Electronic Colloquium on Computational Complexity, Report No. 67 (2002)

k-Approximating Circuits

Marco Cadoli* Francesco M. Doninif Paolo Liberatore®*
Marco Schaerf*

Abstract

In this paper we study the problem of approximating a boolean
function using the Hamming distance as the approximation measure.
Namely, given a boolean function f, its k-approximation is the function
f* returning true on the same points in which f does, plus all points
whose Hamming distance from the previous set is at most k. We
investigate whether k-approximation generates an exponential increase
in size or not, when functions are represented as circuits. We also
briefly investigate the increase in the size of the circuit for other forms
of approximation.

1 Introduction

Given two points in an n-dimensional boolean space, their Hamming dis-
tance is the number of coordinates on which they differ. The Hamming
distance is often regarded as the “natural” distance measure in such spaces.
Viewing a point as a vector of bits, the distance between two points is the
number of bits on which they differ: the smaller the distance, the more
similar the two vectors.

We use the Hamming distance as a measure of approximation for boolean
functions. It is well known that there are some boolean functions with n
inputs whose optimal-size representing circuits are not polynomial with re-
spect to n. In such cases, approximation can obviously be useful. Pippenger
[6] introduced an approximation method for boolean circuits, in which points
that are evaluated as false by a boolean function are allowed to be evaluated

*Dipartimento di Informatica e Sistemistica, Universita di Roma “La Sapienza”, Via
Salaria 113, I-00198, Roma, Italy.

tDipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari, Via Re David 200,
1-70125, Bari, Italy.

{Corresponding author. Email: paolo@liberatore.org

ISSN 1433-8092

to true by the approximating function, as long as their Hamming distance
from a “true” point is less than or equal to a given bound value. In particular,
points in such a condition can be evaluated in any way by the approximat-
ing function: the value of these points can be chosen so that the size of the
representing circuit is minimized.

The approximation concept proposed in this paper is formally similar,
but has different applications and different computational properties. Given
an integer k, we define the k-approximation of a function f as the function
f* that is true on exactly all points whose Hamming distance from points
that are evaluated to true by f is at most k. Formally, we denote by zAy
the set of coordinates on which z and y differ and with | - | the cardinality
of a set; therefore, |[zAy| is the Hamming distance between z and y. The k-
approximation of a function f is therefore the function f* defined as follows.

k true if there exists y such that |zAy| < k and f(y) = true,
A=) = :
false otherwise.
(1)

Figure 1 is a graphical representation of this concept: f is represented by
the set of points it evaluates to true; f¥ is true on the same points, plus all
other points that are at most k far from them. The points in the “border”
(whose width is k) are evaluated to false by f and to true by f*. Note that,
on the contrary, Pippenger’s circuit approximation is free in the evaluation
of these points, that is, it can evaluate them to either true or false.

<t !

Figure 1: A function and its approximation: points in the k-wide border are
evaluated to false by f, to true by f*. and can be evaluated to any value by
Pippenger’s approximation.

An example of k-approximation for 1 < k < 3 of the function g = (z1 =

x2) Ax3 Ay is reported in Figure 2: the two points in which g is evaluated to
true are denoted by ‘e’, while the points in which its k-approximation is true
are denoted by a number less thagn or equal t¢ k. Pippenger’s approximations
for kK =1, 2, and 3, are 3 A x4,/ x3, ard trug, respectively.

3 2 1 2

T4

Z2

Z1

Figure 2: k-approximations (1 < k < 3) of the function g = (z1 = z2) Az3A
4. Each box is an interpretation, and contains its distance from a model of
g (e indicates a model): the 1-approximation has the models with 1 and e,
the 2-approximation has the models with 2, 1, and e, etc.

We remark that, while Pippenger’s circuit approximation and k-approximation
have similar definitions, their aims are completely different. Circuit ap-
proximation changes the truth evaluation of some points with the aim of
representing the function with a boolean circuit of polynomial size. k-
approximation evaluates to true all points which are not too different from
points that the original function evaluates to true. The aim of circuit approx-
imation is to obtain a computational advantage (size of representing circuit)
at the expense of allowing some “mistakes” in the truth evaluation of points.
k-approximation is done for obtaining a different function, that evaluates to
true some additional points. The difference is made more clear if we con-
sider that a function that can be represented with a polynomial circuit does
not need circuit approximation, while we may need its k-approximation for
enlarging the set of points evaluated to true.

The idea of k-approximation is not new. For example, Hamming codes
encode values of a specified domain in such a way that the k-approximation
of the recognizing functions do not intersect. As an example, any integer
number, e.g., 10, can be encoded using a Hamming code with k-error cor-
rection. The k-approximation of the function that is true only on the exact
encoding of the number 10 coincides with the function that is true on the
points that represent the number 10.

k-approximation is useful whenever we need to evaluate a function on
a vector of bits that is likely to contain some mistakes. Problems of this
kind are the recognition of patterns out of data coming from unreliable
sensors (if each pattern is expressed as a boolean function) and interpreta-
tion/correction of data that has been received from a noisy channel. In such
cases, all points that have a reasonable measure of approximation should be
accepted.

The strict constraints imposed by k-approximation result in a compu-
tational cost: as it is proved in Section 3, there are boolean functions that
can be represented by polynomial-size circuits, while their k-approximation
(for some k) cannot (this result holds only if the Polynomial Hierarchy does
not collapse.) It is also possible to prove the converse, that is, there are
boolean functions that cannot be represented by polynomial circuits while
some of their k-approximations can. This is actually easy to prove: consider
a family of boolean functions (f,), where f, has n arguments, that cannot
be represented by a family of polynomial circuits (the proof of existence
of such families is due thanks to Shannon’s counting argument), and their
k-approximation, where k = n: the approximation of f, is the function that
evaluates to true on all points of the space, and can be easily represented
with a very small circuit.

The paper is organized as follows. In the next section, we present some
background needed in the rest of the paper. In Section 3 we study the
problem of approximating functions/circuits, and show that, in general, ap-
proximation cannot be done without a super-polynomial increase in the size
of the representing circuit, and show some subcases in which approximation
is instead feasible. We then consider in Section 4 approximation under a
different notion of distance. Finally, Section 5 is devoted to the discussion
of the results.

2 Preliminaries

2.1 Boolean Circuits

A boolean circuit is a directed acyclic graph containing a single node with
out-degree equal to 0, which is called the output. The nodes of in-degree 0
are called inputs (and are labeled either with a number or with a constant
true or false), while the other nodes are called gates and are labeled with a
binary boolean connective [1], e.g., A, V. Given a set of boolean values, one
for each input, a circuit determines the truth value induced at its output.
The output that is produced on the tuple of boolean values I by the circuit

C is denoted by C(I). The size of a boolean circuit C' is the number of its
gates, and is denoted by ||C||. In general, the notation || - || represent the
size of an object; | - | represents its cardinality.

A boolean function of n arguments is a function from n-tuples of boolean
values to {true,false}. Boolean circuits and boolean functions are clearly
related. Indeed, both functions and circuits determine a truth value for any
n-tuple of boolean values. As a result, a circuit with n inputs represents a
boolean function of n arguments and vice versa.

Formally, an n-input circuit computes a boolean function f if for all
assignments z € {0,1}" to the n inputs, the value induced at the output
gate is f(z). On the other hand, a function f represents a circuit C if and
only if f(z) is equal to the output of C' when the values x are set as the
input gates. Since boolean circuits are suitable for “implementing” boolean
functions, in the following we refer to circuits, rather than functions.

We can indeed extend the notion of k-approximation to circuits: if C is a
circuit representing f, then C* is a k-approximation of C if it represents f.
Note that, given a function f and an integer k, there is a unique function
f* that is the k-approximation of k. On the other hand, both f and f* can
be represented by many circuits. We are interested in determining whether
a function can be represented in polynomial space, that is, whether there
exists a polynomial p such that C represents f and ||C|| < p(n), where n is
the number of input gates of C.

Both f and f* can be represented or not by a polynomial circuit. There
are actually four possible combinations. In particular, if k = 0 then f = f*:
it is therefore possible that both functions are represented by polynomial
circuits, and it is also possible that both are not. In Section 1, we have
already shown a function f and a value of k£ such that f cannot be polyno-
mially represented while f* can. In the following we prove that there are
functions f that can be represented by polynomial circuits, while f* cannot.

This is perhaps the most interesting of the four cases: we may indeed
assume that the function f is already represented by a circuit, so what
we have is actually C. Approximating means finding a new circuit that
approximates C. The main result of this paper is that, in some cases, there
is no k-approximating circuit that is only polynomially larger than C.

2.2 Non-uniform complexity classes

We assume the reader is familiar with (uniform) classes of the Polynomial
Hierarchy, like P, NP, coNP, 28 etc. [3]. We only briefly introduce non-
uniform classes [4], which we use in some proofs.

Definition 1 An advice-taking Turing machine is a Turing machine en-
hanced by an “advice oracle” A, which is a function from integers to strings
(not necessarily recursive). On input s, the tape is automatically loaded with
A(l|s]]), and from then on the computation proceeds as normal, based on the
two inputs s and A(||s]|).

Note that the string A(]|s||) depends only on the size of the input: if s
and s’ are two strings with the same length, then A(]|s||) = A(||¢'||)-

Definition 2 An advice-taking Turing machine uses polynomial advice if
its advice oracle A satisfies ||A(n)|| < p(n) for some fized polynomial p and
all nonnegative integers n.

Definition 3 If C is a class of languages defined in terms of resource-
bounded Turing machines, then C/poly is the class of languages defined by
Turing machines with the same resource bounds but augmented by polyno-
mial advice.

As an example, P/poly is the class of languages recognizable by a Turing
machine working in polynomial time using polynomial advice, NP /poly uses
a Turing machine working in nondeterministic polynomial time, etc. A class
C/poly is also known as non-uniform C, where non-uniformity is due to the
presence of the advice. Non-uniform and uniform complexity classes are
related: the collapse of the non-uniform hierarchy implies the collapse of
the uniform one at some level [4, 8].

3 Approximation Based on the Hamming Distance

We investigate whether k-approximation is actually feasible in polynomial
space or not. Intuitively, we want to find out whether every circuit C' has
a k-approximating circuit C* whose size is bounded by a polynomial in
the size of C. Clearly, we do not want the polynomial p to depend on
the specific circuit. What we want is to determine whether there exists a
polynomial p that bounds the size of the minimal k-approximations of all
circuits. This is what “polynomial” intuitively means: that every circuit
can be approximated within a polynomial bound in its size.

Question 1 (Polynomiality of Approximation) Is there any polynomial
p such that, for any circuit C and any k > 0, the circuit C has a k-
approzimation C* of size |C*| < p(||C|)).

The answer to this very general question is no (Theorem 2). Never-
theless, it is interesting to study this problem when k depends on C', and
in particular, when k depends on the number of inputs n of C. Several
dependencies are possible:

1. kK € O(1), i.e., k is a constant

2. k € O(logn), i.e., it is a logarithmic function of n

w

. k€ O(n*) with a < 1 i.e., it is a sublinear function in n
4. k is linear in n

We discuss each case separately.

3.1 Fixed k-approximation

We can positively answer Question 1 for the case in which k is a constant.
Hence, we can say for example that 2-approximation is feasible, that 3-
approximation is feasible, etc.

Theorem 1 (Polynomiality of Fixed k-approximation) For each pos-
itive integer k, there exists a polynomial p such that, for every circuit C, it
holds ||C*|| < p(||C||), where C* is the minimal k-approzimation of C.

Proof. The proof is based on the fact that, for each k, we can choose a
different polynomial. We denote pj this polynomial to make explicit its
dependence on k. Since k is to be regarded as a constant, pg(m) = mk+l
is a polynomial. We prove that pi(m) = m**! indeed bounds the size of
k-approximations of any circuit C. Let C be a circuit of size m with n
inputs; by definition, n < m. The following circuit k-approximates C.

ct= \/ CKX'/-X
X'CX, | X<k

We use the notation C[X’/=X'] to refer to the circuit in which a negation
gate is introduced on every input in X’. We have to show that this circuit
has size bounded by pi(n), and that it is a k-approximation of C.

The circuit C* is composed of a number of copies of C, one for each subset
of X composed of k elements. Since C' has n inputs, |X| = n. The number
of subsets of k elements of a set of n elements is less than n*. Therefore, C*
is made of at most n* copies of C. Its size is therefore bounded by m - n*.

Since n < m, the size of C* is also bounded by mF+1.

We now prove that C* is a k-approximation of C.

For the first direction, let I be an arbitrary tuple that is ¢ far from one
that makes C output true, with ¢ < k. Let J be the tuple that makes C
outputs true, and such that |[IAJ| =t < k. Let X' = IAJ. By definition,
C(J) = true, which implies C[X'/=X'](I) = true. Since the latter is part of
the disjunction that forms C*, we have C*(I) = true.

Conversely, let us assume that C*(I) = true, and let us prove that there
exists a tuple J such that C(J) = true and |IAJ| < k. By definition of C*,
we have C*¥(I) = true if and only if there exists a set X’ C X with |X'| <k
and such that C[X'/-X'](I) = true. If J is the tuple that differ from I for
the elements in X', we have C(J) = true, and |IAJ| = |X'| < k. a

This theorem shows, for example, that 2-approximation can be done
without an exponential increase in size. We note that a circuit accepting
k-errors-correcting Hamming code is an example of k-approximation of the
circuit C accepting only the true codes.

However, the proof also shows an annoying exponential dependency on
k, as the k-approximating circuit C* is n* larger than the original one, n
being the number of inputs of C. No harm is done if k is fixed, for example if
k = 2, when the approximation increase the size of only n? times. However,
this means that we are always doing the approximation regardless of the
number of inputs of C. While 2-approximating a circuit of 10 variables may
be reasonable, it may not when the inputs are 1000. In such cases, the
bound on the approximation k£ should increase with the number of input.

3.2 Logarithmic k-approximation

We consider a value of k£ that depends on n, but only moderately increases
with it. In this case, the bound for the approximation is not a constant
value, but the result of a function. In particular, we consider a logarithmic
function. The construction of the last section leads to a k-approximation
that is n* times the size of the circuit. While this is still sub-exponential
(i.e., it is n'°8™ if k = logn), it is not a polynomial any more.

3.3 Sublinear k-approximation

For this case, we have a negative answer to Question 1. The following the-
orem shows a uniform family of circuits {Cy, Cy, Cs, ...} such that C,, is an
n-input circuit of size polynomial in 7, and the size of their k-approximations
increases more than every polynomial function, unless the Polynomial Hier-
archy [7] collapses.

Theorem 2 Let k(n) € 0(n®) with a = 3. There ezists a uniform family of
circuits {Cy, C1,Cs, ...} such that, if there ezists a polynomial p for which

ICE™|| < p(ICyl) for all n > 0, then NP C P/poly.

Proof. Since the proof is rather long, we first give an outline to improve its
readability. The proof consists of the following steps:

1. choice of an NP-complete problem 7r;

2. definition of the family in such a way the n-th circuit of the family C,
is polynomial in n and, for each instance F' of 7 of size m, the answer
to F is “yes” if and only if there exists an n-bits input Ir such that
™ outputs true on Ip, with k(n) =m € O({/n);

3. proof that, for &k = m € O(/n), if for every n C, admits a k-
approximating circuit ™ that is polynomial in ||Cy]|| (hence poly-
nomial in 1), then NP is contained in P /poly.

Step 1: We choose the NP-complete problem 3sat. Let F' be an instance
of 3sat, i.e., a 3CNF formula, with ||F'|| = m. The number of propositional
letters contained in F' is bounded by m. It will be useful to have an easy way
to determine the number of variables of a formula. To this aim, we assume
that any formula F' of size m is built over the alphabet Xp = {z1,...,2m},
even if F' only contains some of these variables. This way, we have ||F| =
|Xr| for any formula F. From now on, we omit the subscript F' in X for
simplicity.

Step 2: Given n, we show how to build the circuit C}, in such a way that
C.,, depends only on n, and its size will be polynomial in n. Moreover, we
want to enforce that a 3CNF formula F' (with ||F|| = m) is satisfiable if and
only if there is a set of input values Iy that makes true the output gate of
Cp, where n € O(m3).

Let Y = {y1,...,ym} be aset of new letters in one-to-one correspondence
with letters of X, and let G be a set of new letters one-to-one with the set of
the three-literal clauses over X, i.e., G = {g; | ;s is a three-literals clause of X}.
Finally, let L be the set X UY UG and n = |L|. Notice that n € O(m?).
We define C;, as the conjunction of two formulae:

C,=An ATy, (2)

A, states non-equivalence between atoms in X and their correspondent
atoms in Y, while I';;, codes every possible 3CNF formula over X, using the
atoms in G as “enabling gates”.

m

Ay = /\(ﬂﬁi Z i)

=1
ry, = /\ Yi V Tg;
9i€G

T, contains O(m3) clauses. The overall circuit C,, is therefore polyno-
mially large. It is an n-inputs circuit and it does not depend on the specific
3CNF formula F', but only on the size m of its alphabet. Therefore, we have
proved that it satisfies all requirements but the last, which we now prove.

Indeed, we now show that, for k(n) = m, the satisfiability of F' is equiv-
alent to the existence of an input set that makes C,lf(n) outputs true. Let F’
be an arbitrary 3CNF formula over X, and let G be the set of g;’s whose
corresponding clauses are in F':

Gr = {gi € G | v; is a clause of F}
The input set Ir is defined as follows:

[true ifleGp,
Ir(l) = { false ifl € (G\GFr)UXUY (3)

We now show that F' is satisfiable iff Cs(n) outputs true on input Ir.

If part. Let F be satisfiable, and Xr be a model of F. Let Yz = {y; € Y |
z; ¢ Xr}. We prove that Cﬁ(n) gives true on Ir by showing an input set [
on which C,, gives true and |[IAIr| < m = k(n). This inputs set I is defined
as follows.

(4)

We show that C,, gives true on I. The output of A,, on I is true by
construction of Yz, and also the output of T, on I is true because, for each
clause ; V —g; of I'y,, either I(g;) = false or I(~;) = true, since X satisfies
7i- Now observe that |[IAIr| = |Xr UYr| = m. Hence, Cylf(n) outputs true
on input Ip.

() = true iflE(GFUXFUY_F),
" | false otherwise.

10

Only if part. Suppose that Cﬁ(") gives true on Ir. Then there exists an
input I that makes C,, give true, with |IpAI| < m. Note that |[IpAI| > m
because, for all 1 <4 < m, the input I must assign false to exactly one of z;
and y;, while Ir assigns false to all inputs in X UY. Therefore, |IpAI| = m.
Hence, I and Ir must assign the same value to all inputs in G. Let I'x be the
input such that Ix(l) = true if I(l) = true and | € X, false otherwise. Since
T',, outputs true on I, simplifying the circuit '), by assigning to the inputs
in G the value assigned by Ir, we obtain exactly the formula F. Thus, the
model M = {l |l € X,I(l) = true} satisfies F'.

Step 3: Let us assume that there exists a polynomial p with the proper-
ties claimed in the statement of the theorem. Then, for each circuit C,,
there exists a k-approximating circuit CH™) with ||Cﬁ(n)|| < p(||Crl]). We
define an advice-taking Turing machine that determines the satisfiability
of propositional formulae in polynomial time, in this way: Given a generic
propositional formula F', with ||F|| = m, the machine loads the advice, that
is, a representation of the circuit C’ff, computes I'r, and then checks whether
Ck gives true on Ir in polynomial time. Since ||CX|| = O(m?), the advice
has size O(p(m?)), hence we would have shown that satisfiability of propo-
sitional formulae is in non-uniform P. Since satisfiability of propositional
formulae is an NP-complete problem, this implies NP C P/poly. O

Recall that NP C P/poly implies |J;5, 27 C X5, ie., the Polynomial
Hierarchy collapses at the second level [4]. Although this is a relative ar-
gument, the collapse of the Polynomial Hierarchy is considered unlikely to
hold by current research in computational complexity [3].

A question that naturally arises is whether the exponential blow-up happens
not only for the specific class of functions k(n) € #(n®) with a = %, but also
for a more general class of functions. In fact, we can enlarge the above
results to smaller values of a.

Theorem 3 Question 1 has negative answer for k(n) € O(n®) with a < .

Proof. Let t(m) be a polynomial such that t(m) € Q(m3). We can modify
the reduction of the previous theorem, “inflating” the number of inputs of
the circuit as follows. Given a formula F with ||F|| = m, we build the
following circuit Cp:

t(m)
Cop=An ATy A /\ Z;

=1

11

e]
=

Ap, and Ty, are as before, and Z = {z1,...,2ym)} is a new set
variables, with |Z| = ¢(m). The number of inputs of this circuit is n
Q(m3 +t(m)). We still use k(n) = m, therefore k(n) € O(n®) with o <
This proves the claim.

g« i

3.4 Linear k-approximation

As remarked in the introduction, if k(n) = n, a trivial k-approximation of
any circuit having n inputs. A similar result holds for any linear function
k(n) = n — h, where h is a constant. This is a consequence of the fact that,
for any x, there are less than 2n” inputs y’s that are at least n — h + 1 far
from it. Therefore, for any circuit C that evaluates true on some inputs, C*
evaluates false on at most 2n” inputs; such circuits can be represented in
linear space.

While Question 1 has a positive answer for k(n) = n and k(n) =n —h
for any fixed h, it has negative answer for k(n) € O(n) in general. Indeed, a
statement similar to Theorem 2 can be proved for some functions k(n) such
that k(n) € O(n). The reduction in Theorem 2 is modified as follows. Let
F be a formula with ||F|| = m, and let r(m) be a polynomial in m. We
build the following circuit Cp:

r(m)
Copn=An AT A /\ 2 Z w;
=1

The cardinality of both Z and W is r(m). The inputs to C,, are now
X, Y, G, W and Z, so their number n is n = m? + 2(m + r(m)). Hence
n € 6(r(m)). We use the input in which all variables in X UY U Z U W are
false, and a distance k (as a function of m) equal to m + r(m). Following
the same line of reasoning of Theorem 2, it can be shown that Cylf(n) outputs
true iff F' is satisfiable. Let r(m) = £(m? —m3) — m, with 8 > 3, so that
r(m) > 0. Now n=m’, and k= 1(n — n3/8), hence k € O(n).

4 Distance Based on Set Containment

In the previous section, we took the Hamming distance between two points
as a measure of the allowed error. Different measures can however been used
instead. We now analyze a measure based on set containment.

Given a circuit C on n inputs and a set of integers S C {1,2,...,n},
an S-approximation of C is a circuit C° that outputs 1 on input z =

12

(z1,22,...,2y) if and only if there exists another inputs ¥y = (y1,¥2,.--,Yn)
such that C outputs true on z and z; = y; for all # € S. In other words,
C? is the circuit that outputs 1 on all sets of inputs that disagree with the
inputs where C outputs 1 only on the bits in S.

Intuitively, if the circuit C outputs 1 on a set of n inputs z, then C° will
output 1 on all sets of n inputs that can be obtained from z by changing
some of the bits in S, while bits not in S are fixed. On the contrary, k-
approximation allows for changing any bit, provided that no more than k
bits are changed. k-approximation is therefore based on the assumption
that all bits have the same status, or that errors in them have the same
probability. On the contrary, S-approximation can be seen as a formalization
of assuming that the bits in S can be wrong, but we are sure that the other
ones are not.

The study of S-approximation reported here is not as detailed as that of
k-approximation. We only show that polynomial S-approximation is impos-
sible in general, but feasible if S is a set of fixed cardinality, i.e., independent
on n.

Theorem 4 There exists a family of circuits {Cy,C1,Co,...} such that,
if there exists a polynomial p such that ||C2|| < p(||Chl|), where CS is a
minimal S-approzimation of Cy, for all n > 0 and S C N, then NP C

P/poly.

Proof. The proof is similar to that of Theorem 2. We only point out the
differences. The first step is the same. In the second one we show that
for any integer m, there exists a n-inputs circuit C,, depending only on
m, of polynomial size w.r.t. m, such that given any 3CNF formula F over
an alphabet of m atoms, there exists an n-bits input Ir such that F' is
satisfiable iff Ir makes C;; output true. This circuit C,, is defined as in the
other proof. We define S =X UY.

Given a 3CNF formula F' over X, we define Gr = {g; € G | ; is a clause of F'}.
Given G we define an n-bits input Ip as follows: Ir(l) = true if | € Gp,
false otherwise. We now show that F is satisfiable iff CY outputs true on
input Ig.

If part. Let F be satisfiable, and let X be a model of F. Let Yr = {y; |
z; ¢ Xr}, and let the input I be defined as follows: I(l) = true if
I € (GF U XF UYr), false otherwise. We show that C,, outputs true
on I. The output of A,, on I is true by construction of Yz, and also
the output of I';, on [is true because, for each clause «y; V —g; of Ty,

13

either I(g;) = false or I(y;) = true, since X satisfies ;. Now observe
that (TAIr) C X UY = S. Hence, CS outputs true on input /7.

Only if part. Suppose C outputs true on Ir. Then there exists an input
I such that makes C, output true, and IAIr C S. Therefore, I and
Ir must assign the same value to all inputs in G. Let I'x be the input
such that Ix(l) = true if I(l) = true and [€ X, false otherwise. Since
I',, outputs true on I, simplifying the circuit I';, by assigning to the
inputs in G the value assigned by Ir, we obtain exactly the formula
F. Thus, the model M = {l |l € X,I(l) = true} satisfies F.

The third step of the proof (proving that the assumptions implies NP C
P /poly) is identical to the one of Theorem 2. O

Let us now prove that, for any fixed S C N, it is possible to S-approximate
any circuit. The specific definition of this question is identical to the one
given in the last section (substituting k& with S).

Theorem 5 For any fized set S C N, there exists a polynomial p such
that, for any circuit C, it holds ||C°|| < p(||C||), where C° is a minimal
S-approzimation of C.

Proof. Given a circuit C, the following is an S-approximation of it:

c®=\/ Cis'/-5
S'CS

where C[S’/-S'] is the circuit obtained modifying C' by negating the vari-
ables in S’. This circuit is at most 2/5/2 larger than C: its size is therefore
polynomial, as S is a constant set. O

5 Discussion and Conclusions

When we compare our results with similar ones in circuit approximation, a
huge difference is apparent: while circuit approximation can make it pos-
sible to represent functions with polynomial circuits (which may otherwise
be impossible), k-approximation seems to degradate the quality of circuit
representation. As explained in the introduction, these two approximation
methodologies have different definitions and aims. While the aim of the first
one is to reduce the size of the representing circuits, the second one aims at
increasing the confidence in the truth value of some points. This difference

14

in aim leads to a difference in definition, so that the first one admits a certain
degree of freedom in choosing the truth values of some points, if doing so
shortens the representation; on the converse, the truth value of all points is
specified in the k-approximation of a function. Having removed this degree
of freedom leads to the complexity result of this paper: the k-approximation
of a function cannot be represented, in general, by a polynomial circuit.

The main result of this paper can be linked to other recent ones regarding
how compactly information can be represented. According to Gogic, Kautz,
Papadimitriou, and Selman [4], Cadoli, Donini, Liberatore, and Schaerf [2],
and Penna [5], the space efficiency of a logical formalism is its efficiency in
representing information with a small amount of space. Trivial examples
are easy to find: first order logic formulas may need exponential space to
be converted into equivalent propositional formulae, so the former is more
space efficient than the latter one. In many cases, however, a proof of
equal/different space efficiency is more complicated (see the papers men-
tioned above for examples).

The results presented in this paper deal with space efficiency: a boolean
function may be represented with little space by saying it is the k-approximation
(for a suitable number k) of another function which can be represented with
exponentially less space. In other words, we can represent a boolean func-
tion by a pair (C, k), where C is a circuit and k is a number, such that the
function is the k-approximation of the function represented by C. Clearly,
any function can be represented with k¥ = 0. However, as we have shown in
this paper, in some cases (C, k) represents a function whose smallest repre-
senting circuit cannot be represented in space polynomial in the size of the
original circuit C. As a result, the “formalism” of using a pair can be more
space efficient than the usual representation using circuits.

Summing up, we have analyzed the impact of introducing approxima-
tions in boolean circuits. More precisely, we have investigated the increase
in the size of a circuit when various forms of Hamming-based and set-
containment-based approximations are introduced.

References

[1] R. Boppana and M. Sipser. The complexity of finite functions. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume A,
chapter 14, pages 757-804. Elsevier Science Publishers (North-Holland),
Amsterdam, 1990.

15

[2]

[4]

[6]

[7]

(8]

M. Cadoli, F. M. Donini, P. Liberatore, and M. Schaerf. Space effi-
ciency of propositional knowledge representation formalisms. Journal of
Artificial Intelligence Research, 13:1-31, 2000.

D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume A, chapter 2,
pages 67-161. Elsevier Science Publishers (North-Holland), Amsterdam,
1990.

R. M. Karp and R. J. Lipton. Some connections between non-uniform
and uniform complexity classes. In Proceedings of the Twelfth ACM
Symposium on Theory of Computing (STOC’80), pages 302-309, 1980.

P. Penna. Succinct representations of model based belief revision. In
17th Annual Symposium on Theoretical Aspects of Computer Science
(STACS’2000), pages 205-216, 2000.

N. Pippenger. Information theory and the complexity of boolean func-
tions. Mathematical Systems Theory, 10:129-167, 1977.

L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer
Science, 3:1-22, 1976.

C. K. Yap. Some consequences of non-uniform conditions on uniform
classes. Theoretical Computer Science, 26:287-300, 1983.

16

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/pub/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

