
Complexity of the Exact Domatic Number Problem and of the
Exact Conveyor Flow Shop Problem

Tobias Riege
�

and Jörg Rothe
�

Institut für Informatik
Heinrich-Heine-Universität Düsseldorf

40225 Düsseldorf, Germany

December 9, 2002

Abstract

We prove that the exact versions of the domatic number problem are complete for the levels
of the boolean hierarchy over NP. The domatic number problem, which arises in the area
of computer networks, is the problem of partitioning a given graph into a maximum number
of disjoint dominating sets. This number is called the domatic number of the graph. We
prove that the problem of determining whether or not the domatic number of a given graph is
exactly one of � given values is complete for BH ����� NP � , the 	
� th level of the boolean hierarchy
over NP. In particular, for ����
 , it is DP-complete to determine whether or not the domatic
number of a given graph equals exactly a given integer. Note that DP � BH ��� NP � . We obtain
similar results for the exact versions of the conveyor flow shop problem, which arises in real-
world applications in the wholesale business, where warehouses are supplied with goods from
a central storehouse. Our reductions apply Wagner’s conditions sufficient to prove hardness for
the levels of the boolean hierarchy over NP.
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1 Introduction

A dominating set in an undirected graph � is a subset � of the vertex set ������� such that
every vertex of ������� either belongs to � or is adjacent to some vertex in � . The domatic number
problem is the problem of partitioning the vertex set ������� into a maximum number of disjoint
dominating sets. This number, denoted by 	
����� , is called the domatic number of � . The domatic
number problem arises in various areas and scenarios. In particular, this problem is related to the
task of distributing resources in a computer network, and also to the task of locating facilities in a
communication network.

Suppose, for example, that resources are to be allocated in a computer network such that
expensive services are quickly accessible in the immediate neighborhood of each vertex. If every
vertex has only a limited capacity, then there is a bound on the number of resources that can
be supported. In particular, if every vertex can serve a single resource only, then the maximum
number of resources that can be supported equals the domatic number of the network graph. In the
communication network scenario, � cities are linked via communication channels. A transmitting
group is a subset of those cities that are able to transmit messages to every city in the network. Such
a transmitting group is nothing else than a dominating set in the network graph, and the domatic
number of this graph is the maximum number of disjoint transmitting groups in the network.

Motivated by these scenarios, the domatic number problem has been thoroughly investigated. Its
decision version, denoted by ��

� , asks whether or not 	���������� for a given graph � and a positive
integer � . This problem is known to be NP-complete (cf. [GJ79]), and it remains NP-complete
even if the given graph belongs to certain special classes of perfect graphs including chordal and
bipartite graphs; see the references in Section 2. Feige et al. [FHK00] established nearly optimal
approximation algorithms for the domatic number.

Expensive resources should not be wasted. Given a graph � and a positive integer � , how
hard is it to determine whether or not 	
����� equals � exactly? More generally, given a graph �
and a list ������������ ��"!# %$%$%$& ��'�)( of � positive integers, how hard is it to determine whether or
not 	������ equals some �+* exactly? Motivated by such exact versions of NP-complete optimization
problems, Papadimitriou and Yannakakis introduced in their seminal paper [PY84] the class DP,
which consists of the differences of any two NP sets. They also studied various other important
classes of problems that belong to DP, including facet problems, unique solution problems, and
critical problems, and they proved many of them complete for DP. Cai and Meyer [CM87] showed
that ,.-0/.-�1.2
3 - 4 -5
/.6)7�38789:2#;<-)3:->=
? is DP-complete, a critical graph problem that asks whether a
given graph is not 3-colorable, but deleting any of its vertices makes it 3-colorable.

Generalizing DP, Cai et al. [CGH @ 88,CGH @ 89] introduced and studied BH � NP � �A �0B � BH ��� NP � , the boolean hierarchy over NP; see Section 2 for the definition. Note that DP
is the second level of this hierarchy. Wagner [Wag87] identified a set of conditions sufficient to
prove BH ��� NP � -hardness for each � , and he applied his sufficient conditions to prove a host of exact
versions of NP-complete optimization problems complete for the levels of the boolean hierarchy. To
state just one such result, Wagner [Wag87] proved that the problem of determining whether or not
the chromatic number of a given graph is exactly one of � given values is complete for BH ! ��� NP � .
The chromatic number of a graph � , denoted by CD����� , is the minimum number of colors needed
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to color the vertices of � such that no two adjacent vertices receive the same color. In particular,
for ����� , Wagner showed that for any fixed integer � ��� , it is DP-complete to determine whether
or not C ����� � � for a given graph � . Recently, Rothe [Rot01] (see also [RSV02]) optimally
strengthened Wagner’s result by showing BH ! �
� NP � -completeness of the exact chromatic number
problem using the smallest number of colors possible. In particular, it is DP-complete to determine
whether or not C ����� ��� , yet the problem of determining whether or not CD����� � 4 is in NP and
thus cannot be DP-complete unless the boolean hierarchy over NP collapses to its first level.

Wagner’s technique was also useful in proving certain natural problems complete for PNP��� ,
the class of problems solvable in polynomial time via parallel (i.e., truth-table) access to NP.
For example, the winner problem for Carroll elections [HHR97a,HHR97b] and for Young
elections [RSV02,RSV] as well as the problem of determining when certain graph heuristics work
well [HR98,HRS02] each are complete for PNP��� .

In Section 2, we prove that determining whether or not the domatic number of a given graph
equals exactly one of � given values is complete for BH ! �
� NP � . In particular, for � ��� and any
fixed integer � �
	 , it is DP-complete to determine whether or not 	
����� � � for a given graph � . In
Section 3, we prove similar results for the exact conveyor flow shop problem.

2 The Exact Domatic Number Problem

We start by introducing some graph-theoretical notation. For any graph � , � ����� denotes the
vertex set of � , and � ����� denotes the edge set of � . All graphs in this paper are undirected,
simple graphs. That is, edges are unordered pairs of vertices, and there are neither multiple nor
reflexive edges (i.e., for any two vertices � and 
 , there is at most one edge of the form ���  �
 ( ,
and there is no edge of the form ���  �� ( ). Also, all graphs considered do not have isolated vertices.
For any vertex 
�� ������� , the degree of 
 (denoted by deg ����
�� ) is the number of vertices adjacent
to 
 in � ; if � is clear from the context, we omit the subscript and simply write deg ��
�� . Let
max-deg ����� ������������� � �"! deg ��
:� denote the maximum degree of the vertices of graph � , and let
min-deg ����� ����#%$ ���&�'� �"! deg ��
�� denote the minimum degree of the vertices of graph � .

A graph � is said to be � -colorable if its vertices can be colored with no more than � colors such
that no two adjacent vertices receive the same color. The chromatic number of � , denoted by CD����� ,
is defined to be the smallest � such that � is � -colorable. In particular, define the decision version
of the 3-colorability problem, which is one of the standard NP-complete problems (cf. [GJ79]), by:

4 - (
7
3�789:2#;.-83:->=
? � �>�*)&� is a graph with CD�����,+�4�()$

We now define the domatic number problem.

Definition 1 For any graph � , a dominating set of � is a subset �.- ������� such that for each
vertex �
��� �����0/ � , there exists a vertex 
1� � with ���  �
 (2�3� . The domatic number of � ,
denoted by 	
����� , is the maximum number of disjoint dominating sets. Define the decision version
of the domatic number problem by:

��
�� � �54 �  �768)%� is a graph and � is a positive integer such that 	
������� � ()$
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Note that 	
����� + min-deg ����� � � . For general graphs and for each fixed � � 4 , ��
�� is
known to be NP-complete (cf. [GJ79]), and it remains NP-complete for circular-arc graphs [Bon85],
for split graphs (thus, in particular, for chordal and co-chordal graphs) [KS94], and for bipartite
graphs (thus, in particular, for comparability graphs) [KS94]. In contrast, �


� is known to be
polynomial-time solvable for certain other graph classes, including strongly chordal graphs (thus,
in particular, for interval graphs and path graphs) [Far84] and proper circular-arc graphs [Bon85].
For graph-theoretical notions and special graph classes not defined in this extended abstract, we
refer to the monograph by Brandst ädt et al. [BLS99], which is a follow-up to the classic text by
Golumbic [Gol80]. Feige et al. [FHK00] show that every graph � with � vertices has a domatic
partition with � � /��:� �&��� � min-deg ����� � �&����� $�� sets that can be found in polynomial time, which
implies a � � /��:� �&���	�%$�� approximation algorithm for the domatic number 	
����� . This is a tight
bound, since they also show that, for any fixed constant 
��
� , the domatic number cannot be
approximated within a factor of � � /�
>�	�%$�� , unless NP - DTIME �+�������	�������:� . Finally, Feige et
al. [FHK00] give a refined algorithm that yields a domatic partition of ��� 	
���������%$ max-deg ������� ,
which implies a � ���%$ max-deg ������� approximation algorithm for the domatic number 	
����� . For
more results on the domatic number problem, see [FHK00,KS94] and the references therein.

We assume that the reader is familiar with standard complexity-theoretic notions and notation.
For more background, we refer to any standard textbook on computational complexity theory such
as Papadimitriou’s book [Pap94]. All completeness results in this paper are with respect to the
polynomial-time many-one reducibility, denoted by +��� . For sets � and � , define �1+����� if and
only if there is a polynomial-time computable function � such that for each  1��! � ,  1�"� if and
only if � �# �0�$� . A set � is % -hard for a complexity class % if and only if � + �� � for each � ��% .
A set � is % -complete if and only if � is % -hard and � �&% . To define the boolean hierarchy over
NP, we use the symbols ' and ( , respectively, to denote the complex intersection and the complex
union of set classes. That is, for classes % and ) of sets, define

%*'+) � �,�.-�� )/� ��% and � �0) (21
%*(+) � �,�.3�� )/� ��% and � �0) ()$

Definition 2 (Cai et al. [CGH @ 88]) The boolean hierarchy over NP is inductively defined by:

BH � � NP � � NP  
BH !)� NP � � NP ' coNP  
BH ��� NP � � BH �54 ! � NP �6( BH ! � NP � for � ��4 , and

BH � NP � � 7
�0B �

BH ��� NP � $

Note that DP � BH ! � NP � . In his seminal paper [Wag87], Wagner provided a set of conditions
sufficient to prove hardness results for the levels of the boolean hierarchy over NP and for other
complexity classes, respectively. His sufficient conditions were successfully applied to classify the
complexity of a variety of natural, important problems, see, e.g., [Wag87,HHR97a,HHR97b,HR98,
Rot01,HRS02,RSV02,RSV]. Below, we state that one of Wagner’s sufficient conditions that is
relevant for this paper.
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Lemma 3 (Wagner; see Thm. 5.1(3) of [Wag87]) Let � be some NP-complete problem, let � be
an arbitrary problem, and let � � � be fixed. If there exists a polynomial-time computable function
� such that the equivalence

) ) ��� )  � �$��( ) ) is odd ��� � �# �  � .!# %$%$%$� � ! �)�0�$� (2.1)

is true for all strings  �  � !  %$%$%$0 � ! � � ! � satisfying that for each � with � +����
	 � ,  * @ � � �
implies  �* �$� , then � is BH ! �
� NP � -hard.

Definition 4 Let � � -�� be any set containing � noncontiguous integers. Define the exact version
of the domatic number problem by:


�� 2�6#= - ��� - ��

� � �>�*)0� is a graph and 	
����� � � �)()$

In particular, for each singleton � � � ��� ( , we write

�� 2�6#= - � - �


� � �>�*)�	
����� ��� ( .

To apply Wagner’s sufficient condition from Lemma 3 in the proof of the main result of this
section, Theorem 6 below, we need the following lemma due to Kaplan and Shamir [KS94] that
gives a reduction from 4 - (�7�3�7)9 2>;<-83�-#=�? to ��

� with useful properties. Since Kaplan and Shamir’s
construction will be used explicitly in the proof of Theorem 6, we present it below.

Lemma 5 (Kaplan and Shamir [KS94]) There exists a polynomial-time many-one reduction �
from 4 - (�7�38789 2>;<-)3:-#=�? to ��
�� with the following properties:

��� 4 - (
7
3�7)9 2#;.-83�-#=
? ��� 	
���.������� � 4	1 (2.2)

���� 4 - (
7
3�7)9 2#;.-83�-#=
? ��� 	
���.������� ��	
$ (2.3)

Proof. The reduction � maps any given graph � to a graph � such that the implications (2.2)
and (2.3) are satisfied. Since it can be tested in polynomial time whether or not a given graph is
	 -colorable, we may assume, without loss of generality, that � is not 	 -colorable. Recall that we
also assume that � has no isolated vertices; note that the domatic number of any graph is always at
least 	 if it has no isolated vertices (cf. [GJ79]). Graph � is constructed from � by creating ) ) � ������) )
new vertices, one on each edge of � , and by adding new edges such that the original vertices of �
form a clique. Thus, every edge of � induces a triangle in � , and every pair of nonadjacent vertices
in � is connected by an edge in � . Our construction in the proof of Theorem 6 below explicitly
uses this construction and, in particular, such triangles.

Let ������� � ��

�� �
 !# %$%$%$� �
 � ( . Formally, define the vertex set and the edge set of � by:

����� � � � ����� 3 ��� ��� * )0��
 �  �
 * ( � � ����� (21
����� � � � ��
 �  �� ��� *#(0)0��
 �  �
�*#( � ������� ( 3 � ��
%*8 �� ��� *>(0)>��
 �  �
�*#( � � ����� (

3 � ��
 �  �
 * (0)&� + �  �� + � and ������ ( ()$
Since, by construction, min-deg ��� � ��	 and � has no isolated vertices, the inequality 	
��� � +

min-deg ��� � � � implies that 	 + 	���� � +�4 .
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Suppose � � 4 - (
7�38789:2#;<-)3:->=
? . Let � � , � ! , and ��� be the three color classes of � , i.e.,
� � � ��
 � � �������")5
 � is colored by color � ( , for � � � �# 	
 4�( . Form a partition of ����� � by�
� � ��� ��3 ��� ��� * )7
 � ���� � and 
�* ���� �)( , for �3� � �# 	
 4�( . Since for each � ,

�
� � - � ����� ����

and � ����� induces a clique in � , every
�
� � dominates � ����� in � . Also, every triangle ��
 �  �� ��� *) �
�*#(

contains one element from each
�
� � , so every

�
� � also dominates ��� ��� * )���
 �  �
%* ( ��� ����� ( in � .

Hence, 	
��� � � 4 , which proves the implication (2.2).
Conversely, suppose 	���� ��� 4 . Given a partition of ����� � into three dominating sets,

�
� � ,

�
� ! ,

and
�
��� , color the vertices in

�
� � by color � . Every triangle ��
 �  �� ��� *) �
%* ( is 4 -colored, which implies

that this coloring on � ����� induces a legal 4 -coloring of � ; so � � 4 - (
7�38789:2#;<-)3:->=
? . Hence,
C ����� � 4 if and only if 	
��� � � 4 . Since 	 +�	
��� � +�4 , the implication (2.3) follows.

Next, we state the main result of this section: For each fixed set ��� containing � noncontiguous
integers not smaller than �8� � � , 
 � 2:6#= - � � - �


� is complete for BH ! �
� NP � , the 	 � th level of the
boolean hierarchy over NP.

Theorem 6 For fixed � � � , let � � � ���8� � �# ��8� � 4
 %$%$%$0 
	 � / �>( . Then,

�� 2:6>= - � � - ��
��

is BH ! ��� NP � -complete. In particular, for � � � , 
�� 2�6#= - 	 - ��

� is DP-complete. In contrast,
 � 2:6>= - 	 - �


� is in coNP and thus cannot be DP-complete unless the boolean hierarchy over NP
collapses.

Proof. To show that

�� 2:6>= - � � - ��

� is in BH ! ��� NP � , partition the problem into � subproblems


 � 2�6#= - ��� - ��
�� � 7� ����


�� 2:6>= - � - �


� $

Every set

�� 2�6#= - � - �


� can be rewritten as


�� 2:6>= - � - �


� � �>� )#	
������� ��( - �>� ) 	������ � � � �>()$
Clearly, the set �>�*)�	
����� � ��( is in NP, and the set �>�*)&	������ ��� � �>( is in coNP. It follows that
 � 2:6>= - � - �


� is in DP, for each � � � � . By definition,


�� 2�6#= - � � - �


� is in BH ! �
� NP � .
In particular, suppose ��� � and consider the problem


 � 2�6#= - 	 - ��
�� � �>�*)%	
����� + 	�( - �>�*)&	�������� 	�()$
Since every graph without isolated vertices has a domatic number of at least 	 (cf. [GJ79]), the set
�>�*)0	������ � 	�( is in P. On the other hand, the set �>�*)0	
����� + 	�( is in coNP, so


 � 2:6>= - 	 - �


� is
also in coNP and, thus, cannot be DP-complete unless the boolean hierarchy over NP collapses to
its first level.

The proof that

�� 2�6#= - � � - �


� is BH ! ��� NP � -hard draws on Lemma 3 with 4 - (�7�38789 2>;<-)3:-#=�?

being the NP-complete set � and with

�� 2:6>= - � � - �


� being the set � from this lemma. Fix any 	 �

graphs � �  � !  %$%$%$& � ! � satisfying that for each � with � + � � 	 � , if � * @ � is in 4 - (
7�38789:2#;<-)3:->=
? ,
then so is � * . Without loss of generality, we assume that none of these graphs � * is 2-colorable, nor
does it contain isolated vertices, and we assume that C ��� *>�0+3� for each � . Applying the Lemma 5
reduction � from 4 - (
7
3�789:2#;.-83:->=
? to �


� , we obtain 	 � graphs � * � �.��� *>� , � +�� + 	 � , each
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satisfying the implications (2.2) and (2.3). Hence, for each � , 	�����*>� � � 	
 4�( , and 	
����* @ � � � 4
implies 	
��� *>� � 4 .

We now define a polynomial-time computable function � that maps the graphs � �� � !  %$%$%$� � ! �
to a graph � such that Equation (2.1) from Lemma 3 is satisfied. The graph � is constructed
from the graphs � �  ��!# %$%$%$� � ! � such that 	���� � ��� ! �*�� � 	
����*0� . Note that the analogous property

for the chromatic number (i.e., CD��� � � � ! �*�� � C ��� *&� ) is easy to achieve by simply joining1 the
graphs � * ([Wag87], see also [Rot01]). However, for the domatic number, the construction is more
complicated. We first describe it for the special case that ��� � , and then explain the general case.
For � � � , we are given two graphs, � � and ��! , as above. Construct a gadget connecting � � and
� ! as follows. Recalling the construction from Lemma 5, let � � with ����� � � � ��
��> ���� � 	  �
 	 ( be any
fixed triangle in � � , and let � ! with ����� !&� � ��
�
& ���
 � �  �
 � ( be any fixed triangle in � ! . Connect � �
and � ! using the gadget that is shown in Figure 1. That is, add six new vertices 
 �% �
�!# %$%$%$0 �
�� , and
add the following set of edges:

� ��
 �  �
 �%() ��
 �  �

!>() ��
 �  �
��#() ��
 �  �
��>() ��
 �  �
��&() 
����� � 	  �
 � () ����� � 	  �
 � () ����� � 	  �
 � () ����� � 	  �
 � () ����� � 	  �
 � () 
��
 	  �
�!>() ��
 	  �
 �>() ��
 	  �
��#() ��
 	  �
��>() ��
 	  �
��>() 
��
�
& �
 � () ��
�
0 �
�!>() ��
�
& �
 �>() ��
�
& �
��#() ��
�
& �
��>() 
����
 � �  �
 �%() ����
 � �  �
�!>() ����
 � �  �
 �>() ����
 � �  �
��#() ����
 � �  �
��>() 
��
 �  �
 �%() ��
 �  �
�!>() ��
 �  �
 �>() ��
 �  �
��>() ��
 �  �
��>( ()$

Using pairwise disjoint copies of the gadget from Figure 1, connect each pair of triangles from
� � and ��! and call the resulting graph � . Since deg ��
 � � � 	 for each gadget vertex 
 � , we
have 	
��� � +�	 , regardless of the domatic numbers of � � and ��! . We now show that 	���� ���
	
��� � � � 	
��� !&� .

Let ���% � !# %$%$%$& ��� ����� ! be 	���� � � pairwise disjoint sets dominating � � , and let ��� ����� ! @ � ,� � ����� ! @ ! , $%$%$ , � � ����� ! @ � ����� ! be 	
��� ! � pairwise disjoint sets dominating � ! . Distinguish the
following three cases.

Case 1:  "!�#%$�&('  "!�#*)�&+' , . Consider any fixed � * , where � + � + 4 . Since � *
dominates � � , every triangle � � of � � has exactly one vertex in � * . Fix � � , and suppose
����� � � � ��
 �  �� � � 	  �
 	 ( and, say, ����� � �2- ��* � ��
 � ( ; the other cases are analogous. For each
triangle � ! of ��! , say � ! with ����� !&� � ��
�
% ���
 � �  �
 � ( , let 
�- ��  �
�- �!  %$%$%$0 �
�- �� be the gadget
vertices connecting � � and � ! as in Figure 1. Note that exactly one of these gadget vertices,

�- �� , is not adjacent to 
 � . For each triangle � ! , add the missing gadget vertex to � * , and
define

�
��* � ��* 3��.
�- �� )/� ! is a triangle of ��!0( . Since every vertex of � ! is contained in

some triangle � ! of ��! and since 
�- �� is adjacent to each vertex in � ! , ���* dominates � ! .
Also,

�
��*10 ��* dominates � � , and since 
 � is adjacent to each 
 - �� except 
 - �� for each

triangle � ! of � ! , ���* dominates every gadget vertex of � . Hence,
�
��* dominates � . By a

1The join operation 243 on graphs is defined as follows: Given two disjoint graphs 5 and 6 , their join 5124376 is
the graph with vertex set 8:9;5<243=6?>�@%8:9;5�>BAC8:9;6?> and edge set D:9;5<243=6E>E@FD:9;5G>BAHDI9;6E>BAKJ�J�L�MON�P�Q�LSR
8:9;5G> and NGRT8I9;6E>OP . Note that 243 is an associative operation on graphs and U�9;5V243�6E>B@WU�9;5G>�X7U�9;6E> .
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 � �

� !� �

� � � � � �

� � � ! � �

� � � 	

Figure 1: Gadget connecting two triangles � � and � ! .

symmetric argument, every set � * , where � + ��+ 	 , dominating � ! can be extended to a set�
��* dominating the entire graph � . By contruction, the sets

�
��* with � + � +�	 are pairwise

disjoint. Hence, 	
��� � � 	�� 	
��� � � � 	
��� !&� .
Case 2:  "!�# $ &�' , and  "!�# ) &�'�� . As in Case 1, we can add appropriate gadget vertices to

the five given sets � �� � !# %$%$%$� ��� to obtain five pairwise disjoint sets
�
���� 

�
� !# %$%$%$0 

�
��� such

that each
�
� � dominates the entire graph � . It follows that 	 + 	
��� � +�	 . It remains to

show that 	
��� � �� 	 . For a contradiction, suppose that 	
��� � � 	 . Look at Figure 1 showing
the gadget between any two triangles � � and � ! belonging to � � and ��! , respectively. Fix
� � with ����� � ��� ��
��> ���� � 	  �
 	 ( . The only way (except for renaming the dominating sets) to
partition the graph � into six dominating sets, say � �% � !# %$%$%$0 � � , is to assign to the sets � �
the vertices of � � , of � ! , and of the gadgets connected with � � as follows:

� ��� contains 
 � and �.
 - �� ) � ! is a triangle in ��!0( ,
� � ! contains � � � 	 and �.
 - �! ) � ! is a triangle in � !&( ,
� � � contains 
 	 and �.
 - �� ) � ! is a triangle in � ! ( ,
� � � contains 
�
 �W�<! , for each triangle � ! of � ! , and �.
 - �� ) �<! is a triangle in � !0( ,
� � � contains ��
 � � �W� ! , for each triangle � ! of ��! , and �.
 - �� )�� ! is a triangle in � !&( ,
� � � contains 
 � �W� ! , for each triangle � ! of ��! , and �.
 - �� )�� ! is a triangle in ��!0( .

Hence, all vertices from ��! must be assigned to the three dominating sets � � , � � , and � � ,
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which induces a partition of ��! into three dominating sets. This contradicts the case
assumption that 	
����!&� ��	 . Hence, 	���� � � 	�� 	���� �%� � 	�����!&� .

Case 3:  "!�#%$�& '  "!�#*)�& ' � . As in the previous two cases, we can add appropriate gadget
vertices to the four given sets � � , � ! , � � , and ��� to obtain a partition of � ��� � into four
sets

�
��� ,

�
� ! ,

�
� � , and

�
�7� such that each

�
� � dominates the entire graph � . It follows that

� + 	���� � + 	 . By the same arguments as in Case 2, 	���� � ���	 . It remains to show that
	
��� � �� 	 . For a contradiction, suppose that 	
��� � � 	 . Look at Figure 1 showing the gadget
between any two triangles � � and � ! belonging to � � and ��! , respectively. Suppose � is
partitioned into five dominant sets � �% � !# %$%$%$0 � � .
First, we show that neither � � nor � ! can have two vertices belonging to the same dominating
set. Suppose otherwise, and let, for example, 
 � and � � � 	 be both in ��� , and let 
 	 be in � ! ;
all other cases are treated analogously. This implies that the vertices 
 
 , � 
 � � , and 
 � in � !
must be assigned to the other three dominating sets, � � , �I� , and � � , since otherwise one of
the sets � � would not dominate all gadget vertices 
 � , � + � + 	 . Since � � is connected with
each triangle of � ! via some gadget, the same argument shows that � ��� !�� can be partitioned
into three dominating set, which contradicts the assumption that 	
��� !&� ��	 .
Hence, the vertices of � � are assigned to three different dominating sets, say � � , � ! , and ��� .
Then, every triangle � ! of � ! must have one of its vertices in � � , one in � � , and one in
either one of � � , � ! , and � � . Again, this induces a partition of � ! into three dominating set,
which contradicts the assumption that 	
����!>� � 	 . It follows that 	���� � �� 	 , so 	
��� �D� � �
	
��� � � � 	���� !&� .

By construction, 	
��� !&� � 4 implies 	���� � � � 4 , and thus the case “ 	
��� � � � 	 and 	
��� !>� � 4 ”
cannot occur. The case distinction is complete.

Define � ��� �� � !&� ��� . Note that � is polynomial-time computable and, by the case distinction
above, � satisfies Equation (2.1):

� � � 4 - (�7�38789 2>;<-)3:-#=�? and � ! �� 4 - (
7
3�7)9 2#;.-83�-#=
?
��� 	���� � � � 4 and 	
��� ! � ��	
��� 	���� � � 	
��� � � � 	���� !&� � 	
��� � ��� �% � !&� ��� � 
 � 2:6#= - 	 - ��
�� $

Applying Lemma 3 with ��� � , it follows that

 � 2:6>= - 	 - �


� is DP-complete.

To prove the general case, fix any � � � . Recall that we are given the graphs � �% � !> %$%$%$& � ! �
that are constructed from � �  � !  %$%$%$� � ! � . Generalize the above construction of graph � as
follows. For any fixed sequence � �% �<!# %$%$%$0 � ! � of triangles, where � � belongs to � � , add 	 � new
gadget vertices 
 �  �
 !  %$%$%$� �
 � � and, for each � with � + �,+ 	 � , associate the three gadget vertices

 � @ � � � 4 � ! , 
 ! @ � � � 4 � ! , and 
 � � with the triangle � � . For each � with � + � +�	 � , connect � � with
every � * , where � + � + 	 � and � �� � , via the same three gadget vertices 
 � @ � � � 4 � ! , 
 ! @ � � � 4 � ! , and

 � � associated with � � the same way � � and � ! are connected in Figure 1 via the vertices 
<� , 

! ,
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and 
 � . It follows that deg ��
 � �D� 	 � / � for each � , so 	
��� � +�	 � . An argument analogous to the
above case distinction shows that 	���� � � � ! �*�� � 	
����*#� , and it follows that:

) ) ��� )&� � � 4 - (
7
3�789:2#;.-83:->=
?�( ) ) is odd

��� ���
��� � + � + � ��� C ��� � � �������
� CD��� ! � 4 � � � 4 and C ��� ! � � �������
� C ��� ! �)� � �
	
��� ���
��� � + � + � ��� 	���� � � �������
� 	
��� ! � 4 � � � 4 and 	
����! � � �������
� 	
��� ! �)� ��	�	
��� ���
��� � + � + � �

�

	���� � �

! ��
* � �

	���� *>� � 4:� 	>� /*�&� � 	:� 	 ��/ 	>� � �&����
��� ���
��� � + � + � ��� 	���� � ���8� � 	>� /*��	
��� 	
��� � � ���8� � �# ��8� � 4
 %$%$%$& 
	 � /
�>(
��� � ��� �% � !) %$%$%$� � ! �)� ��� � 
 � 2:6>= - � � - �


� $

Thus, � satisfies Equation (2.1). By Lemma 3,

 � 2�6#= - � � - ��
�� is BH ! �
� NP � -complete.

3 The Exact Conveyor Flow Shop Problem

The conveyor flow shop problem is a minimization problem arising in real-world applications
in the wholesale business, where warehouses are supplied with goods from a central storehouse.
Suppose you are given � machines, � �  �� !  %$%$%$� ���� , and � jobs, � �  �� !  %$%$%$& �� � . Conveyor belt
systems are used to convey jobs from machine to machine at which they are to be processed
in a “permutation flow shop” manner. That is, the jobs visit the machines in the fixed order� �� �� !# %$%$%$0 �� � , and the machines process the jobs in the fixed order �<�� ��8!# %$%$%$& �� � . An �+����� � task
matrix � � ��� * � � � * � � with � * � � � �,�� ��>( provides the information which job has to be processed at
which machine: � * � � � � if job �>* is to be processed at machine � � , and � * � � � � otherwise. Every
machine can process at most one job at a time. There is one worker supervising the system. Every
machine can process a job only if the worker is present, which means that the worker occasionally
has to move from one machine to another. If the worker is currently not present at some machine,
jobs can be queued in a buffer at this machine. The objective is to minimize the movement of
the worker, where we assume the “unit distance” between any two machines, i.e., to measure the
worker’s movement, we simply count how many times he has switched machines until the complete
task matrix has been processed.2 Let  �"!$# �%� � denote the minimum number of machine switches
needed for the worker to completely process a given task matrix � , where the minimum is taken
over all possible orders in which the tasks in � can be processed. Define the decision version of
the conveyor flow shop problem by:

('&)( � � �54*�  ��6 )�� is a task matrix and � is a positive integer such that  �"!$# �%� �,+�� ()$
2In this paper, we do not consider possible generalizations of the problem +-,/.10 such as other distance functions,

variable job sequences, more than one worker, etc. We refer to [Esp01] for results on such more general problems.
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Espelage and Wanke [EW00,Esp01,EW01,EW03] introduced and studied the problem ('&)()� ,
and variations thereof, extensively. We are interested in the complexity of the exact version of ( & ()� .

Definition 7 Define the exact version of the conveyor flow shop problem by:


�� 2:6>= - � - ( &)( � � �
4*�  ��<� 6 � is a task matrix and � � - � is a set of �

noncontiguous integers with  �"!$# �%� �,���<��� $
To show that ( & ()� is NP-complete, Espelage [Esp01, pp. 27–44] provided, in a rather involved

17 pages proof, a reduction � from the 4 - (���	 problem to ( & ()� , via the intermediate problem of
finding a “minimum valid block cover” of a given task matrix � . In particular, finding a minimum
block cover of � directly yields a minimum number of machine switches. Espelage’s reduction
can easily be modified so as to have certain useful properties, which we state in the following
lemma. The details of this modification can be found in [Rie02]; in particular, prior to the Espelage
reduction, a reduction from the (unrestricted) satisfiability problem to 4 - (���	 is used that has the
properties stated as Equations (3.4) and (3.5) below.

Lemma 8 (Espelage and Riege; see pp. 27–44 of [Esp01] and pp. 37–42 of [Rie02])
There exists a polynomial-time many-one reduction � that witnesses 4 - (���	 + �� ('&)()� and satisfies,
for each given boolean formula 
 , the following properties:

1. �.��
 � ��4*�
�< �����6 , where ��� is a task matrix and ��� � � is an odd number.

2.  �"!$# �%� � � ��� � � � � , where � � denotes the minimum number of clauses of 
 not satisfied
under assignment � , where the minimum is taken over all assignments � of 
 . Moreover,
� � � � if 
 � 4 - (���	 , and � � � � if 
��� 4 - (���	 .

In particular, 
1� 4 - (���	 if and only if  �"!$# �%� � � is odd.

Theorem 9 For each � � � , 
 � 2:6>= - � - ('&)( � is BH ! �
� NP � -complete. In particular, for � �.� ,
 � 2:6>= - � - ('&)()� is DP-complete.

Proof. Analogously to the proof of Theorem 6, we can show that

�� 2:6>= - � - ( &)( � is in BH ! ��� NP � .

To prove BH ! �
� NP � -hardness of

 � 2:6#= - � - ('&)()� , we again apply Lemma 3, with some fixed NP-

complete problem � and with

�� 2:6>= - � - ( &)( � being the problem � from this lemma. The reduction

� satisfying Equation (2.1) from Lemma 3 is defined by using two polynomial-time many-one
reductions, � and � .

We now define the reductions � and � . Fix the NP-complete problem � . Let  �� � !> %$%$%$& � ! � be
strings in ! � satisfying that ��� �# � � ����� �# .!%��� ����� �����D�# ! � � , where ��� denotes the characteristic
function of � , i.e., ���D�# <� � � if  2�$� , and ��� �# <� � � if  ��$� . Wagner [Wag87] observed that the
standard reduction (cf. [GJ79]) from the (unrestricted) satisfiability problem to 4 - (���	 can be easily
modified so as to yield a reduction � from � to 4 - (���	 (via the intermediate satisfiability problem)
such that, for each  2� ! � , the boolean formula 
 ��� �# <� satisfies the following properties:

 2� � ��� � � � � � 1 (3.4)

 �� � ��� � � � � � /*�# (3.5)
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where � � � ����� � ���')�� clauses of 
 are satisfied under assignment � ( , and � � denotes the number
of clauses of 
 . Moreover, � � is always odd.

Let 
 �� �
 !  %$%$%$� �
 ! � be the boolean formulas after applying reduction � to each given  � � ! � ,
i.e., 
 � � � �# � � for each � . For � � � �# 	
 %$%$%$> 	 � ( , let � � � � ��� be the number of clauses in 
 � ,
and let � � � � ��� denote the maximum number of satisfiable clauses of 
 � , where the maximum is
taken over all assignments of 
 � . For each � , apply the Lemma 8 reduction � from 4 - (���	 to ( & ()� to
obtain 	 � pairs 4*� �  �� � 6 � �.��
 � � , where each � � � � ��� is a task matrix and each � � � � ��� is the
odd number corresponding to 
 � according to Lemma 8. Use these 	 � task matrices to form a new
task matrix:

� �

�����
�
� � � ����� �
� � ! . . .

...
...

. . . . . . �
� ����� � � ! �

��				

 $

Every task of some matrix � � , where � + � +�	 � , can be processed only if all tasks of the
matrices � * with � � � have already been processed; see [Esp01,Rie02] for arguments as to why
this is true. This implies that:  �"!$# �%� � �

! ��
� � �

 �"!$# �%� � � $

Let � ��� ! �� � � � � ; note that � is even. Define the set � � � � � � �# �� � 4
 %$%$%$� �� � 	 � / �>( , and define
the reduction � by � �# �  � .!> %$%$%$& � ! � � ��4 �  ��<� 6 . Clearly, � is polynomial-time computable.

Let � � � � ��� � ��# $ � ���')�� clauses of 
 � are not satisfied under assignment � ( . Equations (3.4)
and (3.5) then imply that for each � :

� � � � � / � � � � � if  � �$�
� if  � ��$� .

Recall that, by Lemma 8, we have  �"!$# �%� � � � � � � � � . Hence:

) ) ��� )  � �$��( ) ) is odd� ���
� � � + � +�� ���  �� %$%$%$� � ! � 4 � �$� and  .! �  %$%$%$& � ! � ��$� 	� ���
� � � + � +�� ��� �)� � � �� %$%$%$� �0! � 4 � � � ! � 4 � and �0! � � � ! � /*�# %$%$%$& � ! � � � ! � /
��	� ���
� � � + � +�� ���$ �"!$# �%� � � � � �� %$%$%$0 1 �"!$# �%� ! � 4 � � � �&! � 4 � and �"!$# �%� ! � � � �&! � � �# %$%$%$0 1 �"!$# �%� ! � � � � ! � � ��	
� ���
� � � + � +�� �

�
  �"!$# �%� � �
! ��
* � �

 �"!$# �%� *0� �
�� ! ��
* � �

� * �
 � 	 ��/ 	>� � � ��
�  �"!$# �%� � � �<� � � � � �# �� � 4
 %$%$%$0 �� � 	 ��/*�>(� � �# �% � !# %$%$%$� � ! �)� ��4*�  ��<� 6 � 
�� 2:6>= - � - ( &)( � $

Thus, � satisfies Equation (2.1). By Lemma 3,

 � 2:6#= - � - ( & ()� is BH ! �
� NP � -complete.
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4 Conclusions and Open Questions

In this paper, we have shown that the exact versions of the domatic number problem and of
the conveyor flow shop problem are complete for the levels of the boolean hierarchy over NP. In
particular, for � � � and for each given integer ��� 	 , it is DP-complete to determine whether or
not 	
������� � for a given graph � . In contrast,


 � 2�6#= - 	 - ��
�� is in coNP, and thus this problem
cannot be DP-complete unless the boolean hierarchy collapses. For � � �04
 ���( , the question of
whether or not the problems


 � 2:6>= - � - ��
�� are DP-complete remains an interesting open problem. As
mentioned in the introduction, the corresponding gap for the exact chromatic number problem was
recently closed by Rothe [Rot01]; see also [RSV02]. His reduction uses both the standard reduction
from 4 - (���	 to 4 - (�7�38789 2>;<-)3:-#=�? (cf. [GJ79]) and a very clever reduction found by Guruswami and
Khanna [GK00]. The decisive property of the Guruswami–Khanna reduction is that it maps each
satisfiable formula 
 to a graph � with C ������� 4 , and it maps each unsatisfiable formula 
 to a
graph � with C ����� ��	 . That is, the graphs they construct are never 4-colorable. To close the
above-mentioned gap for the exact domatic number problem, one would have to find a reduction
from some NP-complete problem to ��

� with a similarly strong property: the reduction would have
to yield graphs that never have a domatic number of 3.

Note that in defining the exact conveyor flow shop problem, we do not specify a fixed set � �
with � fixed values as problem parameters; see Definition 7. Rather, only the cardinality � of such
sets is given as a parameter, and � � is part of the problem instance of


 � 2:6>= - � - ('&)( � . The reason is
that the actual values of � � depend on the input of the reduction � defined in the proof of Theorem 9.
In particular, the number � � from Lemma 8, which is used to define the number � � � ! �� � � � � in the
proof of Theorem 9, has the following form (see [Esp01,Rie02]):� ����	��>��� � 	 �0� � � �>��� ��� �
� � ����� �  
where � is the number of variables and � is the number of clauses of the given boolean
formula 
 , and � � , � � , and � � denote respectively the number of “coupling, inverting coupling,
and interrupting elements” of the “minimum valid block cover” constructed in the Espelage
reduction [Esp01] from 4 - (���	 to ( & ()� . It would be interesting to know whether one can obtain
BH ! ��� NP � -completeness of


�� 2�6#= - � - ( &)( � even if a set � � of � fixed values is specified a priori.
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[BLS99] A. Brandst ädt, V. Le, and J. Spinrad. Graph Classes: A Survey. SIAM
Monographs on Discrete Mathematics and Applications. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1999.

[Bon85] M. Bonuccelli. Dominating sets and dominating number of circular arc graphs. Discrete
Applied Mathematics, 12:203–213, 1985.

[CGH @ 88] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and
G. Wechsung. The boolean hierarchy I: Structural properties. SIAM Journal on Com-
puting, 17(6):1232–1252, 1988.

12



[CGH @ 89] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and
G. Wechsung. The boolean hierarchy II: Applications. SIAM Journal on Computing,
18(1):95–111, 1989.

[CM87] J. Cai and G. Meyer. Graph minimal uncolorability is �
�

-complete. SIAM Journal on
Computing, 16(2):259–277, April 1987.

[Esp01] W. Espelage. Bewegungsminimierung in der Förderband-Flow-Shop-Verarbeitung.
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