
Circuits on Cylinders

Kristoffer Arnsfelt Hansen∗ Peter Bro Miltersen∗ V Vinay†

October 24, 2002

Abstract

We consider the computational power of constant width polynomial size cylindrical circuits and
nondeterministic branching programs. We show that every function computed by a Π2 ◦ MOD ◦ AC

0

circuit can also be computed by a constant width polynomial size cylindrical nondeterministic branching
program (or cylindrical circuit) and that every function computed by a constant width polynomial size
cylindrical circuit belongs to ACC

0.

1 Introduction

x1 x2 x3 x4 x5

x2 x3 x4

x1 x2 x3 x4

x2 x3 x4 x5

Figure 1: A cylindrical branching program of width 2 computing PARITY.

In this paper we consider the computational power of constant width, polynomial size cylindrical branch-
ing programs and circuits.

It is well known that there is a rough similarity between the computational power of width restricted
circuits and depth restricted circuits, but that this similarity is not a complete equivalence. For instance,
the class of functions computed by a family of circuits of quasi-polynomial size and polylogarithmic depth is
equal to the class of functions computed by a family of circuits of quasi-polynomial size and polylogarithmic
width. On the other hand, the class of functions computed by a family of circuits of polynomial size and
polylogarithmic width (non-uniform SC) is, in general, conjectured to be different from the class of functions
computed by a family of circuits of polynomial size and polylogarithmic depth (non-uniform NC). For the
case of constant depth and width, there is a provable difference in computational power; the class of functions
computable by constant depth circuits of polynomial size, i.e, AC0, is a proper subset of the functions
computable by constant width circuits (or branching programs) of polynomial size, the latter being, by
Barrington’s Theorem [1], the bigger class NC1. On the other hand, Vinay [7] and Barrington et al [2, 3]
showed that by putting a geometric restriction on the computation, the difference disappears: The class
of functions computable by plane, constant width, polynomial size circuits (or nondeterministic branching
programs) is exactly AC0. Thus, both AC0 and NC1 can be captured by a constant width as well as by a
constant depth circuit model. It is then natural to ask if one can similarly capture classes between AC0 and

∗BRICS, Basic Research in Computer Science (www.brics.dk), funded by the Danish National Research Foundation.
Email: {arnsfelt,bromille}@daimi.au.dk

†Indian Institute of Science, Bangalore, India.
Email: vinay@csa.iisc.ernet.in

1

Electronic Colloquium on Computational Complexity, Report No. 66 (2002)

ISSN 1433-8092




NC1 defined by various constant depth circuit models, such as ACC0 and TC0, by some natural constant
width circuit or branching program model.

In this paper we make some progress towards answering this question by considering a slightly more
relaxed geometric restriction than planarity: We consider the functions computed by cylindrical polynomial
size, constant width circuits (or nondeterministic branching programs). Informally (for formal definitions,
see the next section), a layered circuit (branching program) is cylindrical if it can be embedded on the surface
of a cylinder in such a way that each layer is embedded on a cross section of the cylinder (disjoint from the
cross sections of the other layers), no wires intersect and all wires between two layers are embedded on the
part of the cylinder between the two corresponding cross sections (see Figure 1).

It is immediate that constant width polynomial size cylindrical branching programs have more compu-
tational power than constant width polynomial size plane branching programs: The latter compute only
functions in AC0 [2] while the former may compute PARITY (see Figure 1). We ask what their exact
computational power is and show that their power does not extend much beyond computing functions such
as PARITY. Indeed, they can only compute functions in ACC0. To be precise, the first main result of this
paper is the following lower bound on the power of cylindrical computation.

Theorem 1 Every Boolean function computed by a polynomial size Π2 ◦MOD ◦AC0 circuit is also com-
puted by a constant width, polynomial size cylindrical nondeterministic branching program.

By a Π2 ◦MOD ◦AC0 circuit we mean a polynomial sized circuit with an AND gate at the output,
a layer of OR gates feeding the AND gate, a layer of MODm gates (perhaps for many different constant-
bounded values of m) feeding the OR gates and a (multi-output) AC0 circuit feeding the MOD gates. It
is not known if the inclusion is proper. We prove Theorem 1 by a direct construction, generalising and
extending the simple idea of Figure 1.

Our second main result is the following upper bound on the power of cylindrical computation.

Theorem 2 Every Boolean function computed by a constant width, polynomial size cylindrical circuit is in
ACC0.

The proof of Theorem 2 is the most technical part of this paper. The simulation is done (as were many
previous results about constant width computation) by using the theory of finite monoids and the results of
Barrington and Therien [4]. Thus, we show the inclusion by relating the computation of cylindrical circuits
to solving the word problem of a certain finite monoid and then show that this monoid is solvable.

A standard simulation shows that every Boolean function computed by a constant width, polynomial
size cylindrical nondeterministic branching program is also computed by a constant width, polynomial size
cylindrical circuit. For completeness, we describe this simulation in Proposition 3. Thus, one can exchange
“cylindrical nondeterministic branching program” with “cylindrical circuit” and vice versa in our two main
results.

Organisation of Paper

In section 2, we formally define the notions of cylindrical branching program and circuits. We also give an
overview of the algebraic tools we use. In section 3, we show Theorem 1. In section 5, we show Theorem
2. As this proof is quite technical, we warm up by showing, in section 4 by a somewhat easier proof that
cylindrical branching programs (rather than circuits) compute only functions in ACC0. We conclude with
some discussions and open problems in section 6.

2 Preliminaries

Bounded depth circuits

Let A ⊂ {0, . . . , m − 1}. Using the notation of Grolmusz and Tardos [5], a MODA
m gate takes n boolean

inputs x1, . . . , xn and outputs 1 if
∑n

i=1 xi ∈ A (mod m) and 0 otherwise. We let MOD denote the family

of MODA
m gates for all constant bounded m and all A. Similarly will AND and OR denote the family of

unbounded fanin AND and OR gates.

2



If G is a family of boolean gates and C is a family of circuits we let G ◦ C denote the class of polynomial
size circuit families consisting of a G gate taking circuits from C as inputs.

AC0 is the class of functions computed by polynomial size bounded depth circuits consisting of NOT
gates and unbounded fanin AND and OR gates. ACC0 is the class of functions computed when we also
allow unbounded fanin MOD gates computing MODk for constants k. We will also use AC0 and ACC0 to
denote the class of circuits computing the languages in the respective classes.

Cylindrical branching programs and circuits

A digraph D = (V, A) is called layered if there is a partition V = V0 ∪ V1 ∪ · · · ∪ Vh such that all arcs of A
goes from layer Vi to the next layer Vi+1 for some i. We call h the depth of D, |Vi| the width of layer i and
k = max |Vi| the width of D.

Let [k] denote the integers {1, . . . , k}. For a, b ∈ [k] where a 6≡ b+1 (mod k) we define the (cyclic) interval
[a, b] to be the set {a, . . . , b} if a ≤ b and {a, . . . , k}∪{1, . . . , b} if a > b. Furthermore let (a, b) = [a, b]\{a, b},
and let (a, b) = [k] \ {a, b} if a ≡ b + 1 (mod k).

Let D be a layered digraph in which all layers have width k. We will assume the nodes in each layer
numbered 1, . . . , k, and refer to nodes by these numbers. Then, D is called a cylindrical if the following
property is satisfied: For every pair of arcs going from layer l to layer l + 1 connecting node a to node c and
node b to node d the following must hold: Nodes in the interval (a, b) of layer l can only connect to nodes
in the interval [c, d] of layer l + 1 and nodes in the interval (b, a) of layer l can only connect to nodes in the
interval [d, c] of layer l + 1.

Notice this is equivalent of saying that nodes in the interval (c, d) of layer l +1 can only connect to nodes
in the interval [a, b] of layer l and nodes in the interval (d, c) of layer l + 1 can only connect to nodes in the
interval [b, a] of layer l.

A nondeterministic branching program1 is a acyclic digraph where all arcs are labelled by either a literal,
i.e. a variable or a negated variable, or a boolean constant, and an initial and a terminal node. An input is
accepted if and only if there is a path from the initial node to the terminal node in the graph that results
from substituting constants for the literals according to the input and then deleting arcs labelled by 0.

We will only consider branching programs in layered form, that is, viewed as a digraph it is layered. We
can assume that the initial node is in the first layer and the terminal node in the last layer, and furthermore
that these are the only nodes incident to arcs in these layers. We can also assume that all layers have the
same number of nodes, by the addition of dummy nodes.

By a cylindrical branching program we will then mean a bounded-width nondeterministic branching
program in layered form, which is cylindrical when viewed as a digraph.

A cylindrical circuit is a circuit consisting of fanin 2 AND and OR gates and fanin 1 COPY gates, which
when viewed as a digraph is a cylindrical digraph. Inputs nodes can be literals or boolean constants. The
output gate is in the last layer. We can assume that all layers have the same number of nodes by adding
dummy input nodes to the first layer and dummy COPY gates to the other layers.

A standard simulation of nondeterministic branching programs by circuits extends to cylindrical branch-
ing programs and cylindrical circuits. We give the details for completeness.

Proposition 3 Every function computed by a width k, depth d cylindrical branching program is also com-
puted by a width O(k), depth O(d log k) cylindrical circuit

Proof Replace every node in the branching program by an OR-gate. Replace each arc, going from, say,
node u to node v and labelled with the literal x, with a new AND-gate taking two inputs, gate u and the
literal x and with the output of the AND-gate feeding gate v.

This transformation clearly preserves the cylindricality of the graph. Also, the width of the circuit is
linear in the width of the branching program. The resulting OR-gates may have fan-in bigger than two. We

1Our definition deviates slightly from the usual definition where nodes rather than edges are labelled by literals and unlabelled
nodes serve as special nondeterministic “choice”-nodes, but it is easily seen to be polynomially equivalent - also in the cylindrical
case - and it is more convenient for us.

3



replace each such gate with a tree of fan-in two OR-gates, preserving the width and blowing up the depth
by at most a factor of O(log k). �

Monoids and groups

Let x and y be elements of a group G. The commutator of x and y is the element x−1y−1xy. The subgroup
G(1) of G generated by all of the commutators in G is called the commutator subgroup of G. In general,
let G(i+1) denote the commutator subgroup of G(i). G is solvable if G(n) is the trivial group for some n. It
follows that an Abelian group, and in particular a cyclic group, is solvable.

A monoid is a set M with an associative binary operation and a two sided identity. A subset G of M is a
group in M if it is a group with respect to the operation of M . Note that a group G in M is not necessarily
a submonoid of M as the identity element of G may not be equal to the identity element of M . M is called
solvable if every group in M is solvable. The word problem for a finite monoid M is the computation of the
product x1x2 . . . xn given x1, x2, . . . , xn as input. A theorem by Barrington and Therien [4] states that the
word problem for a solvable finite monoid is in ACC0.

3 Simulation of bounded depth circuits by cylindrical branching

programs

In this section, we prove Theorem 1. As a starting point, we shall use the “only if” part of the following
correspondence established by Vinay [7] and Barrington et al [2]. We include here a proof of the “only if”
part for completeness.

Theorem 4 A language is in AC0 if and only if it is accepted by a polynomial size, constant width plane
branching program.

Here a plane branching program is a layered branching program satisfying, that for every pair of arcs
going from layer l to layer l + 1 connecting node a to node c and node b to node d, if a < b then c ≤ d.

We need some simple observations. First observe that if we can simulate a class of circuits C with
plane (cylindrical) branching programs, then we can also simulate AND◦C by plane (cylindrical) branching
programs by simply concatenating the appropriate branching programs.

Another way to combine branching programs is by substitution where we simply substitute a branching
program for the edges corresponding to a particular literal. The effect of this is captured in the following
lemma.

Lemma 5 If f(x1, . . . , xn) is computed by a plane (cylindrical) branching program of size s1 and width w1

and g1, . . . , gn and g1, . . . , gn are computed by plane branching programs, each of size s2 and width w2 then
f(g1, . . . , gn) is computed by a plane (cylindrical) branching program of size O(s1w1s2) and width O(w2

1w2).

• 1 • • 1 • 1 •

• 1

x1

• 1

x2

• • 1

xn−1

•

xn

Figure 2: A planar branching program computing OR.

Combining the above observations with the construction in Figure 2, simulating an OR gate, we have
established the “only if” part of Theorem 4.

Simulation of a MODA
m gate can be done as shown in Figure 3 if one disregards the top nodes in the

first and last layers and modifies the connections between the second-to-last layer to take the set A into
account. Thus, combining this construction with Lemma 5, the “only if” part of Theorem 4 and the closure
of cylindrical branching programs under polynomial fan-in AND, we have established that we can simulate
AND ◦MOD ◦AC0 circuits by bounded width polynomial size cylindrical circuits.

4



• x1

x1

• x2

x2

• • xn

xn

•
1

•
1

1

1

• x1

x1

• x2

x2

• • xn

xn

• 1 •

•
1

• x1

x1

• x2

x2

• • xn

xn

•
1

•

• x1

x1

• x2

x2

• • xn

xn

•
1

Figure 3: A cylindrical branching program fragment for MOD4.

The construction as shown in Figure 3 has actually more use, by seeing it as computing elements of
M2, where M2 is the monoid of binary relations on [2]. The general construction of a branching program
fragment for MODA

m taking n inputs is as follows: Without loss of generality we can assume that |A| = 1
and in fact A = {0} since we aim for simulating OR ◦ MOD. The branching program fragment will have
n + 3 layers. The first and last layer of width 2 and the middle layers of width m. The top node in the first
layer has arcs to all nodes but node 1 and the bottom node has an arc to node 1. The top node in the last
layer has arcs from all nodes but the one in A and the bottom node has an arc from this node. The nodes
in the middle layers represent the sum of a prefix of the input modulo m in the obvious way. Consider now
the elements of M2 shown in Figure 4. The branching program fragment just described corresponds to (a)
and (b) for m = 2 and m > 2 respectively, when the simulated MOD gate evaluates to 0. In both cases, the
fragment correspond to (c) when the simulated MOD gate evaluates to 0.

• •

• •

(a)

• •

• •

(b)

• •

• •

(c)

• •

• •

(d)

Figure 4: Some elements of M2.

We can now describe our construction for simulating OR ◦MOD circuits. The construction interleaves
branching program fragments for (d) between the branching program fragments for the MOD gates. This
can be seen as a way of “short circuiting” the branching program in the case that one of the MOD gates
evaluate to 1. Finally we add layers at both ends picking out the appropriate nodes for the simulation. The
entire construction is shown in Figure 5. The correctness can easily be verified.

The simulation of OR ◦ MOD circuits, the “only if” part of Theorem 4, Lemma 5, and the closure of
cylindrical branching programs under polynomial fan-in AND, together completes the proof of Theorem 1.

• •
1

• •
1

• •
1

• •

• 1 •
MOD

• 1
1

•
MOD

• 1
1

• • 1
1

•
MOD

• 1 •

Figure 5: A cylindrical branching program computing MOD ∨ · · · ∨ MOD.

4 Simulation of cylindrical branching programs by bounded depth

circuits

In this section, we warm up to the proof of Theorem 2 to be presented in the next section, by giving a simpler
(but similar) proof of the weaker result that bounded width polynomial size cylindrical nondeterministic
branching programs compute only functions in ACC0.

5



In fact, we shall prove that for fixed k the following “branching program value problem” BPVk is in
ACC0: Given a width k cylindrical branching program and a truth assignment to its variables, decide if
the program accepts. As any function computed by width k cylindrical polynomial size branching program
clearly is a Skyum-Valiant projection [6] of BPVk, we will be done.

We shall prove that BPVk is in ACC0 by showing that it reduces, by an AC0 reduction, to the word
problem of the monoid Mk we define next. Then, we show that the monoid Mk is solvable, and since this
implies, by the result of Barrington and Therien [4] that the word problem for Mk is in ACC0, our proof
will be complete.

We define Mk to be the monoid of binary relations on [k] which capture the calculation of width k
branching programs embedded on a cylinder in the following sense: Mk is the monoid generated by all the
relations which express how arcs can travel between two adjacent layers in an width k cylindrical digraph.
The monoid operation is the usual composition operation of binary relations, i.e., if A, B ∈ Mk and x, y ∈ [k],
xABy ⇔ ∃z : xAz ∧ zBy.

BPVk reduces to the word problem for Mk by the following AC0 reduction: Substitute constants for the
literals in the branching program according to the truth assignment. Consider now the cylindrical digraph D
consisting only of arcs which have the constant 1 associated. Then, the branching program accepts the input
given if and only if there is a path from the initial node in the first layer to the terminal node in the last
layer of D. We can decide this by simply decomposing D into a sequence A1, A2, . . . , Ah of elements from
Mk, computing the product A = A1A2 · · ·Ah and checking whether this is different from the zero element
of Mk.

Thus, we just need to show that Mk is solvable. Our proof is finished by the following much stronger
statement.

Proposition 6 All groups in Mk are cyclic.

Proof Let G ⊆ Mk be a group with identity E. Let A ∈ G and let R be the set of all x such that xEx. As
will be shown next it will be enough to consider elements of R to capture the structure of A.

Let x ∈ R. Since AA−1 = E there exists z such that xAz and zA−1x. Since A−1A = E it follows zEz,
that is, z ∈ R. Hence there exists a function πA : R → R such that

∀x : xAπA(x) ∧ πA(x)A−1x

To see that A is completely described by by πA, we define a relation Â on [k] such that xÂy ⇔ πA(x) = y.
That is, Â is just πA viewed as a relation. Since Â ⊆ A it follows EÂE ⊆ EAE = A. Conversely let xAy.
Since EkA = A there exists z ∈ R such that xEz and zAy. Since πA(z)A−1z we get πA(z)Ey. That is xEz,
zÂπA(z) and πA(z)Ey. Thus xEÂEy. Hence we obtain that A = EÂE.

We would like to have both that πA is a permutation and that {πA|A ∈ G} is a group. This is in general
not true, since E can be any transitive relation in Mk.

To obtain this we will first simplify the structure of the elements of G using the following equivalence
relation on [k] defined by

x ∼ y ⇔ (xEy ∧ yEx) ∨ x = y.

Let A ∈ G. If x ∼ x′ and y ∼ y′ then xAy ⇔ x′Ay′, since EAE = A. Thus A gives rise to a relation Ã on
[k]/∼ where xAy ⇔ [k]xÃ[k]y and it will follow that {Ã|A ∈ G} is an isomorphic group of G.

For this we need to show that ÃB = ÃB̃. This follows since [k]xÃB[k]z ⇔ xABz ⇔ ∃y : xAy ∧ yBz ⇔
∃y : [k]xÃ[k]y ∧ [k]yB̃[k]z ⇔ [k]xÃB̃[k]z

We can find an isomorphic copy of this group in Mk as follows. Choose for each equivalence class [k]x
a representative r([k]x) in [k]x. Define a relation C on [k] such that xCy ⇔ x = y = r([k]x). Thus
∀x : r([k]x)Cr([k]x). Let σ : G → Mk be given by σ(A) = CAC. Then σ(G) is the desired isomorphic copy
of G. We can thus assume that the equivalence classes with respect to ∼ are of size 1.

We now return to the study of πA. The following property, that for x, y ∈ R it holds that xEy ⇔
πA(x)EπA(y), is satisfied:

If xEy then πA(x)A−1y since A−1E = A−1. As A−1A = E it follows that πA(x)EπA(y).
Conversely if πA(x)EπA(y) then xAπA(y) since xAπA(x) and AE = A. As πA(y)A−1y and AA−1 = E

it then follows that xEy.

6



We can now conclude that πA is a permutation on R: If πA(x) = πA(y) then πA(x) ∼ πA(y) so x ∼ y,
that is, x = y. Also πA is uniquely defined : Assume π̂A : R → R satisfies

∀x : xAπ̂A(x) ∧ π̂A(x)A−1x

Let x ∈ R. We then obtain πA(x) ∼ π̂A(x) so πA(x) = π̂A(x). Hence πA = π̂A.
Now we can conclude that {πA|A ∈ G} is a permutation group which is isomorphic to G. For this we

need to show that πAB = πB ◦ πA.
Let x ∈ R. Since xAπA(x) and πA(x)BπB ◦ πA(x) it follows xABπB ◦ πA(x).

Since πB ◦ πA(x)B−1πA(x) and πA(x)A−1x it follows πB ◦ πA(x)B−1A−1x, i.e. πB ◦ πA(x)(AB)
−1

x
Since πAB is uniquely defined the result follows.
To show that {πA|A ∈ G} is cyclic we need the following fact, which easily follows from the definition of

cylindricality
Fact: Let A be a relation which can be directly embedded on a cylinder. Let p1 < p2 < . . . pm and

q1 < q2 < · · · < qm and π a permutation on [m] such that ∀i : piAqπ(i). Then π is in the cyclic group of
permutations on [m] generated by the cycle (1 2 . . .m).

Now let r1 < r2 < · · · < rm be the elements of R. Write A ∈ G as A = A1A2 . . . Ah where the Ai’s can
be directly embedded on the cylinder. Since riAπA(ri) we have for all i, elements of [k], ri = q0

i , q1
i , . . . , qh

i =

πA(ri) such that qj
i Aj+1q

j+1
i . For fixed j all the qj

i ’s are distinct. If not we would have i1 and i2 such
that ri1AπA(ri2) and ri2AπA(ri1 ). But then since πA(ri1 )A

−1ri1 and πA(ri2)A
−1ri2 we then get ri1Eri2 and

ri2Eri1 . That is ri1 ∼ ri2 which implies ri1 = ri2 . Now by the fact and induction on h we have a permutation
π in the cyclic group generated by the cycle (1 2 . . .m) such that rπ(i) = πA(ri). Thus πA is in the cyclic
group generated by the cycle (r1 r2 . . . rm) and we can conclude that G is cyclic.

�

5 Simulation of cylindrical circuits by bounded depth circuits

In this section we prove Theorem 2. Following the outline of last section, we consider for fixed k the
following “circuit value problem” CVk: Given a width k cylindrical circuit and a truth assignment to its
input variables, decide if the circuit evaluates to 1. We shall reduce CVk, by an AC0 reduction, to the word
problem of the monoid N̂k defined next, which will be proved to be solvable. By the result of Barrington
and Therien [4] it then follows that CVk is in ACC0.

Consider a width k cylindrical circuit C with k variable input nodes, all placed in the first layer. We can
view this as computing a function mapping {0, 1}k to {0, 1}k by reading off the values of the nodes in the
last layer.

We let Nk be the monoid of functions mapping {0, 1}k to {0, 1}k which are computed by such circuits
with constant input nodes disallowed.

We let N̂k be the monoid of functions mapping {0, 1}k to {0, 1}k where we in addition to the above also
allow nodes in the last layer to be constant input nodes.

We will call C a Nk circuit and N̂k circuit, respectively. That N̂k is in fact a monoid follows from the
following lemma

Lemma 7 Even if we allow constants in all but the first layer in N̂k circuits, only functions in N̂k are
computed.

Proof Consider a cylindrical circuit of depth d with possible constant input nodes in all layers. By induction
the depth d − 1 subcircuit of the first layers d layers can be computed by a cylindrical circuit such that all
constant input nodes are at layer d. Consider now a node in layer d + 1 which has an arc from a constant
input node. If it always evaluates to a constant we can simply replace it by a constant input node. Otherwise
the node is an OR or an AND node which can be replaced by a COPY node, copying the non-constant input
node of the old gate. Now all constant input nodes in layer d can simply be replaced by dummy COPY
nodes, since they have no outgoing arcs anymore. �

7



We are now able to describe the AC0 reduction of CVk to the word problem for N̂k: Substitute constants
for the variable input nodes according to the truth assignment. Each layer of the circuit except the first
can now be viewed as a depth 1 N̂k circuit by preceeding it by a layer of k variable input nodes. Let
C1, C2, . . . , Ch be the circuits obtained this way, and compute the corresponding elements f1, f2, . . . , fh of
N̂k (represented e.g. by tabulation). Now compute the product f = fh ◦ · · · ◦ f2 ◦ f1 and evaluate it on the
constants appearing in the first layer of the circuit. The output of the circuit can then be read off in the
entry of this result corresponding to the output node of the circuit.

Now we just need show that N̂k is solvable. We will in fact, as in the previous section obtain the stronger
result that all its groups are cyclic. First we show that it is sufficient to consider Nk.

Proposition 8 Every group in N̂k is isomorphic to a group in Nk.

Proof Suppose G ⊆ N̂k is a group with identity e.
We construct an injective (monoid) homomorphism φ : G → Nk. This proves the result. First we need

to prove the following claim.
Claim: Let f and g be elements of G computed by N̂k circuits C1 and C2. The output nodes of C1

and C2 that are constant are the same and their output values are the same in both circuits.
Proof of Claim: Let C ′

1 be a N̂k circuit computing f−1. Note that C1 ◦C ′

1 ◦C2 also computes g. Hence,
if C1 has some constant output node of value 1, then C2 must have the same output node be constant 1
(as seen by feeding the input 0k through C2). Analogously, if C1 has some constant output node of value 0,
then C2 must have the same output node be constant 0 (as seen by feeding the input 1k through C2). By
repeating the argument with the roles of C1 and C2 reversed, we have proved the claim.

By the claim, a fixed set of output nodes S are constant for all N̂k circuits computing functions in G.
Construct the homomorphism φ as follows: Let f ∈ G be computed by an N̂k circuit C. Then φ(f) is the
function computed by C, modified as follows: Add an extra layer of input nodes at the bottom of the circuit.
The old input nodes not in S are replaced by COPY nodes copying the corresponding input node from the
new layer. The old input nodes in S are replaced by constant input nodes corresponding to the constant
output nodes. Then an extra layer of COPY nodes is added on the top of the circuit. For nodes not in S
we just copy the previous value. For a node a ∈ S we pick a node b /∈ S to copy, where a ≡ b + i (mod k)
and i > 0 is minimal. The resulting circuit is then reduced as in Lemma 7.

It is easy to see that φ is a homomorphism from G to N̂k. We claim that the constructed circuit is
actually a Nk circuit.

To show this, we have to argue that the above construction does not introduce new constant output
nodes. This can be seen as follows: Let C and C ′ be N̂k circuits computing f and f−1 ∈ G. Then if a new
constant output node is introduced in the construction for C, the same node is already a constant output
node in the circuit C ◦ C ′, computing e, as C ′ is feeding the same constants to C in C ◦ C ′ as are fed to C
in the above construction. This, however, contradicts the claim above.

Thus φ is a homomorphism from G to Nk. We now just have to argue that it is injective and we are
done. Let C and Ce be N̂k circuits computing f ∈ G and e, where f 6= e. We then have that for some x,
C(x) 6= Ce(x). Since the output nodes in S have the same value there is an output node not in S where
the values differ. By noting that the above construction retains the values of the output nodes not in S, we
obtain that φ(f)(x) 6= φ(e)(x). �

Now we can turn to the study of the monoid Nk. Note that it is generated by the depth 1 Nk circuits.
This will be useful in some of the following properties we will prove, since it allows us, by induction, to just
consider depth 1 circuits.

As in [3] it will be convenient to identify input vectors in {0, 1}k with its set of maximal 1-intervals, only
here we consider cyclic intervals. For example is the vector 1010011011 identified with the set of intervals
{[3, 3], [6, 7], [9, 1]}.

We will only do this identification for inputs which contain at least one interval, that is, we disregard the
vectors 0k and 1k.

Lemma 9 Let x ∈ {0, 1}k contain m interval and f ∈ Nk. Then f(x) contains at most m intervals. If
f(x) in fact contains m intervals and m ≥ 1 then f(x) = {f(I)|I ∈ x}.

8



Proof Clearly f(0k) = 0k and f(1k) = 1k so we can assume m ≥ 1. Assume that C is a depth 1 Nk circuit
computing f . Let c, d ∈ [k] be nodes which evaluate to 1 on input x. Each of c and d must have an arc from
an interval of x. Suppose c and d have arcs from the same interval I in x, from a to c and b to d, say. Either
[a, b] ⊆ I or [b, a] ⊆ I . If [a, b] ⊆ I then all nodes in the interval (c, d) evaluate to 1 since they must take
arcs from [a, b] ⊆ I . Similarly if [b, a] ⊆ I then all nodes in the interval (d, c) evaluate to 1.

Thus nodes which have arcs to the same interval in x are in the same interval of C(x) if any, and the
first part follows.

Now assume that there also is m intervals in C(x). To show the second part we have to rule out that
an interval in C(x) can take arcs from more than one interval in x. But if that were case there would also
different intervals with arcs from the same interval in x, contradicting the above. �

Any subset of {0, 1}k becomes a poset by lifting the order 0 < 1 pointwise. The functions in Nk are
monotone with respect to this order. When considering only intervals this order coincides with the subset
inclusion order and we will use these orders interchangeably.

Lemma 10 Let {[ai, bi] | i = 1, . . . , m} and {[ci, di] | i = 1, . . . , m} be antichains of intervals in {0, 1}k

such that a1 < · · · < am and c1 < · · · < cm. Let f ∈ Nk and assume π is a permutation on [m] such
that f([ai, bi]) = [cπ(i), dπ(i)]. Then π is in the cyclic group of permutations on [m] generated by the cycle
(1 2 · · ·m).

Proof Assume C is a depth 1 Nk circuit computing f . In the following all index arithmetic is done modulo
m. There must be an arc from [ai, bi] \ [ai+1, bi+1] to [cπ(i), dπ(i)] \ [cπ(i)+1, dπ(i)+1] for all i since otherwise
[cπ(i), dπ(i)] ⊆ [cπ(i)+1, dπ(i)+1]. From this the result follows. �

Say that an interval [a0, b0] ⊆ [a1, b1] ∩ [a2, b2] is in between intervals [a1, b1] and [a2, b2] if there is
a3 ∈ [a1, b1] \ [a2, b2] and b3 ∈ [a2, b2] \ [a1, b1] such that [a0, b0] ⊆ (a3, b3).

If {[a1, b1], [a2, b2]} form an antichain this is equivalent of requiring that [a2, b0] ⊆ [a1, b0].

Lemma 11 Suppose [c0, d0] ⊆ [c1, d1] ∩ [c2, d2] is in between [c1, d1] and [c2, d2]. Suppose f ∈ Nk maps
intervals [ai, bi] to [ci, di] for i = 1, 2, 3. If [a0, b0] ⊆ [a1, b1] ∩ [a2, b2] then [a0, b0] is in between [a1, b1] and
[a2, b2].

Proof Assume f is computed by a depth 1 Nk circuit C.
By assumption there is c3 ∈ [c1, d1] \ [c2, d2] and d3 ∈ [c2, d2] \ [c1, d1] such that [c0, d0] ⊆ (c3, d3). There

must exist a3 ∈ [a1, b1] \ [a2, b2] such that there is an arc from a3 to c3 in C, since otherwise we would
have c3 ∈ [c2, d2]. Similarly there exists b3 ∈ [a2, b2] \ [a1, b1] such that there is an arc from b3 to d3 in C.
Since [c0, d0] ⊆ (c3, d3) all arcs to [c0, d0] must thus go from [a3, b3]. It follows [a0, b0] ⊆ [a3, b3], in fact
[a0, b0] ⊆ (a3, b3) since [a0, b0] ⊆ [a1, b1] ∩ [a2, b2]. �

In the following let G be a group in Nk with identity e. Since e ◦ e = e we get that e is the identity
mapping on the image of e, Im e. Thus any f ∈ G is a permutation of Im e, since f ◦ f−1 = f−1 ◦ f = e and
e ◦ f = f .

Lemma 12 Let f ∈ G and S ⊆ Im e. If f is a permutation on S then f a permutation on the set of minimal
elements in S, min(S), with respect to <.

Proof Assume on the contrary that x ∈ min(S) such that f(x) /∈ min(S). Then there exists y ∈ min(S)
such that y < x. But then f−1(y) < x, which contradicts x ∈ min(S). �

Now we can finally complete the proof of Theorem 2 by the following proposition.

Proposition 13 All groups in Nk are cyclic

9



Proof Let G be a group in Nk with identity e and let I be the set of intervals in Im e.
Let f ∈ G. Since f ◦ e = f it follows that f is completely described by its restriction to Im e. By Lemma

9 f is furthermore completely described by its restriction to I.

We decompose I into antichains, Ij = min
(
I \

⋃
i<j Ii

)
.

By Lemma 12 and induction, f is a permutation on Ij and furthermore a cyclic shift by Lemma 10.
Thus G acts as a cyclic group on Ij . It follows that G is Abelian, which is clearly more than enough to
prove Theorem 2. To obtain that G is in fact cyclic, we will argue that f is in fact completely described by
its restriction to I1.

For an interval I let Ij(I) denote the set {J ∈ Ij | I ⊆ J}. Pick an interval I ∈ I1 such that Ij(I) 6= ∅.
Observe that Ij(f(I)) = {f(J) ∈ Ij | I ⊆ J}. The intervals of Ij(I) are linearly ordered by having I in
between, and likewise are the intervals of Ij(f(I)) linearly ordered by having f(I) in between. By Lemma
11 (applied to f−1) these orderings are respected by f . In particular is the first interval in Ij(I) mapped
into the first interval in Ij(f(I)) by f , which is enough to describe how f acts on Ij . �

6 Conclusion and open problems

We have located the class of functions computed by small constant width cylindrical circuits (or nondeter-
ministic branching programs) between Π2 ◦MOD ◦AC0 and ACC0. It would be very interesting to get
an exact characterisation of the power of cylindrical circuits and branching programs in terms of bounded
depth circuits. It is not known whether Π2 ◦MOD ◦AC0 is different from ACC0 and this seems a difficult
problem to resolve, so we cannot hope for an unconditional separation of the power of cylindrical circuits
from ACC0. On the other hand, it seems difficult to generalise the simulation of Π2 ◦MOD ◦AC0 by
cylindrical branching programs to handle more than one layer of MOD gates and we tend to believe that
such a simulation is in general not possible. Thus, one could hope that by better understanding the structure
of the monoids we have considered in this paper, it would be possible to prove an upper bound seemingly
better than ACC0, such as for instance AC0 ◦MOD ◦AC0.

It would also be interesting to separate the power of branching programs from the power of circuits.
As circuits can be trivially negated while preserving cylindricality, we immediately have that not only
Π2 ◦MOD ◦AC0 but also Σ2 ◦MOD ◦AC0 can be simulated by small constant width cylindrical circuits.
On the other hand, we don’t know if Σ2 ◦MOD ◦AC0 can be simulated by small constant width cylindrical
branching programs. Note that in the plane case, both models capture AC0 and in the geometrically
unrestricted case, both models capture NC1, so it is not clear if one should a priori conjecture the cylindrical
models to have different power. Note that if the models have identical power then they can simulate
AC0 ◦MOD ◦AC0. This follows from the fact that the branching program model is closed under polynomial
fan-in AND while the circuit model is closed under negation.

An interesting problems concerns the blowup of width to depth when going from a cylindrical circuit or
branching program to an ACC0 circuit. Our proof does not yield anything better than a doubly exponential
blowup. Again, by better understanding the structure of the monoids we have considered, one could hope
for a better upper bound.

References

[1] D. A. Barrington. Bounded-width polynomial-size branching programs recognize exactly those languages
in NC1. J. Comput. System Sci., 38(1):150–164, 1989.

[2] D. A. M. Barrington, C.-J. Lu, P. B. Miltersen, and S. Skyum. Searching constant width mazes captures
the AC0 hierarchy. In Proceedings of the 15th Annual Symposium on Theoretical Aspects of Computer
Science, pages 73–83, 1998.

[3] D. A. M. Barrington, C.-J. Lu, P. B. Miltersen, and S. Skyum. On monotone planar circuits. In 14th
Annual IEEE Conference on Computational Complexity, pages 24–31. IEEE Computer Society Press,
1999.

10



[4] D. A. M. Barrington and D. Thérien. Finite monoids and the fine structure of NC1. Journal of the ACM
(JACM), 35(4):941–952, 1988.

[5] V. Grolmusz and G. Tardos. Lower bounds for (modp − modm) circuits. SIAM Journal on Computing,
29(4):1209–1222, Aug. 2000.

[6] S. Skyum and L. G. Valiant. A complexity theory based on boolean algebra. Journal of the ACM
(JACM), 32(2):484–502, 1985.

[7] V. Vinay. Hierarchies of circuit classes that are closed under complement. In 11th Annual IEEE Con-
ference on Computational Complexity (CCC-96), pages 108–117, Los Alamitos, May 24–27 1996. IEEE
Computer Society.

11

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092



