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Abstract

We describe a deterministic algorithm that, for constant &, given a k-DNF or k-
CNF formula ¢ and a parameter ¢, runs in time linear in the size of ¢ and polynomial in
1/e (but doubly exponential in k) and returns an estimate of the fraction of satisfying
assignments for ¢ up to an additive error €. This improves over previous polynomial
(but super-linear) time algorithms. The algorithm uses a simple recursive procedure
and it is not based on derandomization techniques. It is similar to an algorithm by
Hirsch for the related problem of solving k-SAT under the promise that an e-fraction of
the assignments are satisfying. Our analysis is different from (and somewhat simpler
than) Hirsch’s.

We also show that every k-CNF is “foolead” by every d-biased distribution, with
§ = 1/20%2") " A result of Ajtai and Wigderson implied that the same was true with

2
the weaker bound 1/28°*",

1 Introduction

We consider the following problem: given a k-CNF formula ¢ and a parameter ¢, approx-
imate within an additive error € the fraction of satisfying assignments for ¢.!

The problem is easy to solve using randomization: just generate O(1/e%) assignments
at random and then output the fraction of assignments in the sample that satisfies ¢, and
the question is whether efficient deterministic algorithms exist.

We also consider the related problem of finding a satisfying assignment for ¢ under
the promise that an ¢ fraction of assignments are satisfying. Again, we are interested
in deterministic algorithms, and the problem is easy to solve probabilistically, since after
picking O(1/¢) assignments at random it is likely that one of them satisfies the formula.

One can consider the approximate counting problem as the problem of derandomizing
two-sided error algorithms implemented by depth-two circuits. The problem of finding
a satisfying assignment for ¢ under the promise that that there is a large number of
such assignments can be seen as the problem of derandomizing one-sided error algorithms
implemented by depth-two circuits.

*luca@cs.berkeley.edu. Computer Science Division, U.C. Berkeley. Supported by NSF grant CCR-
9984703, a Sloan Research Fellowship and an Okawa Foundation Grant.

!Note that an algorithm achieving additive approximation ¢ for k-CNF immediately implies an algo-
rithm achieving the same additive approximation for k-DNF. Also, achieving multiplicative approximation
(1+¢) for k-DNF reduces to achieving additive approximation €27, since a satisfiable k-DNF is satisfied
by at least a 1/2* fraction of assignments.
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These problems were first studied by Ajtai and Wigderson [AW89]. Using deran-
domization techniques (specifically, t-wise independence) they give an algorithm for the

counting problem running in time O(n*” + 2(og(1/ 5))2k) and an algorithm for the satis-
fiability problem running in time O(nka log(1/¢)), They also give sub-exponential time
algorithm for the counting problem for functions computed by AC? circuits.?

The algorithm of Ajtai and Wigderson for k-CNF could be improved by using almost t-
wise independent distributions, for example the small bias distributions of [NN93], instead
of distributions that are perfectly ¢-wise independent. For constant e, this would improve

the running time to roughly n - (logn)°W . k%) for both the approximate counting
problem and the satisfiability problem. Almost ¢-wise independent distributions were
introduced after the publication of [AW89].

Nisan [Nis91] and Nisan and Wigderson [NW94] construct a pseudorandom genera-
tor that fools constant-depth circuits and that has poly-logarithmic seed length. As a
consequence, they achieve n(1°8 m°® time algorithms for the counting and satisfiability
problems for AC? circuits.

Luby, Velickovic and Wigderson [LVW93] optimize the constructions of Nisan and
Wigderson [Nis91, NW94] to the case of depth-2 circuits, thus solving the counting and
satisfiability problem in time n©((lo8 n)*) for general CNF and DNF. Luby and Velickovic
[LV96] show how to reduce arbitrary CNF and DNF to formula in a simplified format,
and show that the counting and satisfiability problems can be solved in polynomial time
for k-CNF even if & = O((logn)'/8) is more than a constant. The reduction in [LV96]
also gives an improved derandomization of general CNF and DNF that runs in slightly

0(2\/105 log n)

super-polynomial time n .

Hirsch [Hir98] shows how to solve the satisfiability problem for k-CNF in time
O(Lk(2/¢)P®), where L < nk is the size of the formula and B(k) is a function for
which a closed formula is not given, but that seems to grow exponentially in k. Hirsch’s
algorithm does not use derandomization techniques.

In this paper, we show how to solve the approximate counting problem and the satis-
fiability problem in time O(L(1/e) k2",

Our algorithm is based on the following simple observation: given a k-CNF ¢, then
for every fixed c, either we can efficiently find a set of < kc variables that hits all the
clauses, or we can efficiently find > ¢ clauses over disjoint sets of variables. In the former
case, we can try all assignments to those variables, and recurse on each assignment, thus
reducing our problem to 2*¢ problems on (k — 1)-CNF instances; in the latter case, less
than a (1 — 1/2F)¢ fraction of assignments can satisfy ¢, and thus 0 is an approximation
within an additive error (1 —1/2%)¢ of the fraction of satisfying assignments for ¢. Fixing
c to be 2¥In1/e gives us the main result.

We also revisit the relation between almost t-wise independent distributions and k-
CNF. Using the same recursive approach adopted in our algorithm, we show that every
k-CNF is well approximated, in a certain technical sense, by a decision tree of depth
t = O(k2%), and it is well known that functions that are well approximated (in the above
technical sense) by a decision tree of depth ¢ cannot distinguish the uniform distribution
from a distribution that is approximately ¢-wise independent. This leads to the proof that
no k-CNF can distinguish an approximately O(k2*)-wise independent distribution from

2An ACP circuit is a circuit of constant depth and polynomial size with unbounded fan-in AND and
OR gates. A CNF formula is a depth-two AC? circuit, and so is a DNF formula.



the uniform distribution.

2 The Recursive Algorithm

We describe the algorithm only for the case of k-CNF. As discussed in the introduction,
an algorithm for k-DNF is an immediate corollary of the algorithm for k-CNF.
We use the following simple fact.

Lemma 1 There is an algorithm that, on input a k-CNF formula ¢ and a parameter t,
runs in time linear in the size of ¢ and then it returns either a set of t clauses over disjoint
sets of variables, or a set S of at most k(t — 1) variables such that every clause in the
formula contains at least one variable from S.

PROOF: (Sketch) Consider the k-uniform hypergraph H that has a vertex for every variable

and an hyperedge for every clause. It is easy to find a maximal matching in H in linear

time, that is, a set S of clauses over disjoint sets of variables and such that every other

clause in ¢ shares some variables with some clause in S. If |S| > ¢, then we return ¢ of

the clauses in S. Otherwise, we return the set of < k- |S| < k(¢ — 1) variables that occur

in the clauses of S. Such a set of variables clearly “hits” all the clauses of . O
The algorithm works as follows: given ¢ and e,

o If ¢ is a 1-CNF, that is, it is just an AND of literals, then we output O if there are
two inconsistent literals and 27¢ where c¢ is the number of distinct literals, otherwise.
This procedure is exact and can be implemented in linear time.

e Otherwise, we let ¢ be the smallest integer such that (1 — 1/2%)"*! < ¢, so that
t < 2%(In1/e), and we run the algorithm of Lemma 1 on ¢ with parameter ¢ + 1.

— If the algorithm of Lemma 1 finds ¢ + 1 clauses C1, ..., Ci11 over disjoint sets
of variables, then it is clear that the probability that ¢ is satisfied by random
assignment is at most €, and we return the value 0 as our approximation.

— If the algorithm of Lemma 1 finds a set V' of at most tk < k2¥In(1/¢) variables
that hit all the clauses, then, for every assignment a to the variables V', define
e to be the formula obtained from ¢ by substituting the assigment into the
variables. Note that ¢, is a (k — 1)-CNF formula. We recurse on each of the
e with parameter €, and take the average of the results. Assuming that each
recursive call returns an ¢ additive approximation, the algorithm returns an ¢
additive approximation.

If we denote by T'(L, k) the running time of the algorithm for a k-CNF instance of size
L, then we have
T(L,1) = O(L)
and

T(L, k) < O(L) 4 280/N2 (L, | — 1)

which solves to T(L, k) = O(L - 22k(n1/e)2*) — O(L(1/e)(™ Dr2ky
For the promise problem of finding a satisfying assignment under the promise that an
¢ fraction of assignments are satisfiable, we essentially use the same recursive algorithm.



When we are down to 1-CNF, we find a satisfying assignment or fail if the instance is
unsatisfiable. (Indeed, we can stop at 2-CNF.) In the recursive step, we fail if ¢ is such
that (1 — 1/2%)! < ¢. The analysis of the running time is the same, and it is clear that at
least one of the recursive branches produces a satisfying assignment.

Hirsch’s algorithm is similar to the above sketch of the algorithm for the satisfiability
promise problem, except that a different greedy strategy is used to pick the variables in
V. The analysis is slightly different and somewhat more difficult.

3 Pseudorandomness Against k-CNF Formulae

3.1 Some Technical Preliminaries

We begin this section with a few technical definitions.
We denote by U, the uniform distribution over {0,1}". If f : {0,1}" — {0,1} is a
function and X is a distribution over {0,1}", then we say that X e-fools f if

|Prf(Un) = 1] = Pr[f(X) =1]| <e

If F is a collection of functions, then we say that a distribution X e-fools F if X e-fools
every function f € F.

Our goal will be to find a distribution X that e-fools the class of k-CNF formulae over n
variables, and that is uniform over an efficiently constructable support of polynomial size.
Then, given a k-CNF formula f, we can approximate Pr[f(U,) = 1] by computing the
close value Pr[f(X) = 1], and we compute the latter by enumerating all the polynomially
many elements in the support of X, and applying f() to each of them. We will show that
e-biased distributions, defined below, can be used towards such goal.

We say that a distribution X over {0,1}" is e-biased [NN93] if for every subset S C
{1,...,n} we have

1 1
——e<P < —
2 e< Pr _2+6
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Equivalently, we can say that a distribution is e-biased if it e-fools every linear function.
(Where, of course, we mean linear over the field GF(2).)

Theorem 2 ([NN93, AGHP92]) For every €, and n, there is an e-biased distribution
over {0,1}" that is uniform over a support of size polynomial in n and 1/e. Furthermore,
the support can be constructed in time polynomial in n and 1/e.

We say that a distribution X = (X3 --- X,;) over {0,1}", where each X is unbiased, is
k-wise independent if every k of the random variables X1,..., X, are mutually indepen-
dent. Equivalently, a distribution is k-wise independent if it 0-fools the class of functions
that depend only on k or fewer input variables.

We say that X is e-close to k-wise independent if for every function g : {0,1}" — {0,1}
that depends on k or fewer inputs we have

|Pr[g(Un) = 1] —Pr[g(X) =1]| <e

that is, if X e-fools the class of functions that depend on at most & inputs.



We say that X is e-close to k-wise independent in Lo, norm if for every ¢ < k, for every
t indices i1,...,% in {1,...,n} and for every ¢ values ay,...,a; € {0,1} we have
1 1
g_ESPr[Xh =a;AN---NXj, :at] < g-f-&?
that is, if X e-fools the class of functions that can be expressed as checking that a subset
of at most k bits of the input equals a particular sequence of values.
The following connection between the notions that we have described is well known.

Lemma 3 Let X be an e-biased distribution over {0,1}". Then, for every k, X is g-2k/2.
close to k-wise independent, and also 2e-close to k-wise independent in £, norm.

3.2 e-Biased Distribution and k-CNF Fomulae

The main result of this section is the following theorem.

Theorem 4 There are functions t(k,e) = O(k - 2% - log(1/e)) and 6(k,e) =
1/20(k'2k'1°g(1/5)) such that the following happens.
Let f : {0,1}" — {0,1} be a function defined by a k-CNF formula and let X be

a distribution over {0,1}" that is d(k,e)-close to t(k,e)-wise independent in £o norm.
Then X e-fools f.

The application of Theorem 4 to e-biased distributions is immediate.

Corollary 5 There is a function & (k,e) = 1/20%2%108(1/2)) gych that if X is a &' (k,€)-
biased distributions, then X e-fools every function computed by a k-CNF formula.

The rest of this section is devoted to the proof of Theorem 4.

Let f :{0,1}" — {0,1} be a function defined by a k-CNF formula ¢ over variables
T1,...,Tyn, and consider a decision tree over the variables z1,...,z,. Every leaf of the
decision tree (indeed, every node of the decision tree) defines a restriction, that is, an
assignment to a subset of the variables z1,...,x,. If a leaf v is at distance ¢ from the
root, then it defines an assignment to ¢ variables; if we pick a random assignment and
then apply the decision tree to it, there is a probability 1/2! that we reach the leaf v. In
general, for a vertex v at distance ¢ from the root we define the probability of v to be 1/2¢,
and for a set of vertices such that none of them is an ancestor of any other we define the
probability of the set as the sum of the probabilities of the individual vertices.

Lemma 6 Let f : {0,1}" — {0,1} be the function defined by a k-CNF formula ¢ and
e > 0. Lett be an integer such that (1 — 1/2¥) < e. Then there is a decision tree of
depth at most tk such that: either (i) all the leaves define restrictions relative to which f
is a constant, or (ii) all the leaves, except possibly a set of probability at most e, define
restrictions relative to which ¢ becomes a (k — 1)-CNF.

PrOOF: We apply Lemma 1 to ¢ with parameter ¢. Then we either find ¢ clauses over
disjoint variables or k(¢ — 1) variables that hit all the clauses.

In the former case, consider the decision tree that reads all the < kt variables that
occur in the ¢ clauses. All but an ¢ fraction of the leafs of the decision tree correspond to
restrictions relative to which ¢ is zero, and, in particular, is constant.



In the latter case, consider the decision tree that reads all the < kt variables returned
by the algorithm. All the leafes of the decision tree correspond to restrictions relative to
which ¢ is a (k — 1)-CNF. O

We now compose the construction.

Lemma 7 There is a function t(k,e) = O(k2¥1n(1/¢)) such that for every f : {0,1}" —
{0,1} defined by a k-CNF formula and for every ¢ > 0 there is a decision tree of depth at
most t(k,e) such that all the leaves, except possibly a subset of probability €, correspond to
a restriction relative to which f is a constant.

PROOF: We prove the theorem by induction. Lemma 6 proves the theorem for £ = 1 and
t(1,e) = log, 1/e. For general k, start by constructing the decision tree for f as in Lemma
6. If all but an € fraction of the leaves of the tree make f become a constant, then we
are done. Otherwise, every leaf of the tree defines a restriction relative to which f is a
(k — 1)-CNF, and we can apply the induction hypothesis to get decision trees for each of
these (k — 1)-CNF.

This argument proves the theorem for every function () that satisfies ¢(1,¢) = logy 1/¢
and t(k,e) > k2¥In(1/¢) + t(k — 1,¢). In particular, the theorem is true for t(k,e) =
2k2% In(1/e). m

To prove Theorem 4 we now only need the following simple last step, which is well
known.

Lemma 8 Let f:{0,1}" — {0,1} be a function and T be a decision tree of depth t such
that all but an € fraction of the leaves of T define a restriction relative to which f is a
constant. Let X be a distribution that is d-close to t-wise independent in o, norm. Then

| Pr{f(Uy) = 1] = Prlf(X) = 1]| <e + -2

ProOOF: We may assume withouth loss of generality that T has 2! leaves, all at distance
t from the root. (Otherwise, from leaves that are closer to the root, we read additional
variables until we reach distance ¢. This does not change the properties of T' assumed in
the Lemma.) Let S be the set of leaves of T' that define a restriction relative to which f
is the constant 1. Then we have
|S]
Pr[f(U,) =1 < ot +e€
If we sample an assignment according to X, we see that for each leaf of T there is a
probability at least 1/2! — § that the assignment is consistent with the leaf. In each of
these event, f evaluates to one and, moreover, all these events are disjoint. We deduce
Pr[f(X)=1] > @ —4-1Z|
=1> 3
and
Pr[f(U,) =1]-Pr[f(X)=1]<e+6-2!

Similarly, we can prove
Pr(f(X) =1] = Pr[f(Un) =1] <e+6-2'

O
Ajtai and Wigderson [AWS89] prove a result that is similar to Lemma 7 but that has a
weaker application to e-biased distributions.



Theorem 9 ([AWS89]) There is a constant € > 0 and a function t(k) = kO*”)) such that
the following is true. For every k-CNF function f there is a subset V of t(k) variables of
f such that, if we pick at random a restriction to the variables in V', there is a probability
at least 1 — € that f is a constant relative to the restriction.

Our result, like the result of Ajtai and Wigderson, defines a distribution over restric-
tions such that with high probability the resulting restriction makes f constant. In our
proof, the restriction assigns values to O(k2*) variables, in the result of Ajtai and Wigder-
son the restriction assigns values to kO(**) variables.

4 Perspective

The current body of work on derandomization (see [Kab02] for a survey) strongly suggests
that every problem (including search problems and promise problems) that is solvable
probabilistically in polynomial time can also be solved deterministically in polynomial
time. It is then a natural research program to look for deterministic polynomial time
algorithms for all the interesting problems for which only probabilistic polynomial time
algorithms are known.

After the discovery of a deterministic polynomial time algorithm for testing primality
[AKS02], the most interesting algorithms to derandomize are now the identity test for
low-degree polynomials and the approximate counting algorithms based on the Markov-
Chain Monte-Carlo approach. Kabanets and Impagliazzo [KI03] show that derandomizing
the polynomial identity test algorithm for general arithmetic circuits implies the proof of
circuit lower bounds that may be beyond our current proof techniques. It is not clear
whether there are similar inherent difficulties in derandomizing approximate counting
algorithms such as, say, the Permanent approximation algorithm of [JSVO01].

The problem of approximately counting the number of satisfying assignments for a
given circuit up to a small additive error is clearly precisely the same problem as de-
randomizing every promise-BPP problem. (In particular, such an approximate counting
algorithm would imply that NEXP ¢ P/poly.) It seems possible, however, to derandom-
ize at least bounded-depth circuits, and, at the very least, depth-two circuits in polynomial
time using current techniques. In this paper we note that a special case of this problem
can be solved by a simple divide-and-conquer algorithm, without using derandomization
techniques. We also presented some improvement to the application of derandomization
techniques to the problem.
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