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Measure on P Revisited

Olivier Powell *

Abstract

We revisit the problem of generalising Lutz’s resource bounded measure (RBM) to
small complexity classes. We propose a definition of a perfect RBM on P, and give sufficient
and necessary conditions for such a measure to exist. We also revisit g, an RBM for P
defined in [Str97], and correct an erroneous claim concerning the relations between ., and
random sets. The interest of generalising Lutz’s RBM to small complexity classes, such as
P, is that the theory of RBM has proven itself a useful tool in understanding the structure
of big complexity classes such as E or EXP, and that small complexity classes are perhaps
those of higher interest. Generalising RBM to small complexity classes has been studied
in [May94b] for PSPACE, and in [AS94], [AS95] and [Str97] for P. We merely revisit the
measure on P defined in [Str97], and besides correcting an erroneous claim concerning the
relations between this RBM and random sets, construct a better RBM, which we argue as
being a perfect generalisation of Lutz’s RBM to P, but which we can only prove to exist
under the hypothesis of the existence of random sets.

1 Introduction

Resource bounded measure (RBM) was introduced by Lutz in [Lut92]. Roughly speaking, RBM
introduces a notion of big and small sets in complexity classes. It has since been used successfully
to illuminate the structure of complexity classes, notably E and EXP. The theory of RBM is a
parametrised tool, which permits to obtain an RBM for many complexity classes: one just adapts
the parameters in order to obtain an RBM at the desired scale. One of the major limitations of
RBM is that, for technical reasons, there seem to be no obvious ways of generalising it to so-called
small complexity classes, such as P, or even PSPACE, which do not (or are not known to) contain
E. Various attempts to remedy this flaw can be found in the literature, all of which make some
compromise with what would be an intuitively perfect generalisation of Lutz’s RBM to small
complexity classes. In [May94b], an RBM is defined on PSPACE, using a concept of on line Turing
machines. This definition yields a notion of RBM in PSPACE, which is interesting but sadly fails
to extend to P. Further attempts to construct RBMs for P can be found in the series of papers
[AS94], [AS95] and [Str97]. These constructions give rise to consistent notions of measure for P, and
also extend upwards to PSPACE. They are interesting from the theoretical point of view, and also
permit certain results concerning the structure of small complexity classes: in [AS94] it is shown
that almost every set in SUBEXP is hard for BPP, and that this cannot be improved without showing
that BPP is a proper subset of E. In [CSS97], it is shown that the Lutz hypothesis, stating that NP
has a non-null measure in E, and under which many conditional results are obtained (c.f. [May94a],
[AS94], [LM94], [JL95a], [LM96], [Lut96] or, for a survey of the previous results, [Lut97al), does not
hold when translated to P. Nevertheless, these constructions all make compromises with the ideal
generalisation of Lutz’s RBM to small complexity classes, which consists of extending Lutz’s RBM
to small complexity classes by modifying only the parameters (which for example, permit to obtain
an RBM on E or EXP). It is interesting to note that such an ideal generalisation of Lutz’s RBM to
small complexity classes is not proven to be impossible: it just happens that when plugging into the
theory the parameters that would give an RBM for P (or PSPACE), the proofs of the consistency of
the mathematical object thus defined cannot be obtained through simple downwards translation
of the proofs in “big” complexity classes. Therefore the compromises conceded in order to obtain
RBMs in small complexity classes are unsatisfactory from a theoretical point of view, since it
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is unknown whether simply extending Lutz’s RBM to small complexity classes by adapting the
parameters is impossible. Also, from a more practical point of view, these flaws are an obstacle
to downward translation of results obtained in big complexity classes. For example, some results
on almost and weak completeness, such as those from [Lut95], [ASMZ96], [ASTZ97], [AS00],
[Jue95], [JLI5b],JASMRT00], could perhaps be adapted to small complexity classes if the ideal
generalisation of Lutz’s RBM were indeed a consistent RBM, but it seems much more difficult
to adapt these results with only a weaker notion of measure for small complexity classes. Our
contribution to the mending of these flaws in the theory of RBM on small complexity classes is
to define what a perfect generalisation on P of Lutz’s RBM is and, most importantly, to give two
sufficient conditions for such a measure to exist, one of theme, namely the ezistence of random
sets, being also a necessary condition.

2 Preliminaries

The goal of this section is to define the concepts of a measuring system (MS8) and a resource
bounded measure (RBM). These concepts are used to obtain the results of this article. Although
not as general as RBMs, MSs have the advantage of allowing the definition of what a perfect
generalisation of Lutz’s RBM should be. Intuitively, RBMs and MS8s are the following: an RBM
on a fixed class of languages C separates the subsets of C into small sets: those of null measure,
and large sets: those of measure one. An MS is a structure that induces an RBM, whereas the
converse is not true. Thus there are “more” RBMs than MS8s. Exact definitions follow.

Definition 2.1. Let C C {0,1}*°. An RBM on C is a partial function p : P(C) --» {0,1}, where
P(C) is the power set of C, and such that !

M1 Points are of null measure: VL € C (L) =0

M2 The whole space is of measure one: pu(C) =1

M3 A “suitable” union of null measure sets is a null measure set too.
M, ACB and u(B) =0 = u(4)=0

M5 p(A) =0 ijf,u(zc) =1, where a°=c \ A

One could argue that any reasonable definition of an RBM should imply that some intuitively small
sets such as sparse languages, or “slices”, 2 are of null measure. However this is intentionally not
included in the general definition of an RBM. The intuition behind this choice is the following: it is
noticeable that different attempts to define RBMs in P or PSPACE have produced different notions of
small sets. Typically, sentences of the following form can be found in the literature: “[...Jour notion
of RBM captures such intuitively small sets, which could not be done with previous RBMs, but
fails to capture such other intuitively small sets, whereas some previous RBMs could[...]”. As an
alternative solution to obtain “reasonable” RBMs, we propose, in definition 2.5, the introduction
of a partial ordering relation is better on RBMs. A good RBM will then be one that is better than

many other RBMs.

Definition 2.2. Let C C {0,1}°°. A measuring system (MS) R for C is {R;}ien, a family of
subsets of C such that

Al RlQRJfOT‘]Z’L
A2 ﬂieNRizm
A3Vie NR; £0

The RBM associated to R is the following a partial function pr : P(C) --+ {0,1} such that
ur(A) =0 if 3k such that A C R_kc, and pr(A) =1 if 3k such that Ry, C A.

! The meaning of suitable in point 3 is informal, but it should definitely include finite unions.
2 The term “slice” is used informally. For example, the k-th slice of P could be defined as DTIME(n*).



Definition 2.3. If a family R satisfies A1 only, it is called a pre-measuring system (pre-M$ ).

In the definition above, the terminology suggests a first relation between M8s and RBMs, since
an RBM pg is defined from any given M8 R, although at this point it remains to be shown that
the function associated to an M8 is an RBM in the sense of definition 2.1. The latter fact is the
object of lemma 2.4, but before proving this it needs to be shown that the function associated to
an MS is a well defined partial function.

Claim. The above partial function pg is well defined.

The above claim is easy, and can be shown to hold in this way. Suppose on the contrary, that for
some fixed class C and for some fixed M8 R on C there exists a set A C C such that “ur(A) = 1 and
ur(A) =07, i.e. pg is not well defined. Therefore there exist two integers k and k' such that Ry C

Aand A C R_kfc. Suppose that k < k'. Thus using Al, it holds that Ry C Ry and ch C R_kfc.
The combination of the two previous formulae yields the following: Ryr C Ry C A C R_kzc =
Ry CAC R—k’c = Ry = (), which is a contradiction to A3. A contradiction is obtained similarly

if one supposes that k¥’ < k, and thus the claim is substantiated. In the next lemma, we show that
the function associated to an M8 is indeed an RBM in the sense of definition 2.1.

Lemma 2.4. If R is an M8 on C, then pg is an RBM.

Proof. We prove the five points separately. To show that M1 holds, let {L} be a point in C. By
A2, it holds that N;enR; = 0, and thus 34 € N such that L ¢ R;. To conclude: L ¢ R; = L €

R = {L} C R:C def of ur pr({L}) = 0. To show that M2 holds, recall that by Al we have that
Ry C C. Thus by definition of ugr we have pug(C) = 1. For M3, let {A;}icr be a collection of null

sets for pg. This is equivalent to statingthat Vi € I 3k e N A; C R_kc. Now we want the informal
claim “if {A;};en is a suitable family of null sets, then pr(U;en4;) = 0” to hold, where “suitable”
definitely includes the case where I is finite. Suppose that {4;};cr is a family of null sets such that
the previous formula still holds when we invert the two quantifiers and thus obtain the following
equation: 3Gk e NVie I e N A; C R_kc, then it is easy to show that p(U;erA;) = 0. So we shall
adopt the convention that a family {A;};cr of null sets, which thus satisfies the universal-existential
formula above is a “suitable” union if it also satisfies the existential-universal formula obtained
by inverting the universal and existential quantifiers from the previous formula. It is trivial that
with this convention, finite unions of null sets are “suitable” unions. M4 is shown by noticing: if
pr(B) = 0, then 3k € N B C Ry . Now if A C B, then also 3k € N A C R . But by definition
of g, this latter fact implies that pgr(A) = 0. Finally, to prove that M5 holds, let A C C, then

the following holds: pgr(A) =0 Fke NAC R_kc S JdkeNR, C ¢ & ,uR(ZC) =1. O

The first use of the concept of M8 is to permit to define the partial ordering relation is better
on RBMs discussed earlier in this section.

Definition 2.5. Let R and p be respectively an MS and an RBM on a single fixed class C, then
R is said to be an M8 for p if p=pr. An RBM p; is better than an RBM pa, which is denoted
p1 < p2, if they both admit an MS$ and if p1 extends po. 3

The idea behind the choice of comparing RBMs that admit an M8 only, is that it is considered
nice for an RBM to admit an MS, and therefore an RBM which does not admit an M8 should
not be considered better than one that does. In order to get interesting results on RBMs on P, we
need to increase the technical tools at our disposal by continuing our investigations of the relations
between MS8s and RBMs. Lemma 2.4 shows that the concept of M8 is stronger than that of RBM,
since it proves that each M8 has an RBM associated with it. The reverse implication, stating that
every RBM admits an M8, can be shown to hold under certain conditions, as stated in the next
lemma. Intuitively, it says that an RBM admits an M8 if it is “consistent” with a pre-M8. It can
also be seen as a sufficient condition for a pre-M8 to be an MS.

% A partial function f extends a partial function g if D(g) C D(f) and fip() = g



Lemma 2.6. Let C C {0,1}°°. Let R = {Ri}ren and p be respectively a pre-M8 and an RBM
onC. If[pW(A) =0 FkeNAC R_kc] then [R is an M8 on C and p = pg].

Proof. We have to show that R is an MS, and that 4 = pgr. Let us start by showing that under
the assumptions R is an MS8. Since R is by hypothesis a pre-MS8, it only remains to be shown that
R satisfies A2 and A3. To prove that A2 holds, suppose on the contrary that it does not. Then
the following implications lead to a contradiction to M1: 3L € (|,.yRi = 3LeCVie N{L} ¢

EC = 3dL € C p({L}) # 0. To show that A3 holds, suppose on the contrary that it does not hold.
Then there exists ¢ € N such that R; = (). The following implications then lead to a contradiction
to M2: R, =0 = C C EC = p(C) = 0. Since at this point R is shown to be an MS, one can
consider pg its associated RBM, and conclude using the following implication, which holds since

u satisfies M5 and by definition of pg: [u(A) =0 & Ik A C Ry ] = p = s O

Before using the mainframe described in this section to define and discuss, in section 4, the
existence of perfect measures, we devote the next section to a reminder to the reader of the main
result of [Str97], which is the construction of an RBM for P. This RBM will be analysed and
compared to the definition of perfect RBM proposed.

3 A Previous Resource Bounded Measure on P

In this section, we summarise the construction of p,, an RBM for P that emerged from the series
of papers [AS94], [AS95] and [Str97]. The main mathematical concept used is that of a betting
strategy 4, which is a function satisfying certain properties (see below), and being computable
within certain resource bounds. We slightly change the way the original definition of p, was given
in [Str97] by introducing a topology, whereas this was done in [Str97] by means of a hierarchy of
sub-basic null sets, basic null sets and null sets. We find that the definition gains in clarity by
doing it this way, especially it is easier to then compare this RBM to its potential related M8s.
Nevertheless, this definition is equivalent to that of [Str97].

Definition 3.1. A betting strategy is 8 : {0,1}* — R such that the three following points hold:
first B(A) = 1, where X is the empty word. Second, Vw € {0,1}* B(w0) = —f(wl) , where w0 is
the word w concatenated with the symbol 0. Finally, Vw € {0,1}* >~ - B(x) > 0 , where z C w
means that x is a prefiz of w. B

As its name suggests it, a betting strategy can be used to bet money when playing a particular
game, called the casino game (c.f. for example [ASMRTO00] for a description of this game). The
next definition formalises the concept of a “win” for a betting strategy.

Definition 3.2. Let L C {0,1}*, let x L[] be the unique prefix of length i of the characteristic
sequence of L under the canonical ordering of {0,1}*. Let 3 be a betting strategy. The success set

of B, denoted S*[B], is defined to be: S®[0] := {L € {0,1}*°|limsupy_, Zéio B(xL[i]) = oo}.

It is now time to turn our attention to the algorithmic resources needed to compute betting
strategies. The two following definitions permit to suitably bound resources used by algorithms
computing betting strategies, enabling the definition of an RBM for P.

Definition 3.3. Let M be an algorithm. Let w = wy---wn € {0,1}¥*! for some N € N. The
oriented graph G, with vertezes V(Guw) C {vo,--- ,un} and edges E(Gu,,) is called the
graph of recursive queries of the algorithm M on input w, and is inductively thus defined: first,
V0 < i< N, v; is added to V(Guw) if the algorithm M queries the ith bit of its input, during its
computation on input w = wo - - - wn. Then, Yv; previously added to V(G ) and for all j < i, v;
is added to V(Gumw) and (vj,v;) is added to E(Gum,w) iff M queries the jth bit of its input during
its computation on input wp - - - w;.

* A betting strategy is a generalisation of a martingale, which is the type of function traditionally used
in the context of Lutz’s RBM. The two concepts are transparent at the level of Lutz’s RBM in “big”
complexity classes.



Intuitively, the aim of defining such a graph is the following. Suppose that one wants to simulate
the execution of the algorithm M on input w, and each time the simulation of the algorithm M
needs to read a bit of its input, it is required to simulate M on the prefix of w of length equal to
the index of the bit queried, and so on, recursively. This is roughly what needs to be done when
computing a language L that diagonalises against a betting strategy computed by an algorithm
M. Thus imposing size or depth restriction on the size of the graph of recursive queries permits
to limit respectively the time or space complexity of the language L, c.f. [Str97] for more details.

Definition 3.4. Let 8 be a betting strategy and t be a complexity function. 8 is a I'(t(n)) betting
strategy if there exists M, an algorithm such that Vw € {0,1}*: M(w) = B(w), M (w) computes in
DTIME(O(t(|w]))) and |V(Guw)| = O(H(w])).-

As explained above, the idea behind this definition is that if a betting strategy is both ef-
ficiently computable and has a small graph of recursive queries, it will be possible to construct
an efficiently computable language L that diagonalises against the given betting strategy. Notice
that the condition on the size of the graph becomes void when the time-bound becomes at least
linear (because the graph may then contain every possible node, i.e. the algorithm has enough
time to read all its input), and that the notion of efficiently computable betting strategy then
comes back to the traditional definition of efficiently computable betting strategy in the context
of Lutz’s RBM for complexity classes containing E; c.f. [ASMRTO00] for more details. In order to
be able to state the definition of u,, the RBM on P defined in [Str97], we also need to introduce
a topology on the Cantor set. To define this topology, the notion of quotient of a language by a
word is needed.

Definition 3.5. Let L C {0,1}* be a language. Let x € {0,1}* be a word. The language L, of L
quotiented by x is defined to be L, := {y € {0,1}*| yz € L}.

The following operation on language, called a direct product of languages, is useful in constructing
a single language with many properties. Roughly speaking, in certain conditions which we are
interested in, if a family of languages {R;} is such that each R; has a property, depending on 1,
then @ L; will be a single language combining the properties of all the R;s. This fact is used in
[Str97] and will also be used in the next section.

Definition 3.6. Let {L;};en be a family of languages. Their direct product is defined to be:
®i€N Lz = {m10’| x € Lz}

Notice that direct product and quotient are complementary operations, as suggested by the fol-
lowing example: (&);cy Li)/10¢ = Li. By using the definition of the quotient of a language, open
balls and the associated topology 7 are defined.

Definition 3.7. Let L C {0,1}*. The open ball By, centred on L is defined to be By, := {L/,| z €
{0,1}*}. The topology T is defined by: 7 := {O|L € O = B, C O}.

The proof of the fact that 7 is a topology (which is closed even under intersection) is easy, and left
to the reader. Intuitively, a set belongs to the topology if it is closed under the operation consisting
of constructing a new language L' from another language L, by defining the characteristic sequence
of L' to be a regular subsequence of the characteristic sequence of L. For what we are interested in,
that is considering betting strategies on languages, winning on every language of an open covering
of a given set A is much harder then winning on A only, since it means that not only the betting
strategy needs to cover every language in A, but also every language whose characteristic sequence
is a “regular” substring of any language in A. Next comes the definition of p,, and the theorem
from [Str97], stating that it is an RBM.

Definition 3.8. Let p, : P(P) —-+ {0,1} be the following partial function: VA C P, p,(A) =0 iff
there exists k € N and {B;}ien a family of I'(log(N)*) betting strategies such that A C U;en S®[Bi],
5 and VACP, u,(A) =1 ijj‘uT(Zc) =0.

o
5 The notation A denotes the interior (with respect to the topology 7) of the set A.



Theorem 3.9 ([Str97]). u, is well defined, and it satisfies M 1 to M 5, thus it is an RBM on P.

In [Str97], some properties of this measure are demonstrated, such as the fact that some
intuitively small sets are of null measure. It is also shown that this measure admits an equivalent
measure for PSPACE, and it is then compared to the measure on PSPACE of [May94b]. An alternative
definition of p, in terms of random sets was also proposed, but this definition is erroneous, as we
prove in the next section

4 Perfect Measures on P and Random Sets

In this section we revisit the problem of generalising Lutz’s RBM to small complexity classes, and
more precisely, to the class of time efficient solvable problems: P. We give a definition of perfection
for an RBM on P, which is based on the idea that a perfect measure for P is one that generalises
Lutz’s RBM, together with a necessary and sufficient condition, in terms of random sets, for such
a perfect measure to exists. The guideline followed in this section is the revisiting of p.,, the RBM
for P from [Str97] recalled in the last section, and more particularly, the discussion of a result from
the same article, which is erroneous, and that we correct. It is while following this guideline, that
we try our best to present the results of this section in a way that makes them look as intuitive
as possible. We start by reminding the reader of the definition, central to this section, of random
sets in the context of RBM at the scale P, and define the associated pre-M8 at the same time.

Definition 4.1. Let L € P be a language. L is n*-random if there is no I'(log(N)*) betting strategy
covering L. Let RY := {L € P| L is n*-random}. RF is the following pre-M8 onP: RY := {Rl}ren.

The question of whether this pre-MS is also an M8 will be raised, and shown to have interesting
implications. But before we come to this, let us enter the heart of the subject by stating a result
from [Str97], which is the mistake that we correct later in this section.

Claim (erroneous). p.(A) =0 iff Ik € N such that AN R} =0

In the rest of this article, we refer to this claim as the “erroneous claim”. This claim may seem
very plausible at first sight, and in fact only a subtle detail in the (pseudo) proof of it, which is
in [Str97] too, is inconsistent. What makes this claim not so likely, is when its consequences are
analysed with the insight of the concept of MSs. To come to the point, let us start by using lemma
2.6 to obtain two easy consequences that would follow should the erroneous claim hold: the first
consequence is named C1 and is the following: RFis an M$ for P. The second is C2: pugr = fir.
The following result of [ASTZ97], restated in our notations, permits an interesting interpretation
of the two previous statements.

Lemma 4.2 ([ASTZ97]). Let RE={L € E| there exists a I'(N*) betting strategy covering L}.
Let RE = {RF}en. RE is an M8 for E and pge = pputs, where pipye, is Lutz’s RBM for E.

The main observation is that the pre-M8 RF is the P analogous of RE in E. Pushing further the
idea behind this observation, and supposing that C'1 holds, lemma 2.4 implies that pugr is an RBM
for P, which is thus the P analogous of =, and thus of pir:,. Adopting the terminology of calling
perfect a measure that is analogous to (or better then) Lutz’s RBM, we define:

Definition 4.3. An RBM u for P is said to be perfect if it admits R = {RJ }ien an M8 such that
Vk € N3j e N| R; C Rf.

Notice that it is immediate that if there exists a perfect measure p, then pgr is a well defined
measure such that p is better than pgrr. With this definition of perfection for an RBM, it is easy
to see that the statements C1 and C2 imply that there exists a perfect RBM for P and p, is a
perfect RBM for P respectively. The following figure sums up the discussion pursued so far.

C1 holds = There exists a perfect measure for P

Erroneous claim "2 >
C2 holds = u, is a perfect measure for P



This sets the general context in which the following results are obtained. The first result is the fact
that p, admits an M8, which is composed of a family of a special kind of random sets, a result
that can be seen as an alternative to the erroneous claim. Second is the fact that the existence of
random sets is a necessary and sufficient condition for the existence of a perfect measure. Third is
the exhibition of another sufficient condition, called the unique betting strategy hypothesis, to the
existence of a perfect measure. Finally, it is shown that p, is not a perfect measure, which implies
that the erroneous claim is false. These results are now given in full detail in the following three
subsections.

4.1 Alternative Random sets to Characterise p,

Starting with the first point of the scheme given above, we show that p, admits an M8, consisting
of a parametrised family of an alternative definition of random sets for P, which also defines a
pre-M8.

Definition 4.4. Let L € P be a language. L is n*-random if there is no I'(log(N)*) betting
strategy covering Br. Let RE,T := {L € P|L is n¥-random}. RE is the following pre-M8 on P:

RY = {R} }ren.

Lemma 4.5. Let A C P, then pu,(A) =0 iff 3k € N such that ANR = 0.

Proof. Let us start with the (easy) direct implication. If A C P is such that p,(A) = 0, then there
exist k € N and {f;}ien, a family of I'(log(IN)*) betting strategies, such that A C Ujen S‘x’o[ﬁi].
Therefore VL € A, 33 a I'(log(N)*) betting strategy such that L ES‘X(;[[?]. Now observe the fol-
lowing: if L GSOS[[?] and Sog[ﬂ]e T, then B QS"S[,B], and hence L € HP’TC. Since this is true

——cC
for any language L € A, it implies that A C RE,T , which proves the first implication. Now let
us prove the reverse implication. Suppose that A C P is such that for some fixed integer k, it

——C
holds that A C RE . First consider {f3;}ien an enumeration of all I'(log(IV)*) betting strategies.
Such an enumeration exists, since all I'(log(NN)*) betting strategies admit an algorithm comput-

ing them, and since algorithms are enumerable. Since A C RE,T , it holds that VL € A 3 €

N such that B, C S°°[3;]. The last formula implies that By, CS*[8;], and that L €S°[3;]. Since
for any L € A this is true for some i € N, then A C U;en S*®[3;]. Now the following observation

permits to conclude: If A C Ujen S°°[B;] and {B; }ien is a family of I'(log(N)*) betting strategies,
then by definition of p,, . (A) = 0. O

Corollary 4.6. The two following points hold. C'1: Rf is an M8 for P. C'2: KRF = fir.

The last corollary is obtained using lemmas 2.6 and 4.5 in conjunction. The first point of this
corollary, C'1, says that RE is an MS. The open problem discussed earlier in this section asking
whether RF is an M8, which implies ¢ that there exists a perfect measure for P, seems very similar.
Since we managed to prove that C’1 holds, i.e. that RE is an MS, it is natural to enthusiastically
hope to prove, using the same techniques, that RF is an M8, and the existence of a perfect RBM
for P at the same time. This cannot be done, so if C'1 has to be proven to hold, it will be in
another way. The reason is the following: C'1 is a corollary of lemma 4.5. Thus proving that C1
holds, adapting the proof that C'1 does, would require an analogue of lemma, 4.5, with the family
RP replaced by the family RF: but this is precisely the erroneous claim, and as we are going to
prove in subsection 4.2, the erroneous claim does not hold. Therefore the problem of proving or
disproving C1, i.e. whether there exists a perfect measure for P, remains open. Now that we have a
characterisation of p, in terms of (an alternative kind of) random sets, let us turn to the relation
between random sets and perfect measures.

5 In fact, as shown in lemma 4.7, not only does this condition imply, but it is even equivalent to the
existence of a perfect measure.



4.2 Conditional Existence of Perfect Measures

This subsection is devoted to discussing sufficient (and necessary) conditions for the existence of
perfect RBMs. The main result is to prove that there exist perfect RBMs iff there exist random
sets. This will be obtained as a corollary of the next lemma, which shows that the existence of a
perfect measure is equivalent to the fact that the pre-MS8 of random sets is also an MS.

Lemma 4.7. There exists a perfect RBM iff the pre-M8 RF is also an MS$

Proof. We only prove the direct implication, since the reverse implication is easy, and therefore
left to the reader. Since RF is a pre-M$, we only need to show that the assumptions imply that
RP satisfies points A2 and A3 of definition 2.2 Let us start with A2, which can be proved to hold
unconditionally. We need to prove that N;enRI = §. It is easy to see from the definitions of R
and R” that it holds that Rf C Ry _ for any k € N. Now since corollary 4.6 insures that R is
an MS, it holds that ﬂieNRE -~ = 0, and thus A2 follows. We now prove A3, that is the fact that
RP # ( for any i € N, using the assumption that there exists a perfect RBM. By definition of the
existence of a perfect measure, there exists R = {Ri}ieN an M8 such that Vk € N3¢ € N such that
R; C Rf. Since R is an MS, Vi R; # 0, and thus V& Rf #0. O

Since A2 in the proof above is shown to hold unconditionally, the next corollary follows.
Corollary 4.8. There erists a perfect RBM iff there are random sets, i.e. if RE # 0 for all i.

Next comes the discussion of another condition, sufficient for the existence of a perfect RBM. As
explained in the literature, one of the main technical difficulties in defining an RBM for small
complexity classes comes from the fact that it cannot be proved that the following assertion (or a
variation of it) holds:

Definition 4.9. We call the following assertion the unique betting strategy hypothesis: Vk €
N V{Bi}ien family of I'(n*) betting strategies Ik' € N 3AB a I'(n*") betting strategy such that Uen
S[B:i] € S*[B'].

The fact that this hypothesis cannot be shown to hold (nor its negation) is the main difference
with RBM at the level of E, where the equivalent assertion is true indeed. It is easy to see that if
this condition was to hold, the following function, which is the transposition of Lutz’s RBM on
E, would define an RBM on P: puy : P(P) —» {0,1}, where uz(A) = 0 if IkIB a I'(n*) betting
strategy such that A C S*°[f], and pur(A) = 1if pr(P\ A) = 0. Next comes a lemma comparing
the unique betting strategy hypothesis and the existence of random sets. It shows two things:

— The unique betting strategy hypothesis is stronger then that of the existence of random sets.

— Although it is not obvious and is unknown to us whether the reverse is true, i.e. whether
the ezistence of random sets implies that the unique betting strategy hypothesis holds, the
hypothesis of the existence of random sets is as as strong as the unique betting strategy when
it comes to defining measures.

We consider this latter fact as strong evidence that the definition chosen for a perfect measure
does indeed capture the essence of an ideal generalisation of Lutz’s RBM.

Lemma 4.10. If the unique betting strategy hypothesis holds, then there exist random sets. Fur-
thermore, in this configuration, pwrr = UL .

Proof. Suppose that the unique betting strategy hypothesis holds. We want to prove that for
any k € N, there exists an n*-random set, i.e. there exists a language L € P such that L ¢
UBe{I (n*)betting strategies} S [3]- By hypothesis, there exists &' and v a I'(n*") betting strategy
such that Uge{r(n*)betting strategies}S 18] S S°[7]. Since the definition of I" betting strategies
was given in order to enable the construction of a language L € P that diagonalises against a
single betting strategy, it is easy to construct a language of P which is not in S°°[y], and thus not
in Ugegr(n*)betting strategies}S < [3] either. Such a language L is by definition an n*-random set,



and thus the fact that the hypothesis implies the existence of random sets follows. To prove that
under the assumption of the lemma, ur = pge, it only needs to be shown that for any A C P,
pr(A) = 0iff pupe(A) = 0. Suppose that pz(A) = 0, then there exists k € N and v a I'(n*) betting
strategy, such that A C S°°[y]. Thus A N {n*-random} = @, and by definition prr(4) = 0. On
the other hand, suppose that A C P is such that pugr(A) = 0. Therefore there exists k such that
AN {n*-random} = §. Thus A C Uge(r(n*)betting strategies}S " [3]- By hypothesis, there exists &’
and v a I'(n¥) betting strategy such that A C S°°[y], and thus pr(A) = 0. O

Remark 4.11. In [Str97], as well as in this article, it is ensured that no “good” betting strategy
covers the whole space P, thanks to the third point of definition 3.4 which forces a condition on the
graph of recursive queries. It ensures that for any I'(n*) betting strategy, there exists a language
L ¢ S*°[A3] which is computable in DTIME(n(2k+1)) c.f. [Str97] for more details. This restriction
imposed to the size of the graph of recursive queries of “good” betting strategies could be replaced
by the following: for any I'(n*) betting strategy 3, there has to exist a language L in DTIME(n/(*))
such that L ¢ S*[f], where f is some arbitrary computable function. It would enable the definition
of measures p,' “d la Strauss”, generalising u., but this is probably of little interest, at least from
a theoretical point of view, since it would not add much to the concepts and the ideas of [Str97].
On the other hand, the choice of ensuring that no “good” betting strategy covers the whole space
P by imposing a restriction on the graph of recursive queries, or any generalisation of this concept,
as proposed above, is an arbitrary choice, and therefore unpleasant regarding our claim of having
defined a “perfect measure”. This can be solved by the following remark. If one replaces the third
point of definition 3.4 by the following: a I'(n*) betting strategy 3 must not cover the whole of
P, then all the proofs of this subsection go unchanged. The definition of a perfect measure thus
obtained has the advantage of being free of any arbitrary choice .

4.3 Previous Relations between p, and Randomness

The main result of this subsection is the proof that u, is not perfect. This latter fact implies that
the erroneous claim does not hold. First of all, we state and prove a technical lemma.

—c
Lemma 4.12. 34 CP 3k € N such that AC R} but p.(A) #0

Proof. Suppose on the contrary that the lemma is false, then the following implication holds for

any AeP:Vke N AC REC = p,(A) = 0. If 3K € N such that Vk > K RL = 0 ,then the
previous equation implies that p,(P) = 0. This is a contradiction to theorem 3.9, which states
that . satisfies M2, and thus p,(P) = 1. Thus Vk € N, RF’ # 0, and there exists {L;};en a family
of languages such that Vi € N L; € RF. Let L be the empty language, and consider the following
class of languages: A := |J;cn{L ® Li} = Uz’eN{f’i}’ where L; := {z10|z € L} U {100|z € L;} =
{£100|z € L;}. Now we need the three following claims, for which we also give a short idea of the
demonstration. Claim 1: A C P. Claim2: 3k € N such that AN RY = 0. Claim 3: p.(A) # 0. To
show that the first claim holds, it is sufficient to show that Vi € N L; € P. But this is an easy
consequence of the fact that Vi € N L; € P. To be convinced that the second claim holds, notice
that it is easy to construct a I'(log(N)) betting strategy that wagers on words of the form 0*10 only,
and that covers A. For the third claim, suppose the contrary, i.e. pu,(A) = 0. Therefore there would

exist k € N and {f;}ien a family of I'(log(N)*) betting strategies such that A C U,y S*[8i]-
Together with the fact that Vj L; € A, it implies that ¥j € N 3i € N such that L; €S®[8;].

<]

Now since S°°[f;]€ 7, it must also be that Vj € N 3i € N such that By = CS*[3;]. Finally, in

conjunction with the fact that Vj L; € By , it implies that Vj € N 3i € N such that L, €5%°[5;]-
Since for all i € N, 3; is by assumption a I'(log(N)*) betting strategy, it thus also holds that for
all j € N, L; ¢ RE, which yields a contradiction when j > k , (since by construction {L;};en is a
family of languages such that L; € Rf C RP). The three claims above give rise to the following



contradiction: the first two claims show that the set A (constructed using the absurd hypothesis

—cC
that the lemma does not hold) satisfies A C PN RL . Since by the absurd hypothesis, the lemma
is false, then necessarily u.(.A) = 0, which is a contradiction to the third claim. O

This technical lemma enables one to compare p, and pgrr in terms of the partial ordering relation
is better defined in section 2.

Lemma 4.13. If R” is an M8, then ugr is strictly better than u,

Proof. Suppose that RF is an MS. Thus the function pugr is defined, and is an RBM. Now we
need to prove the two following facts: prr < pr and pr £ pre. Let us prove the two things
separately: for the first point, and by definition of the relation s better, we have to show that
both RBMs admit an MS and that prr extends p,. The fact that prr admits an MS is trivial,
and g, admits an M8 too, as follows from corollary 4.6. The assertion that prr extends pu, is
substantiated by showing that for any A C P, if A is p, measurable, then A is urr measurable,
and p,(A) = pge(A): first suppose that p, is defined on A and that u.(A) = 0. Together with
lemma 4.5, it implies that 3k € N such that AN RE,T = (). Now since by definition of RF and RF,

it holds that Yk € N Ri C Ry, we also have that 3k € N such that A C Rfc. Now using the
hypothesis that R is an M8 and definition 2.2, the last equation implies in turn that A is pge
measurable and that ppr(A) = 0. A similar proof holds if one starts with the case where A is p,
measurable with u,(A) = 1, and thus ugrr extends u,. This also finishes the proof that pugr < p-
We now turn to proving that p, £ pgr. Suppose on the contrary that u, < pge. If this were so,
then we would have the following implications: p, < pgr = [VA C P pugr(A4) =0 = pu,(A) =

—=c
0] = VA C P such that 3k € N A C RY ', u,(A) = 0. But the last implication is a contradiction
to lemma 4.12, thus the absurd hypothesis that p, < pge is false. O

The next corollary follows from the easy claim that if a measure p is perfect, then necessarily
u < pre. Together with corollary 4.5, it makes a correction to the erroneous claim.

Corollary 4.14. p. is not a perfect measure, C2 does not hold and the erroneous claim does not
hold.

5 Conclusion

We have proposed a definition of a perfect RBM in small complexity classes, which is intuitively
an RBM that reproduces truly, at the level of P, Lutz’s RBM in E. The question of whether such
a measure exists, which is central to this line of research, is not answered, but it is shown that the
existence of such a perfect measure admits a sufficient and necessary condition: the existence of
random sets (in the context of resource bounded measure, and with suitable parameters). It was
shown in lemma 4.10 that the unique betting strategy hypothesis, which holds in the context of
Lutz’s RBM, is stronger then the hypothesis of the existence of random sets, but that surprisingly,
it yields the same notion of measure. This could be due to the fact that both hypotheses are
equivalent: we have not proven that the unique betting strategy is strictly better than the hypothesis
of the ezistence of random sets; so this is left as an open problem. We also revisited the measure
for P that was developed in [Str97], and corrected a mistake concerning the relation of this measure
to random sets.
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