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Abstract

We show that for several natural classes of “structured” matrices,
including symmetric, circulant, Hankel and Toeplitz matrices, approx-
imating the permanent modulo a prime p is as hard as computing the
exact value. Results of this kind are well known for the class of arbi-
trary matrices; however the techniques used do not seem to apply to
“structured” matrices. Our approach is based on recent advances in
the hidden number problem introduced by Boneh and Venkatesan in
1996 combined with some bounds of exponential sums.
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1 Introduction

Let IF, denote a finite field of p elements.

Given a matrix X = (a:ij)zjzl over IF,,, we denote by per X its permanent.

It is well know that the permanent is very hard to evaluate exactly. In
technical terms, the permanent is §P-complete. Thus in a number of papers
various approximability and non-approzrimability properties of the permanent
have been considered, taking into account randomized algorithms as well. In
particular, it has been shown by Cai et al. in [7] that randomized polynomial
time algorithms cannot compute the permanent correctly even on a very
small fraction of the instances, unless P*¥ = BPP. Recall that the class {P
is the class of functions counting the number of accepting computations in a
nondeterministic polynomial time Turing machine (see [24]), while the class
BPP is the equivalent of the class P for probabilistic computations (with
bounded error).

Note that the above mentioned “non-approximability” results as well as
the results of many other works, see [7, 11, 14, 17] and references therein,
apply to arbitrary matrices. On the other hand, despite the a variety of
results on computing peraments while for special classes of matrices very
little seems to be known, see [2, 8, 9].

Here we propose an alternative approach which allows us to obtain “non-
approximability” results for matrices with some special structure, for exam-
ple, symmetric, circulant, Hankel, and Toeplitz matrices. For all these classes
of matrices over IF, we prove that if computing the permanent is hard then
approximating the permanent is hard as well.

This approach certainly applies to general matrices as well, although in
this case Theorems 1.7 and 1.9 of [11] give a much stronger result. However
the method of proof does not apply to structured matrices. Indeed, the
transformation described in the proof of Theorem 5.2 of [11] does not preserve
structural properties as being symmetric or Toeplitz.

Our method takes advantage of recent advances in the hidden number
problem, a problem introduced by Boneh and Venkatesan [3, 4]. The ap-
proach of [3, 4] (which is based on lattice reduction algorithms) combined
with exponential sum techniques has led to a number of results in cryptog-
raphy and complexity theory [10, 12, 13, 16, 18, 19, 21, 22, 23|.

Here we show that the above combination of two celebrated techniques,
lattice reduction and bounds of exponential sums, can be applied to studying
the permanent.



For integers s and m > 1 we denote by |s], . the remainder of s on division
by m.

For an integer m and a real £k > 0 we denote by APPROX; ,,,(t) any
integer u which satisfies the inequality

1t —ul < g5 ¢

Thus, roughly speaking, APPROX, () is the integer defined by the k£ most
significant bits of [t| . However, this definition is more flexible and better
suited to our purposes. In particular we remark that & in inequality (1) needs
not be an integer.

We always assume that the field IF,, consists of elements {0,... ,m — 1},
so that we can apply APPROXj, to elements of IF,,.

Using the above notation, we can formulate the hidden number problem
as follows: Let o € IF,,. Assuming we have access to values APPROX;, ,(at),
for some k > 0, and for many known random values ¢ € IF, recover the
number «.

It is clear that the only case of interest occurs when k£ < logp; in [3] a
polynomial time algorithm has been given which recovers a for k& ~ logl/ 2p.
However it has turned out that for many applications the property that ¢
is randomly selected from IF, is too restrictive, see [10, 12, 13, 16, 18, 19,
21, 22, 23|. For those applications one has rather to study the case when ¢
is selected at random from a certain sequence 7 of elements from IF,. The
above papers show that the uniformity of distribution properties of 7 play a
crucial role, and thus exponential sums have been brought into the problem.

2 Auxiliary Results

We recall that the discrepancy D(Q) of a sequence Q = {w1,...,wn} of N
elements of the interval [0, 1] is defined as

AUN)

D(Q) = sup N

JC[0,1]

Y

where the supremum is extended over all subintervals J of [0, 1], |J| is the
length of J, and A(J, N) denotes the number of points w, in J, for 0 < v <
N — 1. For our purposes we also need the following definition. We say that
a finite sequence T of elements of T is A-homogeneously distributed modulo
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i if for any a € I, the discrepancy of the sequence {|at|,/p}icr is at most

Lemma 1 Lety > 0 be an arbitrary absolute constant. For a prime p, define

k= |y log plogloglogp 12 and g 3logp
log log p k|

Let T be a 2~ *-homogeneously distributed modulo p sequence of integer num-
bers. There exists a probabilistic polynomial-time algorithm A such that for
any o € Iy, given as input the prime p, d integers ti,...,tq, and d integers

u; = APPROX, ,(ot;), 1=1,...,d,
for sufficiently large p, its output satisfies
Pr[‘A(p7t17"'7td;u17" . 7ud) = Oé] 2 1 _pila

where the probability is taken over all t1,...,tq chosen uniformly and inde-
pendently at random from the elements of T, and over all random choices of
the algorithm A.

In order to apply the bound of exponential sums to establish the prop-
erty of A-homogeneous distribution modulo p of a sequence 7, we use the
following well known result (which, for example, follows immediately from
Corollary 3.11 of [20]).

For a real z and an integer m, we use the notation

en(z) = exp(2miz/m).

Lemma 2 Any finite sequence T of elements of T is A-homogeneously dis-
tributed modulo p, with

A=0 <|T|_1Blogp) ,

where

B = max
ged(e,p)=1

> ey (ct)

teT ‘



Lemma 3 Let g € IF) be of multiplicative order T modulo p. Then the bound

max < B(t,p),

ged(e,p)=1

Zep cg®)

holds, where
B(7,p) = min {p1/2, p1/47-3/8, p1/87_5/8} .

We also need the following estimate, which follows from Theorem 5.5
of [15].

Lemma 4 Let Q) be a sufficiently large integer. Then, for any § > 0, there
ezists n > 0 such that for all primes p € [Q,2Q)] except at most Q%9 of
them, for any g € IF,, of multiplicative order T > p°, the bound

max
ged(a,p)=1

Zep ag® ‘ O(Tp_")
holds.

Proof. For each integer 7 > 1 and for each prime p=1 (mod 7) we fix an
element g, , of multiplicative order 7. Then Theorem 5.5 of [15] claims that
for any U > 1 and any integer v > 2, for all primes p =1 (mod 7) except
at most O(U/logU) of them, the bound

7—1

max Z e (cg;ﬁ)

ged(e.n)=1 |5

=0 (Tp1/2,,2 (T—l/u i U_l/yz))

holds. We remark that the value of the above exponential sum does not
depend on the particular choice of the element gy, ,.
Taking

v= EJ +1 and U = QY3

after a simple computation we obtain that there exists some n > 0, depending
only on §, such that for any fixed 7 > Q° the bound

T—1

Z €p (Cg;,r)

z=0

< gln

— Y

max
ged(e,p)=1




holds for all except O(Q'/?*%/3) primes p = 1 (mod 7) in the interval p €
[@,2Q)]. Using Lemma 3, we can see that a similar bound also holds for 7 >
Q/3+9/3_ So the total number of exceptional primes p for which the bound
of the lemma does not hold for at least one 7 > p® > Q% is O (Q5/ 6+24/ 3).
Thus for sufficiently large ) we obtain the desired result.

Combining Lemmas 3 and 4 with the identity

-1 T—1
> epleu) == Y ey (eg).,
z=0

u€lFy
where g € IF} is of multiplicative order

p—1

T:mZ(P—l)/ﬂ,

we obtain the following bound of Gauss sums.

Lemma 5 Let () be a sufficiently large integer. The following statement
holds with 9 = 1/3 for all primes p € [@Q,2Q)], and with 9 = 0 for all primes
p € [Q,2Q), except at most Q%%+ of them. For any e > 0 there exists § > 0
such that for n < p'=?=¢ the bound

1-6
<p 7,

Z e, (cu™)

u€lF,

max
ged(e,p)=1

holds.

3 Main Result

We say that a class M,, of n x n matrices with entries from IF, is homo-
geneous if for any X = (z;);;,_; € M, and any A € IF we also have
X)\ = ()\.’Bij)zjzl S Mn.

Let PER m, . denote an oracle which, given any X € M,, outputs
APPROX,,, (per X).

Theorem 6 Let v > 0 and € > 0 be arbitrary constants, and let Q) be
a sufficiently large integer. The following statement holds with 9 = 1/3
for all primes p € [Q,2Q)], and with ¥ = 0 for all primes p € [Q,2Q)]
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except for at most Q%t¢ of them. For any homogeneous class of matri-
ces M,, over F, of size n < p'=%7° there exists a probabilistic algorithm
running in time polynomial in n and logp which for any X € M,,, makes
O ((logplog logp/ log log logp)l/Q) calls to the oracle PER m,, 1 with

[ <logplogloglogp)l/j
k=7

loglogp
and evaluates per X correctly with probability at least 1 — 1/p.

Proof. Given X € My, let us select A € IF] uniformly at random, compute
X and use the oracle PER a4, 1 with the input X, to evaluate

APPROX} , (per X») = APPROX},, (\"per X) .

Combining Lemma 2 and Lemma 5 we see that the sequence (A™) A 18

2-*_homogeneously distributed modulo p. Now from Lemma 1, we obtain
the desired result. O

Corollary 7 Let v > 0 and € > 0 be arbitrary constants. Then if there is
an algorithm achieving an approzimation of APPROX ,(per A) with

k- log plog loglog p 1/2
B loglogp

logp
loglogp’

to the permanent of an n X n symmetric matriz A over IF,, withn <
then P = BPP.

Proof. We show that the above algorithm can be transformed into a proba-
bilistic algorithm to compute the permanent of symmetric n x n binary ma-
trices (that is, matrices with 0, 1-entries). The latter problem is P-complete,
as follows from the easy reduction mapping any arbitrary n x n binary matrix
C into the 2n x 2n symmetric matrix

0 C
S

whose permanent is the square of the permanent of C, per D = (per C)2.
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Given any symmetric n X n binary matrix B, it is obvious that 0 <
per B < nl.

Let us set Q = n™, and let us choose n® random integers m € [Q, 2Q)].
Using the fact that there are at least c¢Q/log @ primes in this interval, we
have that, for a sufficiently large n, and with probability at least

n3
1—<1— ¢ ) >1—e 2
nlogn

one of these n® integers is prime. Then we can use one of the probabilistic
primality tests to find at least one prime among the selected numbers. Run-
ning for each number the Miller—Rabin test n times, see Section 9.5 of [1], and
taking into account that for any integer it returns a wrong answer with prob-
ability not exceeding 47", it turns out that we find a prime with probability
at least

(1 - e—2") (1 - n34—") >1—e™.

By Theorem 6, any approximation algorithm can be transformed into a
probabilistic algorithm to compute the residue of per B modulo p. However,
since 0 < per B < n! < p this residue coincides with the actual value of per B.
The thesis now follows by applying a result by Cai et al. [7], who have
proved that the existence of a probabilistic algorithm correctly computing
the permanent of a matrix for any inverse polynomial fraction of all inputs
implies the unlikely collapse P = BPP. O

4 Remarks

We remark that although the traditional measure for the size of an n x n
matrix X over IF, is about n®logp, some matrices admit a much shorter
description. For example, an s-sparse circulant matrix, with only s non-zero
entries per row can be described by only O(slognp) bits. For such matrices
it is enough to specify s pairs (m,,z,), v =1,...,s, where m,, 1 <m, < n,
is the position of the vth nonzero entry z, € IF, in the first row. In this case,
provided that the oracle PER 4, 1 accepts such a description, the algorithm
of Theorem 6 becomes polynomial in slognp.

Using this setting, one can consider an analogue of Theorem 6 for the
determinant as well. Indeed, although the determinant is an “easy” function
for dense matrices, it is not clear whether for s-sparse circulants it can be
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computed in time polynomial in slognp. Moreover, an analogue of Theo-
rem 6 and its modification for matrices with “short description” holds for
the much wider class of matrix functions known as immanants, whose com-
plexity has been studied, for example, by [5, 6]. Immanants are expressions
of the form .
imm, X = > x(0) [[ ziow),
gESn =1
where x : S, — C is an irreducible character of the symmetric group S,,.
The trivial character y(o) = 1 corresponds to the permanent, the alternating
character x(o) = signo corresponds to the determinant.
Our approach can also be used to prove the hardness of modular approx-
imation of several other polynomial functions, such as cycle format polyno-
mials and the factor polynomials (see Section 3.3 of [6]).
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