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Abstract

Would physical laws permit the construction of computing machines that are capable of solving

some problems much faster than the standard computational model? Recent evidence suggests

that this might be the case in the quantum world. But the question is of great interest even in

the realm of classical physics. In this paper, we observe that there is fundamental tension be-

tween the Extended Church-Turing Thesis and the existence of numerous seemingly intractable

computational problems arising from classical physics. Efforts to resolve this incompatibility

could both advance our knowledge of the theory of computation, as well as serve the needs of

scientific computing.
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1 Introduction

One of the great scientific achievements in the last century was the formalization of the concept

of computation. Due to the work of Church [Ch36], Turing [Tu36] and others, a standard model

of computation emerged; today’s digital computers can be regarded as implementations of this

model. One reason for the acceptance of this model was the fact that many seemingly different

formulations of the concept of computation, of which the Turing machine model was one,

turned out to be essentially equivalent. The evidence for the Turing model to be the correct

model seemed so convincing that a term Church-Turing Thesis evolved into existence over the

years to express that conviction.

The Church-Turing Thesis (CT) is the belief that, in the standard Turing machine model,

one has found the most general concept for computability. In other words, if a function can be

computed by any conceivable hardware system, then it can be computed by a Turing machine.

This may not have been the belief of Church and Turing, but it has become the common

interpretation of CT. With the development of computational complexity theory, which studies

further refinements of the computability notion, another version of CT came into use. The

Extended Church-Turing Thesis (ECT) makes the stronger assertion that the Turing machine

model is also as efficient as any computing device can be. That is, if a function is computable

by some hardware device in time T (n) for input of size n, then it is computable by a Turing

machine in time (T (n))k for some fixed k (dependent on the problem).

CT and especially ECT have strong implications. They imply that at least in principle,

to make future computers more efficient, one only needs to focus on improving the implemen-

tation technology of present-day computer designs. Although accepted by many, the validity

of CT and ECT has also been called into question over the years. Among more recent work

on the subject, we refer interested readers to the excellent discussions in Vergis et al [VSD86],

Steiglitz [St86], Penrose [Pe89][Pe94], and Smith [Sm93][Sm99]. While different viewpoints

have been expressed, it is also clear that certain consensus has been reached in the litera-

ture regarding the nature of CT and ECT. Namely, CT and ECT are not statements about

mathematics, but rather conjectured constraints on physical laws. They cannot be proved

once and for all, since any physical laws may be subject to refutation one day. However, once

a system of physical laws is specified (together with specifications on how input and output

are handled), it then becomes a well-defined mathematical question whether these theses are

valid. In fact, such questions have been examined for a number of particular systems (see

[VSD86][St86][Pe89][Pe94][Sm93][Sm99]).

In this paper we wish to put some of these issues into sharper focus, and point out certain

challenges and opportunities for research in this regard. We shall concentrate our discussions

on the Extended Church-Turing Thesis.
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2 The Dilemma

What is a computing device? It is rational to adopt the view that any physical system capable

of providing reliable output is a potential computing device. With this in mind, one may

observe that there is certain inconsistency between ECT and the status of scientific computing

today. Note that, in general a computation can be embedded in the evolution of a physical

system, with the input data encoded as initial states of the system, and the output being

the measured values of the observables (such as velocity, temperature, etc.) at some specified

time. For example, consider a physical system governed by some set of explicit equations with

variables ~x. Let g(~x) be a function easily computable (in the Turing sense) from ~x. Given the

initial values of the variables ~x = ~x(0) at time t = 0, the value of g(~x(t)) at some t > 0 can be

regarded as the output of a computing device, provided that g(~x(t)) is robust with respect to

slight perturbations of the initial values ~x(0).

Consider the following three statements:

(A) ECT is valid;

(B) Polynomial-time solvability is an appropriate criterion for computational feasibility;

(C) There are observables in many physical systems for which no known efficient algorithms

exist.

These statements all seem sensible individually, but are inconsistent with one another. (A)

implies that we should be able to use a Turing machine to compute in polynomial time g(~x(t))

with ~x(0) and t as inputs. (B) then implies that one should be able to find a practical algorithm

to compute g(~x(t)), which is at odds with (C).

The above inconsistency is not unexpected in the case of quantum systems, since it has been

speculated for many years (Feynman [Fe82]) that quantum systems cannot be efficiently sim-

ulated by standard Turing machines. The discovery of a polynomial-time quantum algorithm

for factoring integers (Shor [Sh97]) lends support to the hypothesis that quantum computers

might be strictly more efficient than Turing machines.

For classical physical systems, however, this inconsistency is somewhat surprising, and

seems to go against the prevailing (but not all, see e.g. [Sm93]) opinions. Before considering

some concrete physical systems, let us review a representative argument in favor of ECT for

classical systems. The reasoning goes somewhat like this: If the physical system is governed

by differential equations that behave mildly, then the standard numerical methods using grids

can simulate the system accurately and in polynomial time. If the physical system behaves

violently, then the physical variables are unpredictable and uncontrollable, in which case these

variables cannot be used for computing purposes. (See e.g. Penrose [Pe89] where the context

is CT instead of ECT.) The weakness in the above argument we feel is that, in violent physical
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systems, even though the physical variables could behave unpredictably, there might be physical

observables (which are functions of the physical variables) behaving robustly. We shall discuss

in the next section how such possibilities might arise.

3 The N-Body Problems

Newton’s gravitational theory for a system of N point-like particles provides a natural setting

for studying ECT. Assume that the particles have masses mi, and occupy positions ~ri(t) at

time t, where 1 ≤ i ≤ N . Then Newton’s theory gives the following system of equations for

celestial mechanics: for 1 ≤ i ≤ N ,

d2~ri(t)

dt2
= G

∑

j 6=i

mj

~rj(t)− ~ri(t)

|~rj(t)− ~ri(t)|3
,

where G is the gravitational constant. The natural computational problem is then, given the

2N initial positions ~ri(0) and velocities ~r′i(0), and time t > 0, compute the N positions ~ri(t).

Although Newton’s equations for celestial mechanics look simple, the behavior of the so-

lutions (as a function of time t) can be very complex. We say that the solution runs into

a singularity at time t0, if the solution ceases to be analytic at t = t0. For example, when

two or more particles collide, a singularity naturally occurs. It was also recognized that at

least theoretically there exists the possibility of other types of singularities. In 1895, Painlevé

[Pa1897] proved that for N = 3 the only singularities are due to collisions, and made the

following conjecture:

Painlevé’s Conjecture: For N > 3, there exist non-collision singularities.

Many researchers had tried to settle this question without success until, in 1987, Xia [Xi92]

proved that Painlevé’s Conjecture is true for all N > 4 (the case N = 4 is still open). Sub-

sequently, Gerver [Ge91] gave another proof of the result. Their proofs showed that for some

clever choice of initial conditions, the system can exchange its gravitational potential energy

for kinetic energy at a geometrically faster rate. The speed of the particles increases so rapidly

that at some finite time t0, the particles go to infinity. An interesting historical account of this

problem can be found in [DH96].

It has been suggested (Smith [Sm93]) that such sigularities might be exploited to disprove

ECT (or even CT). For any initial conditions β, define the predicate P (β) to be 1 if it leads

to a non-collision singularity, and 0 otherwise. Plausibly, a gravitational system might be

constructed to decide the value of P (β) by time t = t0, while it could be hard to decide the

value by Turing machines. This is not a rigorous refutation of ECT, since the gravitational
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system used needs to be infinite in size. Furthermore, the function P may not be robust, and

thus the input β needs to be specified to infinite precision.

However, we can use this example to illustrate the possibility of a nontrivial computation

by physical systems even if the systems may be chaotic. Assume that the set of singularities

is of non-zero measure. Let Q(β) denote the probability for P (β ′) to be 1, if the input β′ is

randomly chosen from a ball of some fixed radius centered at β. Then Q(β) is a continuous

function that can be probabilistically computed by a gravitational system (albeit of infinite

size), even though the system may be chaotic.

It would be interesting to find a realistic example of a nontrivial computation performed by

a Newtonian gravitational system. The size of the physical system should be a finite function,

preferably polynomial in N , and there should be only finite accuracy in the measurement of

particle position and velocity. It is not clear whether the singularity phenomenon mentioned

above can be utilized to yield such an example.

We now turn to another example, Einstein’s gravitational theory of N-body systems. The

equations given by General Relativity are nonlinear partial differential equations, with suit-

able initial conditions (see e.g. [MTW73]). Numerical computations for such systems have

become very important for astrophysics studies, and many scientists have been actively work-

ing for years in pursuit of efficient algorithms for this problem. There are good approximation

algorithms under special restrictions (such as when the velocities involved are slow or the grav-

itational field is weak), but a systematic and efficient solution to the general case is still elusive

(see [Da90] for a review). There should be ample room in this rich theory for identifying good

candidates to perform nontrivial computations.

4 Conclusions

Statements such as CT and ECT are important for computer science, since they reflect our

assessment of how well the notion of computation is understood. In this paper we point out

some intuitive conflict between ECT and the state of art in scientific computing, and suggest

that it may be worthwhile to resolve this conflict. We conclude with some natural research

problems along this direction.

(1) Invetigating Mathematical Questions Studying ECT gives added motivation for settling

some interesting open questions in mathematics. For instance, we mentioned in the last section

that a non-zero measure set of singularities would lead to a robust predicate useful for discussing

ECT. It is an open problem in celestial mechanics whether the singularity set is of measure 0.

The answer is known to be positive for N ≤ 4 (Saari [Sa77]), but is open for N > 4.
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(2) Applying Paradigms from Theoretical Computer Science Traditionally, scientific computing

and theory of computation are largely non-overlapping fields. In recent years, some of the

questions in scientific computing have begun to be examined from the theoretical computer

science angle. To study ECT, a natural direction would be to apply the paradigms from

theoretical computer science to the algorithmic questions concerning physical systems. For

example, is it possible to embed an NP-complete problem into a computational problem in

General Relativity? How close, at least theoretically, can this embedding be converted into

a machine for solving NP-complete problems? In the opposite direction, one can try to find

polynomial-time algorithms for various physical systems and thereby confirm the validity of

ECT (e.g. see references [VSD86][Sm93][Sm99]).

Note that there is an advantage in studying simple systems such as the N -body systems.

In more complex systems, there are sometimes hidden forces, and the successful embedding of

a hard computational problem does not automatically imply the existence of a fast computing

device even theoretically (see [VSD86]).

(3) Developing New Paradigms The formal framework of theory of computation has been de-

veloped mainly for problems that are logical and discrete in nature. The concept of polynomial-

time feasibility is quite successful when applied to such computational problems. Would the

study of scientific computations in the context of ECT lead to a different set of criteria? Some

complexity models for dealing with computations in real numbers have been developed in re-

cent years, using the standard Turing model as a guide (see e.g. [BCSS97]). Quite possibly,

further modifications will be needed in order to fully address complexity questions in scientific

computing.
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