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Abstract. We discuss some connections between polynomial time and
non-uniform, small depth circuits. A connection is shown with simulat-
ing deterministic time in small space. The well known result of Hopcroft,
Paul and Valiant [HPV77] showing that space is more powerful than time
can be improved, by making an assumption about the connection of de-
terministic time computations and non-uniform, small depth circuits. To
be more precise, we prove the following: If every linear time determinis-
tic computation can be done by non-uniform circuits of polynomial size
and sub-linear depth (for example, if P is in non-uniform AC), then
DTIME(t) C DSPACE(t' ~¢) for some constant € > 0.

We can also apply the same techniques to prove an unconditional result,
a trade-off type of theorem for the size and depth of a non-uniform circuit
that simulates a uniform computation. We prove that time ¢ has non-
uniform circuits of depth v/¢, with polynomially bounded fan-in for one
type of gates (“semi-unbounded” fan-in type circuits).

1 Introduction

We present an interesting connection between non-uniform characterizations of
Polynomial time and time versus space results.

Hopcroft Paul and Valiant [HPV77] proved that space is more powerful than
time: DTZME(t) C DSPACE(t/ logt). The proof of this trade-off result is based
on pebbling techniques and the notion of block respecting computation. Improv-
ing the space simulation of deterministic time has been a long standing open
problem. Paul Tarjan and Celoni [PTC77] proved an n/logn lower bound for
pebbling a certain family of graphs. This lower bound implies that the trade-off
result DTZME(t) C DSPACE(t/ logt) of [HPVTT] cannot be improved using
similar pebbling arguments.

In this work we present a connection between space simulations of deter-
ministic time and the depth of non-uniform circuits simulating polynomial time
computations. If every problem in linear deterministic time can be solved by
polynomial size non-uniform circuits of small (sub-linear) depth then every de-
terministic computation of time ¢ can be simulated in space t'~¢ for some con-
stant € > 0 (that depends only on our assumption about the non-uniform depth
of linear time):
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DTIME(n) CSIZE-DEPT H(poly(n),n’)

= DTIME(t) C DSPACE(t'~°) @
where § < 1 and € > 0. Note that we allow the size of the non-uniform circuit
to be any polynomial. Since DTZME(t) C STZE(t - logt) (proved in [PFT79]),
our assumption basically asks to reduce the depth of the non-uniform circuit by
a small amount, allowing the size to increase by any polynomial factor.

It is interesting to note that in this result, a non-uniform assumption is used
(P has small non-uniform depth) to prove a purely uniform result (determin-
istic time can be simulated in small space). This can also be considered as an
interesting result for the power of non-uniformity: If non-uniformity is powerful
enough to allow small depth circuits for linear time deterministic computations,
then we can improve the space-bounded simulation of deterministic time given
by Hopcroft Paul and Valiant.

A related result was shown by Sipser [Sip86,Sip88] from the point of view of
reducing randomness required for randomized algorithms. His result considers
the problem of constructing expanders with certain properties. Assuming that
those expanders can be constructed efficiently, the main theorem proved is that
either P is equal to RP or the space simulation of Hopcroft, Paul and Valiant
[HPV77] can be improved:

Theorem 1 (Sipser [Sip86]). Under the hypothesis that certain expanders
have explicit constructions, there exists an € > 0 such that

(P =RP) or (DTIME(t) N1%) C DSPACE(t' ™) (2)

An explicit construction for the expanders mentioned above was given by
Saks, Srinivasan and Zhou [SSZ98]. The theorem mentioned above reveals a
deep connection between pseudo-randomness and efficient space simulations (for
unary languages): either space bounded simulations for deterministic time can
be improved, or we can construct (pseudorandom) sequences that can be used
to improve the derandomization of certain algorithms. On the other hand, the
result we are going to present in this work, gives a connection between the power
of non-uniformity and the power of space bounded computations.

Other related results include Dymond and Tompa [DT85] where it is shown
that DTIME(t) C ATIME(t/logt), improving the Hopcroft Paul Valiant the-
orem, and Paterson and Valiant [PV76] proving STZE(t) C DEPT H(t/logt).

We also show how to apply the same techniques to prove an unconditional
trade-off type of result for the size and depth of a non-uniform circuit that
simulates a uniform computation. Any deterministic time ¢ computation can be
simulated by a non-uniform circuit of size roughly 2Vt and depth /¢, which has
“semi-unbounded” fan-in: all AND gates have polynomially bounded fan-in and
OR gates are unbounded, or vice versa. Similar results were given in [DT85]
showing that time ¢ is in PRAM time /7.



2 Notation - Definitions

We use the standard notation for time and space complexity classes DT ZME (t)
and DSPACE(t). STZE—DEPT H(s,d) will denote the class of non-uniform cir-
cuits with size (number of gates) O(s) and depth O(d). We also use N'C /poly (NC
with polynomial advice) to denote the class of non-uniform circuits of polyno-
mial size and poly-logarithmic depth, STZE—-DEPT H(poly, polylog). At some
points in the paper, we will also avoid writing poly-logarithmic factors in detail
and use the notation O(n) to denote O(nlog”® n) for constant k. In this work we
consider time complexity functions that are time constructible: A function ¢(n)
is called fully time constructible if there exists a deterministic Turing Machine
that on input of length n halts after exactly t(n) steps. In general a function f(n)
is t-time constructible, if there is a deterministic Turing Machine that on input
z outputs 172D and runs in time O(t). (¢, s)-time-space constructible functions
are defined similarly. We also use “TM” for “deterministic Turing Machine”.

For the proof of the main result we use the notion of block respecting Turing
machines introduced by Hopcroft Paul and Valiant in [HPV77].
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Fig. 1. Block respecting computation

Definition 1. Let M be a machine running in time t(n), where n is the length
of its input x. Let the computation of M be partitioned in a(n) segments, where
each segment consists of b(n) consecutive steps, a(n) - b(n) = t(n). Let also the
tapes of M be partitioned into a(n) blocks each consisting of b(n) bits (cells)
on each tape. We will call M block respecting if during each segment of its
computation, each head visits only one block on each tape.

Every Turing Machine can be converted to a block respecting machine with
only a constant factor slow down in its running time. The construction is simple:



Let M be a deterministic Turing Machine running in time ¢. Break the compu-
tation steps (1...t) in segments of size B. Break the work tapes in blocks of the
same size B. If at the start of a computation segment o the work tape head is
in block b;, then during the computation steps (b steps) of that segment, the
head could only visit the adjacent blocks, b;_; or b;;1. Keep a copy of those
two blocks along with b; and do all the computation of segment ¢ reading and
updating from those copies (if needed). At the end of the computation of every
segment, there is a clean-up step: update the blocks b;_; and b;;; and move
the work tape head to the appropriate block to start the computation of the
next segment. This construction can be done for different block sizes B. For our
purposes B will be t¢ for a small constant ¢ < 1.

Block respecting Turing machines are also used in [PPST83] to prove that
non-deterministic linear time is more powerful than deterministic linear time
(see also [PR81] for a generalization of the results from [HPV77] for RAMs and
other machine models).

3 Main Results

We show that if linear time has small non-uniform circuit depth (for polynomial
size circuits) then DTZME(t) C DSPACE(t1~¢) for a constant € > 0.

To be more precise, the strongest form of the main result is the following: if
(deterministic) linear time has polynomial size, non-uniform circuits of sublinear
depth (for example depth n? for 0 < & < 1), then DTZME(t) C DSPACE (')
for a small positive € > 0:

DTIME(n) C SIZE-DEPTH(poly,n’) = DTIME(t) C DSPACE(t' )
3)
The main idea is the following: Start with a deterministic Turing machine
M running in time ¢ and convert it to a block respecting machine Mp with
block size B. In each segment of the computation, Mp reads and/or writes in
exactly one block on each tape. We will argue that we can check the computation
in each such segment with the same sub-circuit and we can actually construct
this sub-circuit with polynomial size and small (poly-logarithmic or sub-linear)
depth. Combining all these sub-circuits together we can build a larger circuit
that will check the entire computation of Mp in small depth. The final step is
a technical lemma that shows how to evaluate this circuit in small space (equal
to its depth).
We start by proving the main theorem using the assumption P C NC/poly.
It is easy to see that an assumption of the form DTZME(n) C NC/poly implies
P C NC/poly by padding arguments.

Theorem 2. Let t be a polynomial time complexity function. If P C NC/poly
then DTIME(t) C DSPACE(t1=¢) for some constant € > 0.



Proof. (Any “reasonable” time complexity function could be used in the state-
ment of this theorem.) Consider any Turing Machine M running in deterministic
time ¢. Here is how to simulate M in small space using the assumption that poly-
nomial time has shallow (poly-logarithmic depth) polynomial size circuits:

1. Convert given TM in a block respecting machine with block size B.

2. Construct the graph that describes the computation. Each vertex corre-
sponds to a computation segment of B steps.

3. The computation on each vertex can be checked by the same TM U that
runs in polynomial time (linear time)

4. Since P C NC/poly, there is a circuit Uc that can replace U. Uc has poly-
nomial size and polylogarithmic depth.

5. Construct Ug by trying all possible circuits.

6. Plug in the sub-circuit U¢c to the entire graph. This graph is the description
of a circuit of small depth, that corresponds to the computation of the given
TM. Evaluate the circuit (in small space)

In more detail: Convert M to a block respecting machine Mp. Break the
computation of Mp (on input z) in segments of size B each; the number of seg-
ments is t/B. Consider the directed graph G corresponding to the computation
of the block respecting machine as described in [HPV77]: G has one vertex for
every time segment (that is ¢/B vertices) and the edges are defined from the
sequence of head positions. Let v(A) denotes the vertex corresponding to time
segment A then and A; is the last time segment before A during which the i-th
head was scanning the same block as during segment A. Then the edges of G
are v(A—1) =5 v(A) and for all 1 < i <1, v(4;) = v(A). The number of edges
can be at most O(%) and therefore the number of bits required to describe the
graph is O (L log £).
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Fig. 2. Graph description of a block respecting computation.



Figure 2 shows the idea behind the construction of the graph for the block
respecting computation. The computation is partitioned in segments of size B.
Every segment corresponds to a vertex (denoted by a circle in figure 2). Each
segment will access only one block on each tape. Figure 2 shows the tape blocks
blocks which are read during a computation segment (input blocks for that
vertex) and those that will be written during the same segment (shown as output
blocks). If a block is written during a segment and the same block is read by
another computation segment later in the computation, then the second segment
depends directly from the previous one and there will be an edge connecting the
corresponding vertices in our graph.

Each vertex of this graph corresponds to B computation steps of Mp. During
this computation, M reads and writes only in one block from each tape. In order
to check the computation that corresponds to a vertex of this graph, we would
need to simulate Mg for B steps and check O(B) bits from Mp’s tapes. For each
vertex we need to check/simulate a different segment of Mp’s computation: this
can be done by a Turing machine that will check the corresponding computation
of Mp. We argue that the same Turing machine can be used on every vertex.
The computation we need to do on each vertex of the graph is essentially the
same: given the “input” and “output” contents of certain tape blocks, simulate
the machine Mpg for B steps and check if the output contents are correct. The
only thing that changes is the actual segment of the computation of Mp that
we are going to simulate (which B steps of Mg we should simulate). This means
that the exact same “universal” Turing machine checks the computation for each
segment /vertex, and this universal machine also takes as input the description
(for example the index of the part of the computation of the initial machine Mg
it will need to simulate or any reasonable encoding) of the computation that it
needs to actually simulate on each vertex. Therefore we have the same machine
U on all vertices of the graph which runs in deterministic polynomial time.
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Fig. 3. Insert the (same) sub-circuit on all vertices

If P C SIZE-DEPTH(n*,log! n) then U can be simulated by a circuit
Uc of size O(B*) and small depth O(log' B), for some k,!. The same circuit



is used on all vertices of the graph. In order to construct this circuit, we can
try all possible circuits and simulate them on all possible inputs. This requires
exponential time, but only small amount of space: the size of the circuit is B¥
and its depth polylogarithmic in B. We need O(B*) bits to write down the
circuit and only polylog space to evaluate it (using lemma 1).

Once we have constructed Uc, we can build the entire circuit that will sim-
ulate Mp. This circuit derives directly from the (block-respecting) computation
graph where each vertex is an instance of the sub-circuit Ug. The size of the
entire circuit is too big to write down. We have up to ¢/ B sub-circuits (U¢) that
would require a size of O(4B*) for some constant k. But since it is the same
sub-circuit Ug that appears throughout the graph, we can implicitly describe the
entire circuit in much less space. For the evaluation of the circuit, we only need
to be able to describe the exact position of a vertex in the graph, and determine
the immediate neighbors of a given vertex (previous and next vertices). This can
easily be done in space O(t/B + B*).

In order to complete the simulation we need to show how to evaluate a small-
depth circuit in small space (see Borodin [Bor77]).

Lemma 1. Consider a directed acyclic graph G with one source (root). Assume
that the leaves are labeled from {0,1}, its inner nodes are either AND or OR
nodes and the depth is at most d. Then we can evaluate the graph in space at
most O(d).

Proof. (of lemma. See [Bor77] for more details).

Convert the graph to a tree (by making copies of the nodes). The tree will
have much bigger size but the depth will remain the same. We can prove (by
induction) that the value of the tree is the same as the value of the graph from
which we started. Evaluating the tree corresponds to computing the value of its
root. In order to find the value of any node v in the tree, proceed as follows: Let
U1, - - -, ur denote the child-nodes of v.

If v is an AND node, then compute (recursively) the value of its first child
ur. If value(u;) = 0 then the value of v is also 0. Otherwise continue with the
next child. If the last child has value 1 then the value of v is 1. Notice that we
do not need to remember the value of the child-nodes that we have evaluated.
If v is an OR node, the same idea can be applied. We can use a stack for the
evaluation of the tree. It is easy to see that the size of the stack will be at most
O(d), that is as big as the depth of the tree. |

The total amount of space used is:
~ t
O(B* + 5 log' B) (4)

To get the desired result, we need to choose the size B of the blocks appro-
priately to balance the two terms in (4). B will be ¢'/¢ for some constant ¢ that
is larger than k.



As mentioned above, the exact same proof would work even if we allow almost
linear depth for the non-uniform circuits for just linear deterministic time instead
of P. The stronger theorem is the following:

Theorem 3. If DTIME(n) C SIZE-DEPTH(n*,n%) for some k > 0 and

6 <1, then DTIME(t) C DSPACE(t'~¢) where e = 1 — =5

Proof. From the proof of theorem 2 we can calculate the space required for the
simulation: In order to find the correct sub-circuit which has size B* and depth
B?, we need O(B?* log B) space to write it down and O(B?) to evaluate it. To
evaluate the entire circuit which has depth % - B®) we are only using space

t t .
O(5 -B’log B + Elogt+Bz’“ log B) (5)

The first term in equation (5), is the space required to evaluate the entire
circuit that has depth % - B® and the second and third term is the space required
to write down an implicit description of the entire circuit (description of the
graph from the block respecting computation, and the description of the smaller
sub-circuit)

Total space used (to find the correct sub-circuit and to evaluate the entire
circuit) is

t
O(E - B®log B + B**log B) (6)
If we set B = t'/2k%1 then the space bound is

Ot~ #51) ()
In these calculations 2k + 1 means just something greater than 2k.

These proof ideas seem to fail if we try to simulate non-deterministic time in
small space. In that case, evaluating the circuit would be more complicated: we
would need to use more space in order to make sure that the non-deterministic
guesses are consistent throughout the evaluation of the circuit.

4 Semi-unbounded circuits

These simulation ideas using block respecting computation can also be used to
prove an unconditional result relating uniform polynomial time and non-uniform
small depth circuits. The simulation of the previous section implies uncondition-
ally a trade-off type of result for the size and depth of non-uniform circuits that
simulate uniform computations. The next theorem proves that any deterministic
time ¢ computation can be simulated by a non-uniform circuit of size v/ - 2Vt or
20(v9) and depth v/¢, which has “semi-unbounded” fan-in. Previous work by Dy-
mond and Tompa [DT85] also present similar results showing that deterministic
time ¢ is in PRAM time /2.



Theorem 4. Let t be a reasonable time complexity function. Then
DTIME() C SIZE-DEPTH(2°VD VA), and the simulating circuits
require exponential fan-in for AND gates and polynomial for OR gates (or
vice-versa)

Proof. Given a Turing machine running in DT ZME(t), construct the block re-
specting version, and repeat the exact same construction as the one presented
in the proof of theorem 2: Construct the graph describing the block respecting
computation, which has ¢/B nodes, and every node corresponds to a segment
of B (we will chose the size B later in the proof) computation steps. Use this
graph to construct the non-uniform circuit: For every node, build a circuit, say
in DNF, that corresponds to the computation that takes place on that node.
This circuit has size exponential in B in the worst case, 2°(8), and depth 2.
The entire graph describes a circuit of size 52°®) and depth O(B). Also, note
that for every sub-circuit that corresponds to each node, the input gates (AND
gates as described in the proof) have a fan-in of at most O(B), while the sec-
ond level might need exponential fan-in. This construction yields a circuit of
“semi-unbounded” type fan-in. |

5 Discussion - Open Problems

In this work we have shown a connection between the power of non-uniformity
and the power of space bounded computation. The proof of the main theorem
is based on the notion of block respecting computation and various techniques
for simulating Turing Machine computation. The main result states that if Poly-
nomial time has small non-uniform depth then space can simulate deterministic
time fast(-er). An interesting open question is to see if the same ideas can be
used to prove a similar space simulation for non-deterministic time. It seems
also possible that a result could be proved for probabilistic classes. A different
approach would be to make a stronger assumption (about complexity classes)
and reach a contradiction with some hierarchy theorem or other diagonalization
result thus proving a complexity class separation.
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