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A Generalization of Lutz’s Measure to Probabilistic Classes

Philippe Moser*

Abstract

We extend Lutz’s measure to probabilistic classes, and obtain notions of measure on
probabilistic complexity classes C such as BPP, BPE and BPEXP. Unlike former attempts,
all our measure notions satisfy all three Lutz’s measure axioms, that is every singleton
{L} has measure zero in C, the whole space C has measure one in C, and ”easy infinite
unions” of measure zero sets have measure zero. Finally we prove a conditional time
hierarchy Theorem for probabilistic classes, and show that under the same assumption,
both the class of <%-autoreducible sets and the class of <%.-complete sets for EXP have
measure zero in BPE.

1 Introduction

Resource-bounded measure was introduced by Lutz in [Lut90] and [Lut92] for both complexity
classes EXP and E. It provides a means of investigating the sizes of various subsets of E and
EXP. Given a subset C of EXP such as P, NP or BPP one tries to determine whether C
is a small subset of EXP i.e. has measure zero, or is a large subset, i.e. has measure one.
Resource-bounded measure has been used with many successes to understand the structure
of the exponential time classes E and EXP.

The first goal of Lutz’s approach was to extend existence results, such as ”there is a
language in C satisfying property P, to abundance results such as "most languages in C
satisfy property P”, which is more informative since an abundance result reflects the typical
behavior of languages in a class, whereas an existence result could as well correspond to an
exception in the class. For instance the set of <§,-complete languages for E has measure zero
in E [JL93].

Another application of resource-bounded measure is in relation with the probabilistic
method. Suppose we want to prove the existence of a set L in E satisfying property P. It is
often easier to prove that the subset of E not satisfying property P is small i.e. has measure
zero, than explicitly constructing a set L with property P. In [LM94] Lutz and Mayordomo
used this technique to prove results about the density of hard languages.

Plausible but unproven hypothesis such as P # NP and “the polynomial time hierar-
chy does not collapse” are useful to provide information concerning complexity theoretical
propositions. Resource-bounded measure can also be used to formulate new plausible work-
ing hypothesis such as ”NP is not a small subset of E”. For instance Impagliazzo and Moser
showed in [IM02] that under the hypothesis ”NP has p-measure non zero” full derandomization
of AM was possible, i.e. NP = AM.

For a more detailed survey on Lutz’s resource bounded measure see [Lut97].
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Resource-bounded measure can be seen as a general framework which for many complexity
classes C, yields a notion of ”measure in C” which satisfies the following three axioms. First
every singleton {L} (where L € C) has measure zero in C, second the whole space C has
measure one in C, and finally ”easy infinite unions” of measure zero sets have measure zero
in C. These axioms meet the essence of Lebegue’s measure and ensure that it is impossible
for a subset of C to have both measure zero and one in C.

Unfortunately, Lutz’s formulation only works for measure in C D E. In [AS94] and [Str97]
Allender and Strauss generalized Lutz’s measure by introducing two measure notions in subex-
ponential classes such as P and PSPACE. And what about probabilistic classes?

In [RS98], Regan and Sivakumar investigated the notion of measure on probabilistic
classes. They introduced probabilistic martingales and defined a partial measure on proba-
bilistic classes, unfortunately their partial measure does not satisfy the three measure axioms,
indeed their theory missed out the finite union axioms, and henceforth the easy infinite union
axioms.

It was thus left open whether it is possible to define a measure on probabilistic classes
which satisfies Lutz’s three measure axioms. We give an affirmative answer to this question
by constructing measures on all probabilistic complexity classes BPP, BPE and BPEXP which
satisfy all three Lutz’s measure axioms.

The remainder of the paper is organized as follows. In Section 3 we introduce our mea-
sure on BPE. We first define probabilistic martingales after what we prove the so-called exact
computation Lemma, which states that every probabilistic martingales which can be approx-
imated, can also be computed exactly. Next we show that all three Lutz’s measure axioms
hold for our measure on BPE. All arguments in Section 3 also hold with E replaced by EXP
thus one also obtains a measure on BPEXP.

For BPP we use both measure notions of Allender and Strauss in [AS94] and [Str97] on P,
and adapt them to the probabilistic class BPP, thus obtaining two different measures on BPP.
In Section 4 we use Allender and Strauss’s polylogarithmic Turing machines model [AS94],
whereas In Section 5 we use Strauss’s dense betting strategies [Str97] and obtain another
(stronger) measure on BPP.

Finally we investigate the problem of monic selection of random sampling (MSRS). A
remarkable property of probabilistic Turing machines is that they can perform random sam-
pling. The point is that such a sampling is multivalued, i.e. with high probability the machine
outputs good approximations, but it might output different approximations depending on the
output of the random coin tosses. An interesting question is whether it is possible to perform
probabilistic sampling by a single valued probabilistic Turing machine, i.e. is it possible to
output with high probability a single value, which is a good approximation of the sampling.
This question is addressed in [OR93], and it is asked what consequences would follow from the
assumption that MSRS is possible. We show that if MSRS is possible then the time hierarchy
Theorem holds for probabilistic classes, i.e.

BPTIME(O(n)) C BPP C BPE C BPEXP.

We also show that if MSRS is possible then both the class of <[-autoreducible sets and
the class of S’%—complete sets for EXP have measure zero in BPE. It is not known whether

the same holds for measure in E, in fact this would have the nonrelativizing consequence
BPP # EXP.



2 Preliminaries

We use standard notation for traditional complexity classes; see for instance the books of
Balcazar, Diaz and Gabarro [BDG95], [BDG90], or the one from Papadimitriou [Pap94]. Let
us fix some notations for strings and languages. Let sg,s1,... be the standard enumeration
of the strings in {0,1}* in lexicographical order, where sy = A denotes the empty string. A
sequence is an element of {0,1}°°. If w is a string or a sequence and 0 < i < |w| then wli]
and w(s;| denotes the ¢th bit of w. Similarly w[i...j] and wis;...s;] denote the ith through
jth bits. We identify language L with its characteristic function x,, where x, is the sequence
such that xz[i] = 1iff s; € L. If wy is a string and wy, is a string or a sequence extending wy,
we write w; C wo.

2.1 Betting games

Lutz’s [Lut92] measure on E is obtained by imposing appropriate resource-bound on a game
theoretical characterization of the classical Lebesgue measure, via martingales. A martingale
is a function d : {0,1}* — R, such that,

d(w) = d(w0) —;—d(wl) 1)
for every w € {0,1}*.

This definition can be motivated by the following betting game in which a gambler puts
bets on the successive membership bits of a hidden language A. The game proceeds in
infinitely many rounds where at the end of round n, it is revealed to the gambler whether
sn € A or not. The game starts with capital 1. Then, in round n, depending on the first
n — 1 outcomes w = x4[0...n — 1], the gambler bets a certain fraction €,d(w) of his current
capital d(w), that the nth word s, € A, and bets the remaining capital (1 — €,)d(w) on
the complementary event s, ¢ A. The game is fair, i.e. the amount put on the correct
event is doubled, the one put on the wrong guess is lost, as stated in Equation 1. The
value of d(w), where w = x4[0...n] equals the capital of the gambler after round n on
language A. The player wins on a language A if he manages to make his capital arbitrarily
large during the game. We say that a martingale d succeeds on a language A, if d(4) :=
lim Sup,, 4 4y 4 d(w) = oo, where we identify language A with its characteristic sequence x 4.
The success set S*®[d] of a martingale d is the class of all languages on which d succeeds.

We sometimes relax equality 1 by considering supermartingales. A supermartingale is a
function d : {0,1}* — Ry such that,

d(w0) + d(wl)

d(w) = 5

(2)

for every w € {0,1}*, i.e. the associated strategy is allowed to throw money away.

3 A Measure on BPE

Our measure on BPE will be defined via the following probabilistic martingales.



Definition 1 A martingale d : {0, 1}* — Ry is BPESV approzimable if there exists a family
of approrimations {dk}k>0 (where d {0,1}* = Q4 ), and a probabilistic Turing machine M
such that for every w € {0,1}*,k,n € N

| (w) — d(w)| < 2%, and
Pr[M(w,k,n) = dy(w)] >1—2""

where the probability is taken over the internal coin tosses of M and the running time of M
is polynomial in |w| + k + n.

By using standard Chernoff bound arguments it is easy to show that Definition 1 is robust
i.e. the error probability can range from 1/2 + 1/p(n) to 1 — 24(") for any polynomials p, g
without enlarging (resp. reducing) the class of functions defined in Definition 1.

A martingale d : {0,1}* — Q, is said BPESV computable if there exists a probabilistic
Turing machine M such that for every w € {0,1}*,n € N

Pr[M(w,n) =dw)] >1-2""

where the probability is taken over the internal coin tosses of M and the running time of M
is polynomial in |w| + n.

We will often consider indexed martingale. An indexed BPESV approximable martingale
is a martingale d (where d; := d(i,-)) such that there exists a family of approximations
{Jk,i}k,izo (where cfk,i :{0,1}* — Q ), and a probabilistic Turing machines M such that for
every w € {0,1}* k,i,n € N

|y i(w) — di(w)] < 27F, and
Pr[M (w, k,i,n) = d;(w)] >1—27"

where the probability is taken over the internal coin tosses of M and the running time of M
is polynomial in |w| + k + i + n.

Following Lutz [Lut92] we say that a set has measure zero if there is a single martingale
that succeeds on it.

Definition 2 A C E is said to have BPESV measure zero if there exists a BPESV approz-
imable martingale d : {0,1}* — Ry such that A C S*°[d].

In order to formalize the third measure axiom, we need to define what we mean by “easy
infinite union” of measure zero sets.

Definition 3 X = [J;cy Xi is a BPESV union of BPESV measure zero sets if there exists an
indezed BPESV approzimable martingale d such that X; C S*[d;].

The so-called exact computation Lemma states that any BPESV approximable martingale
can be replaced by a BPESV computable martingale with the same success set.

Lemma 1 (Ezact Computation Lemma)
Let d : {0,1}* — R be a BPESV approzimable martingale. Then there exists a BPESV
computable martingale d' : {0,1}* — Q4 such that S®°[d] = S*°[d].



Proof
Let d be an approximation of d, and let M be a probabilistic Turing machine computing
d. Let us define c(w) := dj,,|(w). We construct the following martingale d' recursively.

d(\) = c(\) +2
&' (wh) = d'(w) + S =) 5 c(wb)

where w € {0,1}* and b € {0,1}.
Claim d' is BPESV computable.

Indeed computing d'(wb) requires computing |w| recursive steps, each step requiring two
computations of c. By computing ¢ (via M) with error probability smaller than 2-s(n) (where
s(n) is a polynomial which will be determined later), we obtain a total error probability
smaller than 2|w|27°("). Putting s(n) = log(|w|) + n + 1 yields a total error probability
smaller than 27",

Let us check that d' defines a martingale. It is easy to check the average Equality 1. In
order to check that d’'(w) > 0 for every w € {0,1}*, we show by induction that

d'(w) > d(w) + 271, (3)
We have d'()\) = c¢(\) +2 > d(X) —2° +2 > d()\) +2°. For w € {0,1}*,b € {0,1}, we have

&' (wh) = d'(w) + S = cwb) 5 c(wh)

> d(w) — o-wl c(wb) — c(wb)

> d(w) + 270! + w _o—lwi—
= d(wb) + 27 1vI-1

where the first inequality holds by induction and the second holds because |d(w) — c(w)| <
21l by definition of ¢. Next we show by induction that

jd(w) —d'(w)] <4 -2, (4)
For w = A we have |d()\) —c(\) — 2| <270+ 2 =3. For w € {0,1}*,b € {0,1} we have

c(wb) — c(wb)

|d'(wb) — d(wd)| < |d'(w) — d(w)| + |d(w) + 5 — d(wb)|
< 4oy |d('wb) — c(wb)| 4 |c(wb) — d(wb)|
2 2
< 4 — 9~ (lwl+1)
Finally Equation 3 and 4 yield S*[d] = S*°[d']. 0

Let us prove that all three Lutz’s measure axioms hold for our measure on BPE.

Theorem 1 Let L be any language in BPE. Then the singleton {L} has BPESV measure
zero.



Proof

Let L € BPE be any language and let M be a Turing machine computing it. We
construct a probabilistic Turing machine 7' computing martingale d yielded by the follow-
ing game strategy; On input Sy bet the current capital that the membership bit is the
same as L(sy). d is BPESV computable since on input w, where |w| = N, T simply com-
putes L(sg), L(s1),... ,L(sn), (with error probability smaller than 2~5(")) and outputs 21! if
w = x[l...N] and zero otherwise. Clearly d is BPESV computable since computing d(w) re-
quires N computations of L each being performed with error probability smaller than 27° (n)
which makes a total error probability smaller than N -2-5(")_ Putting s(n) = log N +n yields
a total error probability smaller than 27", ad

The second axiom is proved using the Exact Computation Lemma.

Theorem 2 BPE does not have BPESV measure zero.

Proof

Let d be a BPESV approximable martingale. By Lemma 1 we can suppose that d is
BPESV computable. We construct a language L € BPE such that d(x.[0... N]) < d(A) for
every N > 1,ie. L & S®[d]. On word sy, L is defined as follows,

L(SN) =1 «— d(L(So)L(Sl) e L(SN_l)l) S d(L(So)L(Sl) e L(SN_1)O)

where d is computed with error probability 275(") (where s(n) is a polynomial which will be

determined later). L € BPE because each of the N recursive steps to compute L(sy) requires

two computations of d. This yields a total error probability smaller than 2N275("), Putting

s(n) = log(|w|) + n + 1 yields a total error probability smaller than 2~". Moreover d never

increases its initial capital along L which ends the proof. O
Finally let us prove the third axiom.

Theorem 3 Let X = J,-, X; be a BPESV union of BPESV measure zero sets. Then X has
BPESV measure zero.

Proof

Let d be a BPESV approximable indexed martingale that wins on X, and let d be an
approximation of d. We construct a BPESV approximable indexed martingale D such that
for every 7 € N,

1. 5%°[D;] = §%[d;]

2. Dj()) <279,

For w € {0,1}* and j € N define

D (w) = 2min(0:=108(d1 () =2-0) g, (1)

It is easy to see that D; verifies both properties 1 and 2 for every j € N. For w € {0,1}*,5,k €
N, consider

A~

Dji(w) := 2miﬂ(0=—10%(41,1(/\))—2—1')6% k(w).

For w € {0,1}*, 7,k € N we have

|Dj (w) — Djr(w)| < |dj(w) — djp(w)] < 27*.



Since cij,k is BPESV computable, so is lA?j,k therefore D is BPESV approximable.
Consider the following martingale

d'(w) := ZDj(w) where w € {0,1}*.

Since d'(A) < 392,277 = 2 and d'(w) < Y52,2%ID;(A) < 2@Id'(A) for w € {0,1}*, d'

is a well defined martingale. It is clear that X C S*°[d']. Let us show that d’' is BPESV
approximable. For w € {0,1}*, consider

k4 |w|+1

d'i(w) := Z bj,j+k+2(w)

=0

where each lA)j,j+k+2(w) is computed with probability 27*(") where s(n) is a polynomial which
will be determined later. For w € {0,1}*,k € N we have

k+|w|+1 [e'e)
dk(w) —d'(W)| < Y [Djjrkia(w) = Dj(w)|+ D [Dj(w)]
Jj=0 Jj=|w|+k+2
k+|w|+1 oo
< Z 9—(+k+2) | Z 9lwlg—j
3=0 j=|w|+k+2

< 2—(k+1) + 2—(k‘+1) < 2—k

Since computing d'y,(w) requires adding k + |w| 4 1 terms ﬁj,j+k+2, each being computed
with error probability smaller than 275 d’;(w) can be computed with error probability
smaller than (k 4 |w| + 1)273("), Putting s(n) := log(k + |w| + 1) + n yields a total error
probability smaller than 275" thus d’ is BPESV approximable which ends the proof. O

Throughout Section 3 E can be replaced by EXP thus yielding a measure on the proba-
bilistic class BPEXP.

4 Measure on BPP with Sparse Dependencies

4.1 Supermartingales with small dependency set

To define a measure on BPP we will consider supermartingales. Our supermartingales will
be computed by Turing machines with random access to their inputs i.e. on input w, the
machine can query any bit of w to its oracle. We will consider polylogarithmic time Turing
machines. In order to allow such Turing machines to compute the lengths of their inputs w
without querying their oracles, we also provide them with s|,,. For such a Turing machine
M running on input w, we denote this convention by M*(s,,). Since these Turing machines
will need to approximate real valued martingales, we will suppose that these Turing machines
output their results as two binary number (a,b) corresponding to the rational number a/b.
It is easy to check that under this convention these Turing machines can perform the usual
operations such as 4+, —, -, + and <. The point is that with this convention, rationals such as
1/3 can be said to be computed exactly.



It is widely believed that polylogarithmic Turing machines are too strong to define a
measure on polynomial time classes, because it is not clear whether the whole class has not
measure zero relatively to polylogarithmic computed supermartingales. Therefore Allender
and Strauss [AS94] weakened the concept by bounding the number of recursive queries such a
Turing machine is allowed to make. Let M be a polylogarithmic Turing machine and n € N.
Define the dependency set Gpr, C {1,2,...,2""! — 1} such that for every string w € {0, 1}*
coding for words of size up to n, M can compute M (s},) querying only input bits in G rs,5-

To define our measure on BPP we will consider polylogarithmic probabilistic Turing ma-
chines with polynomial size dependency sets.

Definition 4 A supermartingale d : {0,1}* — R, is BPPSV approzimable if there exists
a family of approrimations {Jk}kzo (where dy, : {0,1}* — Q), a family of polynomial sized
dependency sets {Garntn>0 and a probabilistic Turing machine M such that for every w €
{0,1}*,k,neN

| (w) — d(w)| <27%, and
Pr[M" (s, k,n) = dj(w)] > 1—27"

where the probability is taken over the internal coin tosses of M, the running time of M is
polynomial in log |w| + k + n and M only queries input bits in GM,‘Sle.

BPPSV computable supermartingales and indexed supermartingales are defined as in Sec-
tion 3.

Similarly to Section 3, a set is said to have measure zero if there is a single martingale
that succeeds on it.

Definition 5 A C BPP is said to have BPPSV measure zero if there exists a BPPSV approz-
imable supermartingale d such that A C S*°[d].

As in Section 3, we need to formalize the concept of easy infinite unions of small sets.

Definition 6 X = [J;. X; is a BPPSV union of BPPSV measure zero sets if there erists an
indezed BPPSV approzimable supermartingale d such that X; C S*°[d;].

The Exact Computation Lemma also holds for BPPSV approximable martingale.

Lemma 2 (Ezact Computation Lemma)
Let d : {0,1}* — R, be a BPPSV approzimable supermartingale. Then there exists a
BPPSV computable supermartingale d' : {0,1}* — Q4 such that S*®[d] = S*®[d'].

Proof

Let d be an approximation of d, such that for every w € {0,1}* we have |d(w) —ci|w‘ (w)] <
Mﬁ, and let M be a probabilistic Turing machine computing d. Consider the following
function

4
F(ul) = W Tl >0,
6 if [uw| = 0.



F' can be computed in time polynomial in log |w|. Consider the following supermartingale

du(w) + P ()

d(w)=—5~ F(0)

Since d is BPPSV computable, so is d’. We have §°[d] = §*°[d'] and d and d' have the
same dependency set. Let us show that d’ is a supermartingale, i.e. satisfies Equation 2. For
w € {0,1}* we have (we omit the constant factor)

#(0) = () + F(fu]) 2 TR - F(u)
diwol (w0) — 1/(|wO2 + 1) djpy (wl) — 1/(|wl|? +1
> jwo| (wO0) 2/(I I + )Jr w1/ (wl) 2/(l “ + )_|w|21+1+F(‘“’|)
B 2 _(\w|+1)2+1_|w|2+1+F(|wD
- djoyo) (W0) + djyyy (w1) _ d'(w0) + d'(wl)

> +  F(w|+1)
2 N i) 2

=(F([w0)+F(|wl]))/2
Let us check the last inequality. Putting ¢ = |w|, we have to check whether

1 1
F(t)—F(t+1)> )
*) (+)_(t+1)2+1+t2—|—1

()

The left term of Equation 5 is equal to ﬁ. Denote by R the right term of Equation 5.
Equation 5 holds iff

2+t 2+t
4> R-t(t+1) < 4>
- (t+1) T(+1)24+1 0 241
which is true for every positive . ad
Let us check that all three measure axioms hold.

Theorem 4 Let L € BPP be any language. Then the singleton {L} has BPPSV measure
zero.

Proof

Let L € BPP be any language and let M be a probabilistic Turing machine deciding it.
Consider the following supermartingale d. d only bets on words in {0}* and on those words,
d bets all its current capital according to M. d is BPPSV computable because computing
d(w) (where w € {0,1}") requires computing a; := M(0%) for t = 1,2, ... ,|sy| (with error
probability smaller than 275(")) and checking whether a; = w[0¢] for every t = 1,2,... ,|sn],
where w[0?] denotes the bit of w corresponding to word 0, in which case d(w) equals 2/*V|
otherwise d(w) equals 0. The total error probability is smaller than |sy| - 275("), which is
smaller than 27" by an appropriate choice of s(n). The dependency set is {Ot}t5| sy| Which is
polynomial sized. O

The proof of the second axiom relies on the Exact Computation Lemma.

Theorem 5 BPP does not have BPPSV measure zero.



Proof Suppose there exists a BPPSV approximable supermartingale d such that d beats BPP.
By Lemma 2 there is a BPPSV computable supermartingale d’ with the same success set as
d. Denote this supermartingale by d. Consider the following language L € BPP.

o= i

Since the dependency set is polynomial there are at most ¢(|sy|) recursive calls, for some

polynomial ¢q. Each recursive call requires two computations of d, each being performed

with error probability smaller than 275("). Thus the total error probability is smaller than

q(]sn])27°(™ which is smaller than 2~" for an appropriate choice of s(n). Since d never

increases its initial capital along L, we have L ¢ S*[d]. a
Finally let us prove the third axiom.

Theorem 6 Let X = |J;~, X; be a BPPSV union of BPPSV measure zero sets. Then X has
BPPSV measure zero.

Proof
Let d be an indexed BPPSV approximable supermartingale that beats X. By Lemma 2
we can suppose that d is BPPSV computable. Consider the following supermartingale

Dj(w) = 2770d;(w)
where p is a polynomial which will be determined later. We have
1. D;()\) <27P0) (Wlog d;(\) < 1 for every j € N)
2. §°[D;] = §*°[d,] for every j € N.
For w € N consider the following supermartingale
o0
d(w) =) Dj(w).
j=0

d' is well defined because

It is clear that X C S*°[d']. Let us check that d' is BPPSV approximable. Consider the

following approximation
k+log |lw|+1

dr(w)= > Dj(w).

=0

Let us show that d’ is BPPSV computable. First the dependency set of d' is the union of
k+log |w|+1 dependency sets, which still is polynomial sized. Second computing d' requires
computing k + log |w| + 1 terms D;, each being computed with error probability smaller than
2-5(n) This yields a total error probability smaller than (k+log |w|+1)2~*(™) which is smaller
than 27" for an appropriate choice of s(n). Since d; is BPPSV computable its dependency

10



set is polynomial sized, therefore d;(w) < 24(log [w[+7) for some polynomial g. Consider the
following polynomial p(z) = ¢(2z) + z. For w € {0,1}* we have

o0 o0
dk(w) —d'w) < Y Dj(w) = > 27"0d(w)
j=k+log |w|+2 j=k+log |w|+2
(o] o0
< Z 2q(10g\1U|+j)2—p(j)dj(/\) < Z 94(log |w|+35)9—p(7)
j=k+log |w|+2 j=k+log |w|+2
oo oo
< Z 24(log [w|+7)9—4(2/) 9~ < Z 29—
j=k+log |w|+2 j=k+log |w|+2
<27F
Thus d’ is BPPSV approximable which ends the proof. |

5 Measure on BPP with Large Dependency Sets

5.1 Betting strategies

To define a second measure on BPP, we consider betting strategies instead of supermartin-
gales.

Definition 7 A betting strategy is a function B : {0,1}* — Ry such that for every w €
{0,1}*, B(w0) + B(wl) <0 and 3_ -, B(2) = 0.

Intuitively B(w0) is the amount of money the strategy wins or looses while betting on the
last bit of w0; the first inequality guarantees that on every bet the possible won amount is
not larger than the possible lost amount, whereas the second inequality guarantees that the
strategy never bets more money than its current capital.

For a betting strategy 3, the function

dtw) = 3 (2 )

zCw

is a supermartingale, on the other hand starting with a supermartingale d, one obtains a
betting strategy by putting B(wi) = w, where w € {0,1}*,7 € {0,1}. Therefore
in large complexity classes such as E and EXP betting strategies and supermartingales are
equivalent since the exponentially large sum of Equation 6 can be computed in E. On the
contrary, Strauss has shown in [Str97] that for polynomial time classes, betting strategies
define a stronger measure than supermartingales.

We therefore use betting strategies to define our second measure on BPP.

Our second measure on BPP will use a more general notion of dependency set as in
Section 4. This dependency notion is from Strauss [Str97].

Definition 8 A betting strategy 3 : {0,1}* — Ry is dense computable if for every z € {0,1}*
there exists a set Gg o C {so,s1,...,2} (called dependency set) such that

1. Ify € C:‘ﬂ,z then ég,y - ég,z

11



2. B(w[sg-..z]) can be computed by querying w only on words in C:’ﬂ,z

3. there is a polynomial p such that for every x € {0,1}* the dependency set ég,z 18
printable in time p(|z|).

As noted by Strauss in [Str97], for a dense computable strategy 3, B(w[A... s;]) can differ
from B(w[\...s;_1]) for every i, as opposed to supermartingales of Section 4 which move
only for s; € G4. The transitive closure property together with the polynomial size condition,
insures that given a betting strategy 0, one can diagonalize against [ in polynomial time.

Our second measure on BPP will be defined via the following probabilistic betting strate-
gies.

Definition 9 A betting strategy 3 : {0,1}* — R, is BPPSV,y computable if 3 is dense com-
putable and there ezists a probabilistic Turing machine M such that for every w € {0,1}*,n €
N

Pr[M"(s)y,n) = Bw)] >1-2""

where the probability is taken over the internal coin tosses of M and the running time of M
is polynomial in log |w| + n.

BPPSV, indexed betting strategies are defined as in Section 3.

The following technical definitions of quotients of languages will be useful to prove the
second measure axiom.

For a language L and a string y the quotient of L by y is

L/y = {z|zy € L}.

A class A is closed under quotient if for every L in A and every string z, we have L/x € A.
For a class of sets {L;};>o define its direct product by

Q) Li = {z10°|z € L;}.

i>0

Quotient and direct product are essentially inverse operations. We have (); L;)/ 10" = L;
and @, (L/10""!) = L\{0}*. For convenience we write L/i for L/10° where i € N. Quotients
can be composed and we have (L/z)/y = L/(yz), for every strings z,y € {0,1}*. Note that
the characteristic sequence xr/, is a subsequence of x, obtained by taking the bits indexed

by an arithmetic progression of difference 2/¥/.
Similarly to Strauss [Str97], we define measure zero sets as sets contained in union of small
subsets.

Definition 10 A set A is a basic null set if A =J;>qAi where A; is closed under quotient
for every i, and there exists an indexed BPPSV, computable strategy B such that (3; beats A;.

The A;’s in Definition 10 are called subbasic null sets. We say that B C BPP has BPPSV,
measure zero if B C A for some basic null set A.

12



5.2 Verifying the axioms
The third axiom holds by definition. The proof of the first axiom follows.

Theorem 7 Let L € BPP be a language. Then the singleton {L} has BPPSV, measure zero.

Proof

Let L € BPP be any language and let T" be a probabilistic Turing machine deciding it. We
show that {L} C A, where A is a subbasic null set, i.e A is closed under quotient and there is
a BPPSV, computable supermartingale d’ which beats A. Consider A = (J;cyy L/s;. It is clear
that A is closed under quotient. Consider the following probabilistic Turing machine M such
that M (i,-) decides L/s;. On input (4, z) M simply simulates T" on input zs; and outputs T’s
answer. Consider the following indexed supermartingale d. For i € N, d; only bets on words
in {0}* and on those words bets all its current capital according to M(z,-). d is BPPSVy
computable because computing d;(w) (where |w| = N) requires computing a; = M(4,0") for
t =1,2,...,|sn]| (each with error probability smaller than 2_3(")), and checking whether
a; = w[0!] for every t = 1,2,... ,|sn/|, in which case d;(w) equals 2/*¥|, otherwise d;(w) equals
0. The total error probability is smaller than |sy| - 27°(), which is smaller than 2= by an
appropriate choice of s(n). For w € {0,1}* consider the following supermartingale

d(w) =2 "dy(w).

€N
It is clear that A C S°°[d]. Consider the following approximation of d,

log(|w|)+k

di(w)= Y 27'di(w).

1=0

d is BPPSV computable, indeed the dependency set of disin {0}*, and computing di, requires
computing k+log |w| terms d;, each being computed with error probability smaller than 27° (n)
which yields a total error probability smaller than 2" for an appropriate choice of s(n). Since
for every i € N and w € {0,1}* we have d;(w) < 2°8*Id;()\) (remember that d; only bets on
words in {0}*), we have for every k € N

oo
de(w) —dw) = Y 2Tidi(w)
i=log |w|+k+1
oo
< Z 27i210g|w|di(>\)
i=log |w|+k+1
00
< 9log|w|g—(log [w|+k+1) Z 9—i
1=0

<27k

Therefore d is BPPSV approximable. By Lemma 2 there is a BPPSV and hence BPPSV,
computable supermartingale d’ with the same success set as d, which implies A C S®[d']. O
Next we prove the second measure axiom.

Theorem 8 BPP does not have BPPSV, measure zero.
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Proof

Suppose BPP C A where A = |J;cy 4; is a basic null set, let 8 be the corresponding
BPPSV, indexed betting strategy and let M be a probabilistic Turing machine computing 3.
For every i € N we define a language L; such that L; ¢ S°[F;]. For i € N we define L; on
word sy as follows,

Li(SN) =1 <~ MXLi[O"'Nil]l(SNaiap(n)) <0

where p is some polynomial to be determined later. L; € BPP because the number of recursive
calls is smaller than ¢(|sy|) for some polynomial ¢, and each recursive call requires one
computation of B; (via M), which is performed with error probability smaller than 2?("),
Thus the total error probability is smaller than g(|sy|) - 27P("), which is smaller than 2= for
an appropriate choice of p(n).
Consider L = @),y Li- It is easy to check that L € BPP.
Suppose L € [J;cy Ai, then there exists an index j such that L € A;. Since A; is closed
under quotient we have L/j € A;. Since L/j = L; we have L; € A; which is a contradiction.
a

6 Monic Selection of Sampling

Consider the following problem called circuit acceptance probability (CAP) : On input a
polynomial size Boolean circuit C' with n inputs, output its probability of acceptance i.e.
Prycso,13»[C(y) = 1]. A probabilistic polynomial Turing machine can easily approximate
the acceptance probability of a circuit C' by a random sampling. The point is that such
a Turing machine M is in general multivalued, i.e. with high probability M will output a
good approximation of the CAP problem, but M might output different values depending
on the output of the random coin tosses. It is shown in [OR93] that CAP can be solved by
a probabilistic two-valued probabilistic Turing machines, i.e. there is a probabilistic Turing
machine which outputs with high probability a number a or b, and both values a and b are
good approximation of CAP. The question whether CAP can be solved by a single valued
probabilistic polynomial Turing machine is addressed in [OR93] and is known as the monic
selection of random sampling (MSRS). Formally MSRS is possible if there exists a probabilistic
Turing machine such that for every polynomial Boolean circuit C and every k,n € N, there
exists a number a € [0, 1] such that

la — Pr[C(z) = 1]| < 27%, and
PrM(C,k,n) =a] >1—-27"

where the probability is taken over the internal coin tosses of M, and M runs in time poly-
nomial in |C| + k + n.

The following results states that if MSRS is possible then the time hierarchy Theorem
holds for probabilistic classes, in an abundance like form.

Theorem 9 If MSRS is possible then

peppsv(BPTIME(O(n))) = uppesv(BPP) = ugpexpsv(BPE) =0

14



Proof

We show that pgpesv(BPTIME(2°")) = 0 where ¢ > 0. The other results are similar.
Let My, M5, ... be a standard enumeration of probabilistic Turing machines running in time
2" obtained by adding an alarm clock. Consider the following BPESV computable indexed
martingale d. d divides its initial capital into shares {sy}r~o where s; = 1/k?, the idea is that
the strategy associated to d will play share s; against machine Pj. Suppose the strategy
needs to bet on string z, then it constructs the Boolean circuit C where C(y) = My, 4(x). The
strategy then computes a single valued approximation of the acceptance probability of C' with
high probability, denote this approximation by a. The strategy then bets its current capital
that the membership bit of z is 1 iff a > 1/2. It is easy to see that dj, is a BPESV computable
indexed martingale, and that whenever Py is a BPTIME(2°") machine L(P;) C S*°[dk]. Thus
by Theorem 3 it follows that ugpesv(BPTIME(2¢")) = 0. a

Corollary 1 If MSRS is possible, then
BPTIME(O(n)) C BPP C BPE C BPEXP.

Next we show that every betting game of [BvMR™198] can be replaced by a BPESV ap-
proximable martingale if MSRS is possible. This implies that both both the class of <’.-

autoreducible sets and the class of <.-complete sets for EXP have BPESV measure zero if
MSRS is possible.

Theorem 10 If MSRS is possible then the class of <.-autoreducible sets has BPESV measure
zero, and the class of <V.-complete sets for EXP has BPESV measure zero.

Proof

It is shown in [BvMR™98] that for every betting game G running in time ¢(n) there exists
a martingale dg with the same success set i.e. S®[G] C S*®[dg], and dg is given by the
following formula

dg(w) = Ejy—yn) (fa(w,y))

where f is computable in time O(|w| + t(n)), where n is the size of the largest string in
the domain of w. Thus by a monic selection of random sampling, the martingale dg is
probabilistically single valued computable and we have the following result.

Theorem 11 If MSRS is possible then for every E betting game G there exists a BPESV
computable martingale dg such that S®[G] C S®[dg].

It is shown in [BvMR'98] the existence of E betting games winning on the class of <%.-
autoreducible sets, and the class of <!.-complete sets for EXP, therefore by Theorem 11 both
class have BPESV measure zero. O

7 Conclusion

We presented a measure notion on all standard probabilistic classes, which unlike former at-
tempts satisfy all three Lutz’s measure axioms. Our work links the question of monic selection
of random sampling to the longstanding open problem of the existence of a time hierarchy for
BPTIME classes, and to the betting games of [BvMR198]. Note that under the hypothesis
that MSRS is possible, the martingales of [KL88] and [LSW98] (which require the assumption
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MA # EXP) can also be simulated by our probabilistic martingales. Therefore it would be
interesting to see under which hypothesis MSRS is possible. Since the existence of pseudo-
random generator implies that MSRS is possible, it would be interesting to see whether there
are some weaker assumptions than those implying the existence of pseudorandom generators
that still imply that MSRS is possible.
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