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Exponential Lower Bound for 2-Query Locally Decodable Codes

Tordanis Kerenidis* Ronald de Wolft

Abstract

We prove exponential lower bounds on the length of 2-query locally decodable codes. Gold-
reich et al. recently proved such bounds for the special case of linear locally decodable codes.
Our proof shows that a 2-query locally decodable code can be decoded with only 1 quantum
query, and then proves an exponential lower bound for such 1-query locally quantum-decodable
codes. We also exhibit ¢g-query locally quantum-decodable codes that are much shorter than the
best known g-query classical codes. Finally, we give some new lower bounds for (not necessarily
linear) private information retrieval systems.

Keywords: Locally decodable codes, error correction, lower bounds, private information re-
trieval, quantum computing.

1 Introduction

1.1 Setting

Error-correcting codes allow one to encode an m-bit string z into an m-bit codeword C(z), in
such a way that x can still be recovered even if the codeword is corrupted in a number of places.
For example, codewords of length m = O(n) already suffice to recover from errors in a constant
fraction of the bitpositions of the codeword (even in linear time [20]). One disadvantage of such
“standard” error-correction, is that one usually needs to consider all or most of the (corrupted)
codeword to recover anything about x. If one is only interested in recovering one or a few of the
bits of z, then more efficient schemes are possible, so-called locally decodable codes (LDCs). LDCs
allow us to extract small parts of encoded information from a corrupted codeword, while looking at
(“querying”) only a few positions of that word. They have found various applications in complexity
theory and cryptography, such as self-correcting computations, PCPs, worst-case to average-case
reductions, and private information retrieval. Informally, LDCs are described as follows:

A (q,0,¢€)-locally decodable code encodes n-bit strings x into m-bit codewords C(x),
such that for each 7, the bit x; can be recovered with probability 1/2 + ¢ making only
g queries, even if the codeword is corrupted in dm of the bits.

For example, the Hadamard code is a locally decodable code where two queries are sufficient in
order to predict any bit with constant advantage, even with a constant fraction of errors. The code
has m = 2" and C(z); = j -  mod 2 for all j € {0,1}". Recovery from a corrupted codeword y is
possible by picking a random j € {0,1}", querying y; and y;a.;, and outputting the XOR of those
two bits. If neither bit has been corrupted, then we output y; Dy jme; = j 2@ (jDe;) = = -z = x4,
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as we should. If C(z) has been corrupted in at most dm positions, then a fraction of at least 1 — 24
of all (j,7 @ e;) pairs of indices is uncorrupted, so the recovery probability is at least 1 — 24. This
is > 1/2 as long as § < 1/4. The main drawback of the Hadamard code is its exponential length.

Clearly, we would like both the codeword length m and the number of queries ¢ to be small.
The main complexity question about LDCs is how large m needs to be, as a function of n, ¢, d,
and €. For g = polylog(n), Babai et al. [2] showed how to achieve m = n't°(), for some fixed 4, e.
For constant ¢, the best known upper bounds are of the form m = 20("/“™") (see e.g. [3])-

The study of lower bounds on m was initiated by Katz and Trevisan [13]. They proved that
for ¢ = 1, LDCs do not exist if n is larger than some constant depending on § and . For ¢ > 2,
they proved a bound of m = Q(n%/(@=1) if the ¢ queries are made non-adaptively; this bound
was generalized to the adaptive case by Deshpande et al. [10]. This establishes superlinear but at
most quadratic lower bounds on the length of LDCs with a constant number of queries. There
is still a large gap between the best known upper and lower bounds. In particular, it is open
whether m = poly(n) is achievable with constant q. Recently, Goldreich et al. [11] examined the
case ¢ = 2, and showed that m > 2%"/8 if C is a linear code. Obata. [18] subsequently strengthened
the dependence on ¢ to m > 2%(0n/(1-22)) which is essentially optimal.

1.2 Our results

The main result of this paper is an exponential lower bound for general 2-query LDCs:

A (2,6, ¢)-locally decodable code requires length m > 2671
for c =1 — H(1/2 + 36¢/14), where H(-) is the binary entropy function. This is the first super-
polynomial lower bound on general LDCs with more than 1 query. Our constant ¢ in the exponent
is somewhat worse than the ones of Goldreich et al. and of Obata, but our proof establishes the
exponential lower bound for all LDCs, not just linear ones. Goldreich et al. also give extensions
of their result for codewords over larger alphabets, but consider the result for the binary alphabet
their “main result”. We focus only on the binary case in this paper (though see Section 3.4).

Our proof introduces one radically new ingredient: gquantum computing. We show that if
2 classical queries can recover z; with probability 1/2 + ¢, then z; can also be recovered with
probability 1/2 + 4¢/7 using only 1 quantum query. In other words, a (2,4, ¢)-locally decodable
code is a (1,6,4¢/7)-locally quantum-decodable code. We then prove an exponential lower bound
for 1-query LQDCs by showing, roughly speaking, that a 1-query LQDC of length m induces a
quantum random access code for = of length logm. Nayak’s [16] linear lower bound on such codes
finishes off the proof (for the sake of completeness, we include a proof of his result in Appendix A).

This lower bound for classical LDCs is one of the very few examples where tools from quantum
computing enable one to prove new results in classical computer science. The only other example
of this that we know, are the lower bounds on the set membership data structure of Radhakrishnan
et al. [19]. Their lower bounds are proved for quantum computers (hence also apply to classical
computers), but are in fact stronger than the previous classical lower bounds of Buhrman et al. [6].!

We also observe that our construction implies the existence of 1-query quantum-decodable codes
for all n. The Hadamard code is an example of this. Here the codewords are still classical, but the
decoding algorithm is quantum. As mentioned before, if we only allow one classical query, then
LDCs do not exist for n larger than some constant depending on § and ¢ [13]. For larger ¢ we show

'The quantum lower bound on the communication complexity of the inner product function of Cleve et al. [8]
provides new insight in a classical result, but does not establish a new result for classical CS.



that the best known (2¢,d,¢)-LDCs (which have length m = 20(”1/(2(171))) are actually (q,0,¢)-
LQDCs. Hence for fixed number of queries ¢, we obtain LQDCs that are significantly shorter than
the best known LDCs. We summarize the situation in the following table, where our contributions
are indicated by boldface.

‘ Queries ‘ Length of LDC ‘ Length of LQDC ‘

g=1 don’t exist 20(n)
g=2 20(n) 20(n'/?)
g=3 20(nl/?) 20(n'/?)

Table 1: Best known bounds on the length of LDC and QLDC with ¢ queries

Katz and Trevisan, and Goldreich et al. established a close connection between locally decodable
codes and private information retrieval (PIR) schemes. These schemes allow a user to extract a
bit z; from an n-bit database z that is replicated over one or more servers, without the server(s)
learning which ¢ the user wants. The complexity of such schemes is measured by the total number
of bits communicated. Our techniques allow us to reduce classical 2-server PIR schemes with 1-bit
answers to quantum 1-server PIRs. Since Nayak [16] established a linear lower bound for the latter
(see Appendix B), we obtain a linear lower bound on the communication complexity for all classical
2-server PIRs with 1-bit answers. Previously, such a bound was known only for PIRs where the
answer bits are linear combinations of the bits of = (this was first proven in [7, Section 5.2] and
extended to linear PIRs with constant-length answers in [11]).

2 Preliminaries

2.1 Quantum

Below we give more precise definitions of locally decodable codes and related notions, but we first
briefly explain the standard notation of quantum computing. We refer to Nielsen and Chuang [17]
for more details. A qubit is a linear combination of the basis states |0) and 1), also viewed as a

2-dimensional complex vector:
e
a|0) + au[1) = ( ° ) :
a1

where ag, a; are complex amplitudes, and |ag|? + |1 |2 = 1.

The 2™ basis states of an m-qubit system are the m-fold tensor products of the states |0) and
|1). For example, the basis states of a 2-qubit system are the four 4-dimensional unit vectors
|0) ®|0), [0)®|1), |1) ®|0), and |1) ® |1). We abbreviate, e.g., |1) ®|0) to |0)|1), or |1,0), or |10), or
even |2) (since 2 is 10 in binary). With these basis states, an m-qubit state |¢) is a 2™-dimensional
complex unit vector

= 3 ali.

1€{0,1}m
We use (¢| = |$)* to denote the conjugate transpose of the vector |¢), and (P|yp) = (4] - |¢) for
the inner product between states |¢) and |¢). These two states are orthogonal if (¢p|yy) = 0. The
density matriz corresponding to |$) is the outer product |¢)(¢p|. The density matrix corresponding
to a mized state, which is in pure state |¢;) with probability p;, is p = Y, pi|#i)(¢i|. If a 2-register
quantum state has the form [¢) = 3=, \/pi|i)|¢;), then the state of a system holding only the second
register of |$) is described by the (reduced) density matrix Y-, pi|di)(¢il.



The most general measurement allowed by quantum mechanics is a so-called positive operator-
valued measurement (POVM). A k-outcome POVM is specified by positive operators E; = M;*M;,
1 <@ < k, subject to the condition that >, E; = I. Given a state p, the probability of get-
ting the ith outcome is p; = Tr(M;p). If the outcome is indeed i, then the resulting state is
M;pM; /Tr(M;pM;). In particular, if p = |¢)(4|, then p; = (¢|E;|¢) = || M;|$) ||, and the result-
ing state is M;|¢)/|| M;|¢) ||. A special case is where k = 2™ and B = {|+;) } forms an orthonormal
basis of the m-qubit space. “Measuring in the B-basis” means that we apply the POVM given by
E; = M; = |4;){(v;|. Applying this to a pure state |¢) gives resulting state |4;) with probability
p; = |(#|¥;)|2. Apart from measurements, the basic operations that quantum mechanics allows us
to do, are unitary (i.e., linear norm-preserving) transformations of the vector of amplitudes.

Finally, a word about quantum queries. A query to an m-bit string ¢ is commonly formalized
as the following unitary transformation, where j € [m], and b € {0,1} is called the target bit:

9)b) = [5)]b @ yj)-

A quantum computer may apply this to any superposition. An equivalent formalization that we
will be using here, is:

o)]7) = (=1)¥e)5)-
Here c is a control bit that controls whether the phase (—1)¥% is added or not. Given some extra
workspace, one query of either type can be simulated exactly by one query of the other type.

2.2 Codes

Below, by a ‘decoding algorithm’ we mean an algorithm (quantum or classical depending on context)
with oracle access to the bits of some (possibly corrupted) codeword y for z. The algorithm gets
input ¢ and is supposed to recover z; while making only few queries to y.

Definition 1 C: {0,1}" — {0,1}™ is a (g, 6, £)-locally decodable code (LDC) if there is a classical
randomized decoding algorithm A such that

1. A makes at most q non-adaptive queries

2. For all x and i, and all y € {0,1}™ with Hamming distance d(C(z),y) < dm we have
Pr[A(y,i) = z;] > 1/2 +«.

The LDC is called linear if C is a linear function over GF(2) (i.e., C(z +y) = C(z) + C(y)).
By allowing A to be a quantum computer and to make queries in superposition, we can similarly
define (q, 0, €)-locally quantum-decodable codes (LQDCs).

It will be convenient to work with non-adaptive queries, as used in the above definition, so the
distribution on the queries that A makes is independent of y. However, our main lower bound also
holds for adaptive queries, see the first remark at the end of Section 3.3.

2.3 Private information retrieval

Next we formally define private information retrieval schemes.

Definition 2 A one-round, (1—0)-secure, k-server private information retrieval (PIR) scheme with
recovery probability 1/2 + €, query size t, and answer size a, consists of a randomized algorithm
representing the user, and k deterministic algorithms Si,...,Sy (the servers), such that

4



1. On input i € [n], the user produces k t-bit queries q1,...,qx and sends these to the respective
servers. The jth server sends back an a-bit string a; = S;(x,q;). The user outputs a bit b
depending on i,a1,...,a, and his randomness.

2. For all x and i, the probability (over the user’s randomness) that b = x; is at least 1/2 + ¢.

3. For all x and j, the distributions on q; (over the user’s randomness) are 6-close (in total
variation distance) for different i.

The scheme is called linear if, for every j and gj, the jth server’s answer S;j(z,q;) is a linear
combination (over GF(2)) of the bits of x.

All known upper bounds on PIR have one round, ¢ = 1/2 (perfect recovery) and § = 0 (the servers
get no information whatsoever about 7). Below we will assume one round and § = 0 without
mentioning this further. We can generalize these definitions to quantum PIR. For the § = 0-case
this generalization is straightforward (the server’s state after the query should be independent of
i), and that is the only case we will need here.

The main complexity measure of a PIR scheme is its communication complexity, i.e., the sum
of the lengths of the queries that the user sends to each server, and the length of the servers’
answers. If there is only one server (k = 1), then privacy can be maintained by letting the server
send the whole n-bit database to the user. This takes n bits of communication and is optimal. If
the database is replicated over k > 2 servers, then smarter protocols are possible. Chor et al. [7]
exhibited a 2-server PIR with communication complexity O(n'/3) and with O(n'/*) for k& > 2.
Ambainis [1] improved the latter to O(n/(?*=1)), and some more recent references are [3, 4]. No
general lower bounds better than Q(logn) are known for PIRs with & > 2 servers. Goldreich et
al. [11] proved that linear 2-server PIRs with ¢-bit queries, and a-bit answers where the user looks
only at k predetermined positions in each answer, require ¢t = Q(n/aF).

3 Lower Bound for Locally Decodable Codes with Two Queries

Here we will show that the linearity constraint is not needed for the exponential lower bound on
2-query LDCs. The proof consists of two parts, both of which have a clear intuition but require
quite a few technicalities:

1. A 2-query LDC gives a 1-query LQDC, because 1 quantum query can compute the same
Boolean functions as 2 classical queries (albeit with slightly worse error probability).

2. The length m of a 1-query LQDC must be exponential, because it induces a log m-qubit

quantum random access code for z, for which a linear lower bound is already known [16].

3.1 From 2 classical queries to 1 quantum query
The key to the first step is the following lemma:
Lemma 1 Let f : {0,1}2 — {0,1} and suppose we can make queries to the bits of some input

string a = a1as € {0,1}2. There exists a quantum algorithm that makes only one query (one that is
independent of f) and outputs f(a) with probability exactly 11/14, and outputs 1 — f(a) otherwise.



Proof. The quantum algorithm makes the following query:
1
V3

where the first bit is the control bit, and the appropriate phase (—1)% is added if the control bit
is 1. The result of the query is the state

1
) =7

The algorithm then measures this state in a basis containing the following 4 states (b € {0,1}?):

) = 5 (10)11) + (1P DI + (~1)[1)[2) + (~DP 2 [0)[2))

The probability of getting outcome a is |($|q)|> = 3/4, and each of the other 3 outcomes has
probability 1/12. The algorithm determines its output based on f and on the measurement outcome
b. We distinguish 3 cases for f:

1. |f(1)~! = 1 (the case |f(1)"!| = 3 is completely analogous, with 0 and 1 reversed). If
f(b) =1, then the algorithm outputs 1 with probability 1. If f(b) = 0 then it outputs 0 with
probability 6/7 and 1 with probability 1/7. Accordingly, if f(a) = 1, then the probability of
outputting 1 is Pr[f(b) =1] -1+ Pr[f(b) =0]-1/7 =3/4+1/28 = 11/14. If f(a) = 0, then
the probability of outputting 0 is Pr[f(b) = 0] - 6/7 = (11/12) - (6/7) = 11/14.

2. |f(1)"!] = 2. Then Pr[f(a) = f(b)] = 3/4+1/12 = 5/6. If the algorithm outputs f(b)
with probability 13/14 and outputs 1 — f(b) with probability 1/14, then its probability of
outputting f(a) is exactly 11/14.

(10)[1) + [D)[1) + [1)[2)) ,

(10)]1) + (=1)* [1)[1) + (=1)**[1)]2)) -

3. f is constant. In that case the algorithm just outputs that value with probability 11/14.

Theorem 1 A (2,6,¢)-locally decodable code is a (1,6,4¢/7)-locally quantum-decodable code.

Proof. Consider some i, z, and y such that d(C(z),y) < dm. Let us fix the randomness of the
2-query classical decoder. This determines two indices 5,k € [m] and an f : {0,1}2 — {0,1} such
that

Pr(f(yj,ye) =@l =p 2 1/2 +¢,
where the probability is taken over the decoder’s randomness. We now use Lemma 1 to obtain a
1-query quantum decoder that outputs some value o such that

Pro = f(yj,yx)] = 11/14.

The success probability of this quantum decoder is:

Prlo==z] = Prlo= f(y;,yx)] - Pr[f(y;, yx) = zi] + Pro # f(vyj,yx)] - Pr[f (y;, yx) # ]
11 3 3 4 1 4e
= pptl-» = 7P 2 3t
as claimed. (Here we use the ‘exactly’ part of Lemma 1. If our quantum algorithm would have
success probability 11/14 for f where f(y;,yx) = x; but success probability 1 for f where f(y;,yx) #
z;, then we could actually end up with overall recovery probability less than 1/2.) O



3.2 Exponential lower bound for 1-query LQDCs

A quantum random access code is an encoding x — p; of n-bit strings x into m-qubit states p;, such
that any bit z; can be recovered with some probability p > 1/2+¢ from p,. That is, for each 7 there
is a 2-outcome POVM E;, I — E;, such that Tr(E;p;) > 1/2+ ¢ if z; =1 and Tr(E;p;) < 1/2 —¢
if z; = 0. The following lower bound is known on the length of such quantum codes [16] (see
Appendix A for a proof).

Theorem 2 (Nayak) An encoding x — pg of n-bit strings into m-qubit states with recovery
probability at least p, has m > (1 — H(p))n.

This allows us to prove an exponential lower bound for 1-query LQDC:
Theorem 3 If C : {0,1}" — {0,1}™ is a (1,0, €)-locally quantum-decodable code, then
m > 2cn—1
forc=1—H(1/2 + de/4).

Proof. We fix . Let |Q) = > ccq0,1},je[m] Xcjlc)|) be the query that the quantum decoder makes
to recover x;. Without loss of generality, we assume that all a; are non-negative reals (complex
phases and entanglement with its workspace can always be added by the decoder after the query).
Let D and I — D be the two POVM operators that the decoder uses on the state |R) returned by
the query, corresponding to outcomes 1 and 0, respectively. Its probability of outputting 1 on |R)
is p(R) = (RID|R) = || VDIR) |I"

Since C is a LQDC, the decoder can recover x; with probability 1/2 + ¢ from the state

> (=) )ls)

ce{0,1},5€[m]

for every y such that d(C(z),y) < dm. Our goal below is to show that we can also recover x; with
probability 1/2 + de/4 from the uniform state

U(=)) Y. (FDeC@ifg).

1
V2 e (0,17 elm]

Since |U(z)) is independent of 4, it forms a (log(m) + 1)-qubit random access code for z. The
theorem then follows from Theorem 2.

Inspired by the “smoothing” technique of [13], we split the amplitudes of the query |Q) into
small and large ones: A = {cj : a¢j < /1/6m} and B = {cj : aj > \/1/6m}. We can assume that

ap; is the same for all j, so ag; < 1/y/m < 1/v/dm and hence 0j € A. Let a = /3 jc 4 @2; be the
norm of the “small-amplitude” part of the state. Since 3" ;cp ozgj < 1, we have |B| < ém. Define

non-normalized states Cla)
[A@@) = D (-1)°“@iagle)])
cjeA

1B) = > aglo)l)

cjeB
The states |A(z)) + |B) and |A(z)) — |B) each correspond to a y € {0,1}"™ that is corrupted

(compared to C(z)) in at most |B| < dm positions, so the decoder can recover z; from each of
these states. If x has z; = 1, then

p(A(z) + B) > 1/2+¢ and p(A(z) —B) >1/2+e.



Since p(A+ B) = p(A)+p(B)+((A|D|B) + (B|D|A)), averaging the previous two inequalities gives
p(A(z)) +p(B) > 1/2 +«.
Similarly, if 2’ has 2, = 0, then
p(A(")) +p(B) <1/2 — e,
Hence, for the normalized states |A(z))/a and |A(z'))/a we have
p(A(z)/a) — p(A(s') /a) > 2¢/a?.

Since this holds for every z,z’ with z; = 1 and z} = 0, there are constants g;, gy € [0,1], g1 —qo >
2¢/a?, such that p(A(z)/a) > g1 whenever z; = 1 and p(A(z)/a) < qo whenever z; = 0.

If we had a copy of the state |A(z))/a, then we could run the following procedure, where for
simplicity we assume ¢q; > 1/2 + ¢/a? (if not, then we must have gy < 1/2 — £/a? and we can use
the same argument with 0 and 1 reversed):

Output 0 with probability g =1 — 1/(¢1 + qo),
and otherwise output the result of running the decoder’s POVM on |A(z))/a.

If z; = 1, then the probability that this procedure outputs 1 is

q1 1 g1 — 4o 1 ¢
1- A(z)/a) > (1 — = =_ 4= T >4 )
(1 - gp(A(z)/a) > (1 - q)ax e -2 vt 22t o
If z; = 0, then the probability that it outputs 0 is
490 q 1 3
+(1—-¢9)(1 —p(A(x)/a)) > g+ (1 —¢)(1 — =1- = > -+ —.
0+ (1= 0)(1L-p(AE)/0) 2 g+ (L= g1 -a0) =1 - L= L5 D

Thus, we can recover z; with good probability if we had the state |A(z))/a.

It remains to show how we can obtain |A(z))/a from |U(z)) with reasonable probability.
This we do by applying a POVM with operators MM and I — MTM to |U(x)), where M =
\/%ZCJEA acjlej)(cj|. Note that both MM and T — MM are positive operators (as is required
for a POVM) because 0 < \/%acj <1 for all ¢j € A. The measurement gives the first outcome
with probability 5

(U(z) M MU (z)) = % > a2 = dd’/2.
cjeA
In this case we have obtained the normalized version of M|U(z)), which is |A(z))/a, so then we
can run the above procedure to recover z;. If the measurement gives the second outcome, then we
just output a fair coin flip. Thus we recover z; from |U(z)) with probability at least

(6a2/2)(1/2 + £/2a®) + (1 — 8a%/2)1/2 = 1/2 + b¢/4,

which concludes the proof (note that the user can do all of the above without knowing z). O



3.3 Exponential lower bound for 2-query LDCs

Theorem 4 If C : {0,1}" — {0,1}" is a (2,6, ¢)-locally decodable code, then
m > 2cn71’

fore=1—H(1/2+ 3de/14).

Proof. The theorem follows by combining Theorems 1 and 3. Straightforwardly, this would give
a constant of 1 — H(1/2 + de/7). We get the better constant claimed here by observing that the
1-query LQDC derived from the 2-query LDC actually has 1/3 of the overall squared amplitude
on queries where the control bit ¢ is zero (and all those ag; are in A). Hence in the proof of
Theorem 3, we can redefine “small amplitude” to a.; < 1/2/3dm, and still B will have at most ém
elements because }_.;cp agj < 2/3. This in turns allows us to make M a factor /3/2 larger, which
improves the probability of getting [A(z))/a from |U(x)) to 36a%/4 and the recovery probability
to 1/2 + 36¢/8. Combining that with the first step (which makes ¢ a factor 4/7 smaller) gives
c=1-H(1/2+ 36e/14), as claimed. O

Remarks:

(1) Note that a (2,d,e)-LDC with adaptive queries gives a (2, d,¢/2)-LDC with non-adaptive
queries: if query ¢; would be followed by query ¢9 or g3 depending on the outcome of g, then we
can just guess in advance whether to query q; and g3, or ¢; and ¢i. With probability 1/2, the
second query will be the one we would have made in the adaptive case and we’re fine, in the other
case we just flip a coin, giving overall recovery probability 1/2(1/2 +¢) +1/2(1/2) = 1/2 + ¢/2.
Thus we also get slightly weaker but still exponential lower bounds for adaptive 2-query LDCs.

(2) For a (2,0,e)-LDC where the decoder’s output is the XOR of its two queries, we can give
a better reduction than in Theorem 1. In this case, the quantum decoder can apply his query to

1

— (|1)|1) +11)|2)),

7 (I)[1) +1)[2))
giving

1 1
— (=)™ 1)|1) + (—1)%2|1)[2)) = (=1)® —= (|]1)[1) + (—=1)=®2|1)]2)),
\/5(()|>|)()|)\)) ()ﬁ(l)\)() [1)[2))
and extract a; @ ag from this with certainty. Thus the recovery probability remains 1/2 + ¢ instead
of going down to 1/2 + 4¢/7. Accordingly, we also get slightly better lower bounds for 2-query
LDCs where the output is the XOR of the two queried bits, namely ¢ =1 — H(1/2 + 36¢/8).
Kenji Obata (unpublished, personal communication) also has proved exponential lower bounds

for the length of (not necessarily linear) LDCs with this XOR-property.

3.4 Larger alphabets

We emphasize that our exponential lower bound only applies to the case where the codewords are
over the binary alphabet. If the codewords are over a larger alphabet 3, then a query to a symbol
in the codeword can give more than one bit of information about x, and the length of the codewords
(measured in number of ¥-symbols) may be smaller. Goldreich et al. [11] were able to extend their
lower bound for linear binary PIRs to larger alphabets. Below we sketch the extension of the second
step of our proof (the lower bound for 1-query LQDCs) to larger alphabets. Unfortunately, so far
we have been unable to generalize the first step of our proof (the 2-classical-to-1-quantum-query
reduction).



The extension uses the Bernstein-Vazirani algorithm [5] to reduce codes over ¥ to codes over
the binary alphabet. Very briefly, that algorithm does the following: given access to the Hadamard
code for a string a € {0,1}*, it queries a uniform superposition, giving

1 ia) -
ok Z (=1)"“|4),

1€{0,1}*

and then applies a Hadamard transform to turn this into |a). Accordingly, a quantum query to a
can be replaced by a binary query to the Hadamard code for a.

Now consider some (g, d,¢)-LQDC C : {0,1}" — ¥, and let £ = 2[1°8[Z[1, Define a binary code
C' by replacing each C(z); (viewed as a log ¢-bit string) by its Hadamard code, which has length ¢
bits. We obtain a g-query decoder for C' from the decoder for C, by replacing each of its ¢ queries
to C(z); by the Bernstein-Vazirani algorithm. If d(C'(z),y’) < (6/€)m’, then at most dm of the
positions in the corresponding C(z) are corrupted, so the decoder for C’'(z) will output z; with
probability 1/2 + . This gives:

Theorem 5 Let £ = 20198151 If there exists a (q,6,¢)-LQDC C : {0,1}™ — ™, then there ezists
a (g,8/¢,€)-LQDC C" : {0,1} = {0,1}™, where m' =m - £.

Combining with our lower bound for the binary alphabet (Theorem 3):
Corollary 1 If C : {0,1}" — X™ is a (1,6, €)-locally quantum-decodable code, then
m > 21/,
for £ =202l gnd ¢ =1 — H(1/2 + 6¢/4L).

Reductions with smaller loss in ¢ are possible by observing that a small number of errors in the
Hadamard code for some a € ¥ will give the Bernstein-Vazirani algorithm only a negligibly small
error probability.

4 Locally Quantum-Decodable Codes with Few Queries
The second remark of Section 3.3 immediately generalizes to:

Theorem 6 A (2q,0,¢)-LDC where the decoder’s output is the XOR of the 2q queried bits, is a
(g,0,€)-LQDC.

Reasonably good (2g, §, €)-LDCs with this XOR property can be obtained from known 2¢-server
PIR schemes with 1-bit answers [3, Theorem 6.8]. For every k > 2 there exist k-server PIRs with
6 =0, e = 1/2, query length t = O(klog(k) - n'/(*~1)) and answer length 1, where the user’s
output is the XOR of the k answer bits. By concatenating all 2! answers for all k servers, we
obtain a k-query LDC of length m = k - 2/ where the recovery algorithm makes one query in each
of the k blocks, and outputs the XOR of the queried bits. Within each block, all 2¢ positions are
equally likely to be queried (though knowing the query-positions in k£ — 1 of the blocks determines
which position will be queried in the k-th block, so queries are not quite independent). Without
any errors in the codeword, the recovery probability would be 1. The worst-case corruption is if
all dm errors occur in one of the k£ blocks. In this case we still have recovery probability at least
1—dm/2" =1 — 6k, so e = 1/2 — §k. Of course, this only makes sense if § < 1/2k. Plugging in
k = 2q and combining with Theorem 6 gives:
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Corollary 2 For all n, ¢ > 1 and § < 1/4q, there exists a (q,0,1/2 — §2q)-LQDC of length
m = 2q - 90(qlog(2g)-nt/4=1))

For example, for every n, the Hadamard code is a (1,d,1/2 — 26)-LQDC of exponential length
(which is optimal by Theorem 3). For ¢ = 2 it suffices to have length m = 20(”1/3), for ¢ = 3 it
suffices to have m = 20(”1/5), etc.

Accordingly, for even k, the best known (k,d,¢)-LDCs just happen to be (k/2,6,¢)-LQDCs,
because they happen to output the XOR of their & queries. For more general LDCs we can
do something nearly as good, using van Dam’s result that a k-bit oracle can be recovered with
probability nearly 1 using k/2 + O(vk) quantum queries [9]:

Theorem 7 A (k,d,¢)-LDC is a (k/2 + O(Vk),d,¢/2)-LQDC.

5 Private Information Retrieval

As mentioned, there is a close connection between locally decodable codes and private information
retrieval. Our techniques also allow us to give new lower bounds for 2-server PIRs, but only for
PIRs having answer length 1. Again we give a 2-step proof: a reduction of 2 classical servers to 1
quantum server, combined with a lower bound for quantum 1-server PIR.

Theorem 8 If there exists a classical 2-server PIR scheme with t-bit queries, 1-bit answers, and
recovery probability 1/2 + ¢, then there ezists a quantum I-server PIR scheme with (t + 2)-qubit
queries, (t + 2)-qubit answers, and recovery probability 1/2 + 4¢/7.

Proof. The proof is analogous to the proof for locally decodable codes. If we fix the classical user’s
randomness, the problem boils down to computing some f (a1, as), where a; is the first server’s 1-bit
answer to query ¢, and as is the second server’s 1-bit answer to query go. However, in addition we
now have to hide 7 from the quantum server. This we do by making the quantum user set up the
(4 + t)-qubit state .
V3
where ‘0!’ is a string of ¢ 0s. The user sends everything but the first 2 qubits to the server. The
state of the server is now a uniform mixture of |0,0%), |1,q1), and |2,q2). By the security of the
classical protocol, |1,¢1) contains no information about i (averaged over the user’s randomness),
and the same holds for |2, go). Therefore the uniform mixture of |0, 0%), |1,¢1), and |2, g2) contains
no information about 3.
The quantum server then puts (—1)% in front of |s,qs) (s € {1,2}), leaves |0,0!) alone, and
sends everything back. Note that we need to supply the name of the classical server s € {1,2} to
tell the server in superposition whether it should play the role of server 1 or 2. The user now has

(‘01050t> + |1, 1,(]1) + |2,27QQ>) )

1
—=(10,0,0") + (1) [1,1,q1) + (-1)[2,2,) ) .

V3

From this we can compute f(a1,a2) with success probability exactly 11/14, giving overall recovery
probability 1/2 + 4¢/7 as before. m]

Nayak [16] proved (see Appendix B; a proof may also be found in [12]):
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Theorem 9 (Nayak) A quantum I1-server PIR scheme with recovery probability p has communi-
cation complezity at least (1 — H(p))n.

Combining the above two theorems, we obtain the first linear lower bound that holds for all

1-bit-answer 2-server PIRs, not just for linear ones.

Theorem 10 A classical 2-server PIR scheme with t-bit queries, 1-bit answers, and recovery prob-
ability 1/2 + ¢, has t > 2(1 — H(1/2 + 4¢/7))n — 2.
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Lower Bound for Quantum Random Access Codes

As mentioned before, a quantum random access code is an encoding = — p,, such that any bit z;
can be recovered with some probability p > 1/2 + € from p,. Below we reprove Nayak’s [16] linear
lower bound on the length m of such encodings.

We assume familiarity with the following notions from quantum information theory, referring

to [17, Chapters 11 and 12| for more details. Very briefly, if we have a bipartite quantum system
AB (given by some density matrix), then we use A and B to denote the states (reduced density
matrices) of the individual systems; S(A) = —Tr(Alog A) is the (Von Neumann) entropy of A;
S(A|B) = S(AB) — S(B) is the conditional entropy of A given B; and S(A: B) = S(A4) + S(B) —
S(AB) = S(A) — S(A|B) is the mutual information between A and B.

We define an n + m-qubit state X M as follows:
1
= Y el

ze{0,1}"
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We use X to denote the first subsystem, X; for its individual bits, and M for the second subsystem.
By [17, Theorem 11.8.4] we have

S(XM)=n+ 2% > S(ps) > n = S(X).

Since M has m qubits we have S(M) < m, hence
S(X:M)=SX)+SM)—-S(XM)<SM)<m.

Using a chain rule for relative entropy we get

n

S(X|M) ZSX|X1 X; 1 M) < Z (X;| M).
=1 =1

Since we can predict X; from M with success probability p, Fano’s inequality implies

H(p) > S(X;|M).

Putting the above equations together we obtain

(1—-H(p))n < S(X ZSX|M)<S( ) - S(X|M)=8(X:M)<m

B Lower Bound for Quantum PIR

Here we give Nayak’s lower bound on quantum 1-server PIR schemes that have good recovery
probability, following [16, Section 4.4] with one additional ingredient from [15]. Though we will
only need the result for 7-round quantum PIR schemes, the proof actually applies equally well to
multi-round protocols.

Consider a quantum 1-server PIR scheme with recovery probability p. Without loss of generality,
we assume the only measurement in the protocol is the user’s measurement on his part of the final
state to recover z;. If the communication is m qubits, then the final state on inputs z and 7 can

be written as [21, 14]:
lbei) = D |ax(@)) |br(0)),
ke{o’l}m server user
where |a(z)) is a vector (not necessarily normalized) that depends on z but not on i, and similarly
for |bg(2)). Note that the user’s part of the state |¢y;) lives in a 2™-dimensional space that is
independent of z. From his part of the state, the user can recover x; with success probability p.
Now suppose the server starts with a uniform superposition over all . Then the final state can

be written as

i) = \/— Y [2)dai),

ze{0,1}"

where we assumed that the server keeps a copy of z around. The privacy constraint on the protocol
means that the server’s part of each |¢,;) is independent of i, therefore the server’s part of |¢;)
is independent of ¢ as well. But then there exists a unitary U;; on the user’s part of the state
such that (I ® Uj;)|¢i) = |¢;). This I ® U;; must then actually map |z)|¢z) to |z)|dg;) for all z.
Defining p, as the user’s part of |¢;1), we obtain a quantum random access code with recovery
probability p: for any j, the user can apply Uy; to p; to obtain a state from which he can recover
x; with probability p. All the p; lie in the same 2™-dimensional space span{|bx(1)) : k € {0,1}™},
therefore we just need m qubits to represent them. Applying the lower bound on random access
codes concludes the proof.
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