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Abstract

We consider the problem of testing bipartiteness in the adjacency matrix model.
The best known algorithm, due to Alon and Krivelevich, distinguishes between bipar-
tite graphs and graphs that are ε-far from bipartite using Õ(1/ε2) queries. We show
that this is optimal for non-adaptive algorithms, up to polylogarithmic factors. We
also show a lower bound of Ω(1/ε3/2) for adaptive algorithms.

1 Introduction

The problem of testing bipartiteness in the adjacency matrix model is the problem of
designing a randomized algorithm with the following properties. The algorithm is given
oracle access to the adjacency matrix of an undirected graph G = (V,E) and is also given
a parameter ε > 0; the algorithm is required to accept with probability at least 3/4 if the
graph G is bipartite, and to reject with probability at least 3/4 if the graph G is ε-far
from bipartite, meaning that one has to remove more than ε

(|V |
2

)

edges from G in order
to make it bipartite. There is no requirement on the algorithm when the given graph G
is not bipartite but it can be made bipartite by removing less than ε

(|V |
2

)

edges. If the
algorithm accepts bipartite graphs with probability 1, then we say that it has one-sided

error.
Goldreich, Goldwasser and Ron [GGR98] introduced this problem, as a special case

of their general framework of graph property testing, and showed that it can be solved by
a one-sided error algorithm in time polynomial in 1/ε and independent of the size of the
graph. Their algorithm simply picks a random induced subgraph with Õ(1/ε2) vertices
and checks whether the subgraph is bipartite. Notice that the algorithm not only has
one-sided error, but is also non-adaptive, that is, it decides all at once which entries of the
adjacency matrix to inspect.

Alon and Krivelevich [AK02] improve the result of Goldreich and el. by showing
that, in fact, it is enough to look at a random subgraph with Õ(1/ε) vertices. Thus the
algorithm looks at Õ(1/ε2) entries of the adjacency matrix and runs in time Õ(1/ε2). Also
the algorithm, again, has one-sided error and is non-adaptive.

Alon and Krivelevich [AK02] show that there are graphs that are ε-far from bipartite
but such that by picking o(1/ε) vertices at random and considering the subgraph induced
by them, we see a bipartite subgraph with high probability.
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Goldreich and Trevisan [GT01] prove that if there is a one-sided error algorithm for
testing bipartiteness1 having query complexity q, then it also works to just pick 2q vertices
at random and check whether they induce a bipartite graph.

Together, these results imply that any one-sided algorithm for testing bipartiteness
must have query complexity (and thus, running time) at least Ω(ε). Notice that there is a
quadratic gap between this lower bound and the performance of the algorithm of [AK02].
Furthermore, the case of algorithms with two-sided error is not addressed.

In this paper we show that any non-adaptive algorithm must have query complexity
Ω(1/ε2) and any algorithm must have query complexity Ω(1/ε1.5).

Our “hard instances” for this problem are random graphs where every edge exists with
probability 2ε + o(1). With high probability, such graphs are ε-far from being bipartite.

Consider now the simplest case, that of a one-sided error non-adaptive algorithm, and
let us see what happens for a fixed randomness of the algorithm and over the choices of
the random graph. The algorithm looks at q pairs of vertices, and each pair is going to be
connected by an edge with probability 2ε. Basically, the view of the algorithm is a fixed
graph with q edges, from which each edge is being deleted independently with probability
1−2ε, and kept with probability 2ε. We are able to argue that if we start from an arbitrary
graph with q = o(1/ε2) edges, then, after the deletions, the graph is very likely to become
a forest, and, therefore, to be bipartite.

Regarding one-sided error adaptive algorithms, consider again the view of the algorithm
for a fixed randomness of the algorithm and a random graph. Every time the algorithm
makes a query into the adjacency matrix, it discovers an edge with probability 2ε and
it finds out that there is no edge with probability 1 − 2ε. When the algorithm discovers
a cycle, it is because it makes a query (u, v) where u and v were already discovered to
be connected, and then (u, v) turns out to be an edge. Typically, the algorithm will
have to make Ω(1/ε) such attempts before discovering a cycle. So, by the time a cycle
is discovered, the algorithm must have found enough edges that there are Ω(1/ε) pairs of
connected vertices. Then, the algorithm must have discovered at least Ω(1/

√
ε) edges to

account for so much connections, and therefore it must have made Ω(1/ε1.5) queries into
the adjacency matrix. We can conclude that an algorithm that makes o(1/ε1.5) queries is
very likely to see a forest, and, therefore, a bipartite graph.

The analysis of algorithms with two-sided error is more involved. We need to consider
two distributions of graphs, one made of bipartite graphs and one made of graphs that are
typically ε-far from bipartite, and then argue that the distributions are indistinguishable
for algorithms of small query complexity.

We take again the random graph with edge probability 2ε + o(1) as one distribution
(this one will typically contain graphs ε-far from bipartite). The other distribution is
sampled as follows: we first randomly partition the vertices of the graphs, and then each
edge crossing the partition is picked independently with probability 4ε+o(1), and all other
edges are not picked (by construction, these graphs are bipartite).

Roughly speaking, we show that conditioned on the event of seeing a forest, the views of
an algorithm when given oracle access to a graph chosen from one distribution or from the
other have statistical distance o(1), and we already know that the condition holds with
probability 1 − o(1) for adaptive algorithms making o(1/ε1.5) queries and non-adaptive

1Their result holds for any graph property testing problem in this model, but for simplicity we state
here only the application to bipartiteness.
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algorithms making o(1/ε2) queries.2

We note that there is an adaptive algorithm that discovers odd cycles in time O(1/ε1.5)
when given a random graph with edge probability 2ε. In fact, for any distribution that we
could think of to produce graphs that are ε-far from bipartite, there is always an adaptive
algorithm that discovers odd cycles in time O(1/ε1.5). It would be very interesting to come
up with an adaptive algorithm of query complexity o(1/ε2): Goldreich and Trevisan show
that there is always at most a quadratic gap between the complexity of adaptive versus
non-adaptive algorithms, but there is no natural example that we know of where an actual
gap occurs.3

We know of no previous paper proving a lower bound super-linear in 1/ε for a property
that can be tested in time polynomial in 1/ε, and of no super-linear bound for two-sided
error algorithms for any property testable in time depending only on ε. Alon [Alo01]
proves a super-polynomial lower bound in 1/ε for one-sided error algorithms for a class
of problems that admit algorithms running in time that depends only on ε. Alon’s lower
bound, however, does not apply to two-sided error algorithms.

We also note that our results imply that the problem of testing whether a graph is a
forest has query complexity Ω(1/ε1.5) for adaptive one-sided error algorithms and Ω(1/ε2)
for non-adaptive one-sided error algorithms, while it is trivially testable in time O(1/ε) by
a non-adaptive two-sided error algorithm. This gives a separation between the power of
one-sided versus two-sided error algorithms for a natural problem. Regarding one-sided
error algorithms, it is easy to come up with a O((1/ε2) log 1/ε) non-adaptive algorithm
for finding a cycle in a graph that is ε-far from being a forest. It would be interesting to
come up with a o(1/ε2) adaptive one-sided error algorithm, that would show a separation
between the power of adaptive versus non-adaptive algorithms. Perhaps this is an easier
question to attack than the design of a o(1/ε2) adaptive algorithm for bipartiteness.

2 Lower bounds for testers with one-sided error

In this section we show that any property testing algorithm for bipartiteness with one-
sided error must perform Ω(1/ε3/2) queries. Moreover, if the algorithm is nonadaptive,
then it must perform Ω(1/ε2) queries.

Let A be a one-sided property testing algorithm for bipartiteness that performs q
queries. Let qi = (xi, yi) denote the i-th query of A, and Q = {qi : 1 ≤ i ≤ q} denote
the set of all queries of A. Without loss of generality, we may assume that all queries
qi are distinct, hence |Q| = q. We observe that if A rejects an input G, then A must
have detected a witness that refutes the bipartiteness of G; it follows that E(G) ∩ Q
contains an odd cycle. Therefore, to show a one-sided lower bound of q queries for testing
bipartiteness, it is enough to exhibit a distribution G on n-vertex graphs such that: (1)
With probability 1 − o(1), graph G ∼ G is ε-far from bipartite, and (2) With probability
2/3, the set E(G) ∩ Q contains no odd cycle.

2This is just a simplified account of the proof. The result would hold as stated, and in fact the distance
in the conditional distributions would be zero, if the “view” of the algorithm were just the set of edges it
discovers. But, in addition, the algorithm also discovers that certain pairs of vertices are not connected.
To account for that we need some additional conditioning, and even then we can show that the distance
is o(1) but not zero.

3Here, of course, we are referring to the case of graph property testing in the adjacency matrix model.
It is easy to come up with huge gaps in the adjacency list model of [GR97].
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Let G denote the distribution on n-vertex graphs where each edge is selected inde-
pendently at random with probability p = 2ε + O(

√

ε/n). Using a standard probabilistic
argument, it is not difficult to show that with probability 1 − o(1), a graph chosen from
G is ε-far from bipartite. We now argue that E(G) ∩ Q is unlikely contain an odd cy-
cle, whenever q = Ω(1/ε3/2) for adaptive algorithms and q = Ω(1/ε2) for nonadaptive
algorithms.

Theorem 1. Let A be an adaptive property testing algorithm, and Q denote the set of

queries of A on input G ∼ G, where |Q| = q ≤ 1/24ε3/2. With probability 2/3 over the

choice of G and the randomness of A, the graph G′ = (V (G), E(G) ∩ Q) is a forest.

Proof. Let Qt = {q1, . . . , qt}, and Gt = (V (G), E(G) ∩ Qt). We call query qt = (xt, yt)
internal if xt and yt belong to the same connected component of Gt−1. Note that the first
query that reveals a cycle in G′, if such a query exists, must be internal. We will show
that, with probability 5/6, the number of distinct internal queries in Q is less than 1/7ε.
Since distinct queries are satisfied independently with probability p, it follows that all the
internal queries in Q are negative with probability at least (1 − 1/7ε)p > 5/6. Therefore
the probability that G′ contains no cycle is at least 5

6 · 5
6 > 2

3 .
We now bound the number qI of distinct internal queries in Q. Let s1, . . . , sk denote

the sizes (number of edges) of the connected components of G′ that contain at least one
edge. The number of pairs of vertices in the same component of G′ that are not connected
by an edge in G′ is at most S =

∑k
i=1

(

si

2

)

. If query qt = (xt, yt) is internal, then xt and
yt belong to the same connected component of G′. It follows that qI ≤ S.

By linearity of expectation, E[s1+ . . .+sk] = p(q−qI) ≤ pq, as each non-internal query
contributes to this sum with probability p. Therefore s1 + . . . + sk ≤ 6qp with probability
at least 5/6. Finally, with probability 5/6,

S ≤
(

s1 + . . . + sk

2

)

≤
(

6qp

2

)

≤ 1/7ε.

We observe that the bound in the theorem is tight for the distribution G up to a
constant factor. In fact, there is an adaptive algorithm that finds a triangle in G with
probability 2/3 and O(1/ε3/2) queries. The algorithm consists of two phases: In the first
phase, the algorithm makes q1 = O(1/ε3/2) queries of type (v, vi), where v, v1, . . . , vq1

are
arbitrary distinct vertices. With probability 5/6, at least O(1/

√
ε) of the answers are

positive. In the second phase, the algorithm makes q2 = O(1/ε) distinct queries among
pairs (vi, vj) such that (v, vi), (v, vj) ∈ E(G). With probability 5/6, this phase reveals an
edge (vi, vj), and therefore a triangle v, vi, vj .

Theorem 2. Let A be a nonadaptive property testing algorithm, and Q denote the set

of queries of A on input G ∼ G, where |Q| = q ≤ 1/73ε2. With probability 2/3 over the

choice of G, the graph G′ = (V (G), E(G) ∩ Q) is a forest.

To prove the theorem, we will make use of the following combinatorial result:

Lemma 1. A graph with m edges has fewer than (2m)l/2 cycles of length l.

Proof. Let A be the adjacency matrix of a graph with m edges, and let λ1, . . . , λn denote
the eigenvalues of A. We note that the number of ordered cycles of length l is the trace
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of Al. By a standard inequality,

traceAl =

n
∑

i=1

λl
i ≤

(

n
∑

i=1

λ2
i

)l/2

= (traceA2)l/2 = (2m)l/2.

Proof of Theorem 2. We bound the expected number of cycles of length l in G′. By
Lemma 1, the set of queries determines at most (2q)l/2 cycles of length l; each cycle has
probability pl to be present in G. Therefore the expected number of cycles of length l in
G′ is at most (2q)l/2pl < 1/3l for large enough n.

It follows that the expected number of cycles of any length in G′ is at most
∑∞

l=3 1/3l <
1/3. By Markov’s inequality, G′ has no cycles with probability at least 2/3.

3 Lower bounds for testers with two-sided error

In this section we extend the lower bounds from Theorems 1 and 2 to algorithms for testing
bipartiteness that may exhibit two-sided error. To prove a two-sided lower bound of q for
testing bipartiteness, we need to argue that a sequence of q queries cannot distinguish
bipartite graphs from graphs that are ε-far from bipartite with statistical significance
better than, say, 1/3. A one-sided tester is more restricted than a two-sided tester in
the sense that it must find evidence of bipartiteness in the form of an odd cycle. The
information obtained from negative answers to its queries is not significant in this context.
For two-sided testers, however, absence of evidence is not evidence of absence.4 A two-
sided error tester may take advantage of the negative queries to infer statistical properties
of its input.

The transcript trA(G) of algorithm A on input G consists of a sequence of queries
q = (qi : 1 ≤ i ≤ q) and answers a = (ai : 1 ≤ i ≤ q), where ai = 1 if qi ∈ G, and
ai = 0 otherwise. In adaptive algorithms, the query qi may depend on previous queries
(q1, . . . , qi−1) and answers (a1, . . . , ai−1). To prove that there is no q query tester for
bipartiteness with success probability δ it is sufficient, by Yao’s principle, to produce two
distributions of graph instances G and H with the following properties:

1. With high probability, a graph selected from G is ε-far from bipartite.

2. A graph selected from H is bipartite.

3. For any deterministic algorithm A, the statistical distance between transcripts of A
on input G ∼ G and G ∼ H is at most δ:

1

2

∑

q,a

| Pr
G∼G

[trA(G) = (q,a)] − Pr
G∼H

[trA(G) = (q,a)]| ≤ δ.

We will use the following two distributions of instances: G is the distribution defined in
Section 2, namely random graphs on n vertices with edge probability p = 2ε + O(

√

ε/n).
We define H to be the distribution of random bipartite graphs with edge probability 2p.
More precisely, a graph G ∼ H is generated as follows: (1) Pick a partition (S, S̄) of V (G)
uniformly at random; (2) Select each edge (u ∈ S, v ∈ S̄) independently at random with
probability 2p.

4Secretary of defense D. Rumsfeld, on possible links between Al Qaeda and Iraq.
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Say G is consistent with transcript (q,a) if ai = 1 when qi is an edge of G, and ai = 0
otherwise. It is not difficult to estimate the probability that a graph G ∼ G is consistent
with q,a; this probability depends only on the number of positive answers ai. When
G ∼ H, however, the answers ai are not independent. For example, the event “There is
a path of length 2 between u and v” biases the probability of an edge between u and v.
Even though the structure of H makes direct computations difficult, we single out a class
of typical transcripts which have approximately the same probability in both distributions.
We then argue that a testing algorithm with suitably low query complexity is likely to
produce a typical transcript. To simplify notation, we ignore constants in our analysis.

For a transcript (q,a), we partition the queries in q as follows:

1. The set of positive queries Q+ is the set of queries qi such that ai = 1.

2. The set of internal negative queries Q−
I is the set of queries qi = (ui, vi) such that

ai = 0 and ui, vi are connected by a path in Q+.

3. The set of external negative queries Q−
E is the set of queries qi = (ui, vi) such that

ai = 0 and ui, vi are not connected by a path in Q+.

Let q+ = |Q+|, q−I = |Q−
I | and q−E = |Q−

E |. Let C denote the class of connected components
of G+ = (V (G), Q+). For U, V ∈ C, let eUV = |{(u, v) ∈ Q−

E : u ∈ U, v ∈ V }|. We call
transcript (q,a) typical if: (1) G+ is a forest, (2) q−I = o(1/ε) and (3)

∑

U,V ∈C e2
UV =

o(1/ε2).
The following lemma shows that if algorithm A produces a typical transcript of length

o(1/ε2), then it cannot determine the distribution of its input.

Lemma 2. For any algorithm A and typical transcript (q,a) of length q = o(1/ε2),
PrG∼G [trA(G) = (q,a)] ∼ PrG∼H[trA(G) = (q,a)].

Proof. If G ∼ G, its edges are selected independently, so G is consistent with q,a with
probability pq+

(1 − p)q−
I

+q−
E . For G ∼ H, we write PrG∼H[trA(G) = (q,a)] as a product

of three terms:

Pr
H

[Q+ ⊆ E(G)] Pr
H

[Q−
I ⊆ ¯E(G)|Q+ ⊆ E(G)] Pr

H
[Q−

E ⊆ ¯E(G)|Q+ ⊆ E(G) ∩ Q−
I ⊆ ¯E(G)].

We estimate each of these probabilities. Since Q+ is a forest, PrH[Q+ ⊆ E(G)] = pq+

. The
second probability is a product of q−I terms of value either 1 (for odd length paths) or 1−2ε

(for even length paths). Since q+ = o(1/ε), PrH[Q−
I ⊆ ¯E(G)|Q+ ⊆ E(G)] ∼ (1−p)q−

I ∼ 1.
For the last probability, consider a random partition (S, S̄) of V (G) that is consistent

with Q+. For every pair U, V ∈ C, let EUV be the number of edges in Q−
E between U and

V that are partitioned by (S, S̄). With respect to the choice of partition, the EUV are
pairwise independent and

Var[
∑

U,V

EUV ] =
∑

U,V

Var[EUV ] ≤
∑

U,V

e2
UV = o(1/ε2).

By Chebyshev’s inequality, almost surely |∑U,V EUV − q−E/2| = o(1/ε). In other words,

for almost every partition (S, S̄), roughly half of the edges in Q−
E fall across the partition

and roughly half fall within the partition. Therefore,

Pr
H

[Q−
E ⊆ ¯E(G)|Q+ ⊆ E(G) ∩ Q−

I ⊆ ¯E(G)] ∼ (1 − 2p)q−
E

/2±o(1/ε) ∼ (1 − p)q−
E .
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It follows that the G is consistent with q,a with asymptotically identical probabilities
according to G and H.

The next two lemmas justify the use of the word “typical” to describe transcripts of
A. They show that if A has suitably low query complexity, then it is likely to produce a
typical transcript.

Lemma 3. For any adaptive algorithm A with query complexity q ≤ o(1/ε3/2) and a graph

G ∼ G, the transcript trA(G) is typical with probability 1 − o(1).

Proof. Let G+ denote the subgraph of G whose vertices are endpoints of queries in q and
with edges Q+. Let si denote the size of the ith connected component of G+ containing
at least one edge, and S = s1 + . . . , sk. By linearity of expectation, with respect to either
distribution, E[(s1 − 1) + . . . +(sk − 1)] ≤ pq, so that almost surely S = O(qp) = o(1/

√
ε).

As in the proof of Theorem 1, the number of internal queries is o(1/ε), so that almost
surely all internal queries fail and G+ is a forest. On the other hand, the number of
negative internal queries cannot exceed o(1/ε). This establishes properties (1) and (2) of
typical transcripts.

For property (3), let
∑

U,V ∈C e2
UV = S1 + S2 + S3, where S1 =

∑

|U |=|V |=1 e2
UV , S2 =

∑

|U |,|V |≥2 e2
UV and S3 =

∑

|U |=1,|V |≥2 e2
UV . We bound each of the sums S1, S2 and S3.

In S1, each of the terms is 0 or 1, and the number of terms is at most q. Therefore
S1 ≤ q = o(1/ε3/2). For S2 we note that

∑

|U |,|V |≥2

e2
UV ≤





∑

|U |,|V |≥2

eUV





2

≤
(

S

2

)2

= o(1/ε2).

To compute S3, we let eU =
∑

|V |≥2 eUV . Then eU ≤ S, and

∑

|U |=1,|V |≥2

e2
UV ≤

∑

|U |=1

e2
U ≤ S

∑

|U |=1

eU ≤ S · q = o(1/ε2).

Lemma 4. For any nonadaptive algorithm A with query complexity q ≤ o(1/ε2) and a

graph G ∼ H, the transcript trA(G) is typical with probability 1 − o(1).

Proof. Let G′ = (V (G), Q+ ∪ Q−
I ∪ Q−

E). Property (1) is proved as in Theorem 2. To
show (2), for every e ∈ Q−

I , let Xel denote the number of paths of length l between the
endpoints of e. Every Xel is a sum of indicator random variables Yc, one for each cycle c
of length l + 1 that contains e, such that Yc = 1 if all edges in c except possibly e are in
Q+. It follows that Pr[Yc = 1] = pl.

E[

∞
∑

l=1

∑

e∈Q−
I

Xel] ≤
∞
∑

l=1

∑

e∈E(G′)

∑

c3e,|c|=l+1

Pr[Yc = 1]

=
∞
∑

l=1

∑

c,|c|=l+1

lpl

≤
∞
∑

l=1

l(2q)(l+1)/2pl (by Lemma 1)

= o(1/ε).

7



By Markov’s inequality, almost always q−I = o(1/ε).
For property (3), given any pair e = (u, v), e′ = (u′, v′) ∈ Q−

E , let Xee′l denote the
number of pairs of paths (u, v) and (u′, v′) whose lengths sum to l. For a pair of components
U, V ∈ C,

e2
UV ≤

∞
∑

l=1

∑

u,u′∈U,v,v′∈V

X(u,v)(u′ ,v′)l.

Again, we write Xee′l as a sum of indicator random variables Yc, one for each cycle c of
length l + 2 that contains both e and e′. For a fixed c, there are at most l(l − 1) pairs
(e, e′) such that Yc is an indicator for Xee′l.

E[

∞
∑

l=1

∑

U,V ∈C

∑

u,u∈U,v,v′∈V

X(u,v)(u′ ,v′)l] ≤ E[

∞
∑

l=1

∑

e,e′∈E(G′)

Xee′l]

≤
∞
∑

l=1

∑

e,e′∈E(G′)

∑

c3e,e′,|c|=l+2

Pr[Yc = 1]

≤
∞
∑

l=1

∑

c,|c|=l+2

l(l − 1)pl

≤
∞
∑

l=1

l(l − 1)(2q)(l+2)/2pl

= o(1/ε2).

By Markov’s inequality, property (3) holds almost always.

Theorem 3. Any algorithm A for testing bipartitenes has query complexity Ω(1/ε3/2).
Moreover, if A is nonadaptive, then it has query complexity Ω(1/ε2).

Proof. Suppose that A is an adaptive tester for bipartiteness with query complexity
o(1/ε3/2), and G be an input. By Lemma 3, if G ∼ G, the transcript of A on G is
almost surely typical. This is also the case if G ∼ H:

Pr
G∼H

[trA(G) is typical] =
∑

(q, a) typical

Pr
G∼H

[trA(G) = (q,a)]

∼
∑

(q, a) typical

Pr
G∼G

[trA(G) = (q,a)] (by Lemma 2)

= Pr
G∼G

[trA(G) is typical]

= 1 − o(1).

By Lemma 2, a typical transcript is asymptotically equiprobable for G ∼ G and G ∼ H,
and it follows that

1

2

∑

q,a

| Pr
G∼G

[trA(G) = (q,a)] − Pr
G∼H

[trA(G) = (q,a)]| = o(1).

The analysis for nonadaptive testers is identical.
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