation in the proof of Claim 2 is
the following. If we examine for all inputs z in I(m) such that the value M (X, x)
isin {0, 1} at all, whether this value is a correct guess in the sense that it agrees
with Xy (), then the expected number of correct and incorrect guesses is the
same; i.e.,

E[correct (X, I(m))] = Elincorrect(X,,, I(m))] . (10)
For a proof, first consider a single input z in I(m). The assignment to X, at =
and at the places different from « are stochastically independent, hence by (ii)
the same holds for Xy, (z) and M (X,). Furthermore, since X, (z) is chosen
uniformly from {0, 1}, it follows that the probability for a correct and for an
incorrect answer at are both exactly half of the probability that M (X, z) is
in {0, 1}. Hence also the expected number of correct and incorrect answers at
coincide and (10) follows by linearity of expectation.

We conclude the proof of Claim 2 by distinguishing two cases.

Case I: E[correct(X,,, I(m))] < de|I(m)].

The random variable correct(X,,, I(m)) is non-negative, hence the case as-
sumption implies that the probability that correct(X,,, I(m)) is at least ¢|I(m)]
is at most §. So also the probability that X, is consistent with w is at most ¢
by condition (iv) in the definition of consistency.

25

Case II: E[correct(Xy, I(m))] > de|I(m)].

By (10), we also have E[incorrect(X,,I(m))] > de|I(m)|. The latter im-
plies that the probability that incorrect(X,,, I(m)) is strictly larger than 0 is
at least de because by definition, the random variable incorrect (X, I(m)) is
bounded by |I(m)|. Due to condition (iii), the probability that X, is consistent

1s then at most
€ 1

I+e 1+e
Proof of (a). We can assume that M is in fact a tt-reduction, say, M = (g, h).
Fix any sequence A such that M i.o. tt-autoreduces A with density r(m) = gom.
It suffices to show that A is not rec-random, and this is done by constructing a
computable betting strategy that succeeds on A.

The set of all words is partitioned into consecutive intervals Jo, Ji, ... where
the cardinality of J; is denoted by I; (i.e., Jo contains the first [y words, J; the
next /; words, and so on). The J; are defined via specifying the [; inductively. For
all i, let s; = lg+11+...+/;. Let [y = 1 and for all # > 1 choose /; so large that it
contains I(s;_1) as well as the query sets g(z) for all 2 in I(s;_1). This way, for
any word w of length s;, the consistency with w of any sequence X that extends w

1—de=1- O

depends only on the restriction of X to the interval J;;;. Call an assignment
on J;y1 consistent with such a word w if the assignment is the restriction of a
sequence that is consistent with w. By Claims 1 and 2, for any given word w of
length s; the following assertions hold with respect to the assignments on J;41.

— If w is a prefix of A, then the assignment obtained by restricting A to J;41
is consistent.

— The consistent assignments comprise a fraction of at most § of all assign-
ments.

Now consider the betting strategy that for each interval J;, uses the capital ac-
cumulated up to the first element of the interval in order to bet according to
Remark 15 against all assignments on this interval that are not consistent with
the already seen length s; prefix of the unknown sequence. By the preceding
discussion, in case the unknown sequence is indeed A then on each interval, b in-
creases its capital at least by the constant factor 1/§ > 1; i.e., in this case b
succeeds on A. Furthermore, the betting strategy b is computable since consis-
tency of assignments can be decided effectively.

Proof of (b). For a given word w, let E,, be the class of all sequences that are
consistent with w. For a word w of length m > 1, call a word u a consistent
extension of w if for some sequence U,

— w is a prefix of u and u is a prefix of U, while U is consistent with w,

— the domain of u contains 7(m) and all queries that are made while comput-
ing M (U, z) for any z in I(m).

— for all in 7(m), the computation of M (U, z) terminates in at most |u| steps,

Let E(w) be the set of minimum consistent extensions of w (i.e., E(w) contains
any word if the word itself but none of its prefixes is a consistent extension of w).
Then for any non-empty word w,

1 Ew is the dlSJOlIlt union of the cylinders enerated by words in E(w s
g
11 Ew COHlpI'iSGS at most a fraction of § of the cylinder enerated by w,
g
1) E(w) is computably enumerable in w.
. p y

Assertions (i) and (iii) hold, respectively, due to Claim 2 and because for given w
and u, 1t can be effectively checked whether u is a consistent extension of w.
Concerning assertion (i), first observe that for any sequence in E,, all prefixes
of sufficient length are consistent extensions of w. On the other hand, for any
consistent extension u of w, the cylinder generated by u is a subclass of E,
because any sequence that extends u is consistent with w. Furthermore, by the
minimality condition in the definition of E(w), the words in F(w) are mutu-
ally incomparable, hence the cylinders generated by these words are mutually
disjoint.

Let C be the class of all sequences that are i.0. tt-autoreduced by M with
density €. We conclude the proof of assertion (b) by constructing a Martin-Lof
null cover for C. Let ¥ = {0,1}, and for all : > 0, let

Vigr = U E(w) .

weV;

Then the sets V; are uniformly computably enumerable; i.e., V; = Wy(;) for some
computable function h. Using (i) and the fact that any sequence in this class is
consistent with all of its prefixes, an induction argument shows that for all ¢ the
class C'is contained in the union of the cylinders generated by the words in Wy, ;y.
Furthermore, another induction argument, which uses (ii) in the induction step,
shows ?hat the union of the cylinders generated by Wy(;) has measure of at
most 8*. So if we ﬁx.a constant ¢ such that ¢ is at most 1/2, then Wh(eiy has
measure at most 1/2*. In summary, Whico), Whet), - - - 1s a Martin-Lof null cover
for C. O

The concept of density can be relativized to an infinite subset 7 of all words, i.e.,
we might say an oracle Turing machine M i.0. T-autoreduces a given sequence
with density r(m) relative to 7 if the fraction of guessed bits among the first m
words in 7 is always at least r(m). By a straightforward adaptation of the
proof of Theorem 26, it is possible to demonstrate Corollary 27, from which
Corollary 28 can be obtained as a special case.

Corollary 27. (a) No rec-random sequence is i.o0. tt-autoreducible with positive
constant density relative to an infinite computable set.

(b) No Martin-Lif-random sequence is i.o. T-autoreducible with positive con-
stant density relative to an infinite computable set.

Corollary 28. (a) No rec-random sequence is i.o. tt-autoreducible on a com-
putable set.
(b) No Martin-Lof-random sequence is i.o. T-autoreducible on a computable set.

Trakhtenbrot [39] observed that no Kolmogorov-Loveland stochastic sequence [25]
is T-autoreducible, and his argument easily extends to i.0. T-autoreducibility

27

on a computable set; from the latter, assertion (b) in Corollary 28 is immedi-
ate, because the Martin-Lof-random sequences form a proper subclass of the
Kolmogorov-Loveland stochastic sequences.

The “negative” assertions in Theorem 26 and Corollaries 27 and 28 are
complemented by the two following “positive” assertions due to Merkle and
Mihailovié [30]. There are rec-random sequences that are weak truth-table-
autoreducible. There are Martin-Lof random sequences that are selfreducible
with respect to the reducibility being recursively enumerable in, where selfre-
ducible means autoreducible while asking only queries less than the current in-
put.

Apparently, the arguments used in this section do not carry over to show that
p-random sequences cannot be p-T- or p-tt-autoreducible; in fact, the latter as-
sertion relates to major open problems in complexity theory. These relations
are implicit in work of Buhrman et al. [14], from which, among others, the two
following implications are immediate. First, if there are p-random sequences
that are p-tt-autoreducible, then the complexity classes M A and EXP are the
same. Second, if no p-random sequence is p-tt-autoreducible, then the complex-
ity classes BPP and EXP differ. The first implication is immediate by the
result of Buhrman et al. that MA # EXP implies that the p-tt-autoreducible
sequences have measure (0 with respect to polynomial-time computable betting
strategies. For a proof of the second implication assume that BPP = EXP.
By a result of Allender and Strauss, any p-random sequence is p-tt-complete
for BPP. But EXP contains p-random sequences, hence by our assumption
some p-random sequence 1s p-tt-complete for EXP. The assertion now follows
by the result of Buhrman et al. that BPP = EXP implies that all p-tt-complete
sequences for EXP are p-tt-autoreducible.

Recall the negative result on constant bounds in Theorem 26, i.e., a rec-
random sequence cannot be i.0. tt-autoreduced with constant positive density.
This result is essentially matched by Theorem 29, which states that for any
computable, rational-valued function r that goes non-ascendingly to 0, every
rec-random sequence is i.0. tt-autoreducible with density r(m).

Theorem 29. Let g: N — N be any computable function that is unbounded
and non-decreasing. Then every rec-random sequence s i.0. tt-autoreducible with
density r(m) = 1/g(m).

Proof. Fix any rec-random sequence R. It suffices to show that R is i.0. tt-
autoreducible with density r(m) by some oracle Turing machine M. For every
k>0, let

=2 —1.

For further use, fix perfect one-error-correcting codes Cy of codeword length I
such that given z, we can decide effectively whether z is in one of the codes Cj.
The computable function g is unbounded, thus we can define a computable
sequence tg < t1 < ... where g(tg) > 41 and hence

1

T’(tk) < —
/ les1

28

For every k > 0, partition the set of all words into consecutive intervals J}, JZ, ...
of length ly; i.e., J} contains the first [, words, JZ contains the next Iy words,
and so on. Let ¢; be minimum such that the (¢x+1)th word s;, is in J;* and let

Hy=JiU...UJ*.

We construct M from oracle Turing machines My, My, ..., to which we refer
as modules. Intuitively, module k is meant to ensure density 1/l; in the interval
between sy and s;, . Before defining the modules, we describe their properties
and how they are combined to form M.

Module k never queries any place outside the set J! U Hj and outputs L
on all inputs that are not in Hy. Furthermore, on oracle R, module k never
makes a wrong guess and guesses exactly one bit in each of the intervals J2
through J.*. In addition, we will ensure that the M}, are uniformly effective in the
sense that there is an oracle Turing machine My such that the values My (z, X)
and My((z, k), X) always either are both undefined or are both defined and
identical.

Then M is obtained by running the modules in parallel as follows. For input «,
if & is equal to sg or s1, then M just outputs R(z). Otherwise, M determines
the finitely many k such that 2 € Hy and simulates the corresponding modules
with input x and the current oracle. If any of these modules outputs a value
different from L, then M outputs the value output by the least such module;
otherwise, M outputs L. From the properties of the modules stated so far, we
can already prove that M works as required.

Claim 1 The oracle Turing machine M i.0. tt-autoreduces the sequence R with
density r(m).

Proof. From the module assumptions, it is immediate that M is computable
and that M queries its oracle non-adaptively and never queries the oracle at the
current input. Moreover, on oracle R, all guesses of the modules and hence all
guesses of M are correct.

Let FE be the set of all inputs « such that M (R, z) differs from L. Fix k and
assume that m is in J through Jg*. Then we have

p(E,m) > 1/l (11)

This follows because M guesses the first two bits, while module k& and hence M
guess at least one bit in every interval except the first one, where the intervals
have length I;. So if m is in interval JJ, up to m there are at most jli words
and at least j guesses, hence the density up to m is at least 1/l; and (11) holds.

In order to prove p(F,m) > r(m), fix any m and choose k such that t;_; <
m < ty. Then we have

pUEm) 2 1 2 rltenr) 2 v(m) (12)

where the inequalities follow because m is in J! through Jg* and hence (11)
applies, by choice of t5_1, and since r is non-ascending. O

29

In order to construct modules that have the required properties, let wi be the
restriction of R to Ji; i.e.,

R=ww}... where |w}|=1l, and let wp =w, ... 0w,

where @ is bit-wise exclusive-or. The idea underlying the construction of the
modules is as follows. The code words in C% comprise such a small fraction of
all words of length I that in case infinitely many words wy were in Cj, there
would be a computable betting strategy that succeeds on R. But R is assumed
to be rec-random, hence wy is not in C for almost all k. So in order to guess
bits of wy and then also of w} trough wg*, we can apply the solution to the hat
problem described in Remark 6.

Claim 2 For almost all k, wy is not in Cj.

Proof. Suppose we bet on the bits of an unknown sequence X. Similar to the
definition of wyg, let vi be the restriction of X to the interval Jg and let vy be
equal to v}c @ ... D v*. Recall that Cy contains a fraction of a = 1/2% of all
words of length I and observe that the mapping

-1
ok:u'—)v}c@...@v;k Du

is a bijection of {0, 1}**. Thus o, maps just a fraction of a; of all length I, words
to Cx. When betting on the places in J;* | we have already seen v}, through v;"_l.
Under the assumption that vy is in Cg, we can exclude all but a fraction of 1/ag
of the possible assignments to J.* and hence, by betting in favor of these assign-
ments according to Remark 15, we can increase our capital by a factor of 1/ag
in case the assumption is true.

Now consider the following betting strategy. For every k, a portion of ag
of the initial capital 1 is exclusively used for bets on the the interval J:*. On
each such interval, the bets are in favor of the ag-fraction of assignments that og
maps to C. Then the capital ag increases to 1 for all k such that vy is in C} and
consequently the betting strategy succeeds on any sequence such that the latter
occurs for infinitely many k. But no computable betting strategy can succeed on
the rec-random sequence R, hence Claim 2 follows. We leave it to the reader to
show that this strategy is indeed computable. Observe in this connection that
each word is contained in at most finitely many intervals of the form J;* and
consequently at most finitely many of the strategies related to these intervals
might act in parallel. O

It remains to construct the modules. By Claim 1, fix kg such that wg is not
in Cy for all & > kg. First assume k < kg. Consider the least elements of the
intervals JZ through Jg* and for all these a, hard-wire R(z) into module k. On
all these 2, module k outputs R(z), while the module outputs L on all other
inputs.

Next assume k > kg. On inputs that are not in Hg, module k simply out-
puts L. Now consider an input z in Hy and suppose that

z is element iy of interval Jg”, 0<io<ly, 2<jo<eck.

30

For the given oracle X, define v and the vi as in the proof of Claim 2; i.e.,
v‘z 1s the restriction of X to Jg and vy is the bit-wise exclusive-or of the v‘g. Then
on input 2, module k queries its oracle at the remaining words in J} U Hg; i.e.,
the module obtains all bits of the words

1)‘;:_ = v‘;(O)v‘;(l)U‘;(lk—l), j:1;~~~acka

except for the bit X (z) = vi“(io). In order to guess this bit, the module tries to
guess the bit vy (o). From the latter and from the already known bits v‘;(io)
for j # jo, the bit U’;D(io) can then be computed easily since vg(ig) is the
exclusive-or of the vi(io).

In order to guess vk (ip), module k& mimics the solution of the hat problem
with I players that is given in Remark 6. More precisely, the module computes
the remaining bits of v from the U*L (1) and obtains two consistent words ug
and u;. In case for some r, the word u, is in Cj, the module guesses uy_,(ig)
while the module abstains from guessing, otherwise. By assumption on k, on
oracle R the word v, is not in Cy, hence the discussion in Remark 6 shows that
module k£ never guesses incorrectly and guesses exactly one bit in each of the
intervals J? through J¢* (in fact, for some i, in each interval bit 7 is guessed). O

Acknowledgments. We especially thank Ken Rose (Santa Barbara) for his
enlightening discussions on error-correcting codes. We also acknowledge helpful
hints from Klaus Ambos-Spies (Heidelberg), Charles Akemann (Santa Barbara),
Dieter van Melkebeek (Madison), Klaus W. Wagner (Wiirzburg), and anonymous
referees.

References

1. K. Ambos-Spies, P-mitotic sets. In . Borger et al., editors, Decision Problems and
Complexity. Lecture Notes in Computer Science 171:1-23. Springer- Verlag, 1984.

2. K. Ambos-Spies, H. Fleischhack, and H. Huwig, Diagonalizations over polynomial
time computable sets. Theoretical Computer Science 51:177-204, 1987.

3. K. Ambos-Spies, Resource bounded genericity. In S. B. Copper et al., editors, Com-
putability, Fnumerability, Unsolvability. Directions in Recursion Theory. London
Mathematical Society Lecture Note Series 224:1-60. Cambridge University Press,
1996.

4. K. Ambos-Spies and A. Kucera, Randomness in computability theory. In
P. A. Cholak et al., editors, Computability Theory and its Applications. Current
Trends and Open Problems. Proceedings of a 1999 MS-IMS-SIAM joint summer
research conference, Boulder, USA, American Mathematical Society (AMS). Con-
temporary Mathematics 257:1-14, 2000.

5. K. Ambos-Spies and E. Mayordomo, Resource-bounded measure and randomness.
In A. Sorbi, editor, Complexity, Logic, and Recursion Theory, p. 1-47. Dekker, New
York, 1997.

6. K. Ambos-Spies, S. A. Terwijn, and X. Zheng, Resource bounded randomness and
weakly complete problems. Theoretical Computer Science 172:195-207, 1997.

31

7.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

A. Arslanov, On the phenomenon of autocomputability. Computing: the Aus-
tralasian Theory Symposium 2000, Electronic Notes in Theoretical Computer Sci-
ence 31, Elsevier, Amsterdam, 2000.

J. Aspnes, R. Beigel, M. L. Furst, and S. Rudich, The expressive power of voting
polynomials. Combinatorica 14:135-148, 1994.

R. Beigel, L. Fortnow, and F. Stephan. Infinitely often autoreducible sets. Technical
Report 2002-029, NEC Research Institute, 2002.

J. L. Balcazar, J. Diaz, and J. Gabarré, Structural Complezity, volume l. Springer-
Verlag, 1995.

J. L. Balcazar, J. Diaz, and J. Gabarré, Structural Complezity, volume II. Springer-
Verlag, 1990.

J. L. Balcazar and E. Mayordomo, A note on genericity and bi-immunity. In
Proceedings of the Tenth Annual Structure in Complexity Theory Conference 1995,
p- 193-196. IEEE Computer Society Press, 1995.

H. Buhrman, L. Fortnow, D. van Melkebeek, and L. Torenvliet, Using autoreduci-
bility to separate complexity classes. STAM Journal on Computing 29:1497-1520,
2000.

H. Buhrman, D. van Melkebeek, K. W. Regan, D. Sivakumar, and M. Strauss,
A generalization of resource-bounded measure, with an application to the BPP
vs. EXP problem. STAM Journal on Computing 30:576-601, 2000.

C. Calude, Information and Randomness, Springer-Verlag, 1994.

R. Daley, On the simplicity of busy beaver sets. Zeitschrift fiir Mathematische
Logik und Grundlagen der Mathematik 24:207-224, 1978.

T. Ebert, Applications of Recursive Operators to Randomness and Complexity.
Ph.D. Thesis, University of California at Santa Barbara, Santa Barbara, U.S.A.,
1998.

T. Ebert and W. Merkle, Autoreducibility of random sequences: a sharp bound on
the density of guessed bits. In K. Diks and W. Rytter, editors, Mathematical Foun-
dations of Computer Science 2002, Lecture Notes in Computer Science 2420:221—
233, Springer-Verlag, 2002.

T. Ebert and H. Vollmer, On the autoreducibility of random sequences. In
M. Nielsen and B. Rovan, editors, Mathematical Foundations of Computer Science
2000, Lecture Notes in Computer Science 1893:333-342, Springer-Verlag, 2000.
K. H. Kim and F. W. Roush, Applied Abstract Algebra. John Wiley and Sons, New
York, 1983.

C. Jockusch and M. Paterson, Completely autoreducible degrees. Zeitschrift fir
Mathematische Logik und Grundlagen der Mathematik 22:571-575, 1976.

R. Ladner, Mitotic recursively enumerable sets. Journal of Symbolic Logic 38:199—
211, 1973.

F. Thomson Leighton, Introduction to Parallel Algorithms and Architectures: Ar-
rays, Trees, Hypercubes. Morgan Kaufmann Publishers, San Mateo, California,
1992.

H. W. Lenstra and G. Seroussi, On hats and other covers. IEEE International
Symposium on Information Theory, Lausanne, Switzerland, 2002.

M. Li and P. Vitanyi, An Introduction to Kolmogorov Complexity and Its Appli-
cations. Second edition. Springer-Verlag, 1997.

J. H. Lutz, Almost everywhere high nonuniform complexity. Journal of Computer
and System Sciences 44:220-258, .

J. H. Lutz, The quantitative structure of exponential time. In L.. A. Hemaspaan-
dra and A. L.. Selman, editors, Complexity Theory Retrospective 11, p. 225-260,
Springer-Verlag, 1997.

32

28

29.

30.

31.
32.
33.
34.
35.
36.
37.
38.
39.

40.
41.

42.
43.

P. Martin-Lof, The definition of random sequences. Information and Control 9:602—
619, 1966.

E. Mayordomo. Contributions to the Study of Resource- Bounded Measure. Doctoral
dissertation, Universitat Politécnica de Catalunya, Barcelona, Spain, 1994.

W. Merkle and N. Mihailovi¢, On the construction of effective random sets. In
K. Diks and W. Rytter, editors, Mathematical Foundations of Computer Science
2002, Lecture Notes in Computer Science 2420:568-580, Springer-Verlag, 2002.

S. Robinson, Why mathematicians now care about their hat color. New York
Times, April 10, 2001.

S. Rudich, private communication, 2001.

D. E. Shasha, Crowns of the Minotaur, Scientific American, October 2001.

A. N. Shiryaev, Probability. Springer-Verlag, New York, 1995.

C.-P. Schnorr, A unified approach to the definition of random sequences. Mathe-
matical Systems Theory 5:246-258, 1971.

C.-P. Schnorr, Zufdilligkeit und Wahrscheinlichkeit. Lecture Notes in Mathematics
218, Springer-Verlag, 1971.

R. 1. Soare, Recursively Enumerable Sets and Degrees. Perspectives in Mathemat-
ical Logic. Springer-Verlag, 1987.

S. A. Terwijn, Computability and Measure. Doctoral dissertation, Universiteit van
Amsterdam, Amsterdam, Netherlands, 1998.

B. A. Trakhtenbrot, On autoreducibility. Sowviet Mathematics Doklady 11:814-817,
1970.

J.H. van Lint, Introduction to Coding Theory, 3rd edition. Springer-Verlag, 1999.
D. van Melkebeek, Randomness and Completeness in Computational Complexity,
Lecture Notes in Computer Science 1950, Springer-Verlag, 2000.

J. Ville, Ftude Critique de la Notion de Collectif. Gauthiers-Villars, Paris, 1939.

Y. Wang, Randomness and Complexity. Doctoral dissertation, Universitat Heidel-
berg, Mathematische Fakultat, INF 288, Heidelberg, Germany, 1996.

33

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

