Electronic Colloguium on Computational Complexity, Report No. 69 (2002)

A Note of Deterministic Approximate
Counting for k-DNF
[Draft]

LucA TREVISAN®

November 14, 2002

Abstract

We describe a deterministic algorithm that, for constant k, given a k-DNF or k-
CNF formula ¢ and a parameter €, runs in time linear in the size of ¢ and polynomial
in 1/e and returns an estimate of the fraction of satisfying assignments for ¢ up to an
additive error €.

For k-DNF, a multiplicative approximation is also achievable in time polynomial
in 1/e and linear in the size of .

Previous algorithms achieved polynomial (but not linear) dependency on the size
of ¢ and on 1/¢; their dependency on k, however, was much better than ours. Unlike
previous algorithms, our algorithm is not based on derandomization techniques, and
it is quite similar to an algorithm by Hirsch for the related problem of solving k-SAT
under the promise that an e-fraction of the assignments are satisfying. Our analysis
is different from (and somewhat simpler than) Hirsch’s.

1 Introduction

We consider the following problem: given a k-CNF formula ¢ and a parameter e, approx-
imate within an additive factor € the fraction of satisfying assignments for ¢.!

The problem is easy to solve using randomization: just generate O(1/e2) assignments
at random and then output the fraction of assignments in the sample that satisfies .
We are interested in deterministic algorithms. We also consider the related problem of
finding a satisfying assignment for ¢ under the promise that an € fraction of assignments
are satisfying. Again, we are interested in deterministic algorithms, and the problem is
easy to solve probabilistically, since after picking O(1/¢) assignments at random it is likely
that one of them satisfies the formula.

These problems were first studied by Ajtai and Wigderson [AWS89]. Using derandom-
ization techniques (k-wise independence) they give an algorithm for the counting problem

k
running in time O(nk2 +2(log(1/¢))? ) and an algorithm for the satisfiability problem running
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'Note that an algorithm achieving additive approximation ¢ for k-CNF immediately implies an algo-
rithm achieving the same additive approximation for k-DNF. Also, achieving multiplicative approximation
(14 ¢€) for k-DNF reduces to achieving additive approximation €27% since a satisfiable k-DNF is satisfied
by at least a 1/2F fraction of assignments.
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in time O(n‘wc log(1/ E)). They also give sub-exponential time algorithm for the counting
problem for functions computed by constant-depth circuits (CNF and DNF are depth-2
circuits).

Nisan [Nis91] and Nisan and Wigderson [NW94] construct a pseudorandom genera-
tor that fools constant-depth circuits and that has poly-logarithmic seed length. As a
consequence, they achieve n(ogm® time algorithms for the counting and satisfiability
problems for constant-depth circuits.

Luby, Velickovic and Wigderson [LVW93] optimize the constructions of Nisan and
Wigderson [Nis91, NW94] to the case of depth-2 circuits, thus solving the counting and
satisfiability problem in time n©((log n)?) for general CNF and DNF. Luby and Velickovic
[LVI1] show how to reduce arbitrary CNF and DNF to formula in a simplified format,
and show that the counting and satisfiability problems can be solved in polynomial time
for k-CNF even if k = O((logn)"/®) is more than a constant.

Hirsch [Hir98], in seemingly independent work, shows how to solve the satisfiability
problem for kCNF in time O(Lk(2/¢)B®*)), where L is the size of the formula and B(k) is
a function for which a closed formula is not given, but that seems to grow exponentially
in k.

In this paper, we show how to solve the counting and the satisfiability problem in time
O(L(l/&)(1n4)k2k).

Our algorithm is based on the following simple observation: given a k-CNF ¢, then
for every fixed ¢, either we can efficiently find a set of < kc variables that hits all the
clauses, or we can efficiently find > ¢ clauses over disjoint sets of variables. In the former
case, we can try all assignments to those variables, and recurse on each assignment, thus
reducing our problem to 2¥¢ problems on (k — 1)-CNF instances; in the latter case, less
than a (1 — 1/2%)¢ fraction of assignments can satisfy ¢, and thus 0 is an approximation
to an additive factor (1 — 1/2F)¢ of the fraction of satisfying assignments for ¢. Fixing c
to be 2¥In 1 /¢ gives us the main result.

2 The Algorithm

We describe the algorithm only for the case of k-CNF. As discussed in the introduction,
an algorithm for k-DNF is an immediate corollary.
The algorithm works as follows: given ¢ and ¢,

e If ¢ is a 1-CNF, that is, it is just an AND of literals, then we output 0 if there are
two inconsistent literals and 27¢ where ¢ is the number of distinct literals, otherwise.
This procedure is exact and can be implemented in linear time.

e Otherwise, we find a maximal set of disjoint clauses, that is, a set Cq,...,C; of
clauses over disjoint sets of variables and such that every other clause in ¢ shares at
least a variable with some of the C;. If (1 —1/2%)! < ¢ then we output 0. Otherwise,
let V the set of tk < k2F(In1/e) variables that occurr in the clauses C1, ..., C.
For every assignment a to the variables V, let ¢, be the formula obtained from ¢
by substituting the assigment into the variables, then ¢, is a (k — 1)-CNF formula.
We recursively call the algorithm on each of the ¢, with parameter €, and take
the average of the results. Assuming that each recursive call returns an ¢ additive
approximation, the algorithm returns an ¢ additive approximation.



If we denote by T'(L, k) the running time of the algorithm for a k-CNF instance of size
L, then we have
T(L,1) =0O(L)

and .
T(L,k) < O(L) + 2¢O (L, | — 1)

which solves to T(L, k) = O(L - 22k(n1/2)2%) — O(L,(1/e)nHk2"),

For the promise problem of finding a satisfying assignment under the promise that an
e fraction of assignments are satisfiable, we essentially use the same recursive algorithm.
When we are down to 1-CNF, we find a satisfying assignment or fail if the instance is
unsatisfiable. (Indeed, we can stop at 2-CNF.) In the recursive step, we fail if ¢ is such
that (1 — 1/2¥)t < . The analysis of the running time is the same, and it is clear that at
least one of the recursive branches produces a satisfying assignment.

Hirsch’s algorithm is basically the same as the above sketch of the algorithm for the
satisfiability promise problem, except that a different greedy strategy is used to pick the
variables in V. The analysis is slightly tighter but more difficult.
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