New Lower Bounds for Statistical Query Learning

Ke Yang *
Computer Science Department,
Carnegie Mellon University,
5000 Forbes Ave., Pittsburgh, PA 15213, USA.
yangke@cs.cmu.edu,
http://www.cs.cmu.edu/ yangke

July 15, 2002

Abstract

We prove two lower bounds on the Statistical Query (SQ) learning model. The first lower bound is on
weak-learning. We prove that for a concept class of SQ-dimension d, a running time of (d/logd) is needed.
The SQ-dimension of a concept class is defined to be the maximum number of concepts that are “uniformly
correlated”, in that each pair of them have nearly the same correlation. This lower bound matches the upper
bound in [BFJ+94], up to a logarithmic factor. We prove this lower bound against an “honest SQ-oracle”,
which gives a stronger result than the ones against the more frequently used “adversarial SQ-oracles”. The
second lower bound is more general. It gives a continuous trade-off between the “advantage” of an algorithm in
learning the target function and the number of queries it needs to make, where the advantage of an algorithm
is the probability it succeeds in predicting a label minus the probability it doesn’t. Both lower bounds extend
and/or strengthen previous results, and solved an open problem left in [YO01].

A preliminary version of this paper appeared in [Y02].

m
8
o
3.
o
(@]
=1
8
<.
c
3
o
=]
(@]
o]
3
©
=%
=3
o
]
[N
(@]
o
3
kel
2
<
py)
3
o
P
©
for}
S
~
=}
e}
D

1 Introduction

1.1 The Statistical Query Model

The Statistical Query (SQ) model was first introduced by Kearns [K93]. Unlike the Probably Approximately
Correct (PAC)-model [V84], a learning algorithm in the SQ model doesn’t see explicit examples or their labels.
Instead, the algorithm queries an “SQ-oracle” with boolean questions about a random example with its label.
Then the oracle replies with estimates of the probabilities that the answer is “YES” for a random example. An
apparent restriction of the PAC model, the SQ model proved to be a very powerful and useful notion. Kearns
showed how to efficiently simulate an SQ learning algorithm using a PAC algorithm, even in the presence of
noise. He also proved that many PAC algorithms are indeed “SQ-typed”, meaning that they can be converted
to work in the SQ model. Particularly interesting is the case of noise-tolerant learning, where a random
fraction of the examples are labeled wrong. In fact, most of the noise-tolerant PAC learning algorithms are
“SQ-typed”, due to the noise-tolerant nature inherent in the SQ model.

1.2 Lower Bounds on the SQ Model

Given that the SQ model is so useful, it is rather desirable to fully understand its strengths and limits.
When the SQ model was introduced, people were interested in the question “which concept classes are SQ-
learnable, and which are not?”. In fact, in the seminal paper on the SQ model, Kearns [K93] proved that
PARITY functions are not SQ-learnable. Blum. et. al. [BFJ+94] defined the notion of “SQ-dimension” of
a concept class, which is, roughly speaking, the number of “almost uncorrelated” concepts in this class. The
SQ-dimension characterizes the weak SQ-learnability very well. In fact, Blum et. al. proved that, to weakly
learn a concept class of SQ-dimension d, O(d) queries suffice (though the algorithm might not be efficient),
and Q(dl/ 3) queries are necessary. However, the upper and lower bounds don’t match, and the result only
applies to weak learning.

Jackson [JO0] strengthened the previous result by proving that for an “SQ-based” algorithm, (2") exam-
ples are needed to learning the class of PARITY functions over n bits. An SQ-based algorithm is constructed
by first designing an SQ learning algorithm, and then generically simulating each SQ query by sampling and
averaging. This lower bound matches the corresponding upper bound. With this very strong result, Jackson

*Partially supported by the CMU SCS Alumni Fellowship and the NSF Aladdin center, Grant CCR-0122581.

was able to show a quadratic gap on learning PARITY functions with a high (1/2 — 1/poly(n)) noise rate by
SQ-learning and by PAC-learning. He demonstrated a PAC algorithm that learns noisy PARITY with running
time O(2™%), while any SQ-based algorithm needs running time Q(2").

Along another line of research, Yang [Y01] considered the problem of learning uniformly correlated concepts
in the SQ model. That paper extended the notion of “SQ-dimension” to the case where each pair of concepts
are “correlated in the same way”. For correlated concept classes, it could be trivial to weakly learn a concept
(in some cases, even without making any query), but it takes exponential time to do strong learning. Yang
proved an Q(d*/2S) lower bound for learning such a concept class of SQ-dimension d with an “extra advantage”
S. This result implies the SQ-unlearnability of the class of Linear Threshold Functions (LTF's) over finite fields.
He also showed a PAC algorithm that beats the the best possible SQ algorithms in learning a special class of
LTFs. An open problem from [Y01] is to characterize the SQ-learnability of general concept classes where the
concepts can be arbitrarily correlated.

1.3 Variants of SQ-oracles

Different models of SQ-oracles have been proposed in the literature. Probably the most used one, which we
call the “adversarial model”, is the one introduced by Kearns in his original paper [K93]. In this model, the
algorithm gives the oracle a query function g and an additive “error tolerance” e. The oracle is allowed to
reply with any real number that is e-close to the expected value of g on a random labelled example. Notice
this oracle is adversarial in natural, since it has the freedom to (adversarially) choose which real number to
reply. This is a very nice model to prove upper bounds, since this gives a worst-case guarantee: an algorithm
that works with such a adversatial oracle will surely work well with an SQ-oracle simulated by sampling.
However, there are problems for proving lower bounds for this model. A typical strategy in the lower bound
proofs [K93, BFJ+94] is to construct a “bad” oracle. This oracle doesn’t commit to any particular target
concept. Rather, on each query, the oracle replies with a value that is “consistent” with many “candidate
concepts”. The argument is that if not enough queries are made, the oracle will always be able to give answers
that are consistent with many concepts. In this case, the learning algorithm won’t be able to learn very well.

However, this model has a drawback: in practice, the SQ model isn’t this adversarial. In practice, one
normally simulates an SQ-oracle using a PAC learning algorithm. The simulation is done by repeated sampling
and averaging the query function over these examples. There is nothing “adversarial” in the simulation and
the simulated SQ-oracle behaves very differently from the adversarial oracle used in the lower bound proofs.
Thus, one possibility remains that the lower bounds only hold for an adversarial oracle, but not for the ones
simulated by PAC algorithms. In other words, there could be concept classes that are not learnable with an
adversarial SQ-oracle but are learnable by an “SQ-style” PAC algorithm. If this “gap” indeed exists, that
would imply that this adversarial SQ-oracle is too strong in favor of the adversarial oracle. If this is the case,
then a lower bound against an adversarial oracle is a lower bound more for this particular oracle than for the
inherent nature of the SQ model.

Several efforts have been made to remedy this problem with the “gap”. Jackson [JOO] introduced the
notion of an “SQ-based PAC algorithm” to prove the (2") lower bound for learning PARITY. Intuitively,
an SQ-based PAC algorithm is constructed in the following way. One first designs a learning algorithm in the
SQ-model. Then the SQ algorithm is “generically” simulated by a PAC algorithm in the most straightforward
way. One important assumption about this generic simulation is that the algorithm cannot use any “internal
knowledge” about the query function, nor any “clever tricks” to make the simulation more efficient. This
assumption might seem a bit too strong in practice, since clever tricks are normally quite desirable in algorithm
design. For example, Aslam and Decatur considered using relative error instead of additive error to efficiently
simulate an SQ oracle [AS95]. Jackson’s result didn’t rule out the possibility that algorithms using such a
simulation can learning PARITY functions more efficiently.

Yang [Y01] introduced the model of “honest SQ-oracles”. In this model, the oracle receives a query g and
a sample count M. Then the oracle independently picks M random labeled examples and returns the average
of g on these examples. Intuitively, the honest SQ-oracle model can be regarded as the “SQ-based PAC”
model without the “no-clever-trick” assumption. Any lower bound for algorithms using the honest SQ-oracle
automatically translates to a lower bound for “SQ-base PAC” algorithms and a lower bound in the adversarial
SQ-oracle model. The technique used in [Y01] was to keep track different “scenarios” when different concepts
are chosen as targets, and to measure the “all-pair statistical distance” across the scenarios. This technique
allows us to work in the new model, but it wasn’t powerful enough to yield a tight lower bound.

1.4 Our Contributions

In this paper, we prove two lower bounds for SQ-learning algorithms. The first lower bound considers a
concept class that contains a subset of uniformly correlated concepts, where each pair is correlated “in the
same way”. We define the SQ-dimension of a concept class to be the maximum number of such uniformly
correlated concepts in this class. We also consider the total sample count of an algorithm, which is the sum of
the sample counts of all the queries it makes to an honest SQ-oracle. We prove that a learning algorithm must
have sample count of ©(d/ log d) to learn a concept class of SQ-dimension d. This lower bound almost matches
the upper bound given in [BFJ+94] (up to a logarithmic factor), and is strong enough to imply the quadratic

separation of SQ- and PAC- learning of the PARITY functions at a high noise rate. Furthermore, this lower
bound applies to a wide range of concept classes and uses a different model for SQ-oracles. The proof uses
several techniques, some of which could be of independent interests. As in [YO01], we still keep track of the
“differences” across the scenarios with different concepts as targets. However, we use a different measure,
namely the all-pair KL-divergence. This new measure can yield a very tight bound when the queries are
“reasonably unbiased”, i.e., when the probability that the query function returns “+1” on a random example
is close to 1/2. But the KL-divergence measure becomes very bad when we have biased queries. In that case,
we use an unbiased query to “simulate” a biased one. Combining these 2 techniques together allows us to
prove a very tight lower bound.

The second lower bound is for arbitrary concept classes. We define a “correlation matrix”, whose entries
are the correlations of pairs of concepts. We prove that for an algorithm to have { advantage in learning by
making ¢ queries to an adversarial SQ-oracle with tolerance &, then the sum of the (¢ + 1) largest eigenvalues
of the correlation matrix must be at least s-£2. Here s is the cardinality of the concept class. This result shows
a continuous trade-off between the advantage an algorithm can have and the number of queries it needs to
make. This trade-off ca be used in designing learning algorithms, where certain requirements on the accuracy
and confidence are to be satisfied. This lower bound is a very general one: as we shall see in Section 4.4,
this lower bound almost immediately implies some previous results [BFJ+94, Y01], and sometimes yields even
stronger ones. The proof to this lower bound uses the Singular Value Decomposition (SVD). This connection
could also be of its independent interests.

1.5 Organization of the Rest of the Paper

We present the notations and definitions used in the paper in Section 2. We prove the 2 lower bounds in
Section 3 and Section 4, respectively. We conclude the paper in Section 5.

2 Notations and Definitions
2.1 Mathematical Notations

All logarithms are natural log. All random distributions are over binary strings. We naturally identify a
random variable with a probabilistic distribution. For a random variable X, we use X(z) to denote the
probability that X = z. For distributions X and Y, we use XY to denote their direct product:

XY (2,9) = X(2) - Y (3).

This definition coincides with that of the concatenation of independent random variables X and Y.

2.2 Learning Concepts

We use X to denote a finite set of binary strings, and we are interested in learning concepts over ¥, i.e., functions
that map elements in ¥ to {—1, +1}. Elements in X are also called ezamples. A collection of concepts is often
denoted by F = {fi1, fo,..., fs}, and is called a concept class. Each member in F is a candidate concept, and
one of them, called a target concept is chosen for the learning algorithm to learn.

We fix an arbitrary order for the elements in ¥, and then identify a function over ¥ with the vector
represented by its truth table. Let D be a (fixed) probabilistic distribution over ¥. There exists an inner
product of functions over ¥ induced by D, defined as

(f,9)p =) _ D(z)f(z)g(x)

TED

When there is no danger of ambiguity, we omit the subscript D. The inner product of f and g is also called the
correlation between f and g. In the case that both f and g concepts, their correlation (f,g) is the probability
f and g agree on a random input minus the probability they disagree.

The norm of function f is defined as ||f|| = v/(f, f)- Clearly all concepts have norm 1.

2.3 The Statistical Query Model
We present two different definitions of SQ-oracles.

Definition 1 (Adversarial SQ-Oracle) A guery to an adversarial SQ-oracle for concept f is a pair (g,7),
where g : ¥ x {—1,4+1} — {—1,+1} is a boolean function, called the query function, and 7 € [0,1] is real
number, called the tolerance. The oracle replies with an (arbitrary) real number s such that

ls — Eplg(X, f(X)I <7

This definition, introduced by by Kearns [K93], is used by most literature in the SQ model.

Definition 2 (Honest SQ-Oracle) A query to an honest SQ-oracle for concept f is a pair (g, M), where
g:Xx{-1,+1} = {-1, +1} is a boolean function, called the query function, and M is a positive integer written
in unary', called the sample count. The oracle returns a random variable r defined by r = - Efil 9(Xs, £(X3))
where each X; is independently chosen according to D, and for different queries, different (and independent)
examples are drawn.

This definition was introduced by Yang [YO01]. It is straightforward to show that one can use an honest
SQ-oracle to simulate an adversarial oracle. Intuitively, the honest SQ-oracle describes how a PAC algorithm
simulates an SQ algorithm more precisely than the adversarial SQ-oracle. In this sense, the honest SQ-oracle
is more “realistic”.

3 The First Lower Bound

We prove the first lower bound on learning a concept class where every pair of concepts are “correlated in the
same way”, i.e., each pair has almost the same correlation. Our lower bound is against an honest SQ-oracle.
With respect to such an oracle, we define the total sample count of an algorithm to be the sum of the sample
counts of all the queries it makes. Since we require the sample counts to be written in unary, the total sample
count of an algorithm is a lower bound on its running time. We shall prove a lower bound on the total sample
count of the learning algorithms.

Our proof strategy is similar to that in [Y01]. Roughly speaking, one considers d different “scenarios”: in
the j-th scenario, the concept f; is the target. A quantity A, namely the “all-pair KL-divergence” is defined
over these scenarios. Three lemmas are then proved:

1. The quantity A is initially zero, when no query is performed.
2. Each query increases A by a “small” amount.
3. After all the queries are made, A must be “large”.

Then, from these three lemmas, one concludes that many queries are required.

3.1 KL-divergence
We first present a definition of the KL-divergence, or Kullback-Leibler divergence [KL51].
Definition 3 (KL-divergence) For 2 random variables P, @ with identical support, we define their KL-
divergence to be *
P(iﬂ))
KL(P||Q) = P(x) - lo (.
(PIQ) = 32 P(@)-1og (5

The reader is referred to [KL51, K59, B95] for a comprehensive treatise on the KL-divergence. We state
several properties of the KL-divergence.

Lemma 1 (Identical Distribution) If P and Q have identical distributions, then KL(P||Q) = 0. []

This is obvious from the definition.

Lemma 2 (Direct Product) Let Pi, P, and Q1,Q2 be distributions such that P; and Q; have identical
support for i =1,2. We have

KL(P1P||Q1Q2) = KL(P1[|Q1) + KL(P2||Q2). (1)

Proof: Simple computation:

KLPPIQQ) = 33 Pi@)Pa(w)tog (o2 O0)

Q:1(@)Q2(y)
5 rerro e (65) +oe (5]

P1 P2
Z Xy: Py (z)P2(y)log (Ql((;cc))> + zﬂ: Xy: Pyi(z)Px(y)log (Qz—((yy)))

x

= KL(P||@1) + KL(P||Q2)

1We require M to be written in unary to make sure that an algorithm wouldn’t be able to make a query that requires too many
(exponentially many) examples.

2A slight difference for our definition here is that we are using the natural log, instead of log base-2. But the properties will not
be affected by the change of the base.

Lemma 3 (Monotonicity) Let P and Q be random variables of identical support and let ¢ be a deterministic
function. Then

KL(¢(P)||¢(Q)) < KL(P|Q). (2)
Proof: We first prove a very simple inequality:
p1+Dp2

1 —) <pl 1 3

(p1+p2) 0g<ql+q2> p1 og(q)ﬂ)z og(q2> ®3)

The proof to this inequality is simple: since log(z) is a concave function, we have

P log(q_1>+p— log()<log(b1 q_1+ P2 .q_z):log(q1+QQ>
1+ p2 y41 P1+p2 D2 P1+p2 p1 pi+p2 pe p1+ p2
P1+Dp2
lo + p2 lo > + po)log [—22
m g(a) b2 g(fh) 2 (o1 +22) g(ql +qz>

(£7) w(E2)<Em (2)

Intuitively, this inequality implies that when we comblne several probabilistic events into one, the KL-
divergence will not increase. Now consider the distribution of ¢(P) and ¢(Q). Since ¢ is a deterministic
function, it essentially combines several events into “larger” events. Therefore, intuitively, ¢ shouldn’t increase
the KL-divergence. Below is a more formal proof:

Pr [¢p(P) =
ZPr [¢(P) =y] - log (%)

_ Lp@y=y F(2)
Z(2 Pu)) “ (me—y Q(m))

v \¢(@)=y

2_Pla)log (QEwD
KL(P|IQ)

or

In general, we have

KL(¢(P)||$(Q))

IN

Lemma 4 (Binomial Distribution) Let P and Q be Bernoulli distributions with parameters p and q, i.e.,
P(0)=1—p, P(1)=p, Q(0) =1—gq, and Q(1) = q. Let P, and Qn be binomial distributions with parameters
(n,p) and (n,q), respectively, i.e., Po(k) = (Z)pk(l —p)" % and Q. (k) = (Z)qk(l —)" *. Then we have

KL(Py||Qn) =n- KL(P,Q). (5)

Proof: Simple computation:

KL(P,||Qx) =) P(k)log (%)

k=0
= log (g) , k(k)pk(l —p)" " +log (%Z) S (n—k) (k>pk(1 —p)nk
k=0 k=0
= log (g) np + log (g) n(1 —p)
= n-KL(P||Q)

For n distributions X1, Xa,..., X, of identical support, we define their all-pair KL-divergence (APKL) to
be

APKL(X1, X5, .o, Xn) = > Y KL(Xi||X;).

i=1j=1

3.2 SQ-dimension for Correlated Concept Classes
We adopt the definition of the SQ-dimension of a concept class from [Y01].

Definition 4 (SQ-Dimension [Y01]) The SQ-dimension of a concept class F with respect to D, denoted by
SQ-DIM(F, D), is the largest natural number d such that there ezxists a real number X, satisfying 0 < A <1/2,
and d concepts fi, f2,...., fa € F with the property that for alli # j,

(fi, £y = Al < 1/d°. (6)
We call X the correlation of F.2

Intuitively, the SQ-dimension of F is the size of the maximum subclass of F whose every pair has almost the
same correlation .

Notice that our definition is different from the definition from [BFJ+94]. An important result from [Y01]
to be used here is:

Lemma 5 (Fourier Analysis for the Query Function, [YO01]) We follow the notations in Definition 4.
Let f1, fa, ..y fa be the concepts satisfying [{f:, f;) — N < 1/d3, and d be the SQ-dimension of F. Let g(z,y)
be a query function. Then there exist real numbers b1, B2, ..., B, such that Z‘f:l B <1+100/d for d > 100

and
Eplg(X, fi(X))] =Cg + V1 —X- B (7)
for every i =1,2,....,d. where Cy is a constant that is independent of the target concept f;. |

We call Cy the inherent bias of g.

3.3 Three Lemmas About the All-Pair KL-divergence

We model a learning algorithm A as a randomized Turing Machine. It makes a total of ¢ queries, and at
the end of these queries, a random input X is presented to A. Again, we assume that fi, fo,..., fo are the d
concepts satisfying that |(f;, f;) — A| < 1/d® for i # j. Suppose f; is the target concept, then A must predict
fi(X) with sufficient accuracy.

In the case that f; is the target concept, we define the state of A after the k-th query to be the binary
string Si that describes the contents on A’s tapes, the position of the heads, the current internal state of A.
We define SJ to be the state of A before it starts. Notice each S, is a random variable: the randomness comes
from both the SQ-oracle and the random tape A uses. The j-th scenario, S7 is simply the concatenation of
all the states: S7 = (S3,57, ..., S%).

We define Ay, to be the all-pair KL-divergence of Sy, S7, ..., S¢:

Ay = APKL(Sy, St ..., SP).

Intuitively, Ay measures how “differently” A behaves with different target concepts. We shall focus on
how Ay changes with k.
We state the following 3 lemmas:

Lemma 6 The all-pair KL-divergence is initially zero, that is Ao = 0.

Proof: This is obvious since A hasn’t made any queries yet, and the state of A is independent of the target
concept. Thus S§, S2, ..., S§ have identical distributions. [|

We say a query function g(z,y) is an ideal query function, if

N[=

| Enlg(X, fi(X))]| <

for s = 1,2,...,d. Intuitively, if g(z,y) is ideal, then it is not highly biased in any scenario.
Ideal queries are nice since they don’t increase the all-pair KL-divergence much, as shown in the following
lemma.

Lemma 7 Suppose the k-th query to an honest SQ-oracle by the algorithm is (g, M), where g is an ideal
query. then
Ap —Ap_1 <3Md

for d > 200.

3Pedantically, given such a concept class F, there might exist infinitely many \’s satisfying (6), all within a range of size up to
1/d3. If this is the case, we choose the minimal X that satisfies (6) as the correlation of F.

Proof: We define P; = g(X, fi(X)) to be a random variable, where X is a random element in ¥ distributed
according to D. We define p; = Pr [P; = +1]. Then, according to Lemma 5, we have

_1+Epjg(X, fi(X))] _ 1+Cy+V1—X-Bi (8)
L 2 N 2 ’

We use Q; to denote the distribution of the answer from the honest SQ-oracle when f; is the target concept.
Then obviously Q; is the binomial distribution with parameter (M, p;). By Lemma 4, we have

KL(Qi||Qj) = M - KL(Fi||F;). (9)

We denote the all-pair KL-divergence of Q1,Q2, ..., @4 by £&. Then we shall bound £ from above.
By standard calculus, we know that for any positive real numbers z and y, there exists a real number z
between = and y such that
T —
log(z) — log(y) = =

since the derivative of log(z) is 1/x. Now if both z and y are within [1/4, 3/4], then so is z, and thus we will
have

T —
|og(2) — log(y)| = | “=2| < 1o — ul.
Therefore, we have (notice that by the definition of ideal queries, we have 1/4 < p; < 3/4 for all ¢’s):

pi 1—pi Pj 1-pj
ilog(—) + (1 — p;) log(———) + p; log(=) + (1 — p;) lo
pilog(25) + (1 = po)log(=2) + pylog(2) + (1~ py) log (=)

(pi — pj)(log pi —logp;) + [(1 — pi) — (1 — p;)][log(1 — p;) — log(1 — p;)]
Api — p;)” +4[(1 —pi) — (1 = p))I?
8(pi —p;)°.

KL(P||P)) + KL(P}||P,)

IA I

Furthermore, by Lemma 4

¢ APKL(Q1,Q, ... Qa) = M - Y (KL(P||P;) + KL(P;||P))

i<j

< 8M - (pi—p)
i<j

Substituting in Equation 8, we have

& < 8M-) (pi—p;)

i<j
2M(1-X)) (B —B)’
i#]

won o= (24)]
2M(1— \) [d . Xi:ﬂf]

IA

Since), B7 <1+100/d, we have

& <2M(1—N)(d+100) < 3Md (10)
for d > 200.
Next, we show that
Ap — A1 <& (11)

The reason is that for every 4, the state of A after the k-th query, Si, is a deterministic function of Si_;,
Q;i, and the random bits used by A. However, the random bits used by A have the same distribution for all
scenarios. So the only possible contribution to the increase of the KL-divergence comes from the Q;’s.

Now putting Inequality 10 and Inequality 11 together, we have

Ap — Ap_1 < 3Md.

Lemma 8 If the learning algorithm A has accuracy € and confidence §, satisfying 24(e +6) <1 — X —1/d3,
then after all the queries are made, we have
A, > 0.2d°

ford > 3.

Proof: We prove a stronger statement, that after all queries are made, the KL-divergence between Sé and
Sg is at least 0.23 for any i # j.

After all queries are made, the algorithm A is ready to take a random X distributed according to D and
make a prediction on the label of X. However, we consider a different experiment: we give A a random
X' chosen from another distribution D’, which depends on ¢ and j. We use A* (resp. A’) to denote the
distribution of the output of A, in the case that f; (resp. f;) is the target concept. Notice A® is a deterministic
function of S} and X', and A’ of S} and X’. So by Lemma 3, we have

KL(S}||S]) > KL(A'||A7).

Now we describe the distribution D’. We partition ¥ into Xo and X1, such that fi(z) = f;(z) for all z € X
and fi(z) # fj(z) for all z € X;. Then we know that a randomly chosen X € ¥ according to the distribution

3
D has probability at least % to be in X1, since the correlation between f; and f; is at most A +1 /d3.

We further partition ¥; into £ and ¥ such that fi(z) = +1 for z € &] and fi(z) = —1 for ¢ € 37
WLOG, we assume that
Pr p[z € Zf |z € 3] > 1/2.

The distribution D’ is simply the distribution D conditioned on z € I},

Notice that for any element z € £T, we have f;(z) = +1 and f;(z) = —1. If A is perfect, i.e., if e = § = 0,
then A® should be the constant +1 and A’ should be the constant —1, and KL(A*||A’) = co. In the case that
A is not perfect, we can still bound K L(A*||A?) from below.

Consider the case that the concept fr is chosen as a target concept. If a random X € ¥ is drawn according

to D, then with probability at least ﬂ, it is in . We say A is “lucky” if it has an accuracy of e in
predicting fr(X) for a random X € ¥. Then we know that A is lucky at least 1 — 4 of the time.
If A is lucky, then it only makes a mistake for an e fraction of the inputs. So the probability A makes a

mistake on a random X’ € X7 is at most
€

1-X—-1/d3)/4
If A is unlucky, anything could happen. But this only happens with probability at most 4.
So the total probability A makes a mistake in predicting fr(X’) on a random input X’ € £} is at most

€ 4(e +9)
Goayama ST gs =Y

if 24(e + §) <1 — X —1/d>. This is true for any target concept fr.

By union bound, we know that with probability at least 2/3, A predicts both f;(X’) and f;(X') correctly
for a random X' € X7.

Therefore, if f; is the target concept, then the probability A outputs a “+1” is at least 2/3; if f; is the
target concept, then the probability A outputs a “+1” is at most 1/3. Then we conclude that

o i iy o 2 2/3, 1 1/3 log 2
18Ty > A7) > Slog(SL2) + S log(Sho) = 282 > 0.2
KL(S,[15%) > KL(A'|A') > 3 log({7) + 3 loB(3/5) = 5= > 023
for any pair 7 # j. So we have
Ay > KL(Si||S]) > 0.23d(d — 1) > 0.2d°
i#j
for d > 3. |

Now if we combine Lemma 6, Lemma 7, and Lemma 8, we can already prove an 3(d) lower bound on the
running time of algorithms that only use ideal queries:

Lemma 9 Suppose F is a concept class of SQ-dimension d > 200 with correlation X\. Let A be a learning
algorithm that learns F with accuracy € and confidence § with respect to an honest SQ-oracle. If all the queries
A makes are ideal queries and 24(e +3) <1 — X —1/d?, then the total sample count of A is at least d/15.

Proof: Suppose the total sample count of algorithm A is T. By Lemma 6, Lemma 7, and the direct product
lemma, we know the all-pair KL-divergence of all the scenarios after all queries are finished is at most 37'd.
Combining this fact with Lemma 8, we know that

37d > APKL(S?, S2,...5%) > 0.2d?

which implies our lemma. [|

3.4 Non-ideal Queries

Now we consider the situation where the algorithm A makes non-ideal queries.

Recall that a query function g is ideal, if | Ep[g(X, fi(X))] | < 1/2 for all ¢’s. For an ideal query g, the
probability that g(X, f;(X)) = +1 is between 1/4 and 3/4 for every 4, which is “reasonably unbiased”. In this
case, the KL-divergence is a very nice measure for the “differences” between scenarios. However it doesn’t
work very well for very biased distributions, since with probabilities close to 0 or 1, even a tiny difference in
the probabilities can result in an huge KL-divergence. Therefore we need to treat non-ideal queries differently.

We divide the non-ideal queries into two classes. For a non-ideal query function g, if |Cy| < 1/3, we call
it a semi-ideal query; otherwise we call g a bad query. We develop different techniques for these 2 classes of
non-ideal queries.

3.4.1 Semi-ideal queries

We first assume that all non-ideal queries are actually semi-ideal. For a semi-ideal query function g, if a
concept f; makes |Ep[g(X, f;(X))]| > 1/2, we say f; is an abnormal concept for g. Abnormal concepts are
very few, since if f; is abnormal, then

|Bil > |V1 =X~ Bi| = |Eplg(X, fi(X))] = Cg| 2 |Epg(x, fi(x))]] = |Cq| = %-

Notice by Lemma 5, we have 2?21 B? < 14100/d. Thus there are at most 60 abnormal concepts for each
semi-ideal query for d > 200. This is the reason we call such query concepts “semi-ideal”: they behave almost
like ideal queries, except for very few abnormal concepts.

Now, instead of measuring the all-pair KL-divergence of all the scenarios, we exclude the scenarios for
abnormal concepts for each query. Then we measure the all-pair KL-divergence for the remaining scenarios.
We obtain the following lemma:

Lemma 10 Suppose F is a concept class of SQ-dimension d > 200 with correlation A. Let A be a learning
algorithm that learns F with accuracy € and confidence § with respect to an honest SQ-oracle, and all the
queries A makes are semi-ideal queries. If 24(e +6) <1 — X\ —1/d?, then the total sample count of A is at
least d/100.

Proof: We first consider the simple case that A is deterministic and non-adaptive, i.e., the queries A makes
are fixed a priori. We assume that A makes a total of ¢ queries. If ¢ > d/100, we are already done. Otherwise,
since we assume all the queries are semi-ideal, there are at most 60g candidate concepts that are abnormal
for some of the queries. We exclude all these abnormal concepts, and there are at least d — 60g > 2d/5
remaining concepts. They correspond to at least 2d/5 scenarios. We measure the all-pair KL-divergence of
these remaining scenarios, and all the analysis for ideal queries work here. So the total sample count is at
least (1/15) - 2d/5 > d/100.

Next, we consider the case that the A is probabilistic and adaptive. In this case, there can be many
potentially possible queries, and we cannot eliminate all the abnormal concepts for each query. However, we
may still assume A always makes exactly ¢ queries during its execution. Again, if ¢ > d/100, the lemma is
already proved. Otherwise, we modify the algorithm A slightly so that after making all the queries, A writes
down the identities of all the abnormal concepts to the queries A have made?. We denote this output by AB.
Notice that AB is a random variable that consists of at most 60g concepts. Let R denote the number of the
concepts that are not abnormal for any of the queries. We have R > d — 60g > 2d/5. We also require A to
write down the all-pair KL-divergence of the scenarios corresponding to all concepts excluding the abnormal
ones, and denote this by KLrgem. Then KlLgewm is also a random variable. Lemma 6 and Lemma 7 still work for
KLrem, and we have

Pr [KLrem < 3t - R] =1. (12)

where t is the total sample count of A. Next we bound KLgrgm from below. Overall, A has an accuracy € and
confidence §. So these exists an s such that conditioned on AB = s, A still has an accuracy e and confidence
é. By Lemma 8, we have

Pr [KLrem > 0.2R* | AB = 5] = 1. (13)
Putting Inequalities 12 and 13 together, and we have
0.2R’
t> = R/15 > d/100. 14
> —5p~ = R/15 2 .d/100 (14)
|

4Notice that A knows the queries it makes and all the candidate concepts. So A can compute the distributions of the replies for
all the scenarios, and decide which candidate concepts are abnormal. This modification might not preserve the efficiency of A, but
this is not a concern here.

3.4.2 Bad Queries

Now we extend the lower bound to algorithms that make bad queries as well. Recall that a query function g
is bad, if |Cy| > 1/3. For a bad g, the probability that g(X, f;(X)) = +1 can be very biased for a lot of target
concepts f;. The KL-divergence won’t work very well under this circumstance.

However, intuitively, a highly biased query won’t be very efficient since a biased query carries less infor-
mation than an unbiased one. We shall prove this intuition is correct to some extend. In fact, we show how
to efficiently simulate a biased query using an unbiased one.

Theorem 1 Suppose F is a concept class of SQ-dimension d > 200 with correlation A. Let A be a learning
algorithm that learns F with accuracy € and confidence § with respect to an honest SQ-oracle. If 24(e+d+1/d) <
1—X—1/d?, then the total sample count of A is at least d/(300logd).

Proof: Before demonstrating the simulation, we first note that the lower bound in Lemma 10 works for a
variance of the honest SQ-oracle: we call it the semi-honest SQ-oracle.

Definition 5 (Semi-honest SQ-oracle) A query to a semi-honest SQ-oracle for concept f is a pair (g, M),
where g : ¥ x {—1,41} — {—1,41} is a boolean function, called the query function, and M is a positive
integer written in unary, called the sample count. The oracle outputs a pair (', M'). Here M’ is an integral
random variable satisfying Pr [M' < M] =1 and r' = = Ziﬂill 9(Xi, f(X;)), where each X; is a random
variable independently chosen according to D. We call M’ the actual sample count.

If the distribution of the actual sample count is independent of the choice of the concept f, we say this
oracle is oblivious.

Intuitively, a semi-honest SQ-oracle behaves almost like an honest SQ-oracle, except that it is allowed to
decrease the sample count. However the oracle must report the actual sample count it uses. Obviously an
honest SQ-oracle is also a semi-honest SQ-oracle.

We notice that the lower bounds for honest SQ-oracles also works for oblivious semi-honest SQ-oracles.
Lemma 6 and Lemma 8 are unaffected since they are not concerned about oracles. Lemma 7 is still true,
thanks to the obliviousness. The only “difference” an oblivious semi-honest SQ-oracle makes is from the
query functions, not the actual sample count, and decreasing the sample count will not increase the all-pair
KL-divergence. There are different instantiations of semi-honest SQ-oracles since the oracle has the freedom
to choose the distribution of M'. However, Lemma 10 is true for any instantiation of an oblivious semi-honest
SQ-oracle.

Next we are ready to prove the theorem.

Given a learning algorithm A, we shall construct a new algorithm A’ that has almost the same accuracy,
confidence, and comparable efficiency as A. Furthermore, A’ only makes semi-ideal queries. So Lemma 10 can
be applied to A’, which in turn gives a lower bound for the running time of A. ~

We first extend the domain ¥ by one bit: we define ¥ = X x {—1,+1}. We write each element in 3 as
(z,e), where x € 3, while e € {—1, +1} is the extended bit.

We extend all the concepts to the new domain by defining new concepts f1, ..., fa:

fi(z, +1) = fi(e,~1) = fi().

We also extend the distribution D such that it is the uniform distribution over the extended bit.

D(z,—1) = D(z,+1) = D(z)/2.

The new algorithm A’ works with the extended concept class F = {fi, f2, ..., fa}- It is easy to verify
that the problem of learning F is exactly the original problem of learning F, since one can simply ignore the
extended bit. Obviously, the SQ-dimension of F is d as well.

The new algorithm A’ is constructed as follows: A’ behaves exactly like A except for the queries. For every
query A makes to the honest SQ-oracle, A’ simulates it by querying a semi-honest SQ-oracle.

Suppose A makes a query (g, M) and the reply is r. We show how A’ replaces it by making a query (g', M*)
and estimates r, where M* = 2M - [log d| + 1. We shall describe the query function g’, the semi-honest oracle
A’ uses, and how A’ estimates r.

e The query function g’

The new query concept g’ works in the extended domain 3 x {-1,+1}, and we write it as ¢'(z, e, y),
where z € ¥ and e is the extended bit. It is defined as follows:

— If g is semi-ideal, then
7 !
g9 (z,—1,y) = g(x,y) and g'(z, +1,y) = 0;
— If g is bad and Cy > 1/3, then

g (z,—1,y) = g(z,y) and ¢’ (z, +1,y) = —1;

10

— If g is bad and Cy < —1/3, then
g (x,—1,y) = g(z,y) and ¢'(z, +1,y) = +1.

Roughly speaking, g’ behaves exactly like g on half of its inputs (when the extended bit e is —1), and
on the other half, it is a constant, creating an “artificial bias”.

Lemma 11 The query function g’ is semi-ideal.

Proof: Let’s compute the inherent bias Cy of ¢/, per Lemma 5.
First we consider the case that g is already semi-ideal:

Eﬁ[gl(x:e:fi(wae))] = % (ED[gl(x:_lafi(xa_l))] —f—ED[gI(.’L‘,—|—1,ﬁ(.’I:,+1))])

Cy +VI=X- Bi
2

= %+\/1—)\-%

So Cy = C4/2 € [-1/6,1/6], and g’ is semi-ideal. Similarly, when g is bad and Cy > 1/3, Cy» =
(Cy —1)/2 € [-1/3,0]; when g is bad and Cy < —1/3, Cpr = (Cy +1)/2 € [0,1/3]. Thus ¢ is always
semi-ideal. [

e The semi-honest SQ-oracle
We describe the semi-honest SQ-oracle A’ uses. Intuitively, ¢’ is like g with added “artificial bias”. By
adding this bias, g’ becomes semi-ideal. But g’ also becomes less efficient than g, since about half of its
inputs are not “useful”. Therefore we need to increase the sample count to make sure g’ gets enough
“useful” inputs. The actual construction is a bit complicated.
On a query (g’, M™*), the oracle repeatedly draws independent examples (z;,e;) according to D. An
example (x5, ;) is a useful ezample, if e; = —1; otherwise it is useless. The oracle keeps drawing random
examples until it has exactly M useful examples, or it has exampled M* times. Finally the oracle uses
all its examples to compute the average of g'.
We comment that this semi-honest SQ-oracle is indeed oblivious. In fact, the actual sample count is a
random variable that only depends on the probability that a random example (z;,e;) is a useful one.
According to the distribution D, this probability is 1 /2, independent of the target concepts.

e Estimating r

Suppose the reply from the semi-honest SQ-oracle is (7', M"). We show how A’ computes a value s, and
uses s to simulate r, the reply from the honest SQ-oracle. The value s is defined as follows:

?M’ ! if g is semi-ideal;
5= y(M’-r'—M+M') if g is bad and Cy > 1/3;
L v+ M—M) ifgisbadand Cy < —1/3.

‘We prove that s is very close to 7.
Lemma 12 The statistical distance between s and r is at most M/d>.

Proof: First, we prove that in the case M’ < M*, s and r have identical distributions. Notice if
M' < M*, then the semi-honest SQ-oracle has exactly M useful examples and M’ — M useless ones. It
is easy to verify that in this case, s is the average of the M useful examples (since g’ outputs constants
on the useless examples, these constants can be easily removed from r'). On useful examples, g’ behaves
identically as g. So s has identical distribution as r in this case.

Therefore, the statistical distance between s and r is at most the probability that M = M*. But M = M*
means that the first 2M - [logd] examples contain less than M useful ones. We group these examples
into M groups, each containing 2[log d| examples. For any group, the probability that it doesn’t contain
any useful example is at most 272M'°89] < 1/d?, since a random example is useful with probability 1/2.
So the probability that one of the groups doesn’t contain any useful example is at most M - 1 /d2. But
if each group contains at least one useful example, we have at least M useful examples. Therefore, the
probability that there are less than M useful examples is at most M, /d2. |

Now, putting everything together: we have constructed an algorithm A’ that simulates A using only semi-

ideal queries. For each query (g, M), A’ can simulate it up to an error of M/d?. Let T be the total sample
count of A. If T > d, the theorem is already true. Otherwise the total error A’ makes in simulating A
is at most 7/d> < 1/d, and thus A’ has an accuracy ¢ and confidence § + 1/d. By Lemma 10, the total
sample count of A’ is at least d/60. Since A’ replaces a query of sample count M by a query of sample count
2M - [logd] + 1 < 3M log d, the total sample count of A is at least d/100/(3logd) = d/(3001logd).]

11

3.4.3 Remarks

Our result isn’t directly comparable with that in [JO0]. The lower bound in [J0O0] is for a slightly different
SQ model (the “SQ-based PAC algorithms”), and it doesn’t direct translate to a lower bound in our model.
Furthermore, Jackson proved that lower bound only for learning PARITY functions, while our lower bound
holds for a broader class, namely, the class of “uniformly correlated” concepts. On the other hand, his lower
bound is tighter: for PARITY functions over n bits, he proved that an ©(2") running time is needed, while
our result only gives (2" /n). However, our lower bound is strong enough to separate the SQ-learning from
the PAC-learning of PARITY functions with a high (1/2 — 1/poly(n)) noise rate, as in [J0O0].

It is also interesting to compare our result to that in [Y01]. We improved the lower bound from Q(v/d)
to Q(d/logd). Nevertheless, the result in [Y01] is a “continuous” lower bound in that it shows a continuous
trade-off between the number of queries needed and the advantage a learning algorithm has. Our result, on
the other hand, is a single lower bound for the running time if a certain accuracy and confidence is needed.

4 The Second Lower Bound

The second lower bound is for classes of concepts that are arbitrarily correlated. This lower bound is against
an adversarial SQ-oracle.

4.1 Notations and Definitions

We introduce some notations and definitions to be used in this section, most of which are also used in [Y01].

For a learning algorithm A, we denote its advantage in learning a target concept f; to be the probability it
makes a correct prediction on a random example minus the probability that it makes an incorrect prediction.
The probability is taken over the randomness from A and the random example.

Notice that after making all the queries, the algorithm is ready to make a prediction on any example z.
We can describe the state of this algorithm by its characteristic function, which is defined to be a real-valued
function over the same domain. 94 : ¥ — [—1, +1], such that 4(xz) = 2 - Pr [A outputs +1 on z] — 1, where
the probability is taken over the randomness A uses and the randomness from the oracles.

It is not hard to see that if the target concept is fr, then the advantage of A is (fr,14).

Since we are dealing with a class of concepts that are arbitrarily correlated, we need a means to describe
the “correlations” among the concepts.

Definition 6 (Correlation Matrix) Let F = {fi, fo,...., fs} be a concept class. Its correlation matrix,
denoted by C* is a s x s matriz such that C{; ={fi, f;)-

Clearly C” is a semi-positive definite matrix, and it has 1’s on the diagonal. When there is no danger of
confusion, we omit the superscript F.

4.2 Why the Previous Technique Doesn’t Work

The technique of the all-pair KL-divergence from the previous section doesn’t work very well here. Here is an
intuitive argument. In the case that each pair of concepts has the same correlation, it suffices to upper bound
how much “difference” one single query makes. In a sense, no query function is significantly more efficient than
others, since the concepts are sort of “uniform”. In the case that the concepts are arbitrarily correlated, it is
quite possible that there exists some query function that makes a large difference while others don’t. In other
words, we no longer have the uniformity among the concepts and some queries can be much more efficient
than others. So a single upper bound on one query doesn’t necessarily scale well to a good upper bound on a
sequence of queries.

Here is an example: let X be the set of all n-bit strings, and D be the uniform distribution over X. Let Fo
be the family of 2" functions that are PARITY functions if the Least Significant Bit (LSB) of the input is 0
and are constant +1 if the LSB is 1. Let F1 be the family of 2" functions that are PARITY functions if the
LSB of the input is 0 and are constant —1 if the LSB is 1. Let the concept class F be the union of Fy and Fi.

It is very easy to tell concepts in Fo and concepts in F; apart, since they have difference biases. Therefore,
there exists a very efficient query (just ask for the bias of the target concept) that can learn one bit about the
target concept, and there exists a learning algorithm that makes a single query and learns the target concept
with accuracy 3/4. If every query were as efficient as this one, then only O(n) queries would have been needed
to learn the target function exactly. This is also the best lower bound we can hope for if we use the technique
from the previous section.

However, any SQ algorithm needs exponential time to learn the target concept with accuracy higher than
7/8. This is true since in having an accuracy higher than 7/8 implies learning the unique target function,
which implies learning a parity function [J00]. This sharp contrast is due to the fact that although the query
that distinguishes Fo from F; is very efficient, others are not.

12

4.3 The Lower Bound

We present a lower bound for the adversarial SQ-oracle model. A part of our proof technique is similar to that
of [BFJ+94], but we go further to consider the collective effect of all the queries a learning algorithm makes.
Consider a particular adversarial SQ-oracle that doesn’t commit to any target concept. On each query,
this oracle returns a special value that is consistent with a large number of concepts. As a result, a small
number of “inconsistent” concepts will be “eliminated”. So long as there are many concepts remaining (not
eliminated), the learning algorithm won’t be able to decide which remaining concept is the true target concept.
Therefore the learning algorithm will not learn the target concept with high accuracy and high confidence.

Theorem 2 Suppose F is a concept class of cardinality s with correlation matriz C. Let A1 > X2 > -+ A4
be the eigenvalues of C. Let A be a learning algorithm that learns F with advantage at least £ using any
adversarial SQ-oracle of error tolerance . If A makes q queries, then we have

gq+1

S i>s-g (15)
i=1

Proof: We first state a lemma that is very similar to Lemma 5:
Lemma 13 For every query function g(x,y), there exists a vector xg and a constant Cy such that ||xq|| < 1
and
Eplg(z, fi(x))] = Cg + (xg, fi) (16)

for every concept f;.
We call the vector x4 the characteristic vector of g.
Proof: We essentially follow the same outline as in [BFJ+94]. Let £ be the subspace spanned by the
concepts fi, f2,...., fs. Let {u1, u2, ..., us} be an orthonormal basis in £. We regard each u; as a function from
Y to reals. Next we extend these functions to over the domain ¥ x {—1,+1} by defining

ai(z,y) = wi(z);

vi(w,y) = wi(x)-y.
We also extend the distribution D to over ¥ x {—1,+1} by defining

D(z,—-1) = D(z,+1) = D(z).

It is easy to check that {@;,¥;}; forms an orthonormal basis for functions over ¥ x {—1,+1}. Then we
decompose the query function g(z,y) as

g(m,y) = Zajai(xay) + Zﬂjﬂj(mvy)-

Since ||g|| = 1, we have 3. af + 3, 7 = 1.
Then

Eplg(X, f:(X))] ZajED[ﬂj(X, Fi(X)] + ZﬂjED[ﬁj(X, fi(X))]

ZajED[uj(X)] + ED[ZﬂjUj(X) - fi(X)]

We set Cyg = >_; o; Eplu; (X)] and x4(z) = 3_; Bju;(x), and then we have

Ep[g(z, fi(z))] = Cg + (xg, fi)-

Next we prove that ||xg|| < 1. Since u;’s are orthonormal, we have

lxall” = > Billus|l* =D 87 < 1.
i i

13

Now back to the proof to the theorem. We consider the oracle that, on a query (g,&), returns Cy as defined
in Equation 16. In this way, the concepts that has an inner product of more than £ with x, will be eliminated.
After all the queries are made, we consider the remaining concepts that haven’t been eliminated yet. We claim
that each of them has an inner product of at least £ with ¥4, the characteristic function of A. This is because
each of the remaining concept can be the target concept since it is consistent with all the queries. Since A has
advantage &, the inner product of the remaining concepts and ¥4 must be at least §.

We denote the g queries made by A by g1, g2, ..., g¢, and denote their corresponding characteristic vector
by v1,v2, ..., vq. We define the vector vg+1 to be 4. Then we have a total of ¢ + 1 vectors, vi,v2, ..., Ug+1, all
of norm at most 1. For any concept f, if it is eliminated in one of the queries, then it has an inner product of
at least £ with one of the vectors v1.vs,....,vq. If f is not eliminated, then it is a possible target concept and
thus has an inner product of at least £ with the vector vg4+1. Therefore, all concepts have inner products of at
least £ with one of the vectors in v, v, ..., Ug+1-

Let @ be the subspace spanned by the vectors vi,vs,...,v4+1. Then every candidate concept f, when
projected to @, has a length of at least £ since it has an inner product of at least £ with a unit vector in Q.
We use f? to denote the projection of f into subspace Q. And we define S to be

s=> Il

feF

Obviously, we have S > s - £2.

On the other hand, since @ is a subspace of dimension at most (¢ + 1), the maximum possible value of
S is bounded by the sum of the (¢ + 1) largest eigenvalues of C. This problem of approximating vectors in
high dimension by vectors in lower dimensions is can be solved by the Singular Value Decomposition (SVD),
sometimes also known as the Principal Component Analysis (PCA). The readers are referred to [S88, CC80,
B95] for comprehensive discussions.

Therefore, we have

Immediately from the theorem, we see a continuous trade-off between the advantage an algorithm can
achieve and the number of queries it needs to make. This trade-off can be very non-linear: it completely
depends on how the eigenvalues of the correlation matrix are distributed. If all eigenvalues are similar, then
the advantage of an algorithm will increase almost linearly with the number of queries. If some eigenvalues
are much larger than others, then an algorithm might gain a lot of advantage in the first few queries. But
after that, it has to make a lot of queries to make a tiny progress — interested readers can verify that this is
exactly the case for the example given in Section 4.2.

4.4 Applications
We discuss several applications of Theorem 2 by proving 2 corollaries.

Corollary 1 Let F = {f1, f2, ..., fa} be a concept class such that for every pair i # j, |{fi, ;)| < 1/d. Any
learning algorithm that makes q queries of tolerance l/dl/3 to an adversarial SQ-oracle and has an advantage
of 1/d"/® in learning F satisfies that
q>d'/3/2-1.

Proof: The correlation matrix C is close to the identity matrix I. Actually each entry of C — I is bounded
by 1/d. By the Gersgorin Theorem [HJ85], all eigenvalues of C — I are bounded by 1. So all eigenvalues of C
are bounded by 2. So the Inequality 15 becomes 2(q + 1) > d - £2. Setting &€ = 1/d'/?, and the Corollary is
proved. |

Comparing this corollary to the negative result in [BFJ+94], we used a weaker condition on the SQ-
dimension (that |(f;, f;)| < 1/d instead of 1/d*) to achieve asymptotically identical bounds, and the proof is
simple.

Corollary 2 Let F = {fi, fa,...., fa} be a concept class such that for every pair i # j, |{fi, fi) — A < 1/d?,
where X is a constant. If a learning algorithm doesn’t make any queries, it has an advantage of at most

A/ W in approzimating all concepts in F. To achieve an advantage € with tolerance €, an algorithm

needs to make d(e> — \) — 1 queries to an adversarial SQ-oracle.
Proof: We first cite a result that is a corollary to the Ger§gorin Theorem[HJ85].

Lemma 14 (Corollary 6.3.4, p.p. 367, [HI85]) Let A € M, be a normal matriz and let E € M,. If A
is an eigenvalue of A+ E, then there is some eigenvalue A; of A for which |A — Xi| < [||E||l,- [|

14

The correlation matrix C is close to the matrix M that has 1’s on the diagonals and A on the off-diagonal
entries. Let E = C — M, and then each entry of F is bounded by 1/d, and thus we have |||E|||, < 1/d.
Obviously M is a norm matrix. The largest eigenvalue of M is \; =1+ (d — 1)\ and all the rests are 1 — A.

Let A1 > --- > A, be the eigenvalues of C. By Lemma 14, we know that A1 < 1+ (d — 1)A +1/d, and
Ai<l—A+1/dfori=2,..d.

So if an algorithm doesn’t make any queries, then its maximum advantage is bounded by

\/%Z\/H(d—cll),\ﬂ/d_

Suppose g queries are made, then we have

d-€ <14+ d—DA+1/d+ (1 —A+1/d)g,

or

(€ —-XN)-d—1+X-1/d N
> -2 -1
4z 1=x+1/d zd(e =) -1
|

This result is similar to that in [YO01]. Particularly, in the case that no query is made, the two are almost
identical. However, in general they are not directly comparable. In [Y01], a more restricted condition is used:
one requires that |{fi, fj) — A\| < 1/d> instead of 1/d”. However, their result is against an honest SQ-oracle,
which is stronger than one against an adversarial SQ-oracle. Nevertheless, the Theorem 2 makes our proof
very simple.

5 Conclusion and Future Work

We proved 2 lower bounds for SQ-learning algorithms. The first lower bound is for a uniformly correlated
concept class and works against the honest SQ-oracle. This lower bound is almost tight up to a logarithmic
factor, and is strong enough to imply the separation of SQ- and PAC- learning of noisy PARITY functions
with a high noise rate. This lower bound improves previous results by both extending the range of concept
classes and using a stronger SQ-oracle model. The second lower bound is for any concept classes and against an
adversarial SQ-oracle. This lower bound applies to a much wider range of concept classes than previous results.
It also shows a continuous trade-off between the advantage an algorithm has and the number of queries it needs
to make. This trade-off could be useful in designing learning algorithms. As demonstrated in Section 4.4, this
lower bound almost immediately implies some previous results in the literature, and sometimes yields even
stronger ones.

Some techniques used in the proofs may have independent interests. In proving the first lower bound, a
quantity, namely, the all-pair KL-divergence is introduced, which plays a very important role in the proof.
Another technique, namely using unbiased queries (“semi-ideal” queries) to simulate biased queries (“bad”
queries) was used. In proving the second lower bound, a connection to the Singular Value Decomposition
(SVD) was made.

There are still many open problems remaining.

e Tighter Lower Bounds.
The first lower bound we proved in this paper is £(d/ log d), which seems still a logarithmic factor short
of being tight. It would be interesting to have a truly tight lower bound. A tight lower bound would
directly imply that the “SQ-based PAC algorithm” model is essentially the same as the “honest SQ-
oracle” model, at least for certain concept classes. Also a better lower bound translates to a better
separation of the SQ model from the PAC model. We conjecture that an Q(d) lower bound exists.

We don’t know if the second lower bound we proved is tight either. Actually we conjecture that it is not.
However, new techniques might be needed to prove a tighter bound.

e More General SQ-oracle Model.

The second lower bound is only for the adversarial SQ-oracle model. Can we prove a similar result for
the honest SQ-oracle model?

e Complete Characterization of SQ-leaning.

The SQ-dimension as defined by Blum et. al. [BFJ+94] characterizes the weak learnability of a concept
class. If the SQ-dimension is high, then the class is not weakly learnable, and if the dimension is low, then
the class is (non-uniformly) weakly learnable. However, it wasn’t clear that for strong learning, which
characteristics we should consider. The second lower bound in this paper suggests that the eigenvalues
of the correlation matrix might be a useful quantity. In this paper we proved that these eigenvalues lead
to a lower bound. If we can prove a matching upper bound using the eigenvalues, then we would have a
much better understanding of general SQ learning (rather than only for weak learning).

15

Acknowledgment

Jeff Jackson initiated the (still on-going) quest for a tight lower bound on SQ models, and remains a main
driving force behind all the work that lead to the first lower bound in this paper. It is him who first suggested
that the KL-divergence could be useful to look at. Many stimulating discussions with him greatly helped
the author understand the (quite subtle) differences between various models of SQ-oracle. He proved to be a
wonderful error corrector, too.

The author thanks Avrim Blum for his many brilliant suggestions, and in particular, the suggestions of
looking into eigenvalues for useful bounds in the arbitrary concept class case. This suggestion contributed
significantly to the second lower bound.

The author thanks Ioannis Koutis, Francisco Pereira and Xiaojin Jerry Zhu for useful discussions and
comments and Bartosz Przydatek for careful proofreading.

References

[AS95] Javed A. Aslam and Scott E. Decatur, Specification and Simulation of Learning Algorithms for Effi-
ciency and Noise-Tolerance, In COLT 1995, pages 437-446. ACM Press, July 1995.

[B95] Christopher Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995.

[BFJ+94] Avrim Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Mansour, and Steven Rudich.
Weakly Learning DNF and Characterizing Statistical Query Learning Using Fourier Analysis. STOC 1994,
pages 253-262, 1994.

[CC80] Christopher Chatfield and Alexander Collins, Introduction to Multivariate Analysis, Chapman and
Hall, 1980.

[HJ85] Roger Horn and Charles Johnson, Matriz Analysis, Cambridge University Press, 1985.
[K59] S. Kullback, Information Theory and Statistics, New York: Dover Publications, 1959.

[KL51] S. Kullback and R. A. Leibler, On Information and Sufficiency, Annals of Mathematical Statistics 22,
pp. 79-86, 1951.

[J00] Jeff Jackson On the Efficiency of Noise-Tolerant PAC Algorithms Derived from Statistical Queries. In
Proceedings of the 18th Annual Workshop on Computational Learning Theory, 2000.

[K93] Michael Kearns. Efficient noise-tolerant learning from statistical queries. In Proceedings of the 25th
Annual ACM Symposium on Theory of Computing, pp.- 392-401, 1993.

[S88] Gilbert Strang, Linear Algebra and Its Applications, third Edition, Harcourt Bruce Jovanovich Inc.,
1988.

[V84] Leslie Valiant, A theory of the Leanable. In Communications of the ACM, 27(11): 1134-1142, November
1984.

[Y01] Ke Yang, On Learning Correlated Boolean Concepts Using Statistical Query, In the Proceedings of the
12th International Conference on Algorithmic Learning Theory (ALT’01), LNAI 2225, pp. 59-76, 2001.

[Y02] Ke Yang, New Lower Bounds for Statistical Query Learning, in the proeeding of the 15th Annual
Conference on Computational Learning Theory, COLT 2002, Sydney, Australia, July 8-10, LNCS 2375,
pp- 229-243, 2002.

16

