Electronic Colloquium on Computational Complexity, Report No. 63 (2002)

Zero-Knowledge twenty years after its invention

Oded Goldreich
Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, ISRAEL.
Email: oded@wisdom.weizmann.ac.il

First draft posted in July 2002
Current version: December 3, 2002

Abstract

Zero-knowledge proofs are proofs that are both convincing and yet yield nothing beyond
the validity of the assertion being proven. Since their introduction about twenty years ago,
zero-knowledge proofs have attracted a lot of attention and have, in turn, contributed to the
development of other areas of cryptography and complexity theory.

We survey the main definitions and results regarding zero-knowledge proofs. Specifically,
we present the basic definitional approach and its variants, results regarding the power of zero-
knowledge proofs as well as recent results regarding questions such as the composeability of
zero-knowledge proofs and the use of the adversary’s program within the proof of security (i.e.,
non-black-box simulation).

ISSN 1433-8092

Contents

1 Introduction
1.1 The Basics 0 e e e e e e
1.2 Advanced Topics L o e e e e e e e
1.3 Comments L e e e e e e e e e

I The Basics

2 Preliminaries
2.1 Interactive proofs and argument systemsl
2.2 Computational Difficulty and One-Way Functions v it
2.3 Computational Indistinguishability oL Lo

3 Definitional Issues
3.1 The Simulation Paradigm
3.2 The Basic Definition L e e e e e e
3.3 Variantso e e e e e e
3.3.1 Universal and black-box simulation o 0o
3.3.2 Honest verifier versus general cheating verifier
3.3.3 Statistical versus Computational Zero-Knowledge
3.3.4 Strict versus expected probabilistic polynomial-time

4 Zero-Knowledge Proofs for every NP-set
4.1 Constructing Zero-Knowledge Proofs for NP-sets
4.2 Using Zero-Knowledge Proofs for NP-sets

IT Advanced Topics

5 Composing zero-knowledge protocols
5.1 Sequential Composition Lo e e e e e
5.2 Parallel Compositiono
5.3 Concurrent Composition (with and without timing)

6 Using the adversary’s program in the proof of security
Digest: Witness Indistinguishability and the FLS-Technique

7 Proofs of Knowledge
7.1 How to define proofs of knowledge o
7.2 How to construct proofs of knowledge Lo

8 Non-Interactive Zero-Knowledge

9 Statistical Zero-Knowledge
9.1 Transformations L
9.2 Complete problems and structural properties L L oo

10 Knowledge Complexity

11 Resettability of a party’s random-tape (rZK and rsZK)
12 Zero-knowledge in other models

13 A source of inspiration for complexity theory

References

w (ORI

SO W

© © 00NN

14
15
16
17

19
21

22
22
23

23

24
25
25

26

27

27

28

29

1 Introduction

Zero-Knowledge proofs, introduced by Goldwasser, Micali and Rackoff [66], are fascinating and
extremely useful constructs. Their fascinating nature is due to their seemingly contradictory defi-
nition; zero-knowledge proofs are both convincing and yet yield nothing beyond the validity of the
assertion being proven. Their applicability in the domain of cryptography is vast; they are typically
used to force malicious parties to behave according to a predetermined protocol. In addition to
their direct applicability in Cryptography, zero-knowledge proofs serve as a good bench-mark for
the study of various problems regarding cryptographic protocols (e.g., the “preservation of security
under various forms of protocol composition” and the “use of of the adversary’s program within
the proof of security”).

In this tutorial we present the basic definitions and results regarding zero-knowledge protocols
as well as some recent developments regarding this notion. The rest of the introduction provides a
high-level summary of the tutorial.

LETEON

o)

Figure 1: Zero-knowledge proofs — an illustration.

1.1 The Basics

Loosely speaking, zero-knowledge proofs are proofs that yield nothing beyond the validity of the
assertion. That is, a verifier obtaining such a proof only gains conviction in the validity of the asser-
tion. This is formulated by saying that anything that is feasibly computable from a zero-knowledge
proof is also feasibly computable from the (valid) assertion itself (by a so-called simulator). Variants
on the basic definition include:

e Consideration of auxiliary inputs.
e Mandating of universal and black-box simulations.
e Restricting attention to honest (or rather semi-honest) verifiers.

e The level of similarity required of the simulation.

It is well-known that zero-knowledge proofs exist for any NP-set, provided that one-way functions
exist. This result is a powerful tool in the design of cryptographic protocols, because it enables to
force parties to behave according to a predetermined protocol (i.e., the protocol requires parties
to provide zero-knowledge proofs of the correctness of their secret-based actions, without revealing
these secrets).

Organization of Part 1: We start with some preliminaries (Section 2), which are central to
the “mind-set” of the notion of zero-knowledge. In particular, we review the definitions of inter-
active proofs and arguments as well as the definitions of computational indistinguishability (which
underlies the definition of general zero-knowledge) and of one-way functions (which are used in
constructions). We then turn to the definitional treatment of zero-knowledge itself (Section 3).
Finally, we discuss the constructibility and applicability of zero-knowledge proofs (Section 4).

1.2 Advanced Topics

We start with two basic problems regarding zero-knowledge, which actually arise also with respect
to the security of other cryptographic primitives. The first question refers to the preservation of
security (i.e., zero-knowledge in our case) under various types of composition operations. We survey
the known results regarding sequential, parallel and concurrent execution of (arbitrary and/or
specific) zero-knowledge protocols. The main facts are:

e Zero-knowledge (with respect to auxiliary inputs) is closed under sequential composition.

o In general, zero-knowledge is not closed under parallel composition. Yet, some zero-knowledge
proofs (for NP) preserve their security when many copies are executed in parallel. Further-
more, some of these protocol use a constant number of rounds.

e Some zero-knowledge proofs (for NP) preserve their security when many copies are executed
concurrently, but such a result is not known for constant-round protocols.

The second basic question regarding zero-knowledge refers to the usage of the adversary’s program
within the proof of security (i.e., demonstration of the zero-knowledge property). For 15 years, all
known proofs of security used the adversary’s program as a black-box (i.e., a universal simulator
was presented using the adversary’s program as an oracle). Furthermore, it was believed that there
is no advantage in having access to the code of the adversary’s program. Consequently it was
conjectured that negative results regarding black-box simulation represent an inherent limitation
of zero-knowledge. This believe has been refuted recently by the presentation of a zero-knowledge
argument (for NP) that has important properties that are unachievable by black-box simulation.
For example, this zero-knowledge argument uses a constant number of rounds and preserves its
security when an (a-priori fixed polynomial) number of copies are executed concurrently.!

Organization of Part 2: The composeability of zero-knowledge proofs is discussed in Section 5
and the use of the adversary’s program within the proof of security is discussed in Section 6. Other
topics treated in the second part of this tutorial include proofs of knowledge (Section 7), Non-
Interactive Zero-Knowledge proofs (Section 8), Statistical Zero-Knowledge (Section 9), Knowledge
Complexity (Section 10), and resettability of a party’s random-tape (Section 11).

1.3 Comments

The notion of zero-knowledge has had a vast impact on the development of cryptography. In
particular, zero-knowledge proofs of various types were explicitly used (as a tool) in a variety of
applications. We wish to highlight also the indirect impact of zero-knowledge on the definitional

! This result falls short of achieving a fully concurrent zero-knowledge argument, because the number of concurrent
copies must be fixed before the protocol is presented. Specifically, the protocol uses messages that are longer than
the allowed number of concurrent copies.

approach underlying the foundations of cryptography (cf. Section 3.1). In addition, zero-knowledge
has served as a source of inspiration for complexity theory (cf. Section 13).

A Brief Historical Account (regarding the main part of the tutorial): The concept of zero-
knowledge has been introduced by Goldwasser, Micali, and Rackoff [66]. Although their work, which
also introduced interactive proof systems, has first appeared in STOC95, early versions of it have
existed as early as in 1982 (and were rejected three times from major conferences; i.e., FOCS83,
STOC8/, and FOCS84). The wide applicability of zero-knowledge proofs was first demonstrated
by Goldreich, Micali and Wigderson, who showed how to construct zero-knowledge proof systems
for any NP-set, using any commitment scheme [57]. An important technique for the design of
zero-knowledge was introduced by Feige, Lapidot and Shamir [38], based on the notion of witness
indistinguishability (which was introduced by Feige and Shamir [39]). Important contributions to
the study of the sequential, parallel and concurrent composition of zero-knowledge protocols were
presented in [55, 59|, [55, 51] and [34, 81, 28, 72, 7], respectively. The power of non-black-box
simulators has been recently discovered by Barak [7].

Suggestions for further reading: For further details regarding most of the material, the reader
is referred to [49, Chap. 4]. For a wider perspective on probabilistic proof systems, the reader is
referred to [48, Chap. 2].

The current version: This is a minor revision of the first draft (dated July 31, 2002).

Part 1
The Basics

2 Preliminaries

Modern Cryptography, is concerned with the construction of efficient schemes for which it is in-
feasible to violate the security feature. The same concern underlies the main definitions of zero-
knowledge. Thus, for starters, we need a notion of efficient computations as well as a notion of
infeasible ones. The computations of the legitimate users of the scheme ought be efficient, whereas
violating the security features (via an adversary) ought to be infeasible.

Efficient computations are commonly modeled by computations that are polynomial-time in the
security parameter. The polynomial bounding the running-time of the legitimate user’s strategy is
fixed and typically explicit (and small). Here (i.e., when referring to the complexity of the legitimate
users) we are in the same situation as in any algorithmic setting. Things are different when referring
to our assumptions regarding the computational resources of the adversary. A common approach is
to postulate that the latter are polynomial-time too, where the polynomial is not a-priori specified.
In other words, the adversary is restricted to the class of efficient computations and anything beyond
this is considered to be infeasible. Although many definitions explicitly refer to this convention,
this convention is inessential to any of the results known in the area. In all cases, a more general
statement can be made by referring to adversaries of running-time bounded by any super-polynomial
function (or class of functions). Still, for sake of concreteness and clarity, we shall use the former
convention in our treatment.

Actually, in order to simplify our exposition, we will often consider as infeasible any computation
that cannot be conducted by a (possibly non-uniform) family of polynomial-size circuits. For
simplicity we consider families of circuits {C, }, where for some polynomials p and ¢, each C,, has
exactly p(n) input bits and has size at most g(n).

Randomized computations play a central role in the definition of zero-knowledge (as well as in
cryptography at large). That is, we allow the legitimate users to employ randomized computations,
and likewise we consider adversaries that employ randomized computations. This brings up the
issue of success probability: typically, we require that legitimate users succeed (in fulfilling their
legitimate goals) with probability 1 (or negligibly close to this), whereas adversaries succeed (in
violating the security features) with negligible probability. Thus, the notion of a negligible probability
plays an important role in our exposition. One feature required of the definition of megligible
probability is to yield a robust notion of rareness: A rare event should occur rarely even if we
repeat the experiment for a feasible number of times. Likewise, we consider two events to occur
“as frequently” if the absolute difference between their corresponding occurrence probabilities is
negligible. For concreteness, we consider as negligible any function y:N—[0,1] that vanishes faster
than the reciprocal of any polynomial (i.e., for every positive polynomial p and all sufficiently big
n, it holds that u(n) < 1/p(n)).

2.1 Interactive proofs and argument systems

Before defining zero-knowledge proofs, we have to define proofs. The standard notion of static (i.e.,
non-interactive) proofs will not do, because static zero-knowledge proofs exist only for sets that are
easy to decide (i.e, are in BPP) [59] whereas we are interested in zero-knowledge proofs for arbitrary
NP-sets. Instead, we use the notion of an interactive proof (introduced exactly for that reason by
Goldwasser, Micali and Rackoff [66]). That is, here a proof is a (multi-round) randomized protocol
for two parties, called wverifier and prover, in which the prover wishes to convince the verifier of
the validity of a given assertion. Such an interactive proof should allow the prover to convince the
verifier of the validity of any true assertion, whereas NO prover strategy may fool the verifier to
accept false assertions. Both the above completeness and soundness conditions should hold with
high probability (i.e., a negligible error probability is allowed).

We comment that interactive proofs emerge naturally when associating the notion of effi-
cient verification, which underlies the notion of a proof system, with probabilistic and interactive
polynomial-time computations. This association is quite natural in light of the growing acceptabil-
ity of randomized and distributed computations. Thus, a “proof” in this context is not a fixed and
static object, but rather a randomized and dynamic (i.e., interactive) process in which the verifier
interacts with the prover. Intuitively, one may think of this interaction as consisting of “tricky”
questions asked by the verifier, to which the prover has to reply “convincingly”. The above discus-
sion, as well as the following definition, makes explicit reference to a prover, whereas a prover is
only implicit in the traditional definitions of proof systems (e.g., NP-proofs).

Loosely speaking, an interactive proof is a game between a computationally bounded verifier
and a computationally unbounded prover whose goal is to convince the verifier of the validity of
some assertion. Specifically, the verifier is probabilistic polynomial-time. It is required that if the
assertion holds then the verifier always accepts (i.e., when interacting with an appropriate prover
strategy). On the other hand, if the assertion is false then the verifier must reject with “noticeable”
probability, no matter what strategy is being employed by the prover. Indeed, the error probability
(in the soundness condition) can be reduced by (either sequential or parallel) repetitions.

Definition 1 (Interactive Proof systems and the class ZP [66]): An interactive proof system for a set

S is a two-party game, between a verifier executing a probabilistic polynomial-time strategy (denoted
V') and a prover which ezecutes a computationally unbounded strategy (denoted P), satisfying

e Completeness: For every x € S the verifier V always accepts after interacting with the prover
P on common input x.

e Soundness: For some polynomial p, it holds that for every x ¢ S and every potential strat-
egy P*, the verifier V rejects with probability at least 1/p(|z|), after interacting with P* on
common input x.

The class of problems having interactive proof systems is denoted IP.

Note that by repeating such a proof system for O(p(|z|)?) times, we may decrease the probability
that V accepts a false statement (from 1—(1/p(|z|))) to 27P(=D). Thus, when constructing interactive
proofs we sometimes focus on obtaining a noticeable rejection probability for NO-instances (i.e.,
obtaining soundness error bounded away from 1), whereas when using interactive proofs we typically
assume that their soundness error is negligible.

Variants: Arthur-Merlin games (a.k.a public-coin proof systems), introduced by Babai [4], are a
special case of interactive proofs in which the verifier must send the outcome of any coin it tosses
(and thus need not send any other information). Yet, as shown in [67], this restricted case has
essentially the same power as the general case (introduced by Goldwasser, Micali and Rackoff [66]).
Thus, in the context of interactive proof systems, asking random questions is as powerful as asking
“tricky” questions. (As we shall see, this does not necessarily hold in the context of zero-knowledge
proofs.) Also, in some sources interactive proofs are defined so that two-sided error probability is
allowed (rather than requiring “perfect completeness” as done above); yet, this does not increase
their power [44].

Arguments (or Computational Soundness): A fundamental variant on the notion of inter-
active proofs was introduced by Brassard, Chaum and Crépeau [21], who relaxed the soundness
condition so that it only refers to feasible ways of trying to fool the verifier (rather than to all
possible ways). Specifically, the soundness condition was replaced by the following computational
soundness condition that asserts that it is infeasible to fool the verifier into accepting false state-
ments.

For every polynomial p, every prover strategy that is implementable by a family of
polynomial-size circuits {C,, }, and every sufficiently large z € {0,1}*\ S, the probability
that V accepts when interacting with C, is less than 1/p(|z|).

We warn that although the computational-soundness error can always be reduced by sequential
repetitions, it is not true that this error can always be reduced by parallel repetitions (cf. [14]).
Protocols that satisfy the computational-soundness condition are called arguments.? We mention
that argument systems may be more efficient than interactive proofs (see [70, 53]).

Terminology. Whenever we wish to blur the distinction between proofs and arguments, we will
use the term protocols. We will consider such a protocol trivial if it establishes membership in a
BPP-set (because membership in such a set can be determined by the verifier itself). On the other
hand, we will sometimes talk about protocols for NP, when what we actually mean is protocols
for each set in AP. (This terminology is quite common in the area.)?

2 A related notion not discussed here is that of CS-proofs, introduced by Micali [75].
3 See [9] for further discussion of the distinction.

2.2 Computational Difficulty and One-Way Functions

Most positive results regarding zero-knowledge proofs are based on intractability assumptions.
Furthermore, the very notion of a zero-knowledge proof is interesting only in case the assertion
being proven to be valid is hard to verify in probabilistic polynomial-time. Thus, our discussion
always assumes (at least implicitly) that ZP is not contained in BPP, and often we explicitly
assume more than that.

In general, Modern Cryptography is concerned with the construction of schemes that are easy to
operate (properly) but hard to foil. Thus, a complexity gap (i.e., between the complexity of proper
usage and the complexity of defeating the prescribed functionality) lies in the heart of Modern
Cryptography. However, gaps as required for Modern Cryptography are not known to exist; they
are only widely believed to exist. Indeed, almost all of Modern Cryptography rises or falls with
the question of whether one-way functions exist. One-way functions are functions that are easy to
evaluate but hard (on the average) to invert (cf. [32]). That is, a function f:{0,1}* — {0,1}* is
called one-way if there is an efficient algorithm that on input = outputs f(z), whereas any feasible
algorithm that tries to find a preimage of f(x) under f may succeed only with negligible probability
(where the probability is taken uniformly over the choices of z and the algorithm’s coin tosses).
Associating feasible computations with (possibly non-uniform) families of polynomial-size circuits,
we obtain the following definition.

Definition 2 (one-way functions): A function f:{0,1}* —{0,1}* is called one-way if the following
two conditions hold:

1. easy to evaluate: There exist a polynomial-time algorithm A such that A(x) = f(zx) for every
€ {0,1}*.

2. hard to invert: For every family of polynomial-size circuits {Cy}, every polynomial p, and all
sufficiently large n,

PriC.(f(2)) € f1(f(z))] < —

[Cn(f(2)) (f(z))] o)

where the probability is taken uniformly over all the possible choices of x € {0,1}".

Some of the most popular candidates for one-way functions are based on the conjectured intractabil-
ity of computational problems in number theory. One such conjecture is that it is infeasible to factor
large integers. Consequently, the function that takes as input two (equal length) primes and outputs
their product is widely believed to be a one-way function.

Terminology. Some of the (positive) results mentioned below require stronger forms of one-way
functions (e.g., one-way permutations with (or without) trapdoor [49, Sec. 2.4.4] and claw-free
permutation pairs [49, Sec. 2.4.5]). Whenever we wish to avoid the specific details, we will talk
about standard intractability assumptions. In all cases, the conjectured intractability of factoring
will suffice.

2.3 Computational Indistinguishability

A central notion in Modern Cryptography is that of “effective similarity” (introduced by Gold-
wasser, Micali and Yao [65, 86]). The underlying thesis is that we do not care whether or not
objects are equal, all we care is whether or not a difference between the objects can be observed by

a feasible computation. In case the answer is negative, the two objects are equivalent as far as any
practical application is concerned. Indeed, like in many other cryptographic definitions, in the def-
inition of general/computational zero-knowledge we will freely interchange such (computationally
indistinguishable) objects.

The asymptotic formulation of computational indistinguishability refers to (pairs of) probabil-
ity ensembles, which are infinite sequences of finite distributions, rather than to (pairs of) finite
distributions. Specifically, we consider sequences indexed by strings (rather than by integers (in
unary representation)). For S C {0,1}*, we consider the probability ensembles X = {X,}acs
and Y = {Y,}acs, where each X, (resp., Y,) is a distribution that ranges over strings of length
polynomial in |«|. We say that X and Y are computationally indistinguishable if for every feasible
algorithm A the difference d4(n) o maxye(o,1}»1|PrlA(Xa) =1] — Pr{A(Y,) = 1]|} is a negligible
function in |a|. That is:

Definition 3 (computational indistinguishability [65, 86]): We say that X = {Xa}tacs and Y =
{Ya}aes are computationally indistinguishable if for every family of polynomial-size circuits {D,},
every polynomial p, all sufficiently large n and every o € {0, 1}p01y<n) n.s,

1
|Pr[Dn(Xa):1] _Pr[Dn(Ya):lﬂ < m

where the probabilities are taken over the relevant distribution (i.e., either X, or Y,).

That is, we think of D = {D,,} as of somebody who wishes to distinguish two distributions (based
on a sample given to it), and think of 1 as of D’s verdict that the sample was drawn according
to the first distribution. Saying that the two distributions are computationally indistinguishable
means that if D is an efficient procedure then its verdict is not really meaningful (because the
verdict is almost as often 1 when the input is drawn from the first distribution as when the input
is drawn from the second distribution).

We comment that indistinguishability by a single sample (as defined above) implies indistin-
guishability by multiple samples. Also note that the definition would not have been stronger if we
were to provide the distinguisher (i.e., D) with the index (i.e., «) of the distribution-pair being
tested.

3 Definitional Issues

Loosely speaking, zero-knowledge proofs are proofs that yield nothing beyond the validity of the
assertion. That is, a verifier obtaining such a proof only gains conviction in the validity of the
assertion. This is formulated by saying that anything that can be feasibly obtained from a zero-
knowledge proof is also feasibly computable from the (valid) assertion itself. The latter formulation
follows the simulation paradigm, which is discussed next.

3.1 The Simulation Paradigm

In defining zero-knowledge proofs, we view the verifier as a potential adversary that tries to gain
knowledge from the (prescribed) prover. We wish to state that no (feasible) adversary strategy for

4 Furthermore, the definition would not have been stronger if we were to consider a specialized polynomial-size
circuit per each a € S (i.e., consider the difference |Pr[Da (Xa) =1] — Pr[Da(Ya) = 1]| for any set of circuits
D = {D,}uacs such that the size of D, is polynomial in |a|).

the verifier can gain anything from the prover (beyond conviction in the validity of the assertion).
Let us consider the desired formulation from a wide perspective.

A key question regarding the modeling of security concerns is how to express the intuitive re-
quirement that an adversary “gains nothing substantial” by deviating from the prescribed behavior
of an honest user. Our approach is that the adversary gains nothing if whatever it can obtain
by unrestricted adversarial behavior can be obtained within essentially the same computational
effort by a benign behavior. The definition of the “benign behavior” captures what we want to
achieve in terms of security, and is specific to the security concern to be addressed. For example,
in the previous paragraph, we said that a proof is zero-knowledge if it yields nothing beyond the
validity of the assertion (i.e., the benign behavior is any computation that is based (only) on the
assertion itself, while assuming that the latter is valid). Thus, in a zero-knowledge proof no feasible
adversarial strategy for the verifier can obtain more than a “benign verifier”, which believes the
assertion, can obtain from the assertion itself. We comment that the simulation paradigm, which
was first developed in the context of zero-knowledge [66], is pivotal also to the definition of the
security of encryption schemes (cf. [50, Chap. 5]) and cryptographic protocols (cf. [24, 47)).

A notable property of defining security (or zero-knowledge) via the simulation paradigm is that
this approach is “overly liberal” with respect to its view of the abilities of the adversary as well as
to what might constitute a gain for the adversary. Thus, the approach may be considered overly
cautious, because it prohibits also “non-harmful” gains of some “far fetched” adversaries. We
warn against this impression. Firstly, there is nothing more dangerous in cryptography than to
consider “reasonable” adversaries (a notion which is almost a contradiction in terms): typically, the
adversaries will try exactly what the system designer has discarded as “far fetched”. Secondly, it
seems impossible to come up with definitions of security that distinguish “breaking the scheme in a
harmful way” from “breaking it in a non-harmful way”: what is harmful is application-dependent,
whereas a good definition of security ought to be application-independent (as otherwise using the
scheme in any new application will require a full re-evaluation of its security). Furthermore, even
with respect to a specific application, it is typically very hard to classify the set of “harmful
breakings”.

3.2 The Basic Definition

Zero-knowledge is a property of some prover strategies. More generally, zero-knowledge is a property
of some interactive machines. Fixing an interactive machine (e.g., a prescribed prover), we consider
what can be computed by an arbitrary feasible adversary (e.g., a verifier) that interacts with
the fixed machine on a common input taken from a predetermined set (in our case the set of valid
assertions). This is compared against what can be computed by an arbitrary feasible algorithm that
is only given the input itself. An interactive strategy A is zero-knowledge on (inputs from) the set S
if, for every feasible (interactive) strategy B*, there exists a feasible (non-interactive) computation
C* such that the following two probability ensembles are computationally indistinguishable:

1. {(A,B*)(z)}zes 4 the output of B* after interacting with A on common input x € S; and

2. {C*(2)}zes 4 the output of C* on input = € S.

We stress that the first ensemble represents an actual execution of an interactive protocol, whereas
the second ensemble represents the computation of a stand-alone procedure (called the “simulator”),
which does not interact with anybody. Thus, whatever can be feasibly extracted from interaction
with A on input z € S, can also be feasibly extracted from z itself. This means that nothing was
gain by the interaction itself (beyond confidence in the assertion z € S).

The above definition does NOT account for auxiliary information that an adversary may have
prior to entering the interaction. Accounting for such auxiliary information is essential for using
zero-knowledge proofs as subprotocols inside larger protocols (see [55, 59]). This is taken care of
by a more strict notion called auxiliary-input zero-knowledge.’

Definition 4 (zero-knowledge [66], revisited [59]): A strategy A is auxiliary-input zero-knowledge
on inputs from S if for every probabilistic polynomial-time strategy B* and every polynomial p there
exists a probabilistic polynomial-time algorithm C* such that the following two probability ensembles
are computationally indistinguishable:

1. {(A,B*(z))(x)}zes,ze{o,l}pqzn L the output of B* when having auziliary-input z and inter-
acting with A on common input x € S; and

2. {C*(2,2)}pes 2eq0,13p00=D) L the output of C* on inputs x € S and z € {0,1}P(=),

An interactive proof (resp., an argument) system for S is called auxiliary-input zero-knowledge if the
prescribed prover strategy is auziliary-input zero-knowledge on inputs from S.

The more basic definition of zero-knowledge is obtained by eliminating the auxiliary-input z from
Definition 4. We comment that almost all known zero-knowledge proofs are in fact auxiliary-input
zero-knowledge. (Notable exceptions are zero-knowledge proofs constructed on purpose in order
to show a separation between these two notions (e.g., in [55]) and protocols having only “non
black-box simulators” (see warm-up in [7]).)

We stress that the zero-knowledge property of an interactive proof (resp., argument) refers to all
feasible adversarial strategies that the verifier may employ (in attempt to extract knowledge from
the prescribed prover that tries to convince the verifier to accept a valid assertion). In contrast,
the soundness property of an interactive proof (resp., the computational-soundness property of an
argument) refers to all possible (resp., feasible) adversarial strategies that the prover may employ
(in attempt to fool the prescribed verifier to accept a false assertion). Finally, the completeness
property (only) refers to the behavior of both prescribed strategies (when given, as common input,
a valid assertion).

3.3 Variants

The reader may skip the current subsection and return to it whenever encountering (especially in
the second part of this tutorial) a notion that was not defined above.

3.3.1 TUniversal and black-box simulation

We have already discussed two variants on the basic definition (i.e., with or without auxiliary-
inputs). Further strengthening of Definition 4 is obtained by requiring the existence of a universal

® We note that the following definition seems stronger than merely allowing the verifier and simulator to be
arbitrary polynomial-size circuits. The issue is that the latter formulation does not guarantee that the simulator can
be easily derived from the cheating verifier nor that the length of the simulator’s description is related to the length
of the description of the verifier. Both issues are important when trying to use zero-knowledge proofs as subprotocols
inside larger protocols or to compose them (even sequentially). For further discussion, see Section 5.

5 Note that the prescribed verifier strategy (which is a probabilistic polynomial-time strategy that only depends on
the common input) is always auxiliary-input zero-knowledge. In contrast, typical prover strategies are implemented
by probabilistic polynomial-time algorithms that are given an auxiliary input (which is not given to the verifier), but
not by probabilistic polynomial-time algorithms that are only given the common input.

simulator, denoted C, that is given the program of the verifier (i.e., B*) as an auxiliary-input; that
is, in terms of Definition 4, one should replace C*(z, z) by C(z, z, (B*)), where (B*) denotes the
description of the program of B* (which may depend on = and on z).” That is, we effectively
restrict the simulation by requiring that it be a uniform (feasible) function of the verifier’s program
(rather than arbitrarily depend on it). This restriction is very natural, because it seems hard to
envision an alternative way of establishing the zero-knowledge property of a given protocol.

Taking another step, one may argue that since it seems infeasible to reverse-engineer programs,
the simulator may as well just use the verifier strategy as an oracle (or as a “black-box”). This
reasoning gave rise to the notion of black-box simulation, which was introduced and advocated in [55]
and further studied in numerous works (see, e.g., [28]). The belief was that impossibility results
regarding black-box simulation represent inherent limitations of zero-knowledge itself. However,
this belief has been refuted recently by Barak [7]. For further discussion, see Section 6.

3.3.2 Honest verifier versus general cheating verifier

The (general) definition of zero-knowledge (i.e., Definition 4) refers to all feasible verifier strategies.
This choice is most natural since zero-knowledge is supposed to capture the robustness of the prover
under any feasible (i.e., adversarial) attempt to gain something by interacting with it. Thus, we
typically view the verifier as an adversary that is trying to cheat.

A weaker and still interesting notion of zero-knowledge refers to what can be gained by an
“honest, verifier” (or rather a semi-honest verifier)® that interacts with the prover as directed, with
the exception that it may maintain (and output) a record of the entire interaction (i.e., even if
directed to erase all records of the interaction). Although such a weaker notion is not satisfactory
for standard cryptographic applications, it yields a fascinating notion from a conceptual as well
as a complexity-theoretic point of view. Furthermore, as shown in [62], every public-coin proof
system that is zero-knowledge with respect to the honest-verifier can be transformed into a standard
zero-knowledge proof that maintains many of the properties of the original protocol (and without
increasing the prover’s powers or using any intractability assumptions).

We stress that the definition of zero-knowledge with respect to the honest-verifier V' is derived
from Definition 4 by considering a single verifier strategy B that is equal to V except that B also
maintains a record of the entire interaction (including its own coin tosses) and outputs this record at
the end of the interaction. (In particular, the messages sent by B are identical to the corresponding
messages that would have been sent by V.)

3.3.3 Statistical versus Computational Zero-Knowledge

Recall that the definition of zero-knowledge postulates that for every probability ensemble of one
type (i.e., representing the verifier’s output after interaction with the prover) there exists a “similar”
ensemble of a second type (i.e., representing the simulator’s output). One key parameter is the
interpretation of “similarity”. Three interpretations, yielding different notions of zero-knowledge,
have been commonly considered in the literature (cf., [66, 42]):

1. Perfect Zero-Knowledge (PZK) requires that the two probability ensembles be identical.’

" Actually, we may incorporate = and z in (B*), and thus replace C(z, z, (B*)) by C({B*)).

8 The term “honest verifier” is more appealing when considering an alternative (equivalent) formulation of Def-
inition 4. In the alternative definition, the simulator is “only” required to generate the verifier’s view of the real
interaction, when the verifier’s view includes its inputs, the outcome of its coin tosses, and all messages it has received.

9 The actual definition of PZK allows the simulator to fail (while outputting a special symbol) with some probability
that is bounded away from 1, and the output distribution of the simulator is conditioned on its not failing.

10

2. Statistical Zero-Knowledge (SZK) requires that these probability ensembles be statistically
close (i.e., the variation distance between them is negligible).

3. Computational (or rather general) Zero-Knowledge (CZK) requires that these probability en-
sembles be computationally indistinguishable.

Indeed, Computational Zero-Knowledge (CZK) is the most liberal notion, and is the notion consid-
ered in Definition 4 as well as in most of this tutorial. (In particular, whenever we fail to qualify the
type of zero-knowledge, we mean computational zero-knowledge.) The only exception is Section 9,
which is devoted to a discussion of Statistical (or Almost-Perfect) Zero-Knowledge (SZK). We note
that the class SZK contains several problems that are considered intractable.

3.3.4 Strict versus expected probabilistic polynomial-time

So far, we did not specify what we exactly mean by the term probabilistic polynomial-time. Two
common interpretations are:

1. Strict probabilistic polynomial-time. That is, there exist a (polynomial in the length of the
input) bound on the number of steps in each possible run of the machine, regardless of the
outcome of its coin tosses.

2. Expected probabilistic polynomial-time. The standard approach is to look at the running-time
as a random variable and bound its ezpectation (by a polynomial in the length of the input).
As observed by Levin [73] (cf. [46]), this definitional approach is quite problematic (e.g., it is
not model-independent and is not closed under algorithmic composition), and an alternative
treatment of this random variable is preferable.!©

Consequently, the notion of expected polynomial-time raises a variety of conceptual and technical
problems. For that reason, whenever possible, one should prefer to use the more robust (and
restricted) notion of strict (probabilistic) polynomial-time. Thus, with the ezception of constant-
round zero-knowledge protocols, whenever we talk of a probabilistic polynomial-time verifier (resp.,
simulator) we mean one in the strict sense. In contrast, with the exception of [7, 11],!! all results
regarding constant-round zero-knowledge protocols refer to a strict polynomial-time verifier and
an expected polynomial-time simulator, which is indeed a small cheat. For further discussion, the
reader is referred to [11].

4 Zero-Knowledge Proofs for every NP-set

A question avoided so far is whether zero-knowledge proofs exist at all. Clearly, every set in P (or
rather in BPP)'2 has a “trivial” zero-knowledge proof (in which the verifier determines membership

10 Specifically, it is preferable to define expected polynomial-time as having running time that is polynomially-
related to a function that has linear expectation. That is, rather than requiring that E[X,] = poly(n), one requires
that for some Y, it holds that X, = poly(Y.) and E[Y,] = O(n). The advantage of the latter approach is that if X,
is deemed polynomial on the average then so is X2, which is not the case under the former approach (e.g., X, = 2"
with probability 27" and X,, = n otherwise).

11 gpecifically, in [7, 11] both the verifier and the simulator run in strict polynomial-time. We comment that, as
shown in [11], the use of non-black-box is necessary for the non-triviality of constant-round zero-knowledge protocols
under the strict definition.

2 Trivial zero-knowledge proofs for sets in BPP \ coRP require modifying the definition of interactive proofs such
that to allow a negligible error also in the completeness condition. Alternatively, zero-knowledge proofs for sets in
BPP can be constructed by having the prover send a single message that is distributed almost uniformly (cf. [44]).

11

by itself); however, what we seek is zero-knowledge proofs for statements that the verifier cannot
decide by itself.

4.1 Constructing Zero-Knowledge Proofs for NP-sets

Assuming the existence of commitment schemes'?, which in turn exist if one-way functions ex-

ist [76, 68], there exist (auxiliary-input) zero-knowledge proofs of membership in any NP-set (i.e.,
sets having efficiently verifiable static proofs of membership). These zero-knowledge proofs, first
constructed by Goldreich, Micali and Wigderson [57] (and depicted in Figure 2), have the following
important property: the prescribed prover strategy is efficient, provided it is given as auxiliary-input
an NP-witness to the assertion (to be proven). That is:

Theorem 5 ([57], using [68, 76]): If one-way functions exist then every set S € N'P has a zero-
knowledge interactive proof. Furthermore, the prescribed prover strategy can be implemented in
probabilistic polynomial-time, provided it is given as auxiliary-input an NP-witness for membership
of the common input in S.

Theorem 5 makes zero-knowledge a very powerful tool in the design of cryptographic schemes and
protocols (see below). We comment that the intractability assumption used in Theorem 5 seems
essential; see [78].

Commitment schemes are digital analogies of sealed envelopes (or, better, locked boxes). Sending
a commitment means sending a string that binds the sender to a unique value without revealing
this value to the receiver (as when getting a locked box). Decommitting to the value means sending
some auxiliary information that allows to read the uniquely committed value (as when sending the
key to the lock).

Common Input: A graph G(V, E). Suppose that V = {1,...,n} for n = [V].
Auxiliary Input (to the prover): A 3-coloring ¢:V — {1,2,3}.
The following 4 steps are repeated t - |F| many times so to obtain soundness error exp(—t).

Prover’s first step (P1): Select uniformly a permutation 7 over {1,2,3}. For i = 1 to n, send
the verifier a commitment to the value m(¢(z)).

Verifier’s first step (V1): Select uniformly an edge e € E and send it to the prover.

Prover’s second step (P2): Upon receiving e = (3, j) € F, decommit to the ith and jth values
sent in Step (P1).

Verifier’s second step (V2): Check whether or not the decommitted values are different ele-
ments of {1,2,3} and whether or not they match the commitments received in Step (P1).

Figure 2: The zero-knowledge proof of Graph 3-Colorability (of [57]). Zero-knowledge
proofs for other NP-sets can be obtained using the standard reductions.

Analyzing the protocol of Figure 2. Let us consider a single execution of the main loop.
Clearly, the prescribed prover is implemented in probabilistic polynomial-time, and always con-
vinces the verifier (provided that it is given a valid 3-coloring of the common input graph). In case

13 Too0sely speaking, commitment schemes are digital analogue of non-transparent sealed envelopes. See further
discussion in Figure 2.

12

the graph is not 3-colorable then, no matter how the prover behaves, the verifier will reject with
probability at least 1/|E| (because at least one of the edges must be improperly colored by the
prover). We stress that the verifier selects uniformly which edge to inspect after the prover has
committed to the colors of all vertices. Thus, Figure 2 depicts an interactive proof system for Graph
3-Colorability. As can be expected, the zero-knowledge property is the hardest to establish, and we
will confine ourselves to presenting a simulator (which we hope will convince the reader without a
detailed analysis). We start with three simplifying conventions (which are useful in general):

1. Without loss of generality, we may assume that the cheating verifier strategy is implemented
by a deterministic polynomial-size circuit (or, equivalently, by a polynomial-time algorithm
with an auxiliary input). This is justified by fixing any outcome of the verifier’s coins, and
observing that our (uniform) simulation of the various (residual) deterministic strategies yields
a simulation of the original probabilistic strategy.

2. Without loss of generality, it suffices to consider cheating verifiers that (only) output their
view of the interaction (i.e., their input, coin tosses, and the messages the received). This is
justified by observing that the output of the original verifier can be computed by an algorithm
of comparable complexity that is given the verifier’s view of the interaction. Thus, it suffices
to simulate the view of that cheating verifiers have of the real interaction.

3. Without loss of generality, it suffices to construct a “weak simulator” that produces output

with some noticeable probability. This is the case because, by repeatedly invoking this weak
simulator (polynomially) many times, we may obtain a simulator that fails to produce an
output with negligible probability, whereas the latter yields a simulator that never fails (as
required).

The simulator starts by selecting uniformly and independently a random color (i.e., element of
{1,2,3}) for each vertex, and feeding the verifier strategy with random commitments to these
random colors. Indeed, the simulator feeds the verifier with a distribution that is very different
from the distribution that the verifier sees in a real interaction with the prover. However, being
computationally-restricted the verifier cannot tell these distributions apart (or else we obtain a
contradiction to the security of the commitment scheme in use). Now, if the verifier asks to inspect
an edge that is properly colored then the simulator performs the proper decommitment action and
outputs the transcript of this interaction. Otherwise, the simulator halts proclaiming failure. We
claim that failure occurs with probability approximately 1/3 (or else we obtain a contradiction to
the security of the commitment scheme in use). Furthermore, based on the same hypothesis (but via
a more complex proof), conditioned on not failing, the output of the simulator is computationally
indistinguishable from the verifier’s view of the real interaction.

Zero-knowledge proofs for other NP-sets. By using the standard Karp-reductions to 3-
Colorability, the protocol of Figure 2 can be used for constructing zero-knowledge proofs for any
set in NP. We comment that this is probably the first time that an NP-completeness result was used
in a “positive” way (i.e., in order to construct something rather than in order to derive a hardness
result). Subsequent positive uses of completeness results have appeared in the context of interactive
proofs [74, 84], probabilistically checkable proofs [5, 36, 3, 2], “hardness versus randomness trade-
offs” [6], and statistical zero-knowledge [83].

Efficiency considerations. The protocol in Figure 2 calls for invoking some constant-round
protocol for a non-constant number of times. At first glance, it seems that one can derive a

13

constant-round zero-knowledge proof system (of negligible soundness error) by performing these
invocations in parallel (rather than sequentially). Unfortunately, as demonstrated in [55], this
intuition is not sound. See further discussions in Sections 5 and 6. We comment that the number
of rounds in a protocol is commonly considered the most important efficiency criteria (or complexity
measure), and typically one desires to have it be a constant. We mention that, under standard
intractability assumptions (e.g., the intractability of factoring), constant-round zero-knowledge
proofs (of negligible soundness error) exists for every set in NP (cf. [54]).

4.2 Using Zero-Knowledge Proofs for NP-sets

We stress two important aspects regarding Theorem 5: Firstly, it provides a zero-knowledge
proof for every NP-set, and secondly the prescribed prover can be implemented in probabilistic
polynomial-time when given an adequate NP-witness.

A generic application. In a typical cryptographic setting, a user referred to as U, has a secret
and is supposed to take some action depending on its secret. The question is how can other
users verify that U indeed took the correct action (as determined by U’s secret and the publicly
known information). Indeed, if U discloses its secret then anybody can verify that U took the
correct action. However, U does not want to reveal its secret. Using zero-knowledge proofs we
can satisfy both conflicting requirements (i.e., having other users verify that U took the correct
action without violating U’s interest in not revealing its secrets). That is, U can prove in zero-
knowledge that it took the correct action. Note that U’s claim to having taken the correct action
is an NP-assertion (since U’s legal action is determined as a polynomial-time function of its secret
and the public information), and that U has an NP-witness to its validity (i.e., the secret is an
NP-witness to the claim that the action fits the public information). Thus, by Theorem 5, it is
possible for U to efficiently prove the correctness of its action without yielding anything about its
secret. Consequently, it is fair to ask U to prove (in zero-knowledge) that it behaves properly, and
so to force U to behave properly. Indeed, “forcing proper behavior” is the canonical application of
zero-knowledge proofs (see [58, 47]).

Zero-knowledge proofs for all IP. For the sake of elegancy, we mention that under the same
assumption used in case of NP, it holds that any set that has an interactive proof also has a
zero-knowledge interactive proof (cf. [69, 15]).

Part 11
Advanced Topics

5 Composing zero-knowledge protocols

A natural question regarding zero-knowledge proofs (and arguments) is whether the zero-knowledge
condition is preserved under a variety of composition operations. Three types of composition oper-
ation were considered in the literature: sequential composition, parallel composition and concurrent
composition. We note that the preservation of zero-knowledge under these forms of composition is
not only interesting on its own sake, but rather also sheds light of the preservation of the security
of general protocols under these forms of composition.

14

We stress that when we talk of composition of protocols (or proof systems) we mean that the
honest users are supposed to follow the prescribed program (specified in the protocol description)
that refers to a single execution. That is, the actions of honest parties in each execution are inde-
pendent of the messages they received in other executions. The adversary, however, may coordinate
the actions it takes in the various executions, and in particular its actions in one execution may
depend also on messages it received in other executions.

Let us motivate the asymmetry between the independence of executions assumed of honest
parties but not of the adversary. Coordinating actions in different executions is typically difficult
but not impossible. Thus, it is desirable to use composition (as defined above) rather than to use
protocols that include inter-execution coordination-actions, which require users to keep track of
all executions that they perform. Actually, trying to coordinate honest executions is even more
problematic than it seems because one may need to coordinate executions of different honest parties
(e.g., all employees of a big cooperation or an agency under attack), which in many cases is highly
unrealistic. On the other hand, the adversary attacking the system may be willing to go into the
extra trouble of coordinating its attack in the various executions of the protocol.

For T € {sequential,parallel,concurrent}, we say that a protocol is T-zero-knowledge
if it is zero-knowledge under a composition of type T. The definitions of T-zero-knowledge are
derived from Definition 4 by considering appropriate adversaries (i.e., adversarial verifiers); that
is, adversaries that can initiate a polynomial number of interactions with the prover, where these
interactions are scheduled according to the type 7.'* The corresponding simulator (which, as usual,
interacts with nobody) is required to produce an output that is computationally indistinguishable
from the output of such a type T adversary.

5.1 Sequential Composition

In this case, the protocol is invoked (polynomially) many times, where each invocation follows
the termination of the previous one. At the very least, security (e.g., zero-knowledge) should be
preserved under sequential composition, or else the applicability of the protocol is highly limited
(because one cannot safely use it more than once).

Referring to Definition 4, we mention that whereas the “simplified” version (i.e., without aux-
iliary inputs) is not closed under sequential composition (cf. [55]), the actual version (i.e., with
auxiliary inputs) is closed under sequential composition (cf. [59]). We comment that the same phe-
nomena arises when trying to use a zero-knowledge proof as a sub-protocol inside larger protocols.
Indeed, it is for these reasons that the augmentation of the “most basic” definition by auxiliary
inputs was adopted in all subsequent works.!5

Bottom-line: Every protocol that is zero-knowledge (under Definition 4) is sequential-zero-
knowledge.

1 Without loss of generality, we may assume that the adversary never violates the scheduling condition; it may
instead send an illegal message at the latest possible adequate time. Furthermore, without loss of generality, we may
assume that all the adversary’s messages are delivered at the latest possible adequate time.

5 Interestingly, the preliminary version of Goldwasser, Micali and Rackoff’s work [66] used the “most basic”
definition, whereas the final version of this work used the augmented definition. In some works, the “most basic”
definition is used for simplicity, but typically one actually needs and means the augmented definition.

15

5.2 Parallel Composition

In this case, (polynomially) many instances of the protocol are invoked at the same time and
proceed at the same pace. That is, we assume a synchronous model of communication, and consider
(polynomially) many executions that are totally synchronized so that the ith message in all instances
is sent exactly (or approximately) at the same time. (Natural variants on this model are discussed
below as well as at the end of Section 5.3.)

It turns out that, in general, zero-knowledge is not closed under parallel composition. A simple
counter-example (to the “parallel composition conjecture”) is depicted in Figure 3. This counter-
example, which is adapted from [55], consists of a simple protocol that is zero-knowledge (in a
strong sense), but is not closed under parallel composition (not even in a very weak sense).

Consider a party P holding a random (or rather pseudorandom) function f:{0,1}*>" — {0,1}", and
willing to participate in the following protocol (with respect to security parameter n). The other party,
called A for adversary, is supposed to send P a binary value v € {1, 2} specifying which of the following
cases to execute:

For v = 1: Party P uniformly selects € {0,1}", and sends it to A, which is supposed to reply with
a pair of n-bit long strings, denoted (3,~). Party P checks whether or not f(a8) = v. In case
equality holds, P sends A some secret information.

For v =2: Party A is supposed to uniformly select a € {0,1}", and sends it to P, which selects
uniformly 8 € {0,1}", and replies with the pair (3, f(af3)).

Observe that P’s strategy is zero-knowledge (even w.r.t auxiliary-inputs as defined in Definition 4):
Intuitively, if the adversary A chooses the case v = 1, then it is infeasible for A to guess a passing pair
(B,7) with respect to the random « selected by P. Thus, except with negligible probability (when it
may get secret information), A does not obtain anything from the interaction. On the other hand, if
the adversary A chooses the case v = 2, then it obtains a pair that is indistinguishable from a uniformly
selected pair of n-bit long strings (because 3 is selected uniformly by P, and for any a the value f(af)
looks random to A).

In contrast, if the adversary A can conduct two concurrent® executions with P, then it may learn the
desired secret information: In one session, A sends v = 1 while in the other it sends v = 2. Upon
receiving P’s message, denoted «, in the first session, A sends o as its own message in the second
session, obtaining a pair (3, f(af3)) from P’s execution of the second session. Now, A sends the pair
(8, f(apB)) to the first session of P, this pair passes the check, and so A obtains the desired secret.

aDummy messages may be added (in both cases) in order to make the above scheduling fit the perfectly parallel case.

Figure 3: A counter-example (adapted from [55]) to the parallel repetition conjecture
for zero-knowledge protocols.

We comment that, at the 1980’s, the study of parallel composition was interpreted mainly in the
context of round-efficient error reduction (cf. [39, 55]); that is, the construction of full-fledge zero-
knowledge proofs (of negligible soundness error) by composing (in parallel) a basic zero-knowledge
protocol of high (but bounded away from 1) soundness error. Since alternative ways of constructing
constant-round zero-knowledge proofs (and arguments) were found (cf. [54, 40, 23]), interest in
parallel composition (of zero-knowledge protocols) has died. In retrospect, this was a conceptual
mistake, because parallel composition (and mild extensions of this notion) capture the preservation
of security in a fully synchronous (or almost-fully synchronous) communication network. We note
that the almost-fully synchronous communication model is quite realistic in many settings, although
it is certainly preferable not to assume even weak synchronism.

16

Although, in general, zero-knowledge is not closed under parallel composition, under standard
intractability assumptions (e.g., the intractability of factoring), there exists zero-knowledge pro-
tocols for NP that are closed under parallel composition. Furthermore, these protocols have a
constant number of rounds (cf. [51] for proofs and [34] for arguments).!® Both results extend also
to concurrent composition in a synchronous communication model, where the extension is in al-
lowing protocol invocations to start at different (synchronous) times (and in particular executions
may overlap but not run simultaneously).

We comment that parallel composition is problematic also in the context of reducing the sound-
ness error of arguments (cf. [14]), but our focus here is on the zero-knowledge aspect of protocols
regardless if they are proofs, arguments or neither.

Bottom-line: Under standard intractability assumptions, every NP-set has a constant-round
parallel-zero-knowledge proof.

5.3 Concurrent Composition (with and without timing)

Concurrent composition generalizes both sequential and parallel composition. Here (polynomially)
many instances of the protocol are invoked at arbitrary times and proceed at arbitrary pace. That
is, we assume an asynchronous (rather than synchronous) model of communication.

In the 1990’s, when extensive two-party (and multi-party) computations became a reality (rather
than a vision), it became clear that it is (at least) desirable that cryptographic protocols maintain
their security under concurrent composition (cf. [33]). In the context of zero-knowledge, concurrent
composition was first considered by Dwork, Naor and Sahai [34]. Actually, two models of concurrent
composition were considered in the literature, depending on the underlying model of communication
(i.e., a purely asynchronous model and an asynchronous model with timing). Both models cover
sequential and parallel composition as special cases.

Concurrent composition in the pure asynchronous model. Here we refer to the standard
model of asynchronous communication. In comparison to the timing model, the pure asynchronous
model is a simpler model and using it requires no assumptions about the underlying communication
channels. However, it seems harder to construct concurrent zero-knowledge protocols for this model.
In particular, for a while it was not known whether concurrent zero-knowledge proofs for NP
exist at all (in this model). Under standard intractability assumptions (e.g., the intractability of
factoring), this question was affirmatively resolved by Richardson and Kilian [81]. Following their
work, research has focused on determining the round-complexity of concurrent zero-knowledge
proofs for NP. This question is still opened, and the current state of the art regarding it is as
follows:

e Under standard intractability assumptions, every language in AP has a concurrent zero-
knowledge proof with almost-logarithmically many rounds (cf. [80], building upon [72], which
in turn builds over [81]). Furthermore, the zero-knowledge property can be demonstrated
using a black-box simulator (see definition in Sections 3.3.1 and 6).

e Black-box simulator cannot demonstrated the concurrent zero-knowledge property of non-
trivial proofs (or arguments) having significantly less than logarithmically-many rounds (cf.

16 Tn case of parallel-zero-knowledge proofs, there is no need to specify the soundness error because it can always
be reduced via parallel composition. As mentioned above, this is not the case with respect to arguments, which were
therefore defined to have negligible soundness error.

17

Canetti et. al. [28]).17

e Recently, Barak [7] demonstrated that the “black-box simulation barrier” can be bypassed.
With respect to concurrent zero-knowledge he only obtains partial results: constant-round
zero-knowledge arguments (rather than proofs) for AP that maintain security as long as an
a-priori bounded (polynomial) number of executions take place concurrently. (The length of
the messages in his protocol grows linearly with this a-priori bound.)

Thus, it is currently unknown whether or not constant-round protocols for NP may be concurrent
zero-knowledge (in the pure asynchronous model).

Concurrent composition under the timing model: A model of naturally-limited asyn-
chronousness (which certainly covers the case of parallel composition) was introduced by Dwork,
Naor and Sahai [34]. Essentially, they assume that each party holds a local clock such that the
relative clock rates are bounded by an a-priori known constant, and consider protocols that employ
time-driven operations (i.e., time-out in-coming messages and delay out-going messages). The
benefit of the timing model is that it is known to construct concurrent zero-knowledge protocols for
it. Specifically, using standard intractability assumptions, constant-round arguments and proofs
that are concurrent zero-knowledge under the timing model do exist (cf. [34] and [51], respectively).
The disadvantages of the timing model are discussed next.

The timing model consists of the assumption that talking about the actual timing of events is
meaningful (at least in a weak sense) and of the introduction of time-driven operations. The timing
assumption amounts to postulating that each party holds a local clock and knows a global bound,
denoted p > 1, on the relative rates of the local clocks.'® Furthermore, it is postulated that the
parties know a (pessimistic) bound, denoted A, on the message-delivery time (which also includes
the local computation and handling times). In our opinion, these timing assumptions are most rea-
sonable, and are unlikely to restrict the scope of applications for which concurrent zero-knowledge
is relevant. We are more concerned about the effect of the time-driven operations introduced in
the timing model. Recall that these operations are the time-out of in-coming messages and the
delay of out-going messages. Furthermore, typically the delay period is at least as long as the
time-out period, which in turn is at least A (i.e., the time-out period must be at least as long as
the pessimistic bound on message-delivery time so not to disrupt the proper operation of the pro-
tocol). This means that the use of these time-driven operations yields slowing down the execution
of the protocol (i.e., running it at the rate of the pessimistic message-delivery time rather than at
the rate of the actual message-delivery time, which is typically much faster). Still, in absence of
more appealing alternatives (i.e., a constant-round concurrent zero-knowledge protocol for the pure
asynchronous model), the use of the timing model may be considered reasonable. (We comment
than other alternatives to the timing-model include various set-up assumptions; cf. [26, 30].)

Back to parallel composition: Given our opinion about the timing model, it is not surprising
that we consider the problem of parallel composition almost as important as the problem of concur-
rent composition in the timing model. Firstly, it is quite reasonable to assume that the parties’ local

7 By non-trivial proof systems we mean ones for languages outside BPP, whereas by significantly less than
logarithmic we mean any function f:IN—IN satisfying f(n) = o(logn/loglogn). In contrast, by almost-logarithmic
we mean any function f satisfying f(n) = w(logn).

18 The rate should be computed with respect to reasonable intervals of time; for example, for A as defined below, one
may assume that a time period of A units is measured as A’ units of time on the local clock, where A/p < A’ < pA.

18

clocks have approximately the same rate, and that drifting is corrected by occasional clock syn-
chronization. Thus, it is reasonable to assume that the parties have approximately-good estimate
of some global time. Furthermore, the global time may be partitioned into phases, each consisting
of a constant number of rounds, so that each party wishing to execute the protocol just delays
its invocation to the beginning of the next phase. Thus, concurrent execution of (constant-round)
protocols in this setting amounts to a sequence of (time-disjoint) almost-parallel executions of the
protocol. Consequently, proving that the protocol is parallel zero-knowledge suffices for concurrent
composition in this setting.

Relation to resettable zero-knowledge. Going to the other extreme, we mention that there
exist a natural model of zero-knowledge that is even stronger than concurrent zero-knowledge (even
in the pure asynchronous model). Specifically, “resettable zero-knowledge” as defined in Section 11,
implies concurrent zero-knowledge.

6 Using the adversary’s program in the proof of security

As discussed in the first part of this tutorial, zero-knowledge is defined by following the simulation
paradigm, which in turn underlies many other central definitions in cryptography. Recall that
the definition of zero-knowledge proofs states that whatever an efficient adversary can compute
after interacting with the prover, can actually be efficiently computed from scratch by a so-called
simulator (which works without interacting with the prover). Although the simulator may depend
arbitrarily on the adversary, the need to present a simulator for each feasible adversary seems to
require the presentation of a universal simulator that is given the adversary’s strategy (or program)
as another auxiliary input. The question addressed in this section is how can the universal simulator
use the adversary’s program.

The adversary’s program (or strategy) is actually a function determining for each possible view
of the adversary (i.e., its input, random choices and the message it has received so far) which
message will be sent next. Thus, we identify the adversary’s program with this next-message
function. As stated in Section 3.3.1, until very recently, all universal simulators (constructed to-
wards demonstrating zero-knowledge properties) have used the adversary’s program (or rather its
next-message function) as a black-box (i.e., the simulator invoked the next-message function on a
sequence of arguments of its choice). Furthermore, in view of the presumed difficulty of “reverse
engineering” programs, it was commonly believed that nothing is lost by restricting attention to
simulators, called black-box simulators, that only make black-box usage of the adversary’s program.
Consequently, Goldreich and Krawczyk conjectured that impossibility results regarding black-box
simulation represent inherent limitations of zero-knowledge itself, and studied the limitations of the
former [55].

In particular, they showed that parallel composition of the protocol of Figure 2 (as well
as of any constant-round public-coin protocol) cannot be proven to be zero-knowledge
using a black-box simulator, unless the language (i.e., 3-Colorability) is in BPP. In fact
their result refers to any constant-round public-coin protocol with negligible soundness
error, regardless of how such a protocol is obtained. This result was taken as strong
evidence towards the conjecture that constant-round public-coin protocol with negligible
soundness error cannot be zero-knowledge (unless the language is in BPP).

Similarly, as mentioned in Section 5.3, it was shown that protocols of sub-logarithmic
number of rounds cannot be proven to be concurrent zero-knowledge via a black-box

19

stmulator [28], and this was taken as evidence towards the conjecture that such protocols
cannot be concurrent zero-knowledge.

In contrast to these conjectures and supportive evidence, Barak showed how to constructed non-
black-box simulators and obtained several results that were known to be unachievable via black-box
simulators [7]. In particular, under standard intractability assumption (see also [9]), he presented
constant-round public-coin zero-knowledge arguments with negligible soundness error for any lan-
guage in N'P. (Moreover, the simulator runs in strict polynomial-time, which is impossible for
black-box simulators of non-trivial constant-round protocols [11].) Furthermore, this protocol pre-
serves zero-knowledge under a fixed'® polynomial number of concurrent executions, in contrast to
the result of [28] (regarding black-box simulators) that holds also in that restricted case. Thus,
Barak’s result calls for the re-evaluation of many common beliefs. Most concretely, it says that
results regarding black-box simulators do not reflect inherent limitations of zero-knowledge (but
rather an inherent limitation of a natural way of demonstrating the zero-knowledge property). Most
abstractly, it says that there are meaningful ways of using a program other than merely invoking
it as a black-box.

Does this means that a method was found to “reverse engineer” programs or to “understand”
them? We believe that the answer is negative. Barak [7] is using the adversary’s program in a
significant way (i.e., more significant than just invoking it), without “understanding” it. So how
does he use the program?

The key idea underlying Barak’s protocol [7] is to have the prover prove that either the original
NP-assertion is valid or that he (i.e., the prover) “knows the verifier’s residual strategy” (in the sense
that it can predict the next verifier message). Indeed, in a real interaction (with the honest verifier),
it is infeasible for the prover to predict the next verifier message, and so computational-soundness
of the protocol follows. However, a simulator that is given the code of the verifier’s strategy (and
not merely oracle access to that code), can produce a valid proof of the disjunction by properly
executing the sub-protocol using its knowledge of an NP-witness for the second disjunctive. The
simulation is computational indistinguishable from the real execution, provided that one cannot
distinguish an execution of the sub-protocol in which one NP-witness (i.e., an NP-witness for the
original assertion) is used from an execution in which the second NP-witness (i.e., an NP-witness
for the auxiliary assertion) is use. That is, the sub-protocol should be a witness indistinguishable
argument system (see further discussion below). We warn the reader that the actual implementation
of the above idea requires overcoming several technical difficulties (cf. [7, 9]).

Perspective. In retrospect, taking a wide perspective, it should not come as a surprise that the
program’s code yields extra power beyond black-box access to it. Feeding a program with its own
code (or part of it) is the essence of the diagonalization technique, and this too is done without
“reverse engineering”. Furthermore, various non-black-box techniques have appeared before in the
cryptographic setting, but they were used in the more natural context of dewvising an attack on
an (artificial) insecure scheme (e.g., towards proving the failure of the “Random Oracle Methodol-
ogy” [27] and the impossibility of software obfuscation [10]). In contrast, in [7] (and [8]) the code
of the adversary is being used within a sophisticated proof of security. What we wish to highlight
here is that non-black-boz usage of programs is relevant also to proving (rather than to disproving)
the security of systems.

19 The protocol depends on the polynomial bounding the number of executions, and thus is not known to be
concurrent zero-knowledge (because the latter requires to fix the protocol and then consider any polynomial number
of concurrent executions).

20

Digest: Witness Indistinguishability and the FLS-Technique

The above description (of [7]), as well as several other sophisticated constructions of zero-knowledge
protocols (e.g., [38, 81]), makes crucial use of a technique introduced by Feige, Lapidot and
Shamir [38], which in turn is based on the notion of witness indistinguishability (introduced by
Feige and Shamir [39]).

Loosely speaking, for any NP-relation R, an argument system for the corresponding language
(i.e., Lg) is called witness indistinguishable if no feasible verifier may distinguish the case in which
the prover uses one NP-witness to z (i.e., wy such that (z,w;) € R) from the case the prover is
using a different NP-witness to the same input x (i.e., wy such that (z,w2) € R). Furthermore, if
x1 is indistinguishable from x5 then no feasible verifier may distinguish the case in which the prover
uses w; to prove 1 € Ly from the case that the prover uses ws to prove x5 € Lg.2? Clearly, any
zero-knowledge protocol is witness indistinguishable, but the converse does not necessarily hold and
it seems that witness indistinguishable protocols are easier to construct than zero-knowledge ones.
(We mention that witness indistinguishable protocols are closed under parallel composition [39],
whereas this does not hold in general for zero-knowledge protocols.)

Following is a sketchy description of a special case of the FLS-technique, whereas the above-
mentioned application uses a more general version (which refers to proofs of knowledge, as defined
in Section 7).2! In this special case, the technique consists of the following construction schema,
which uses witness indistinguishable protocols for NP in order to obtain zero-knowledge protocols
for NP. On common input z € L, where L = Lg is the NP-set defined by the witness relation R,
the following two steps are performed:

1. The parties generate an instance z’ for an auxiliary NP-set L/, where L’ is defined by a witness
relation R'. The generation protocol in use must satisfy the following two conditions:

(a) If the verifier follows its prescribed strategy then no matter which feasible strategy is
used by the prover, with high probability, the protocol’s outcome is a NO-instance of L'.

(b) Loosely speaking, there exists an efficient (non-interactive) procedure for producing a
(random) transcript of the generation protocol along with an NP-witness for the corre-
sponding outcome such that the produced transcript is computationally indistinguishable
from the transcript of a real execution of the protocol.

2. The parties execute a witness indistinguishable protocol for the set L defined by the witness
relation R = {((a, &), (8,0")) : (o, 3) € RV (¢, 8') € R'}. The sub-protocol is such that
the corresponding prover can be implemented in probabilistic polynomial-time given an NP-
witness for (o, a’) € L”. The sub-protocol is invoked on common input (z,z’), where z’ is
the outcome of Step 1, and the sub-prover is invoked with the corresponding NP-witness as
auxiliary input (i.e., with (w, \), where w is the NP-witness for = given to the main prover).

The computational-soundness of the above protocol follows by Property (a) of the generation pro-
tocol (i.e., with high probability 2’ ¢ L', and so = € L follows by the soundness of the protocol used
in Step 2). To demonstrate the zero-knowledge property, we first generate a simulated transcript of

20 The additional condition yields a stronger notion (cf. [49, Def. 4.6.2]), but for simplicity we call it witness
indistinguishability.

2! In the general case, the generation protocol may generate an instance 2’ in L', but it is infeasible for the prover
to obtain a corresponding witness (i.e., a w' such that (z',w') € R'). In the second step, the sub-protocol in use
ought to be a proof of knowledge, and computational-soundness of the main protocol will follows (because otherwise
the prover, using a knowledge extractor, can obtain a witness for ' € L').

21

Step 1 (with outcome z’ € L') along with an adequate NP-witness (i.e., w’ such that (', w’) € L'),
and then emulates Step 2 by feeding the sub-prover strategy with the NP-witness (A, w’). Com-
bining Property (b) of the generation protocol and the witness indistinguishability property of the
protocol used in Step 2, the simulation is indistinguishable from the real execution.

7 Proofs of Knowledge

This section addresses the concept of “proofs of knowledge”. Loosely speaking, these are proofs in
which the prover asserts “knowledge” of some object (e.g., a 3-coloring of a graph), and not merely
its existence (e.g., the existence of a 3-coloring of the graph, which in turn implies that the graph
is 3-colorable). But what is meant by saying that a machine knows something? Indeed the main
thrust of this section is in addressing this question. Before doing so we point out that “proofs of
knowledge”, and in particular zero-knowledge “proofs of knowledge”, have many applications to
the design of cryptographic schemes and cryptographic protocols. In fact, we have already referred
to “proofs of knowledge” in Section 6.

7.1 How to define proofs of knowledge

What does it mean to say that a machine knows something? Any standard dictionary suggests
several meanings for the verb to know, and most meanings are phrased with reference to awareness,
a notion which is certainly inapplicable in the context of machines. We must look for a behavioristic
interpretation of the verb to know. Indeed, it is reasonable to link knowledge with ability to do
something (e.g., the ability to write down whatever one knows). Hence, we will say that a machine
knows a string « if it can output the string . But this seems as total non-sense too: a machine
has a well defined output — either the output equals « or it does not. So what can be meant by
saying that a machine can do something? Loosely speaking, it may mean that the machine can be
easily modified so that it does whatever is claimed. More precisely, it may mean that there exists
an efficient machine that, using the original machine as a black-box (or given its code as an input),
outputs whatever is claimed.

So much for defining the “knowledge of machines”. Yet, whatever a machine knows or does not
know is “its own business”. What can be of interest and reference to the outside is the question of
what can be deduced about the knowledge of a machine after interacting with it. Hence, we are
interested in proofs of knowledge (rather than in mere knowledge).

For sake of simplicity let us consider a concrete question: how can a machine prove that it knows
a 3-coloring of a graph? An obvious way is just to send the 3-coloring to the verifier. Yet, we claim
that applying the protocol in Figure 2 (i.e., the zero-knowledge proof system for 3-Colorability) is
an alternative way of proving knowledge of a 3-coloring of the graph.

Loosely speaking, we may say that an interactive machine, V', constitutes a verifier for knowledge
of 3-coloring if the probability that the verifier is convinced by a machine P to accept the graph G
is inversely proportional to the difficulty of extracting a 3-coloring of G when using machine P as
a “black box”.?? Namely, the extraction of the 3-coloring is done by an oracle machine, called an
extractor, that is given access to a function specifying the behavior P (i.e., the messages it sends in
response to particular messages it may receives). We require that the (expected) running time of
the extractor, on input G and access to an oracle specifying P’s messages, be inversely related (by
a factor polynomial in |G|) to the probability that P convinces V to accept G. In case P always

2 Indeed, as hinted above, one may consider also non-black-box extractors as done in [11]. However, this limits
the applicability of the definitions to provers that are implemented by polynomial-size circuits.

22

convinces V to accept G, the extractor runs in expected polynomial-time. The same holds in case
P convinces V' to accept with noticeable probability. (We stress that the latter special cases do not
suffice for a satisfactory definition; see discussion in [49, Sec. 4.7.1].)23

We mention that the concept of proofs of knowledge was first introduced in [66], but the above
formulation is based mostly on [13]. A famous application of zero-knowledge proofs of knowledge
is to the construction of identification schemes (e.g., the Fiat-Shamir scheme [41]).

7.2 How to construct proofs of knowledge

As hinted above, many of the known proof systems are in fact proofs of knowledge. Furthermore,
some (but not all) known zero-knowledge proofs (resp., arguments) are in fact proofs (resp., argu-
ments) of knowledge.?* Indeed, a notable example is the zero-knowledge proof depicted in Figure 2.
For further discussion, see [49, Sec. 4.7] and [11].

8 Non-Interactive Zero-Knowledge

In this section we consider non-interactive zero-knowledge proof systems. The model, introduced
in [18], consists of three entities: a prover, a verifier and a uniformly selected reference string
(which can be thought of as being selected by a trusted third party). Both verifier and prover can
read the reference string, and each can toss additional coins. The interaction consists of a single
message sent from the prover to the verifier, who then is left with the final decision (whether to
accept or not). The (basic) zero-knowledge requirement refers to a simulator that outputs pairs
that should be computationally indistinguishable from the distribution (of pairs consisting of a
uniformly selected reference string and a random prover message) seen in the real model.?> Non-
interactive zero-knowledge proof systems have numerous applications (e.g., to the construction of
public-key encryption and signature schemes, where the reference string may be incorporated in the
public-key). Several different definitions of non-interactive zero-knowledge proofs were considered
in the literature.

e In the basic definition, one considers proving a single assertion of a-priori bounded length,
where this length may be smaller than the length of the reference string.

e A natural extension, required in many applications, is the ability to prove multiple assertions
of varying length, where the total length of these assertions may exceed the length of the
reference string (as long as the total length is polynomial in the length of the reference
string). This definition is sometimes referred to as the unbounded definition, because the
total length of the assertions to be proven is not a-priori bounded.

23 In particular, note that the latter probability (i.e., of being convinced) may be neither noticeable (i.e., bounded
below by the reciprocal of some polynomial) nor negligible (i.e., bounded above by the reciprocal of every polynomial).
Thus, events that occur with probability that is neither noticeable nor negligible, cannot neither be ignored nor occur
with high probability when the experiment is repeated for an a-priori bounded polynomial number of times.

24 Arguments of knowledge are defined analogous to proofs of knowledge, while limiting the extraction requirement
to provers that are implemented by polynomial-size circuits. In this case, it is natural to allow also non-black-box
extraction, as discussed in Footnote 22.

25 Note that the verifier does not effect the distribution seen in the real model, and so the basic definition of
zero-knowledge does not refer to it. The verifier (or rather a process of adaptively selecting assertions to be proven)
will be referred to in the adaptive variants of the definition.

23

e Other natural extensions refer to the preservation of security (i.e., both soundness and zero-
knowledge) when the assertions to be proven are selected adaptivity (based on the reference
string and possibly even based on previous proofs).

e Finally, we mention the notion of simulation-soundness, which is related to non-malleability.
This extension, which mixes the zero-knowledge and soundness conditions, refers to the sound-
ness of proofs presented by an adversary after it obtains proofs of assertions of its own choice
(with respect to the same reference string). This notion is important in applications of non-
interactive zero-knowledge proofs to the construction of public-key encryption schemes secure
against chosen ciphertext attacks (see [50, Sec. 5.4.4.4]).

Counstructing non-interactive zero-knowledge proofs seems more difficult than constructing interac-
tive zero-knowledge proofs. Still, based on standard intractability assumptions (e.g., intractability
of factoring), it is known how to construct a non-interactive zero-knowledge proof (even in the
adaptive and non-malleable sense) for any NP-set.

Suggestions for further reading: For a definitional treatment of the basic, unbounded and
adaptive definitions see [49, Sec. 4.10]. Increasingly stronger variants of the non-malleable definition
are presented in [50, Sec. 5.4.4.4] and [31]. A relatively simple construction for the basic model is
presented in [38] (see also [49, Sec. 4.10.2]). (A more efficient construction can be found in [71].)
A transformation of systems for the basic model into systems for the unbounded model is also
presented in [38] (and [49, Sec. 4.10.3]). Constructions for increasingly stronger variants of the
(adaptive) non-malleable definition are presented in [50, Sec. 5.4.4.4] and [31].

9 Statistical Zero-Knowledge

Recall that statistical zero-knowledge protocols are such in which the distribution ensembles referred
to in Definition 4 are required to be statistically indistinguishable (rather than computationally
indistinguishable). Under standard intractability assumptions, every NP-set has a statistical zero-
knowledge argument [21]. On the other hand, it is unlikely that all NP-sets have statistical zero-
knowledge proofs [42, 1]. Currently, the intractability assumption used for constructing statistical
zero-knowledge arguments (for N'P) seems stronger than the assumption used for constructing
computational zero-knowledge proofs (for NP). Assuming both constructs exist, the question of
which to prefer depends on the application (e.g., is it more important to protect the prover’s secrets
or to protect the verifier from being convinced of false assertions). In contrast, Statistical zero-
knowledge proofs, whenever they exist, free us from this dilemma. Indeed, this is one out of several
reasons for studying these objects. That is:

e Statistical zero-knowledge proofs offer information-theoretic security to both parties. Thus,
whenever they exist, statistical zero-knowledge proofs may be preferred over computational
zero-knowledge proofs (which only offer computational security to the prover) and over sta-
tistical zero-knowledge arguments (which only offer computational security to the verifier).

e Statistical zero-knowledge proofs provide a clean model for the study of various questions
regarding zero-knowledge. Often, this study results in techniques that are applicable also for
computational zero-knowledge; one example is mentioned below.

e The class of problems having statistical zero-knowledge proofs is interesting from a complex-
ity theoretic point of view. On one hand, this class is likely to be a proper superset of BPP

24

(e.g., it contains seemingly hard problems such as Quadratic Resideousity [66], Graph Iso-
morphism [57], and a promise problem equivalent to the Discrete Logarithm Problem [56]).
On the other hand, this class is contained in AM NcoAM (cf. [1, 42]), which is believed not
to extend much beyond NP N coNP. (AM is the class of sets having two-round public-coin
interactive proofs.)

In the rest of this section, we survey the main results regarding the internal structure of the
class of sets having statistical zero-knowledge proofs. This study was initiated to a large extent
by Okamoto [77]. We first present transformations that, when applied to certain statistical zero-
knowledge protocols, yield protocols with additional properties. Next, we consider several structural
properties of the class, most notably the existence of natural complete problems (discovered by Sahai
and Vadhan [83]). For further details see [85].

9.1 Transformations

The first transformation takes any public-coin interactive proof that is statistical zero-knowledge
with respect to the honest verifier, and returns a (public-coin) statistical zero-knowledge [62]. When
applied to a public-coin interactive proof that is (computational) zero-knowledge with respect to
the honest verifier, the transformation yields a (computational) zero-knowledge proof. Thus, this
transformation “amplifies the security” of (public-coin) protocols, from leaking nothing to the
prescribed verifier into leaking nothing to any cheating verifier.

The heart of the transformation is a suitable random selection protocol, which is used to emulate
the verifier’s messages in the original protocol. Loosely speaking, the random selection protocol is
zero-knowledge in a strong sense, and the effect of each of the parties on the protocol’s outcome is
adequately bounded. For example, it is impossible for the verifier to effect the protocol’s outcome
(by more than a negligible amount), whereas the prover cannot increase the probability that the
outcome hits any set by more than some specific (super-polynomial) factor.

The first transformation calls our attention to public-coin interactive proofs that are statistical
zero-knowledge (with respect to the honest verifier). In general, public-coin interactive proofs are
easier to manipulate than general interactive proofs. The second transformation takes any statistical
zero-knowledge (with respect to the honest verifier) proof and returns one that is of the public-coin
type (see [64], which builds on [77]). Unfortunately, the second transformation, which is analogous
to a previously known result regarding interactive proofs [67], does not extend to computational
zero-knowledge,

Combined together, the two transformations imply that the class of sets (or promise problems)
having interactive proofs that are statistical zero-knowledge with respect to the honest verifier
equals the class of sets having (general) statistical zero-knowledge proofs.

9.2 Complete problems and structural properties

In the rest of this section we consider classes of promise problems (rather than classes of decision
problems or sets). Specifically, we denote by SZK the class of problems having a statistical zero-
knowledge proof. Recall that BPP C SZK C AMNcoAM, and that the first inclusion is believed
to be strict.

One remarkable property of the class SZK is that it has natural complete problems (i.e.,
problems in SZK such that any problem in SZK is Karp-reducible to them). One such problem
is to distinguish pairs of distributions (given via sampling circuits) that are statistically close from
pairs that are statistically far apart [83]. Another such problem is, given two distributions of

25

sufficiently different entropy, to tell which has higher entropy [64]. It is indeed interesting that “the
class statistical zero-knowledge is all about statistics (or probability)”.

Another remarkable property of SZK is the fact that it is closed under complementation
(see [83], which builds on [77]). In fact, SZK is closed under N'C;-truth-table reductions [83].

Non-Interactive SZK. A systematic study of Non-Interactive Statistical Zero-Knowledge proof
systems was conducted in [63]. The main result is evidence to the non-triviality of the class (i.e.,
it contains sets outside BPP if and only if SZK # BPP).

10 Knowledge Complexity

One of the many contributions of the seminal paper of Goldwasser, Micali and Rackoff [66] is
the introduction of the concept of knowledge complexity. Knowledge complexity is intended to
measure the computational advantage gained by interaction. Hence, something that can be obtained
without interaction is not considered knowledge. The latter phrase is somewhat qualitative and
supplies the intuition underlying the definition of zero-knowledge (i.e., knowledge complexity zero)
as surveyed above. Quantifying the amount of knowledge gained by interaction, in case it is not
zero, is more problematic.?6 We stress that the definition of zero-knowledge does not depend on
the formulation of the AMOUNT of knowledge gained, because this definition addresses the case in
which NO knowledge is gained.

Several definitions of knowledge complexity has appeared in the literature, where some are
closely related and quite robust (cf. [61]). Here we survey one definitional approach, which we
consider most satisfactory. According to this approach the amount of knowledge gained in an
interaction is bounded by the number of bits that are communicated in an alternative interaction
that allows to simulate the original interaction. That is, party P is said to yield at most k bits
of knowledge (on inputs in S) if whatever can be efficiently computed through an interaction
with P on common input x € S, can also be efficiently computed through an interaction (on
the same common input) with an alternative machine P’ that sends at most k(|z|) bits. This
formulation can be applied with respect to various types of simulations, extending the various
types of zero-knowledge. Our focus is on the extension of statistical zero-knowledge proofs (because,
under standard intractability assumptions, any language in ZP has a computational zero-knowledge
proof). We note that, without loss of generality, the “knowledge-giving-machine” can be made
memoryless and deterministic (i.e., by providing it with all previous messages and with coin tosses).
Hence, the “knowledge-giving-machine” is merely an oracle (and we may think of the simulation
as being performed by an oracle machine and count the number of its binary queries). For further
discussion of this and other definitions, the reader is referred to [61].

A natural research project is to characterize languages according to the (statistical) knowledge-
complexity of their interactive proof systems. The main result known (for the above definition)
is that languages with logarithmic statistical knowledge-complexity are in AM N coAM (cf. [79],
building on [1] and [60]). Thus, unless the polynomial time hierarchy collapses (cf. [20]), NP-
complete set have super-logarithmic statistical knowledge-complexity.

26 In general, it seems that quantitative notions are harder to handle than qualitative ones.

26

11 Resettability of a party’s random-tape (rZK and rsZK)

Having gained a reasonable understanding of the security of cryptographic schemes and protocols
as stand-alone, cryptographic research is moving towards the study of stronger notions of security.
Examples include the effect of executing several instances of the same protocol concurrently (e.g.,
the malleability of an individual protocol [33]) as well as the effect of executing the protocol con-
currently to any other activity (or set of protocols) [25]. Another example of a stronger notion of
security, which is of theoretical and practical interest, is the security of protocols under a “resetting”
attack. In such an attack a party may be forced to execute a protocol several times while using the
same random-tape and without coordinating these executions (e.g., by maintaining a joint state).
The theoretical interest in this notion stems from the fact that randomness plays a pivotal role in
cryptography, and thus the question of whether one needs fresh randomness in each invocation of
a cryptographic protocol is very natural. The practical importance is due to the fact that in many
settings it is impossible or undesirable to generate fresh randomness on the fly (or to maintain a
state between executions).

Resettable Zero-Knowledge (rZK). Resettability of players in a cryptographic protocol was
first considered in [26], which studies what happens to the security of zero-knowledge interactive
proofs and arguments when the verifier can reset the prover to use the same random tape in multiple
concurrent executions. Protocols that remain zero-knowledge against such a verifier, are called
resettable zero-knowledge (rZK). Put differently, the question of prover resettability, is whether
zero-knowledge is achievable when the prover cannot use fresh randomness in new interactions,
but is rather restricted to (re-)using a fixed number of coins. Resettability implies security under
concurrent executions: As shown in [26], any rZK protocol constitutes a concurrent zero-knowledge
protocol. The opposite direction does not hold (in general), and indeed it was not a-priori clear
whether (non-trivial) rZK protocols may at all exist. Under standard intractability assumptions,
it was shown that resettable zero-knowledge interactive proofs for any NP-set do exist [26]. (For
related models and efficiency improvements, see [26] and [72], respectively.)

Resettablly-Sound Zero-Knowledge (rsZK). Resettably-sound proofs and arguments main-
tain soundness even when the prover can reset the verifier to use the same random coins in repeated
ezecutions of the protocol. This notion was studied in [12], who obtained the following results: On
one hand, under standard intractability assumptions, any NP-set has a (constant-round) resettably-
sound zero-knowledge argument. On the other hand, resettably-sound zero-knowledge proofs are
possible only for languages in P/poly. The question of whether a protocol for NP can be both
resettably-sound and resettably-zero-knowledge is still open.

12 Zero-knowledge in other models

As stated above, zero-knowledge is a property of some interactive strategies, regardless of the goal
(or other properties) of these strategies. We have seen that zero-knowledge can be meaningfully
applied in the context of interactive proofs and arguments. Here we briefly discuss the applicability
of zero-knowledge to other settings in which, as in the case of arguments, there are restrictions
on the type of prover strategies. We stress that the restrictions discussed here refer to the strate-
gies employed by the prover both in case it tries to prove valid assertions (i.e., the completeness
condition) and in case it tries to fool the verifier to believe false statements (i.e., the soundness
condition). Thus, the validity of the verifier decision (concerning false statements) depends on

27

whether this restriction (concerning potential “cheating” prover strategies) really holds. The rea-
son to consider these restricted models is that they enable to achieve results that are not possible
in the general model of interactive proofs (cf., [16, 21, 70, 75]). We consider restrictions of two
types: computational and physical. We start with the latter.

Multi-Prover Interactive Proofs (MIP). In the so-called multi-prover interactive proof model,
denoted MIP (cf., [16]), the prover is split into several (say, two) entities and the restriction (or
assumption) is that these entities cannot interact with each other. Actually, the formulation allows
them to coordinate their strategies prior to interacting with the verifier?” but it is crucial that they
don’t exchange messages among themselves while interacting with the verifier. The multi-prover
model is reminiscent of the common police procedure of isolating collaborating suspects and in-
terrogating each of them separately. A typical application in which the two-prover model may be
assumed is an ATM that verifies the validity of a pair of smart-cards inserted in two isolated slots of
the ATM. The advantage in using such a split system is that it enables the presentation of (perfect)
zero-knowledge proof systems for any set in NP, while using no intractability assumptions [16].

Strict Computational-Soundness (a.k.a Timed-ZK). Recall that we have already discussed
one model of computational-soundness; that is, the model of arguments refers to prover strategies
that are implementable by probabilistic polynomial-time machines with adequate auxiliary input.?8
A more strict restriction, studied in [35], refers to prover strategies that are implementable within
an a-priori fixed number of computation steps (where this number is a fixed polynomial in the
length of the common input). In reality, the prover’s actual running-time is monitored by the
verifier that may run for a longer time, and the prover’s utility is due to an auxiliary input that
it has. (An analogous model, where the length of the auxiliary input is a-priori fixed, was also
considered in [35].)

13 A source of inspiration for complexity theory

Throughout the years, zero-knowledge has served as a source of inspiration for models and tech-
niques in complexity theory. The first such case is the very introduction of interactive proofs, which
was motivated by the notion of zero-knowledge.

The story begins with Goldwasser, Micali and Rackoff who sought a general setting for their
novel notion of zero-knowledge [66]. The choice fell on proof systems as capturing a fundamental
activity that takes place in a cryptographic protocol. Motivated by the desire to formulate the most
general type of “proofs” that may be used within cryptographic protocols, Goldwasser, Micali and
Rackoff introduced the notion of an interactive proof system [66]. Although the main focus of their
paper is on zero-knowledge, the possibility that interactive proof systems may be more powerful
than NP-proof systems has been pointed out in [66].

Similarly, the main motivation for the introduction of multi-prover interactive proofs (in [16])
came from zero-knowledge; specifically, introducing multi-prover zero-knowledge proofs for NP
without relying on intractability assumptions. Again, the complexity theoretic prospects of the
new class, denoted MZP, have not been ignored. A more appealing, to our taste, formulation of
the class MZP has been subsequently presented in [43]. The latter formulation coincides with the
formulation currently known as probabilistically checkable proofs (i.e., PCP).

27 This is implicit in the universal quantifier used in the soundness condition.
28 A related model is that of CS-proofs, where the prover’s strategy is allowed to run in time that is polynomial in
the time it takes to decide membership of the common input via a canonical decision procedure for the language [75].

28

Getting more technical, we mention that the notion of zero-knowledge as well as known zero-

knowledge proof systems have inspired constructions that seem unrelated to zero-knowledge. A
notable example is the PCP construction of [37], which was tailored towards obtaining tight inap-
proximability results for the chromatic number.

Acknowledgments

I wish to thank Yehuda Lindell for pointing out some errors in previous versions.

References

[1]
[2]

(3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]

[11]
[12]
[13]
[14]

[15]

[16]

[17]

W. Aiello and J. Hastad. Perfect Zero-Knowledge Languages can be Recognized in Two Rounds. In
28th IEEE Symposium on Foundations of Computer Science, pages 439-448, 1987.

S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Verification and Intractability of
Approximation Problems. Journal of the ACM, Vol. 45, pages 501-555, 1998. Preliminary version in
38rd FOCS, 1992.

S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characterization of NP. Journal of the
ACM, Vol. 45, pages 70-122, 1998. Preliminary version in 33rd FOCS, 1992.

L. Babai. Trading Group Theory for Randomness. In 17th ACM Symposium on the Theory of Com-
puting, pages 421-420, 1985.

L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking Computations in Polylogarithmic Time. In
23rd ACM Symposium on the Theory of Computing, pages 21-31, 1991.

L. Babai, L. Fortnow, N. Nisan and A. Wigderson. BPP has Subexponential Time Simulations unless
EXPTIME has Publishable Proofs. Complexity Theory, Vol. 3, pages 307-318, 1993.

B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In 42nd IEEE Symposium on Foun-
dations of Computer Science, pages 106115, 2001.

B. Barak. Constant-Round Coin-Tossing with a Man in the Middle or Realizing the Shared Random
String Model. In 43th IEEE Symposium on Foundations of Computer Science, to appear, 2002.

B. Barak and O. Goldreich, Universal arguments and their applications. In the 17th IEEE Conference
on Computational Complezity, pages 194-203, 2002.

B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang. On the
(im)possibility of software obfuscation. In Crypto01, Springer-Verlag Lecture Notes in Computer Science
(Vol. 2139), pages 1-18.

B. Barak and Y. Lindell. Strict Polynomial-time in Simulation and Extraction. In 34th ACM Symposium
on the Theory of Computing, pages 484-493, 2002.

B. Barak, O. Goldreich, S. Goldwasser and Y. Lindell, Resettably-Sound Zero-Knowledge and its
Applications. In 42th IEEE Symposium on Foundations of Computer Science, pages 116-125, 2001.
M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. In Crypto92, Springer-Verlag Lecture
Notes in Computer Science (Vol. 740), pages 390-420.

M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lower the Error in Computationally
Sound Protocols? In 88th IEEE Symposium on Foundations of Computer Science, pages 374-383, 1997.
M. Ben-Or, O. Goldreich, S. Goldwasser, J. Hastad, J. Kilian, S. Micali and P. Rogaway. Everything
Provable is Probable in Zero-Knowledge. In Crypto88, Springer-Verlag Lecture Notes in Computer
Science (Vol. 403), pages 37-56, 1990.

M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover Interactive Proofs: How to
Remove Intractability. In 20th ACM Symposium on the Theory of Computing, pages 113-131, 1988.
M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-Knowledge Proof Systems.
SIAM Journal on Computing, Vol. 20, No. 6, pages 1084-1118, 1991. (Considered the journal version
of [18].)

29

[18]
[19]
[20]

[21]

[22]
23]
[24]

[25]

[26]

[27]

28]
[29]

[30]
[31]

[32]
[33]
[34]
[35]

[36]

[37]
[38]
[39]

[40]

M. Blum, P. Feldman and S. Micali. Non-Interactive Zero-Knowledge and its Applications. In 20th
ACM Symposium on the Theory of Computing, pages 103-112, 1988. See [17].

M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits.
SIAM Journal on Computing, Vol. 13, pages 850-864, 1984. Preliminary version in 23rd FOCS, 1982.

R. Boppana, J. Hastad, and S. Zachos. Does Co-NP Have Short Interactive Proofs? Information
Processing Letters, 25, May 1987, pp. 127-132.

G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of Knowledge. Journal of Com-
puter and System Science, Vol. 37, No. 2, pages 156-189, 1988. Preliminary version by Brassard and
Crépeau in 27th FOCS, 1986.

G. Brassard and C. Crépeau. Zero-Knowledge Simulation of Boolean Circuits. In Crypto86, Springer-
Verlag Lecture Notes in Computer Science (Vol. 263), pages 223—-233, 1987.

G. Brassard, C. Crépeau and M. Yung. Constant-Round Perfect Zero-Knowledge Computationally
Convincing Protocols. Theoretical Computer Science, Vol. 84, pages 23-52, 1991.

R. Canetti. Security and Composition of Multi-party Cryptographic Protocols. Journal of Cryptology,
Vol. 13, No. 1, pages 143-202, 2000.

R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In 42nd
IEEE Symposium on Foundations of Computer Science, pages 136-145, 2001. Full version (with different
title) is available from Cryptology ePrint Archive, Report 2000/067.

R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-Knowledge. In 32nd ACM
Symposium on the Theory of Computing, pages 235-244, 2000.

R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology, Revisited. In 30th ACM
Symposium on the Theory of Computing, pages 209-218, 1998. Full version available on-line from
http://eprint.iacr.org/1998/011.

R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box Concurrent Zero-Knowledge Requires

Q(logn) Rounds. In 38rd ACM Symposium on the Theory of Computing, pages 570-579, 2001.

R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-Party and Multi-Party
Secure Computation. In 34th ACM Symposium on the Theory of Computing, pages 494-503, 2002.

I. Damgérd. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model. In Eurocrypt’00, 2000.
A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano and A. Sahai. Robust Non-interactive Zero-
Knowledge. In Crypto01, Springer Lecture Notes in Computer Science (Vol. 2139), pages 566-598.

W. Diffie, and M.E. Hellman. New Directions in Cryptography. IEEE Trans. on Info. Theory, 1T-22
(Nov. 1976), pages 644-654.

D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM Journal on Computing, Vol. 30,
No. 2, pages 391437, 2000. Preliminary version in 23rd STOC, 1991.

C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th ACM Symposium on the Theory
of Computing, pages 409418, 1998.

C. Dwork and L. Stockmeyer. 2-Round Zero-Knowledge and Proof Auditors. In 8/th ACM Symposium
on the Theory of Computing, pages 322-331, 2004.

U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approximating Clique is almost NP-
complete. Journal of the ACM, Vol. 43, pages 268-292, 1996. Preliminary version in 32nd FOCS,
1991.

U. Feige and J. Kilian. Zero knowledge and the chromatic number. In 11th IEEE Conference on
Computational Complezxity, pages 278-287, 1996.

U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs Under General
Assumptions. SIAM Journal on Computing, Vol. 29 (1), pages 1-28, 1999.

U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In 22nd ACM
Symposium on the Theory of Computing, pages 416-426, 1990.

U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. In Crypto’89, Springer-
Verlag LNCS Vol. 435, pages 526-544, 1990.

30

[41]

[42]
[43]

[44]

[45]

[46]
[47]

[48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]

[57]

[58]

[59]
[60]
[61]

[62]

A. Fiat and A. Shamir. How to Prove Yourself: Practical Solution to Identification and Signature
Problems. In Crypto86, Springer-Verlag Lecture Notes in Computer Science (Vol. 263), pages 186189,
1987.

L. Fortnow, The Complexity of Perfect Zero-Knowledge. In 19th ACM Symposium on the Theory of
Computing, pages 204-209, 1987.

L. Fortnow, J. Rompel and M. Sipser. On the power of multi-prover interactive protocols. In Proc. 3rd
IEEE Symp. on Structure in Complezity Theory, pages 156—161, 1988.

M. Fiirer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On Completeness and Soundness in
Interactive Proof Systems. Advances in Computing Research: a research annual, Vol. 5 (Randomness
and Computation, S. Micali, ed.), pages 429-442, 1989.

0. Goldreich. A Uniform Complexity Treatment of Encryption and Zero-Knowledge. Journal of Cryp-
tology, Vol. 6, No. 1, pages 21-53, 1993.

0. Goldreich. Notes on Levin’s Theory of Average-Case Complexity. ECCC, TR97-058, Dec. 1997.

O. Goldreich. Secure Multi-Party Computation. Working draft, June 1998.

Available from http://www.wisdom.weizmann.ac.il/~oded/pp.html.

O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandommness. Algorithms and
Combinatorics series (Vol. 17), Springer, 1998.

O. Goldreich. Foundation of Cryptography — Basic Tools. Cambridge University Press, 2001.

0. Goldreich. Foundation of Cryptography — Volume 2. Working drafts for chapters regarding encryption
schemes and signature schemes, 2000. Revised 2002.

Available from http://www.wisdom.weizmann.ac.il/~oded/foc-vol2.html.

0. Goldreich. Concurrent Zero-Knowledge With Timing, Revisited. In 34th ACM Symposium on the
Theory of Computing, pages 332-340, 2002.

0. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. Journal of the ACM,
Vol. 33, No. 4, pages 792-807, 1986.

0. Goldreich and J. Hastad. On the Complexity of Interactive Proofs with Bounded Communication.
IPL, Vol. 67 (4), pages 205-214, 1998.

O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof Systems for
NP. Journal of Cryptology, Vol. 9, No. 2, pages 167-189, 1996. Preliminary versions date to 1988.

0. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems. SIAM Journal
on Computing, Vol. 25, No. 1, February 1996, pages 169-192.

O. Goldreich and E. Kushilevitz. A Perfect Zero-Knowledge Proof for a Decision Problem Equivalent
to Discrete Logarithm. Journal of Cryptology, Vol. 6 (2), pages 97116, 1993.

O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their Validity or All Languages
in NP Have Zero-Knowledge Proof Systems. Journal of the ACM, Vol. 38, No. 1, pages 691-729, 1991.
Preliminary version in 27th FOCS, 1986.

O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game — A Completeness Theorem
for Protocols with Honest Majority. In 19th ACM Symposium on the Theory of Computing, pages
218-229, 1987. See details in [47].

0. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof Systems. Journal of
Cryptology, Vol. 7, No. 1, pages 1-32, 1994.

0. Goldreich, R. Ostrovsky and E. Petrank. Knowledge Complexity and Computational Complexity.
SIAM Journal on Computing, Vol. 27, 1998, pages 1116-1141.

0. Goldreich and E. Petrank. Quantifying Knowledge Complexity. Computational Complexity, Vol. 8,
pages 50-98, 1999. Preliminary version in 32nd FOCS, 1991.

0. Goldreich, A. Sahai, and S. Vadhan. Honest-Verifier Statistical Zero-Knowledge equals general
Statistical Zero-Knowledge. In 30th ACM Symposium on the Theory of Computing, pages 399—408,
1998.

31

[63]

[64]
[65]
[66]

[67]

[68]
[69]
[70]
[71]
[72]
[73]
[74]
[75]
[76]
[77]
[78]
[79]
[80]
[81]
(82]
[83]
[84]

[85]

O. Goldreich, A. Sahai, and S. Vadhan. Can Statistical Zero-Knowledge be Made Non-Interactive? or
On the Relationship of SZK and NISZK. In Crypto99, Springer-Verlag Lecture Notes in Computer
Science (Vol. 1666), pages 467—484.

O. Goldreich and S. Vadhan. Comparing Entropies in Statistical Zero-Knowledge with Applications to
the Structure of SZK. In 14th IEEE Conference on Computational Complezity, pages 54—73, 1999.

S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System Science,
Vol. 28, No. 2, pages 270-299, 1984. Preliminary version in 14th STOC, 1982.

S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof Systems.
SIAM Journal on Computing, Vol. 18, pages 186208, 1989. Preliminary version in 17th STOC, 1985.
S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interactive Proof Systems. Advances
in Computing Research: a research annual, Vol. 5 (Randomness and Computation, S. Micali, ed.), pages
73-90, 1989. Extended abstract in 18th STOC, pages 59-68, 1986.

J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom Generator from any One-way
Function. STAM Journal on Computing, Volume 28, Number 4, pages 1364—1396, 1999.

R. Impagliazzo and M. Yung. Direct Zero-Knowledge Computations. In Crypto87, Springer-Verlag
Lecture Notes in Computer Science (Vol. 293), pages 40-51, 1987.

J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. In 24th ACM Symposium on the
Theory of Computing, pages 723-732, 1992.

J. Kilian and E. Petrank. An Efficient Non-Interactive Zero-Knowledge Proof System for NP with
General Assumptions. Journal of Cryptology, Vol. 11, pages 1-27, 1998.

J. Kilian and E. Petrank Concurrent and Resettable Zero-Knowledge in Poly-logarithmic Rounds In
33rd ACM Symposium on the Theory of Computing, pages 560-569, 2001.

L.A. Levin. Average Case Complete Problems. SIAM Jour. of Computing, Vol. 15, pages 285—286,
1986.

C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic Methods for Interactive Proof Systems.
Journal of the ACM, Vol. 39, No. 4, pages 859868, 1992. Preliminary version in 31st FOCS, 1990.

S. Micali. Computationally Sound Proofs. SICOMP, Vol. 30 (4), pages 1253-1298, 2000. Preliminary
version in 35th FOCS, 1994.

M. Naor. Bit Commitment using Pseudorandom Generators. Journal of Cryptology, Vol. 4, pages
151-158, 1991.

T. Okamoto. On relationships between statistical zero-knowledge proofs. In 28th ACM Symposium on
the Theory of Computing, pages 649—658, 1996.

R. Ostrovsky and A. Wigderson. One-Way Functions are essential for Non-Trivial Zero-Knowledge. In
2nd Israel Symp. on Theory of Computing and Systems, IEEE Comp. Soc. Press, pages 3-17, 1993.

E. Petrank and G. Tardos. On the Knowledge Complexity of NP. In 37th IEEE Symposium on
Foundations of Computer Science, pages 494-503, 1996.

M. Prabhakaran, A. Rosen and A. Sahai. Concurrent Zero-Knowledge Proofs in Logarithmic Number
of Rounds. In 43rd IEEE Symposium on Foundations of Computer Science, 2002.

R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs. In Euro-
Crypt99, Springer LNCS 1592, pages 415-413.

R. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Signatures and Public Key
Cryptosystems. Communications of the ACM, Vol. 21, Feb. 1978, pages 120-126

A. Sahai and S. Vadhan. A Complete Promise Problem for Statistical Zero-Knowledge. In 38th IEEE
Symposium on Foundations of Computer Science, pages 448-457, 1997.

A. Shamir. TP = PSPACE. Journal of the ACM, Vol. 39, No. 4, pages 869-877, 1992. Preliminary
version in 31st FOCS, 1990.

S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD Thesis, Department of Mathematics,
MIT, 1999. ACM Doctoral Dissertation Award 2000. To be published by Springer-Verlag for receiving

32

[86] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEE Symposium on Foundations
of Computer Science, pages 80-91, 1982.

[87] A.C. Yao. How to Generate and Exchange Secrets. In 27th IEEE Symposium on Foundations of
Computer Science, pages 162-167, 1986.

ECCC ISSN 1433-8092
33 http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/pub/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

