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Correction. In the FOCS’02 paper of the author (see [3]) the formulations of
both conjectures contained trivial errors, which made the conjectures trivially false.
In this paper we correct these errors.

Abstract. A measure p, on n-dimensional lattices with determinant 1 was in-
troduced about fifty years ago to prove the existence of lattices which contain points
from certain sets. u, is the unique probability measure on lattices with determinant
1 which is invariant under linear transformations with determinant 1, where a lin-
ear transformation acts on a lattice point by point. Our main goal is to formulate a
conjectured 0 — 1 law about p,. In the second part of the paper we will also give a
method for generating a random lattice with the distribution u,. As we will see, there
are many known and proven 0 — 1 laws concerning random structrues, but they are
valid for a much smaller set of properties, e.g. first-order definable properties. The
infinite sequence (P, | , n =1,2,...) is a property of lattices if for each n, P, is a set
of n-dimensional lattices with determinant 1. We say that a property P,, n=1,2,...
is polynomial time computable (p.t.c.) if there is a probabilistic Turing machine T
so that given a lattice with any basis as an input 7" decides with high probability in
polynomial time whether P, holds. The conjecture states that for any p.t.c. property
if the integer n is sufficiently large then the probability pu,(P,) is either close to 0 or
close to 1. More precisely we have lim,, o, max{p,(P,), un(—P,)} = 1. The conjecture
implies P # NP so there is not much hope for proving it, but it gives a way to create
a large number of hard lattice problems. (E.g. it implies that for any fixed set H of
volume 1 in R" it cannot be decided in polynomial time whether a lattice contains a
nonzero point from H.) We do not think that there is any reason to belive that it is
easier to prove P # NP through the conjecture than in any other way. Our goal is
rather to give a way to create a large collection of computationally hard problems (by
accepting a single statement.) As we will show some of these problems may be useful
for cryptographic purposes.

Remark In the FOCS’02 paper of the author ([3]) the conjecture mentioned in the
abstract has been formulated. This formulation contains an error. Namely instead of
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lim,,, oo max{ i, (Py), pn(—FP,} = 1 (as stated in the present abstract) it said “either
lim, ,(P,) = 1 or lim, ,o(P,) = 0”. This is trivially false for the property P,
which holds for all lattices if n is even and does not hold for any if n is odd. The
FOCS’02 paper also describes connections of the stated conjecture with conjectures of
axiomatic set theory and gave methods for generating the distribution of the random
lattices. In this part of the paper we describe the statement of the conjecture and the
mathematical problems related to it in greater detail. We will deal with the other two
topics in the second part of this paper. In the FOCS paper a stronger version of the
conjecture, Conjecture 2 was also formulated (with the same error). The definition of
a polynomial time computable property for Conjecture 2 was missing from the paper.
Here we give the complete definition. (The definition used for Conjecture 1 is not
applicable because in this case it makes the error term larger than the main term.)

Introduction. Definition. If a4, ..., a, € R" are linearly independent vectors then
the set of all of their linear combinations with integer coefficients is a lattice. aq, ..., a,
is a basis of the lattice (if n > 1 then a lattice has many different bases). If L is a lattice
then the determinant of L, that is, det(L) is the absolute value of the determinant of
the matrix whose columns are ay, ..., a, where ay, ..., a, is an arbitrary basis of L.

Notation. We will write p.t. for “polynomial time” and p.t.c. for “polynomial time
computable” throughout the paper.

Random structures has a useful role in theoretical computerscience and in many
branches of mathematics. There are several examples where with probabilistic meth-
ods we are able to construct structures with certain desirable properties but there is
no known explicit construction for the same task. Nonconstructive proofs were known
in mathematics for a long time. E.g. Dirichlet’s theroems about simultaneous Dio-
phantine approximation or Minkowski’s convex body theorem about the existence of
lattice points are based on the Pigeonhole principle and so they do not give a method
of constructing the object whose existence has been proved. Another example from
the theory of lattices is Mahler’s proof of the Minkowski-Hlawka theorem [9] about
the existence of lattices that do not contain points from certain sets. This example
is especially important for us because for the proof Mahler has introduced a measure
1, defined on the Borel measurable subsets of lattice,, where lattice, is the set
of all lattices in R™ whose determinant is 1. He proved essentially (in the form of an
averageing argument) that the set of lattices with the desirable property has a nonzero
measure. U, is a measure defined on the Borel measurable subsets on lattice,, with
the following properties:

(1) it is invariant under linear transformations with determinant +1,

(2) each compact set has a finite measure, and



(3) for any Borel set B we have p,(B) = sup{u,(C) | C C B and C is compact }
and p,(B) = inf{y,(G) | B C G and G is open }.

(In other words p, is a regular Borel measure.) Moreover p, is unique with these
properties apart from a constant factor. We will show later that there is a natural
topology on the set of lattices. The Borel sets are the elements of the smallest o-algebra
consisting of subsets of 1attice, which contains all of the closed sets according to this
topology. A measure y is invariant under linear transformations with determinant +1
if for every Borel set X C lattice, and for every linear transformation A on R”
with determinant +1, we have u(X) = p{AL |L € X}, where for each lattice L,
AL = {Av | v € L}. This invariance property and p,’s uniqueness with respect to it
means that p, is not only a possible measure on the set of lattices, but it is the natural
measure on them in the same sense as the n-dimensional volume (i.e. the Lebesgue
measure) is the natural measure on R".

Mabhler also proved that u,(lattice,) < oo, so u,(lattice,) 'u, is a probabil-
ity measure, however this measure was not investigated from a probabilistic point of
view. (In the follwing pu, will denote the probability measure.) The systematic use
of probabilistic notions for proving existence theorems was introduced by Erdos for
combinatorial problems and lead to the solution of many problems both in combina-
torics and in other fields. In particular in theoretical computerscience the technique
of probabilistic construction is widely used and it is closely connected to the notion of
probabilistic algorithm. This and the existence of many unsolved algortihmic questions
about lattices would in itself be sufficient motivation to investigate u, as a probability
measure from an algorithmic point of view. E.g. we can ask whether a random lattice
with the distribution p, can be generated algorithmically in polynomial time (as we
will see the answer is yes), then we may also ask what are the properties of a ran-
dom lattice in the same sense as Erdos and Rényi studied the properties of a random
graph. Our conjecture says that this second question has a surpsirsing answer namely
for each € > 0 and for each fixed property which can be tested by a polynomial time
algortihm if n is sufficiently large then the property holds either with a probability
of at least 1 — ¢ or with a probability less than ¢ (the choice of the two possiblities
may depend on n). This type of phenomenon for first-order definable properties on
certain random structure has been known and studied in great detail for a long time
as we describe it below. (In the case of first-order definability the an even stronger
statement is true, namely the fact whether the probability is close to 0 or 1 does not
depend on n.) Before we describe the known 0 — 1 laws we note only that the exact
formulation of the conjecture, namely what is a polynomial time coputable property
for lattices is not easy. We have to deal with three different and probably unavoidable



difficulties.

(1) a latttice is usually presented by a basis, however a lattice has many different
bases and to decide whether a property holds or not can be easy starting from one
bases and difficult starting from another. We avoid this problem by defining a prop-
erty as polynomial time computable if there is an algorithm which if gets a lattice L
represented by any basis (which consists of not too long vectors), is able to decide with
high probability whether L has the property or not.

(2) the points of a lattice and so the basis vectors as well which represent the lattice
are points R", therefore they are sequences of real numbers and each real number is
an infinite sequence of bits so it cannot be an input of a polynomial time algorithm.
We use here a well-known solution, that is, we consider each real number as an oracle
which gives an approximation of the real number o with precision 2¢ to the algorithm
at a cost ¢ (counted in the time of the algorithm). A consequence of this solution
is that in any fixed algorithm we use only a polynomial number of bits of the real
numbers used in the representation of the input lattice. This seems to indicate that
we actually do not need real numbers and perhaps we can reformulate the conjecture
speaking about lattices with integer or rational points. As we will prove later this is
not, possible.

(3) We cannot expect that an algorithm will decide for all lattices whether a prop-
erty P holds or not. This is again a consequence of the fact that the lattices are defined
over the reals and so two lattices one with P the other with =P can be arbitrary close
to eachother. Therefore getting the lattice only with a finite precision may not be
enough. In fact our representation of lattices with an arbitrary basis, as described in
(1), implies that for every nontrivial property P there is no polynomial time algorithm
which decides whether P holds or not for every L. Moroever an algorithm may give
different answers for the same lattice if it is presented with different bases. Therefore
our final definition of what is a property and an algorithm which tests it in polyno-
mial time will be a probabilistic one which takes into account the mentioned error
possibilities in a quantitative sense.

0-1 laws. Assume that we pick a random graph on a vertex set consisting of n
elements so that for each pair of vertices {a, b} the probability that the unordered pair
{a, b} is an edge of the graph is %, moreover all of these events for the various pairs
of vertices are independent. For any first-order formula ¢ in the language of graphs
let p(¢,n) be the probability that ¢ holds on the random graph on n vertices. Ron
Fagin has proved (see [6]) in a more general form that for any fixed first-order formula
@ either lim,,_, o p(p,n) = 0 or lim,_, p(p,n) = 1, that is, the 0 — 1 law holds for the
first-order properties of random graphs. The theorem gives a surpirsingly complete



picture about the behaviour of first-order formulae on random graphs at least in an
asymptotic sense. It has been generalized in many directions. E.g. we may pick the
probabilities of the individual edges in a more general way or instead of first-order
formulae we may allow second-order formulae with some strong restrictions on the
second-order quantifiers. A third possibility is that instead of the binary relations of
the graphs we pick random relations of larger arities. All of these directions were very
thoroughly investigated and led to many interesting results (see [11], [5]).

From the point of view of constructing graphs (or other structures) with interest-
ing porperties, all of these 0-1 laws have a common deficiency, namely the class of
properties for which the 0-1 law holds, e.g. first-order definable properties in the case
of random graphs, is very limited. The really interesting properties of graphs usually
cannot be defined by a first-order formula. The mentioned generalizations for wider
classes of formulae does not change this picture.

Our conjecture will be a statement which says that on a certain class of random
structures (random lattices) a 0 — 1 law holds for the p.t.c. properties (although in a
somewhat weaker sense, since the fact whether the probability is close ot 0 or close to 1
mat depend on n). First we note that such a 0-1 law does not hold for random graphs
with the described randomization. Indeed if n is the number of vertices then e. g. the

property “the number of edges is less than %(’2‘) always holds with about probability
1»

5 - We may try to avoid this problem by restricting our attention to graphs with a
fixed number of edges, but then we may easily find some other parameter (e.g. the
number of triangles in the graph) wich will have a nontrivial distribution. Actually, as
we will prove later, if each structure has a unique polynomial size reperesentation which
can be computed in polynomial time from the representation used by the algorithm
then there is no 0 — 1-law for p.t.c. properties. This excludes the existence for such a
0 — 1-law for most of the well-studied classes of random structures and also for lattices
over the integers or rationals.

The conjecture has a motivation in measure theory, more presisely an analogy with
the axiom of the existence of a measurable cardinal, as we will describe it in the second
part of the paper. J. H. Lutz and E. Mayordomo fomulated a conjecture, implying
P # NP, which also has a measure theoretic motivation although in a somewhat
different sense, see [13]).

The statement of the conjecture. In this section we give the necessary def-
initions for the formulation of the conjectured 0 — 1-law. We describe the complete
definition of the measure y,,, still, to show that this really defines a measure and espe-
cially to show that p,(lattice,) is finite, requires some extra work. This is described
e.g. in [9] but to make the paper more self-contained we will also give the proofs



of these facts in the last section. Some of the definitions were already given in the
introduction but we repeat them here.

Definition. If n is a positive integer then an L C R" is an n-dimensional lattice if
there are n linearly independent vectors aq,...,a, € R" so that for all z € L there
are integers o, ..., o, wWith x = >, oya;. A linearly independent system of vectors
ai,...,a, with the described property will be called a basis of L. The absolute value
of the determinant whose columns are a4, ...,a,, where ay,...,a, is a basis of L is
called the determinant of L. Clearly the determinant of the lattice does not depend on
the choice of the basis ay, ..., a,. We will denote the set of all n dimensional lattices
whose determinant is one by lattice,,.

First we define a measure (and a topology) on the set of all sequences consisting of
n linearly independent vectors in R™. This space consists of all of the possible bases
of lattices so it helps in the formulation of the final definition of u,.

Definitions. 1. Let basis, be the set of all sequences aq,...,a, € R" so that
ai,...,a, are linearly independent and the matrix formed from them has determinant
1 or —1. We will consider each (ay,...,a,) € basis,, as an n xn matrix whose columns
are a, ..., a, and therefore we may assume that basis,, C R™.

2. Ifa = {ay,...,a,) € basis, then let ¢)(a) be the lattice whose basis is a1, . .., a,.

We will define a topology on lattice, and our measure will be defined on the
Borel sets of this topological space. The set basis, has a toplogy on it induced by
the topology of R"™. (We get all of the open sets in the form basis, N H where H is
an open set of R"2.) This induces a toplogy on lattice,, namely G C lattice, will
be open iff ¥y~!(G) is open in basis,. (In the last section of this part of the paper
we describe this topology and its most important properties in greater detail.) The
Borel sets of lattice, are the elements of the smallest o-algebra on lattice, which
contains all closed subsets. It is easy to see that a B C lattice, is a Borel set iff
¥ ~1(B) is a Borel set of basis,, (or of R™).

We want to define a measure on the Borel sets of lattice, which is invariant
under linear transformations with determinant £1. First we define a measure with
this property on basis,.

1. If V C R” then V° will denote the set of all vectors yv where v € R, || < 1
and v e V.

2. On the Borel sets of R™ the n dimensional volume is a measure which will be
denoted by vol,. (This is the the Lebesgue measure restricted to the o-algebra of
Borel sets. The Lebesgue measure itself is defined on a larger o-algebra, the o-algebra
of the Lebesgue measurable sets. Each Lebesgue measurable set X can be written
int he form of X = YAS (symmetric difference), where Y is Borel measurable and



S C Z for a suitably chosen Borel measurable set Z with vol,(Z) = 0. In this case
the Lebesgue measure of X is vol,(Y).)

3. If A C basis, is a Borel set then let p,(A) = vol,2(A°)

It is easy to see that p, is a measure with the required property, namely, if T
is a linear transformation on R™ with determinant 1 or —1 and A C basis, is a
Borel set, then p,(TA) = pn,(A). (Here we apply T to A point by point and for
each a = {(a1,...,an) € basis,, Ta = (Tay,...,Ta,).) The reason for the equality
pn(TA) = pp(A) is that A acts on the elements of basis, as a linear transformation of
R”2, namely the tensor product of 7" with the identity matrix and so the determinant
of this linear transformation on R™ is +1.

The measure p, is not a probability measure e.g. p,(basis,) = oco.

Since a lattice has infinitely many different bases, 1v~1(L) is an infinite set for each
L € lattice,. For the definition of the measure p, we select an element ¢(L) of
t~!(L) arbitrarily for each L € lattice,. In other words ¢(L) is a basis of L. There
are an infinite number of functions ¢ with this property and we fix one so that for
each Borel set B C L the set ¢(B) is also a Borel set.

E.g. the following definition of ¢(L) = (ay,...,a,) meets this requirement. We
define a; by recursion on i. Assume that aq, ..., a;_1 has been already defined with the
property that there is at least one basis of L containing a4, ..., a; 1. a; will be a vector
in the lattice L so that there is at least one basis of L containing a4, ..., a; and a; is of
minimal length with this property. If there are more than one such vector then a; will
be the smallest according to lexicographic ordering.

Definition. If A is a Borel subset of lattice, then let fi,(A) = pn(p(A4)). (It is
easy to see that fi,(lattice,) > 0.) Finally let p,(A4) = (ji,(lattice,)) " i, (A).

We will show that fi,, is a measure on the Borel sets of lattice,, and fi,, does not de-
pend on the choice of the function ¢ with the mentioned properties. We will also show
that that fi,(lattice,) < co. Actually there is an explicit formula for fi,(lattice,,)
(see [9]). The inequality fi,(lattice,) < oo implies that p, is a probability measure
defined on the Borel sets of lattice,. The most important property of this measure
is the following: if T is a linear transformation with determinant +1 and A is a Borel
set of lattices then p,(A) = u,(TA). (If L is a lattice then TL = {Tx|z € L} is also
a lattice, and if A is a set of lattices then TA = {T'L | L € A}.) This property easily
follows from the corresponding property of p,.

All of the definitions and theorems that we described up to this point were already
known for more than fifty years. The definition of u, is not satisfactory from a com-
putational point of view. (E.g. there is no known p.t.c. choice for the function ¢). In
the second part of the paper we will give an equivalent definition which can be used



for generating a random lattice with the distribution g, in polynomial time.

Definitions. 1. If L C R" is a lattice and a,, ..., a, is a basis of L then the length
of the basis ay,...,a, will be max , ||a;|.

2. We will assume that the input of a Turing machine can be a real number or a
finite sequence of real numbers. (Alternately the reader who is familiar with the oracle
representation of real numbers may think that each real number is represented by an
oracle and the cost of getting a rational approximation of it with precision 27 is i
time units.) A real number o, 0 < a < 2 is given as an infinite sequence of rationals
T0yT1y- -+, ks --- SO that |1y — a| < 27%+1 and 74 has at most k + 2 binary bits. (This
representation is not unique but has the property that an r, can be computed if «
is known approximately with an error of at most 27%~!. In contrast the binary bits
of a real number in certain cases cannot be decided knowing only an approximation
of the number.) An arbitrary real number f is represented by a pair (S, 51), where
B = Bo+ B, Bo is an integer given in binary form and £; € [0,2) is a real given in the
form described above. (The reason why we pick ; from an interval of length 2, instead
of the interval [0, 1), is that this way () can be selected even if only an approximation
of 8 is known.) This way, in time polynomial in &k, we can get an approximation of g
with a precision of 27%(|8|+1). Conversely if we are able to compute an approximation
of 5 in polynomial time then we are also able to compute the corresponding initial
segment of a representation. If a sequence of real numbers a4, ..., a; is given as input
then ¢ is given on the cells j+%i, ¢t = 1,2,.... We assume that at the beginning of the
computation the head of the Turing machine is at the first cell. Therefore, although
a real number as an input is an infinite 0, 1 sequence, during a p.t. computation only
a polynomial number of bits will be accessed. When we say that a Turing machine
solves a problem with a given input containing real numbers we mean that it solves
the problem with each of the possible representations of the real numbers in the input.

3. Suppose that P = (P, | n =1,2,...), is a property of lattices with determinant
1. (That is, P, C lattice,). We say that P is p.t.c. if there is a probabilistic Turing
machine 7" so that for all ¢ > 0 there is a ¢ > 0 so that if n is sufficiently large and L
is a random lattice chosen with the distribution p,, then for any basis a4,...,a, of L
with length less than 2™ if T gets n,c, ay,...,a, as input then in time n° it provides
an output z so that with a probability of at least 1 —n=¢ (for the randomization of L
and the random steps of T') we have x = 1 iff L € P,.

Conjecture 1 Suppose that P = (P,, n=1,2,...) is a p.t.c. lattice property. Then
limy, 00 max{ iy, (Py), tin(—(Prn))} = 1, moreover for all ¢ > 0 if n is sufficiently large
then either p,(P,) < n ¢ or u,(P,) >1—n"¢.



We may replace the condition p.t.c. by “definable by a polynomial size circuit”,
then we get a somewhat stronger and perhaps more natural statement.

The conjecture seems to be compatible with every known lattice algorithm. (The
conjecture was presented in a talk at the MSRI Workshop on Number Theory and
Cryptography in the fall of 2000 and since then there was no indication that the
conjecture may be false.) Another argument in favor of the conjecture is the following.
The same general principle about lattices, namely that from an algorithmic point of
view (that is, if we perform computations about a lattice starting from an arbitrarily
given large basis) almost every lattice looks the same, lead the author to theorems
about the equivalence of worst-case and average-case lattice problems (see [1]).

This conjecture implies P # N P. Indeed if P = NP then the shortest vector in a
lattice can be found in p.t. moreover there is a p.t.c. rational a(n) > 0 so that in a
random lattice L the probability that the shortest nonzero vector is shorter then a(n)
is about % If this porperty is P, then the 0 — 1 law clearly does not hold.

There is no reason to think that to prove that P # NP through the conjecture is
easier then any other possible of proof. However unlike the statement P # NP the
Conjecture has special cases which are not lower bounds concerning some computa-
tional model but “ordinary” mathematical statements. (Of course these statements
may not have any computational consequences.) Namely for any property P, (once
we have proved that P, is p.t.c.) the statement of the conjecture has nothing to do
with lower bounds it is a mathamatical statement in a classical sense. E.g. we know
that there is a p.t.c. algorithm which approximates the number of lattice points in a
large ball (large compared to a known basis). Based on this and the conjecture we
expect that the number of lattice points of a random lattice in the ball will be always
(approximately) the same and indeed this can be proved. (We can prove a similar
theorem for random lattices about k-tuples in a large ball, where 1 < k < n — 1. The
proof of the general statement is more difficult than the £ = 1 special case.) Another
consequence of the conjecture where we do not have a proof is the following. Let us
consider a p.t. algorithm computing a relatively short vector in the lattice e.g. the
LLL algorithm (cf. [12]). If we have a fixed lattice L then we are able to pick a ran-
dom basis b from a large cube (large relative to a known basis). Starting with different
random choices for b the length of the short vector that our algorithm produces has a
distribution. It is a consequence of the conjecture that this distribution is essentially
independent of the lattice in the sense that if we pick various random lattices L then
with a probability close to 1 they will provide distributions which are indistinguishable
by p.t.c. We do not have a proof for this statement but its proof may be very much
easier then either the conjecture in general or the statement P # NP.



Remarks. 1. The Conjecture implies that there is no p.t. algorithm that selects a
uniquely defined nonzero element from each lattice (or selects a unique basis).

2. We do not know whether P # NP implies the conjecture.

3. Based on the conjecture we can create a large number of computationally hard
lattice problems. If S C R™\{0} let ps be the probability that a random lattice with
distribution u, has a point in S. We will show that if the volume of S is 1 then both
ps and 1 — pg is bounded from below by a positive constant. Therefore according to
the conjecture there is no polynomial time algorithm which decides whether a given
lattice has a point in S. (We used a similar argument to show that the conjecture
implies P # NP.) Since S now can be a set of any shape (there is no assumption
about convexity of connectivity) this creates a huge number of computationally hard
problems. Based on the P # NP assumption we have similar conclusions only for
spheres (in various metrics) and to expand it to other type of sets seems to be very
difficult and probably different proofs for each of sets S. The assumption vol,(S) =1
can be substituted by n~¢ < vol,(S) < nc.

Random structures without 0 — 1-laws for p.t.c. properties. In this section
we show that if each structure has a p.t.c. unique representation then there is no
0 — 1-law for p.t.c. properties.

Definitions. 1. Suppose that for each n, S, is a set of structures and v, is a
probability measure defined on the set of all subsets of §,,. Assume that each element
of S, can be uniquely represented by a 0, 1-sequence of polynomial lengths. (For the
sake of simplicity we identify now the structure with this representation.) Assume
further that there is a p.t. probabilistic algorithm which generates the distribution
v, that is, given n as an input it provides structure S € &, as an output with
probability v,({S}). In this case we will say that v, is a p.t.c. distribution on the
set, of the uniquely represented structures S,, n = 1,2,.... We will call the sequence
of measures v, trivial if there is a seqeunce of structures X,,, with X,, € S,,, so that
lim,, o v, (X,,) = 1. (In other words v, is trivial if for all large enough n it is essentially
concentrated on a single structure X,,).

2. We say that the property P, on S,, n = 1,2,...is p.t. definable if there is a
p.t. algorithm A which for all n, at the input (n,S) where S € S, decides whether
S has property P, or not. If lim,,_,o, max{v,(P,),v,(—P,)} = 1 then we say that the
0 — 1 law holds for property P,, n=1,2...

Lemma 1 Suppose that v, is a non-trivial polynomial time computable distribution
on the set of the uniquely represented structures S, for n =1,2,.... Then there is a
polynomial time definable property P, on S,, n = 1,2,... so that the 0 — 1 law does
not hold for property P,, n =1,2,....
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Before we start the proof we describe a consequence of this lemma which are
important from our point of view.

We cannot consider lattices consisting of points with integer (or rational) coordi-
nates. It is easy to see that there is a p.t. algorithm which given any integer lattice
as an input, presented with an arbitrary basis B with a polynomial number of bits,
selects a unique basis of L which does not depend on B. Indeed, let e; be the ith unit
vector and let ¢; be the smallest positive integer so that c;e; € L. In this case the
vectors c;e; are in the lattice and they are also linearly independent. Moreover the
sequence c;e; is uniquely determined by the lattice. It is easy to see that a uniquely
determined basis can be constructed from them.

This is the reason why we gave our probability distribution on lattices whose points
are arbitrary vectors in R"™. This caused a substantial complication in the way of pre-
senting lattices (we had to deal with the representations of real numbers), however
the lemma shows that there is no 0 — 1 law for lattices consisting of integer vec-
tors. Naturally when we use a random lattice, presented by a basis, as an input for
our computation, we will use a rational approximation of the basis, however such an
approximation will not determine the lattice uniquely.

Proof of Lemma 1. Assume that each structure in §,, is represented by a 0,1

sequence x(()n), e ,xg? where k, = n°. Suppose that for infinitely many integers n

we have e.g. un(:v(()") = 1) > 7 and assume that such an n is fixed. We pick a 0, 1-
sequence d;, t = 0,...,k, by recursion on ¢ so that o = 1 and for all t = 1,...,k,
we have v,(zo = 1 Azy = 0 A /\;-;11 zj =06;) 2up(xo=1Azp =1=6 A /\3-;11 xj =
d;), that is, we always pick ¢, from the two possibilities so that the initial sequence
do,...,0; get the greater probability. The nontriviality of the sequence v, implies
that there is a 0 < o < 1 so that for an infinite number of integers n we have

(n

Un(zo = 65 AL Ay, = 0, ) < a. For such an integer n let ¢, be the smallest
integer so that v, (zo = 6 A ... Az, = 0") < . The minimality of ¢, implies that

Un(xo = SMALLA Xy, = 5,&?)) > ¢ (since z;, has only two possible values). Therefore

the 0 — 1 law does not hold for the property P, = (zo = 6V A ... A zy, = 67).
As we defined P, it is definable by a polynomial size circuit but it is not necessaryly
p.t.c. since the sequence Jy, ..., dx, may not be p.t.c. However if we change the defining
inequality of d; into v, (xg = 1 Axp = 6 A ;;11 z;=06;) >—n" 4+ y(zo=1Az =
1 — 6 A N} x; = ;) then the suequence 8;, i = 1,...k, is p.t.c. (although it is not
necessarily unique.) This completes the proof of Lemma 1.

Lattices over the reals and integers. Our conjecture is formulated about
lattices over the reals, that is, the lattice points may have arbitrary real coordinates.
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In contrast most of the computational problems concerning lattices are about lattices
where the coordinates are integers or at least rationals. There is no essential difference
between the integer and rational case, besause for each rational lattice L there is a
single integer m so that mL is an integer lattice. (Naturally if we change the “scaling”
this way we change the determinant as well.)

If we have a real lattice we can always approximate it with a rational lattice.
Actually our definition of a lattice property implies that we are using only lattice
properties wich can be decided by knowing only a good enough rational approximation.
As a consequence, although our inputs are real numbers given by infinite 0, 1-sequences,
we use only a finite initial segment (of length n¢) in our computation. The reason why
we do not cut down the remaining part in advance is that in the conjecture the value
of ¢ is not fixed but depends on other quantified parameters. (Lemma 1 shows that
the conjecture modified for a fixed length is not true.) In principle we could cut down
the sequence representing the real numbers after the first f(n) bits where f(n) grows
faster then polynomial. This would mean that we are working with rational lattices
but there may not be a basis with polynomial size representation. This solution does
not seem to offer any advantage compared to the real lattices and makes the definition
of the distribution y, more complicated.

Since we use only polynomial size initial segments of the 0, 1-sequences representing
the real numbers every conclusion of our conjecture which says that it is hard to decide
whether the real lattice has property P, is actually a hardness statement about the
rational approximating lattices. The following (trivial) observation is helpful in making
connection between the properties of the random lattice and of the approximating
rational lattices. In this statement we are refering to the representation of a lattice as
used in the conjecture, that is, it is given by an arbitrary basis of length not greater
than 2™ and the basis vectors and their coordinates are coded by a single 0, 1 sequence.

(1) If ¢1 > 0 is sufficiently large with respect to co > 0 and c3 > 0 then the first n
bits of the representation of a lattice L with determinant 1 determines the location of

the lattice points in a ball around 0 with radius 2" with an (additive) precision of
273,

The following lemma is also useful in this context. We will sketch the proof of this
lemma later when we provide alternative definitions for the measure p,.

Lemma 2 If X C R" is a Borel set, end L is a random lattice with distribution p,
then the expected number of nonzero lattice points in X is vol,(X).
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The lemma implies that if H C R"™ is a Borel set then the probability that there is
a nonzero lattice point in H is at most vol,(H). Assume now that our lattice property
is of the type “ there is a nonzero lattice point in the set G”. Suppose further that
G has a “small boundary”, more precisley if ¢ > 0 is sufficiently large with respect to
¢ > 0 the volume of the set of points which are closer than 27 to both G and R"\G

is smaller that 27 . (E.g. a convex set G in a ball of radius 2" always satisfies this
condition.) Then Lemma 2 implies that for a random lattice L and for a good rational
approximation L' with high probability the property holds for L and L' at the same
time. We will prove this lemma in the second part of the paper.

Stronger versions of the conjecture. In the definition of a p.t.c. lattice prop-
erty we allowed a polynomial size error in the choice of lattices. That is, we required
only that the algorithm produces a good answer with the exception of a set of lattices
S, where p,(S) could be as large as n~¢ for some large constant c. A consequence
of this is that if a lattice property P, holds only on a smaller set then the algorithm
which always says that the property does not hold makes P, p.t.c. in spite of the fact
that it does not give any information about it. E.g. if P, =“the shortest nonzero
vector is of length at most 1” then u,(P,) is about em2nlogn Qg according to our
original definition the property P, is p.t.c. The new definition will take into account
the size of the set, more precisely the probability of an erroneous answer for lattices
with propety P, resp. =P, must be small compared p(P,) resp p,(—FP,). We formu-
late a conjecture with this modified notion of p.t.c. property. This conjecture will be
stronger in the sense that it says something about properties which are satisfied only
on an exponentially small set.

Definition. Suppose that P = (P, | n = 1,2,...), is a property of lattices with
determinant 1 and for each n =1,2,..., P, C lattice, is a Borel set. We say that P
is p.t.c. with small relative error if there is a probabilistic Turing machine 7" so that
for all ¢ > 0 there is a ¢ > 0 so that if n is sufficiently large and L is a random lattice
chosen with the distribution pu, then for any basis a4, ..., a, of L with length less than
2" if T gets n,c, ai,...,a, as input then in time n¢ it provides an output x so that
the following holds:

(1) with the condition L € P, we have that with a probability of at least (1 —
n~)u(P,) for the randomization of L and the randomization in 7" the output is z = 1.

(2) with the condition L ¢ P, we have that with a probability of at least (1 —
n~=¢)u(~P,) for the randomization of L and the randomization in T the output is
z = 0.

13



Conjecture 2 Suppose that P = (P, — n = 1,2,...) is a lattice prop-
erty which is polynomial time computable with small relative error. Then
limy, 00 max{ iy (Py), tn(—(Pn)) = 1. Moreover for all ¢ > 0 if n is sufficiently large
then either u,(P,) < e~*1%8" or 1, (P,) > 1 — e~cl8n,

Remark. Note that in this form of the conjecture only the probabilities has changed
compared to the original version but the running times of the algorithms involved
remained polynomial.

The definition of polynomial time property in Conjecture 2 seems somewhat less
natural than in Conjecture 1 because of the two different types of errors. However we
can reformulate the conjecture in a stronger form which avoids this asymmetry. In the
earlier definitions we assumed that the lattice is presented with an arbitrary basis B
of length 2™. It is easy to see that starting from an arbitrary basis B of L of length
at most 2" we are able to generate in polynomial time a distribution Dy on the set
of bases of L whose length is at most 2** so that Dy does not depend on B. (This
is a consequence of the fact that we are able to pick a random lattice point from a
cube of size 22" with uniform distribution.) When we reformulate the conjecture we
assume that such a distribution Dy, is fixed and the lattice L is now always presented
by a random basis chosen by distribution Dy. In a similar way we assume that in the
reperesentation of each real number included in the input, the approximating rationals
are chosen according to a fixed distribution (which can be generated in polynomial
time from an arbitrary representation of the real number). In both cases we cannot
expect that the distributions in question can be generated exactly, we will assume that
the error (that is, the maximal distance of the various generated distributions from
eachother) is less than e™™".

Definition. Assume that a ¢ > 0 and probabilistic Turing machine 7" is fixed so
that for each positive integer n if T' gets n and a lattice L € lattice, as an input then
it always returns a 0 —1 output in time at most n°. For a lattice L € lattice, let pp 1
be the probability that if T gets as input the lattice L, (presented by a random basis
as described above) then the ouput of 7" is 1, where the probability is taken together
for the randomization of the representation of L and for the randomization in 7. For
each real number o € [0,1] let S, be the set of all lattices L € lattice, so that

prT < Q.

Conjecture 3 Suppose that c; is a positive integer and T is a Turing machine which,
given n and an n-dimensional lattice L with a basis of length at most 2°™ as an input,
always returns a 0—1 output in time n*. Then for all cy,c3 > 0 and for all sufficiently
large n the following holds:
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Ifa, B € (0,1) so that a+mn— < 3 then either u,(Sar) < € ™8™ or 1, (Sgr) >
1— efc:;nlogn.

We show that Conjecture 3 implies Conjecture 2. Indeed if Conjecture 2 does not
hold then there is a lattice property P = (P, | n = 1,2,...) and an infinite set X of
integers so that for all n € X, P, is polynomial time computable with small relative
error, by the Turing machine 7". This implies that if a = % and 5 = % +n~¢ then the
requirements of Conjecture 3 are violated by, T if ¢y, co, c3 are sufficiently large.

Remarks. 1. It is not clear whether there is a proof of “Conjecture 2 implies
Conjecture 3”. (Of course if both conjectures are true then the implication holds.)
The answer is probably “no” since in Conjecture 3 the Turing machine works only for
a fixed time n°.

2. We may replace the expression e~“"1%8" at both places in the conclusion of the
conjecture by n™%. We get a conjecture which implies Conjecture 1. Again we don’t
know whether the implication in the other direction can be proved

We describe below briefly some cryptographic consequences of Conjecture 2. We
will give a more detailed account in a separate paper. This form of the conjecture
still seems to be consistent with all known facts. It can be proved that this stronger
conjecture implies that the length of the shortest vector cannot be approximated in
p.t. upto a polynomial factor. Indeed as we will show in the second part of this paper
for any r > 0 the probability that in a random lattice L € lattice, there is a nonzero
lattice point in the ball of radius r around the origin is at least cy7y, "r"™ where ¢y > 0
is an absolute constant and -, is the radius of the n dimensional ball with volume
1. Assume now that there is a polynomial time algorithm A which approximates the
length of the shortest vector in any lattice within a factor of n® for some ¢; > 0. We
can argue the same way as in the proof of “Conjecture 1 implies P # NP”. Namely
there will be a rational » > 0 so that if \g is the length of the shortest vector in a
random lattice then the probabilities of both r < n™“ )y and r > n® )\, are greater
then e ¢"198" for some ¢ > 0. Therefore the property “the approximated value of L
provided by A is greater than r” does not statisfy the requirements of Conjecture 2
because it can be true of false both with a non-negligible probability.

The proof which gives that the probability that there is a nonzero lattice vector in
the ball of radius r around the origin is at least ¢y, "r", where ¢y > 0 and r < 7, also
guarantees that for all 7 < 2 if there is such a vector then with high probability it is
unique. (Unique in the sense that every such vector is parallel to it.) As a consequence,
Conjecture 2 implies that it is hard to approximtate the length of the shortest nonzero
vector upto a polynomial factor even if we restrict our attention to lattices where the
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shortest nonzero vector is unique upto a polynomial factor. This also implies that it
is not possible to find the nonzero shortest vector in polynomial time even in lattices
where it is unique upto a factor of n¢. (We say that the shortest nonzero v vector in the
lattice is unique upto a factor of A if for all lattice vector u, ||u|| < Al|v|| implies that
u and v are parallel.) Moreover form this proof we also get a method of constructing
hard instances of the n°-unique shortest vector problem. We describe how to construct
the dual of such a lattice (this is what actually needed in the cryptosystem described
in [4].) First we take a random n — 1 dimensional hyperplane H in R™ through the
origin. We choose it in a way that the normal vector of the hyperplane is taken with
uniform distribution from the sphere around the origin with radius 1. Next we take
a random n — 1 dimensional lattice Ly, with distribution p,_; in the hyperplane H
(whose shortest vector will be of length about ~y,_1). Multiplying every point in Ly by
(n=c"1)#, we get an n— 1 dimensional lattice L; in H whose determinant is D = n
Now we take a hyperplane K parallel to H and from distance D! from it. We pick an
arbitrary point € K and a random point a, of the n — 1 dimensional parallelepiped
wich has edges pointing from z to = + ay, ...,z + a,_1, where aq,...,a,_1 is a basis of
L. L will be the lattice whose basis is a1, ..., a,. It is easy to see that det(L) = 1
and the lattice points are located on hyperplanes parallel to H so that the distance
of the consecutive hyperplanes is D~! = n°t! > 2n¢y,_; while the lattice L; has a
basis shorter than 2+,. This implies that the dual Ly of L; has an n°-unique shortest
vector. It is not difficult to see that Conjecture 2 implies that it is not possible to find
the shortest vector in Lo or the hyperplane structure of L; in p.t. with a polynomially
large probability.

The described construction can be used in the public-key cryptosystem given by
Ajtai and Dwork in [4] where a lattice is needed with the properties of L;. In [4] instead
of constructing such a lattice an alternative way is provided to use only the hyperplane
structure associated with the lattice and it is shown that if the worst-case n°-shortest
vector problem is hard then it is also hard to break the cryptosystem. Now we provided
an alternative “guarantee”, Conjecture 2, for the cryptosystem. The conjecture also
implies that the version of the cryptosystem where not the hyperplanes but an actual
lattice is used is also safe provided that we pick the lattice in the described manner.
This has the advantage that the parameters (e.g. size of the key) are better than in the
version based only on the hyperplane structure. (We intend to return to this question
in a separate paper.) The reason is that for the proof which reduces the security of
the hyperplane system to the worst-case problem we need a bigger ratio between the
distance of the neighboring hyperplanes and the shortest vector in the lattice Ly. It
is not clear whether the difference is just an imperfection of the mentioned proof or

—c—1
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for the reduction to the worst case problem we really need a bigger ratio than for the
random construction.

Topology on the set of lattices. In this section we describe the properties of
the natural toplogy on the set of lattices. To make the picture more complete we will
consider also lattices whose determinant is not 1. Actually, as we have seen already,
this helps in the definition of the measure p,.

Definitions. £,, will denote the set of all lattices L. C R"™. B,, will denote the set of
all linearly independent sequence of vectors a1, ..., a, so that a; € R" fori =1,...,n. In
other words B,, is the set of all possible bases for n dimensional lattices. (According to
our earlier definition basis, C B, is the set of all bases for lattices with determinant
1.)

According to our definitions the elements of B,, and basis,, are sequences of length
n whose elements are n-dimensional vectors. We may identify such a sequence a1, ..., a,
with the n X n matrix, whose ith column is a;. This way each basis uniquely defines an
invertable n X n matrix over R and conversely the columns of each invertable matrix
from a basis of a lattice.

Definition. G,, will be the group of all invertible n by n matrices whose entries are
real numbers, §,, will be the subgroup of G, consisting of the matrices with determi-
nants +1, and Z,, will be the subgroup of S,, consisting of all matrices in S,, which
have only integer entries. (So we have Z,, C S, C G,.)

According to our earlier remark we will identify B,, with G, and basis, with S,,. In
the definition of a lattice we represented a lattice as a subset of R"™. Our identification
of a basis with an element of the group G, provides an alternative representation
which makes it easier to define topolgy and measure on sets of lattices. Namely we
can represent the lattice L as the set of set of all elements in G, whose columns form
a basis of L. Suppose that U,V € G, are two bases of the same lattice L. Then there
isa Z € Z, sothat U = VZ. This is the consequence of the fact that any two bases
of the same lattice can be transformed into eachother by a linear transformation with
integer entries and with determinant +1. We have that U,V € G, are the bases of
the same lattice iff they are in the same left-coset of the subgroup Z,,. Therefore each
lattice L, that is, every element of L, is represented by a left-coset of the subgroup
Z in the group G,, and in a similar way every element of lattice, can be uniquely
represented as a left coset of Z, in S,,.

Remark. The reason why we have left-cosets and not right-cosets is that the basis
vectors are columns and not rows of the matrix representing the basis. It is important
that if the matrix B is a basis of the lattice L then multiplying it from the right or
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left act differently on the corresponding lattices. Namely if A is an invertible linear
transformation then AB will be the basis of a lattice AL = {Ax | x € L}, that is, we
apply A on the lattice point by point. On the other hand BA will be a lattice which
has a basis that we get from the basis B by taking linear combinations of the basis
elements, where the coefficients for each new basis element, with respect to the old
basis, form a column of the matrix A.

The coset representation of lattices motivates the following definition.

Definitions. 1. The set of left cosets of the subgroup Z, in G,, will be denoted by L.
The one-to-one map of £,, onto L{ which takes every lattice L into the corresponding
coset of Z,, will be denoted by &,. We will denote by lattice( the set of all left-cosets
of the subgroup Z, in §,,. £ restricted to lattice, is a one-to-one map of lattice,
onto latticel. (Since both £, and L¢ are essentially the set of lattices it seems
tempting to simply consider the two sets as identical. However this would create a
confusion since each L € £, is a set of points in R™ while each L € L is a set of n by
n matrices.)

2. f V € G, then ¥,(V) € L, will denote the lattice whose basis consists of the
columns of V, while v, (V) will denote the coset representation of the same lattice.
That is, ¥, (V) = £(¥,(V)). According to the definition of the coset representation we
also have 9, (V) =V Z,.

3. If f is an arbitrary function defined on a set X and Y C X then f”(Y) will
denote the set {f(y) | y € Y}.

4. G, is a topological space with respect to the topology induced by the Euclidean
topology of R™. In fact G, is an open subset the n? dimensional Euclidean space. As
a consequence a set G is open in G, iff it is open in R". L¢ is a topological space with
repsect to the factor topology, that is, the strongest topology so that the canonical
map of G, onto L is continuous. In other words a set H C L is open in LS iff ¢, ' (H)
is open in G,,. We will always consider this topology on L{. On L, we will always
consider the unique topology so that £ is a homeomorohism between £, and Lf.

5. Since lattice; C L the topolgy on L induces a topolgy on lattice;. This
toplogy can also be defined in a similar way as we did it on £{ namely it will be the
strongest topology on lattice{ so that the restriction of the function v, onto S, is
continuous. Moreover a set H C lattice¢ is open iff ¢, '(H) is open in S,. The
topolgy on &, is induced by the topoly of R". A G C §,, is open in S, iff there is a
G’ C R™ which is open in R" so that G = G'N S,,. (S, is closed but not open in R™.)
We define a topology on lattice, as the unique topology so that the map & restricted
to lattice, is a homeomorphism.

The following lemma describes the most important properties of the topologies on
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L¢ and lattice!.

Lemma 3 Let n be a positive integer. The topology defined on L{ meets the following
requirements:

(1) if G C G, is open, then 9!'(G) is also open.

(2) each x € LE has a basis of neighborhoods consisting of compact sets.

(3) any two points of LE have disjoint closed neighborhoods.

(4) every V € G, has a neighborhood T so that 1), is one-to-one on T

(5) There is a partition of G, onto countably many sets Cy, Cs, ... so that for each
fixed 1 = 1,2, ... 1, is one-to-one on C; and C; is the difference of two open sets.

(6) LS is a locally compact Hausdorff space.

All of the statements of the lemma remain true if we substitute L by latticef,
Gn by Sy, and ¥, by ¥y|s, where y,|s, is the restriction of ¢, to S,.

Remark. Naturally properties (2),(3) and (6) hold for £, (and lattice,) as well
without any changes, while the remaining ones become valid if we replace i, by V.

Proof. (1) We will say that an X C G, is full, if it is the union of all left cosets
of Z, intersecting X. We prove first that if A C G, is the smallest full subset of G,
containing an open set (G, then A is open. Indeed, for any fixed Z € Z,, the set G7 is
open since the multiplication by Z is a homeomorphism. Therefore A = Uz.z GZ is
open.

By the definition of the factor topology every full open subset of G, has an open
image and therefore 1, (G) = 1, (A) is open.

(2) Let z = ¢, (y). y has a basis of neighborhoods consisting of compact sets. We
claim that their images will form the required basis of z. Indeed by (1) the images are
neighborhoods of x, by the continuity of 1, they form a basis of neighborhoods, and
again by the continuity of v, they are compact.

(3) We will prove this part of the lemma later, after the proof of Lemma 5.

(4). First we note that for all U, W € G, ¥, (U) = ¢, (W) if U"'W € Z,. Assume
now that contrary to our assertion V' has no neighborhood with the required property.
Then there are two sequences (U;), (W;), so that both converges to V and U; # W},
but 1, (U;) = ¥n(W;) for i = 1,2, .... According to our observation U;'W; = Z, for
i=1,2,.... On the other hand U; 'W; converges to V"'V = 1. Since Z, contains only
matrices with integer entries this means that U; 'V; = 1 for all sufficiently large i in
contradiction to the assumption U; # V;.

(5). By (4) every compact subset of G, can be covered by a finite number of open
sets so that 1), is one-to-one on each of them. Since G, is the union of a countble
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set of compact subsets, G, can be covered by a sequence G; i = 1,2, ... of open sets
sets so that v, is one-to-one on each of them. C; = G; — U;.; G meets all of the
requirements.

(6) is an immdediate consequence of (2) and (3).

The corresponding properites of the topolgy on lattice follow easily from the
properties of LS. This concludes the proof of Lemma 3 with the exception of property
(3) with will be proved later.

Definitions. 1. Assume that B € G,. If L € £, then let BL = {Bz | x € L}.
Obvoiusly BL € L,,.

2. If B € G, and a € LE then we define Ba in the following way: Ba = £(B£71(a)).
We also can describe this more directly. By definition a = W Z,, for some W € G,,.
We define Ba as the left coset BW Z,,. This coset is clearly independent of the choice
of the representative W. With these definitions we have B¢, (L) = &,(BL) for all
Beg,, LelL,.

3. If W € G, then ||W|| will denote the Euclidean norm on the n? dimensional
space, that is if W = {w; ;}, then |W] = (X wij)%.

The following lemma says that if we take lattice bases from a compact set ® and
consider the coefficients (in these bases) of points from a bounded set X then the set
of all of these coefficients is bounded.

Lemma 4 Let n be a positive integer and let ® be a compact subset of G,,. Suppose
that X C R" is bounded. Then there is an N > 0 so that for all V € ® ifx € X, and
x = Y.! a;v; where vy, ..., v, are the columns of V', then |o;| < N fori=1,...,n.

Proof. We define o;(x,V) if i = 1,...n, if x is in the closure X of X and V € &,
by z = Y a;i(z,V)v,. (o4(x,V) is not necessarily an integer.) This implies that
Viz = {ay(x,V),...,an(z,V)). Since the function V! is continuous on G, we have
that for each fixed i the function |o;(x, V)| is continuous on the compact set X x @
therefore it has a finite upper bound. Let N be the maximum of these upper bounds
taken for all i = 1,...,n. Q.E.D.(Lemma 4)

According to the following lemma if we take a small enough neighborhood of a
basis of the lattice L (in the topology of G,,) then all of the lattices generated by bases
in this neighborhood will be pointwise close to the lattice L in some sense.

Lemma 5 Assume that W € G,,, K > 0 and € > 0. Then there exists a neighborhood
T of W so that for allV € T if z € ¥,,(V) and ||z|| < K then there is an y € ¥,(W)
with ||z —y|| <e.
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Proof. (2) of Lemma 3 implies that W has a compact neighborhood ® C G,,.
According to Lemma 4, for all V € &, z € ¥,(V), ||z|| < K, the absolute value
of the coefficients of = in the basis vy, ..., v, consisting of the columns of V', remain
below a bound N. Suppose that § > 0 is sufficiently small with respect to ¢, N, K
and |WW]|. Let T be the neighborhood of V' with radius ¢ and assume that vy, ..., v,
are the columns of V' and wy, ..., w, are the columns of W. Suppose that z € ¥, (V)
with ||z|| < K is fixed. Let z = ¥ ai(z, V)v; y = X0, ai(x, V)w;. Since z is a
lattice point in ¥, (V) the numbers «;(z, V') are integers and so y € ¥, (). Since
IV — W|| <6 and ¢ is sufficiently small with respect to ¢, N, K and [|WW||, we have
that ||z — y|| <e. Q.E.D.(Lemma 5)

Proof of (3) of Lemma 3. By (1) and (2) it is enough to show that if U,V € G, so
that ¥, (U) # ¥,(V), then they have neighborhoods S,T so that ¢, (U’) and 1, (V")
are distinct for all U’ € S, V' € T. Since 9, (U) and ¢, (V) are distinct so are ¥, (U)
and U, (V). ¥, (U) and ¥, (V) are discrete subsets of R™. Therefore their distinctness
implies that one of them e.g. W, (U) contains a point x with the property that there
is a 0 > 0 so that the distance of z from any element of ¥, (V) is at least §. (We
will assume that ¢ is sufficiently small with respect to ||z||.) Let K = 2||z||. Applying
lemma 5 with both W — V and W —» U, K, ¢ — g we pick neighborhoods S, T of
U,V. Assume that U’ € S, V' € T. We claim that ¥, (U’) and ¥, (V') are distinct.
By Lemma 5 there is an y € W, (U’) so that ||z — y|| < $. We claim that y ¢ W, (V").
Indeed y € U,(V'), |lyl| <||z]| + ¢ <K would imply by Lemma 5 that there is a
z € ¥, (V) so that ||y — 2|| < 2. That is, we would get ||z — z|| < £ in contradiction to
the assumption that the distance of z from ¥, (V) is at least §. Q.E.D.((3) of Lemma
3)

The measure p,. In this section we show that the function pu, as defined earlier
is indeed a measure on the Borel sets of lattice,,.

Definitions. 1. vol,(X) will denote the n-dimensional volume of the Borel set
X C R". We consider G, as a subset of R", therefore vol,: is defined on the Borel
measurable subsets of G,.

2. If AC S, then A° will denonte the set {aX|—-1<a<1,X € A}.

Lemma 6 If n is a positive integer then for each Borel set B of S, let p,(B) =
vol,2(B°). Then the following conditions are satisfied:

(a) pu(G) > 0 if G is open in S,,.

(b) pn(C) < o0 if C' is compact in S,,.

(c) for all g € S,, and for all Borel sets B of S,, we have p,(9B) = pn(B) = pn(Bg),
where gB = {¢gX | X € B}
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Proof. (a) if G is open then G° contains the open set X = {az|z € G,0 < a < 1}.
Since X is open in R™ we have p,(G) = p,2(G°) > pin2(X) > 0.

(b) If C is compact then C° is also compact, so we have p,(C) = vol,2(C°) < oo

(c) For each g € S, the map  — gz, where z is an arbitrary n X n matrix,
is a linear transformation of R™ into itself. In the basis consisting of matrices with
a single entry 1 and n? — 1 entries 0 the matrix of this linear transformation is the
tensor product of x and the n X n identity matrix, therefore its determinant is 1, which
implies vol,2(gX) = vol,:(X) for all Borel sets X C R™. For any B C S, we clearly
have ¢g(B°) = (¢9B)°, therefore p,(gB) = vol,:((¢B)°) = vol,2(g(B°)) = vol,2(B°) =
pn(B). The equality p,(B) = p,(Bg) can be proved in a similar way. Q.E.D.(Lemma
6)

Property (5) of Lemma 3 implies that S, can be partitioned into a countable
number of Borel sets so that on each one the map 1), is one-to-one. The following
lemma is a consequence of this fact and says that if ¢, is one-to-one on a Borel set
then its range can be arbitrarily extended in a way that 1, still remains one-to-one.

Lemma 7 Assume that D C L¢, Fy C G, are Borel sets, v, is one-to-one on F, and
Y!'(Fy) C D. Then there is a Borel set F' O Fy of G, so that 1, is one-to-one on F' and
Y (F) = D. Moreover if H C G, is an arbitrary Borel set with ¢!/(H) 2 D, then the
set F' with the properties described above can be chosen so that ' C H. In particular
if D C latticef then we may pick F' with the additional property F' C S,,.

Proof. By recursion on ¢ we define a sequence of Borel sets Fy, F}, Fy, ... so that
F, D F,_1,7=1,2,.... The set Fj is already given. We want do define F; so that 1,
is one-to-one on Fy, ¢}/(F;) C D and ¢}/(F;) 2 Ui—; D N4(C;) for i = 1,2, ..., where
the sequence C;, i = 1,2, ... is defined in (5) of Lemma 3. Assume that Fy, ..., F;_4
has been already defined with these properties. F; will be the union of F;_; and
Y (D)N(C; — ;Y (F;_1)). Finally let F = J°, F;. Clearly F D F, is a Borel set and
it is easy to check that v, is one-to-one on F' and ¢//(F) = D. If the set H is given
with the properties listed in the lemma then we may repeat the proof using H N C}
instead of C;. Q.E.D.(Lemma 7)

The following corollary of the lemma says that on each Borel set Y of lattice
we can choose a one-to-one inverse of v, so that the range of this inverse is a Borel
set in §S,,.

Corollary 1 There is a function 9 defined on the set of all Borel sets Y C lattices,
with properties (a) and (b) described below:
(a) each value of 9 is a Borel set in Sy,
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(b) for any Borel set Y of lattice?, we have ¥ (9(Y)) =Y and v, is one-to-one
on 9(Y).

If we fix a ¥ with the properties in the corollary then starting from an arbitrary
measure k on the Borel sets on S, we may define a function s’ on the Borel sets of
lattice’ by «'(Y) = k(9(Y)) for all Borel set Y C S,,. In particular we will get the
definition of [, if K = p,, k' = [i,- However ' will not be a measure for each choice
of k and ¥. In the following lemma we will show that under certain conditions on &
(which are met by p,) the defined function &’ does not depend on the choice of ¥ and
in this case ' is indeed a measure. This will guarantee that i, is a measure and it
does not depend on the choice of 9.

Lemma 8 Assume that k is a measure defined on the Borel sets of S,, so that for
each Borel set B of S,, and for each Z € Z, we have k(B) = k(BZ), where BZ =
{zZ | x € B}. Then for any function ¥ with propreties (a) and (b) of Corollary 1 the
number k(9(Y")) depends only on k and the Borel set Y C latticef, but not on 9. If
we define the function k' on the set of all Borel set Y C lattice by '(Y) = k(9(A)),
then k' is a measure (which depends only on k but not on 9).

Proof. First we prove that the value of k(9(Y")) does not depend on the choice of
Y. Suppose that a Borel set Y C lattice; is fixed and we have two sets 4;, ¢ = 1,2
(the values of ¥(Y') for two differnet choices of 99) so that
(a) A; CS,, A; is a Borel set, 1, is one-to-one on A; and 9'(A;) =Y fori=1,2

We show that k(A4;) = k(Az). We define a one-to-one map f of A; onto A,. For
each U € A, f(U) will be the unique element of Ay with 1, (U) = 9, (f(U)). This
last equality implies that U and f(U) are bases of the same lattice therefore there is
a unique element Zy € Z, with f(U) = UZy. We partition A; into countably many
sets according to the value of Z;. We claim that each class of this partition is a Borel
set. Indeed for a fixed possible value Z € Z, of Zy this class is (4,7 N Ay)Z7'. A;,
i = 1,2 are Borel sets in S,,, the multiplications by Z or by Z~! are homeomorphisms
of S, onto itself therefore A1Z, A1Z N Ay and (A;Z N Ay)Z ! are also a Borel sets,
which proves our claim.

Let R be an arbitrary but fixed class of this partition. Clearly it is enough to
show that k(R) = k(f"(R)). By the definition of R there is an Z € Z, so that
for all U € R we have f(U) = UZ and therefore f"(R) = RZ. According to an
assumption of the lemma x(B) = k(BZ) for all Borel sets B and Z € Z,, therefore
k(R) = k(RZ) = k(f"(R)).
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Clearly the values of k' are nonnegative reals. To show that it is o-additive let
Y1,Y5, ... be pairwise disjoint Borel sets in latticef and for each fixed ¢ we pick a
Borel set A; in S, so that 9//(4;) = Y; and 1, is one-to-one on A;. Since the sets ¥;
are pairwise disjoint, the sets A; are pairwise disjoint too. Therefore if Y = U2, V;
then A = U2, A; will satisfy the requirements of the lemma and since & is o-additive
we get that ' (UY;) = k(4) = X k(4;) =X £'(Y;) Q.E.D.(Lemma 8)

By Lemma 6 the measure p, meets the requirements of Lemma 8 with k — p,.
Therefore p, is a measure on the Borel sets of S,,.

Definition. Let fi¢ be the measure p/, on the Borel sets of latticef. fi, is defined
by fin,(X) = 5 (€"(X)) for each Borel set X C L,,.

Lemma 9 Suppose that D C latticet, F C S, are Borel sets, Yil(F) = D and 1,
is one-to-one on F. Then (D) = p,(F).

Proof. We can choose the function ¥ with the properties in the Corollary of Lemma
7 so that ¥(D) = F. Therefore i (D) = p,(¥(D)) = pp(F). Q.E.D.(Lemma 9)

Lemma 10 If n is a positive integer then the measure [i,, satisfies the following con-
ditions

(a) fin(G) > 0 if G is open in lattice,.

(b) jin(C) < o0 if C' is compact in lattice,.

(c) for all A € S, and for all Borel sets B of lattice, we have fi,(AB) = [i,(B),
where AB = {AL | L € B}

Proof. We prove the corresponding properties for fi .

(a) The coninuity of v, implies that H = ¢, '(G) is open in S,. Therefore by
Lemma 6 we have p,(H) > 0. Let 9 be a function whose existence is stated in
the corollary of Lemma 7. Let K = 97!(G), where K is a Borel set in S,. Since
Y (H) = v (K) and H is maximal with this property we have H = Uz KZ. Since
all of the sets KZ, Z € Z, are Borel sets and Z is countable we have p,(H) <
Yzez, Pn(KZ). By (c) of Lemma 6 p,(K) = p,(KZ) for all Z € Z,, therefore the
inequlity p,(H) < Y zez, pn(KZ), p,(H) > 0 and the o-additivity of p, implies that
pn(K) > 0 and therefore [if (G) = p,(K) > 0.

(b) For each positive integer i let H; be the set of all matrices in S,, whose each
entry in absolulte value is strictly less then i. Clearly H; is open in S,. By (1) of
Lemma 3 9/(H;) is open in lattice’ and obvioiusly U2, ¥/ (H;) = lattice, 2 C.
Therefore the compactness of C implies that it is covered by a finite number of these
sets, that is, there is a positive integer i so that C C ¢/"(H;). Applying Lemma 7
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with H — H; we get that there is a function ¥ with the properties in the corollary of
Lemma 7 so that 9(C) C H,. Therefore i¢(C) < p,(H;). Since H; is bounded, so is
H; and therefore i (C) < p,(H;) = volp2(HY) < oc.

(c) Assume that B C lattice is a Borel set and for some choice of the function
Y we have ¥(B) = F, ji(B) = p,(F). 1, is one-to-one on F' and its image there is B.
Let K = AF, where A € S, is fixed. We will show that 1), is one-to-one on K and its
image there is AB. This is suffient for the proof of (c) since, by Lemma 6 and Lemma
9 this would imply ﬁ%(AB) = pn(K) = pn(AF) = pn(F) = ﬂfz(B)

Now we show that 1/, is one-to-one on K and its image there is AB. Indeed each
T € K is of the form Ax for some z € F. Therefore ¢,(T) = T2, = AzZ, = A(z2,)
where zZ, = ¢,(z) € B. Suppose that 1, (T1) = ¥,(T>) where 71,75 € K. Then
T; = Ax; for z; € F, i = 1,2. Therefore ¢,(T1) = ¥, (T3) implies that Az, 2, = Az Z,
and so x12, = 122, that is, ¥, (1) = 1, (x2). Since 1, is one-to-one on F this implies
1 = w9 and so 17 = T, that is, 1, is one-to-one on K. Assume that z = AB. Then
z = Ay where y € B and since B = 9!'(F') we have y = fZ,, for some f € F. Therefore
z=AfZ, wher Af € K thus z € ¢¥}(K). Q.E.D.(Lemma 10)

Property (b) of Lemma 10 implies that f,(lattice,) > 0. This makes possible
the following definition.

Definition. If n is a positive integer then for all Borels sets B C lattice, let

Un(B) = (fin(lattice,)) i, (B).

We show now that fi,(lattice,) < oo. This guarantees that the measure y, is
not identically 0 and as a consequence it is a probabillity measure.

Lemma 11 There is a function c(n) defined for all posititve integer n so that the
following holds. For each positive integer n and for each positive real number r there
is a Borel set B{") in G, so that

(1) U"(B{") contains all lattices with determinant 1 whose shortest nonzero vectors
are of length at most r.

(2) vol,:(BM) < ¢(n)r™

(3) (BY)* = BY

Proof. For the description of the set B{") we need the following definition.

Definitions 1. Let by, ..., b, be a basis of the lattice L C R". Applying the Gram-
Schmidt orthogonalization procedure to this basis we get a sequence of vectors b7, ..., b},
with the property that b7, i = 1,2, ...,n are pairwise orthogonal, b = b} and for all
i = 1,..,n we have b = b; — X0, pi ;05 where p;; = (b - b7)/(b5 - b%). If P is
the orthogonal projection of the n-dimensional space onto the subspace orthogonal to
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bi,...,bi—1 then b7 = P;b;. We call the basis by, ..., b, size-reduced if |p; ;| < % for all
1<j<i<n. Foreachi=1,...,n, P,L is an n — ¢ + 1 dimensional lattice in F,R".
We say that by, ..., b, is a Korkine-Zolotareff basis if P;b; is a shortest nonzero vector
in P,L forall:=1,...,n.

2. The set B}{) will be the set of all bases by, ..., b, which generate a lattice L with
determinant at most 1 so that by, ..., b, is a size reduced Korkine-Zolotareff basis, and
|b1]] < r. (We also include the 0 vector of R”” in B{") for the sake of property (3) of
the Lemma.)

We claim that every lattice has a size reduced Korkine-Zolotareff basis. We may
prove this fact by induction on the dimension of the lattice. Let L be an n dimensional
lattice, let b; be a shortest vector in L and let P, be the orthogonal projection of R"
onto the subspace orthogonal to b;. P;L is an n—1 dimensional lattice. Let dy, ..., d,,_1
be a size reduced Korkine-Zolotareff basis in P;L. For each i = 2,....,n let b; be an
element of L so that Pb; = d;_; and ||b; — d;_1|| is minimal. (The latter condition
implies that ||b; — d;_1|| < 3||b1]|.) It is easy to see that by, ...,b, is a size reduced
Korkine-Zolotareff basis.)

Since every lattice has a Korkine-Zolotareff basis condition (1) is satisfied by B{").
By Minkowski’s convex body theorem we have that for each z € Y,,, £~!(z) contains a
nonzero vector shorter than o,, = cMn%, where c¢;/ is a constant. This implies that will
define B{") = B{°") for all r > 5,,. We will use the notation B{*) = J,,, B = B{o»).

Condition (3) holds since by multiplying a lattice L by a positive constant o < 1 any
size reduced Korkine-Zolotareff lattice L will go into a size reduced Korkine-Zolotareff
basis of L, and the length of a shortest nonzero vector is also multiplied by o < 1.

We prove the existence of the real number ¢(n) with property (2) by induction on
n. For n = 1 condition (2) is trivially satisfied by ¢(n) = 2 (2 is the length of the
interval [—1,1].) Assume that condition (2) is satisfied for n — 1 with a real number
c(n —1) for any r > 0.

First we note that our inductive assumption implies the following:

(*) IfH C G, 1 is the set of all size reduced Korkine-Zolotareff basis which generate
a lattice with determinant at most D then vol(,_1y2(H) < D" 'c¢(n — 1)on=].

Indeed we know this for D = 1 and we have to multiply all of the n—1 components
of all of the n — 1 basis vector by D" to get a lattice with determinant D from a
lattice with determinant 1. During this transformation in the (n — 1)? dimensional
space al of the (n — 1) dimensional volumes are multiplied by (D#=1)®=1* = pn-L.

Suppose that an r € (0,0,) is fixed. We estimate the volume of the set B{").
Let x(bi,...,b,) be the characteristic function of the set B(") where (b, ...,b,) now
represents a basis b, ..., b,, that is, the comlumns of the corresponding matrix. We
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get the n? dimensional volume of B,(;"> by integrating x on R"™.

We compute this integral by integrating first by bo, ..., b, and then by b;. For the
elements of B("), b, is a vector whose length is at most 7 so we may assume that
by is restricted to a ball S with radius r around the origin. Let’s assume that b, is
a fixed point of this ball and we integrate x according to the remaining variables.
Let p = ||b1]|]. We want to determine the n(n — 1) dimensional volume of the set
Xy, = B,y NVp, set where Vi, = ((b1, wa, ..., wy ) |wa, ..., w, € R™). We can do this by
a simple geometric argument based on the inductive assumption. For an arbitrary basis
by, ..., b, let d; = Pib; for i = 2,...,n, where P; is the orthogonal projection of R"™ onto
the subspace orthogonal to b; and let f; = b; — d;. The sequence by, ds, ..., d,, fo, ..., fn
uniquely determines the basis b1, ...,b,. Moreover if bq,...,b, is Korkine-Zolotareff
basis then do, ..., d, is also a Korkine-Zolotareff basis of the lattice P,L in the n —
1 dimensional subspace P\R", and f; = mb; for ¢ = 2,...,n where |r;| < 1. For
any fixed choice of 7y, ..., 7,, the (n — 1)? dimensional volume of all of the points in
(b1, T2, ey Tny da, ..y dy) € Xy, is at most ¢(n—1)p~™Yo""! since dy, ..., d,, is a Korkine-
Zolotareff basis of a lattice with determinant p~'. (Here we used (*).) Therefore using
that each 7; is chosen from an interval of length p we get that volnp_1)(Xs) <
c(n—1)p" 1 p~(»=Vg"1. Since this is true for every fixed b; in the sphere with radius
r we get that vol,:(BM) <[] v.p" te(n — 1)o"=1dp = c(n)r", where v, is the surface
area of the n dimensional unit sphere and c¢(n) = yuc(n — 1)op~j. Q.E.D.(Lemma
11)

Lemma 12 ji,(lattice,) < oo for alln =1,2, ....

Proof. By Lemma 11 we have ji,(lattice,) = vol,:(B{®))° = vol,(Bl") <
cnop < 00, where o, is defined in the proof of Lemma 11. Q.E.D.(Lemma 12)

Lemma 13 u, is a probability measure defined on the Borel sets of lattice, for
every positive integer n, moreover W, satisfies the following conditions:

(a) For every linear transformation A of R™ with determinant £1 and for every
Borel set B C lattice, we have p,(AB) = p,(B).

(b) if G is an open subset of lattice, then u,(G) > 0.

(c) there is a positive real number c(n), depending only on n, so that for all r > 0
if X is the set of all lattices with determinant 1 whose shortest nonzero vector is at
most of length r then p,(X) < ¢(n)r™

(d) for any Borel set B C lattice,, we have

tn(B) = sup{u,(C) | C C B and C is compact } and

tn(B) = inf{u,(G) | BC G and G is open }.
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Proof. (a) and (b) are immediate consequences of the corresponding properties of
i1, stated in Lemma 10.

(c) follows from Lemma 11. Indeed using the notation of Lemma 11 we have that
W1(BY) 2 X and 50 fin(X) = fin(€(X)) < v0L,a ((BY)7) = vola (BY) < c(n)r”.

Fore the proof of property (d) we need the following Lemma.

Definition. We say that a set X C R" is symmetric if z € X imples —z € X for

all z € X.

Lemma 14 Assume that X C S, is a symmetric Borel set so that vol,,(X°) < oco.
Then for all € > 0 there is a symmetric compact set C C X and a symetric set G C X
which is open in Sy, so that vol,z(X°)—vol,2(C°) < € and vol,:(G°)—vol,2(X°) < €.

Proof. Since vol,2(X°) < oo, there is a compact ' C X° and an open (in R™)
G’ O X° so that vol(X°) — vol(C’) < € and vol(G') — vol(X°) < ¢/2. The set S,
is closed therefore its distance from 0 is positive. Assume that § > 0 is smaller than
this distance and that the volume of the (open) ball B; with radius ¢ around 0 has
volume less than €/2. W = C"\ B is a compact symmetric set. We define a function
f on W in the following way. If x € W then let f(z) be the unique element of X
so that x = af(z) for some a € (0,1]. The existence of such an f(x) follows from
C' C X° and the symmetricity of X, the uniqueness follows from X C S,,. It is easy
to see that the function f(z) is continuous on W. Therefore the image C' = f"(Cy) of
the compact set C; is also compact (and obviously symmetric). Clearly C' C X and
C° O C, = C'\B;. Therefore vol,,(C) < vol,:(C') — § > vol,:(X) —e.

Let G = {z € NS, | Va € [0,1], ax € G'}. G' O X° implies that G O X.
The definition of G implies that (G)° C G’ and so vol(G°) < vol(G') < vol(X°®)+e.
Since G is obviously symmetric we have to prove only that GG is open.

Assume that ¢ € G. By the definition of G the complete line segment K, =
{ag | @ €[0,1]} isin G'. Therefore there is a § > 0 so that the distance of K, from the
complement of G’ is positive. Let §' > 0 be sufficiently small with respect to §. Then
for any = € S, with ||z — g|| < ¢, the complete line segment K, = {az | « € [0,1]} is
also included in G’, therfore x € G. Q.E.D.(Lemma 14)

Now we continue the proof of Lemma 13. Let Y be a Borel set in S, so that v,
is one-to-one on Y and ¢(Y) = £(B). Lemma 7 and its Corollary guarantee the
existence of such a set Y. By the definition of /i, we have that fi,,(£(B)) = vol,2(Y°).
According to Lemma 12 [, is finite and so vol,2(Y°) < oco. Let X = Y U (-Y).
X C S, is a symmetric Borel set and X° = Y°. We apply Lemma 14 to the set X.
Let C C X be the compact set and G O X the open (in S,) set whose existence

are guaranteed by Lemma 14. Finally let C = ¥/(C) and G = ¥/ (G). Clearly
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C C B C G. By property (1) of Lemma 3 the set G is open in lattice, and by the
continuity of the map Wy the set C is compact in lattice,. Since y,(C) = p,(Co) and
Un(G) < pn(G°) we have p,(B) — pn(C) < € and iy, (G) — pn(B) < €. Q.E.D.(Lemma
13)
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