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Abstract

The paper contributes to the systematic study (started by Berman and
Karpinski) of explicit approximability lower bounds for small occurrence op-
timization problems. We present parametrized reductions for some packing and
covering problems, including 3-Dimensional Matching, and prove the best known
inapproximability results even for highly restricted versions of them. For exam-
ple, we show that it is NP-hard to approximate Max-3DM within % even on
instances with exactly two occurrences of each element.

Our reductions from Max-E3-Lin-2 depend on parameters of amplifiers that
provably exist, we need not restrict ourselves to amplifiers that can be con-
structed efficiently. New structural results which improve the known bounds for
3-regular amplifiers and hence the inapproximability results for numerous small
occurrence problems studied by Berman and Karpinski in the article “On some
tighter inapproximability results” (ECC/65, 1998) are also presented.

Keywords: Approximation Algorithms, Approximation Hardness, NP-hard com-
binatorial optimization problems

1 Introduction

The research on the hardness of bounded occurrence (resp. bounded degree) optimiza-
tion problems is focused on the case of very small value of the bound parameter. For
example, considerable effort of Berman and Karpinski (see [2] and references therein)
has gone into the developing of a new method of reductions for determining the
inapproximability of MAXIMUM INDEPENDENT SET and MINIMUM NODE COVER in
graphs of maximum degree 3 or 4. The study of problems with small value of a bound
parameter is very well motivated; they are useful as intermediate steps in reductions
to many important problems.

Related Work. This work is a contribution to a systematic study of bounded
occurrence optimization problems with applications to other optimization problems.

Tight hardness results for optimization problems usually build on the PCP charac-
terization of NP. But for many small parameter problems they can be hardly achieved
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directly. Rather, one has to use an expander/amplifier method. A restricted version
of MAXIMUM LINEAR EQUATIONS over Z» with exactly 3 variables per equation seems
to be very efficient as the canonical problem for starting gap-preserving reductions.
The problem has a simple 2-approximation algorithm. But Hastad ([4]), based on his
verifier, proved hard gap result implying inapproximability within 2 — & even when
restricted to instances where each variable appears at most 27" times, for some ex-
plicit absolute constant d and € € (0, 5). Thus, the optimal hard gap result extends,
with negligible loss, to the case where each variable occurs bounded (even constant)
number of times. It can be used to prove a hard gap result, say, for 3-occurrence case
using amplifiers. But the size of an amplifier is related to the number of occurrences
of each variable in Hastad’s result. Since we reduce from the problem in which this is
a constant independent on an input, an amplifier is a constant element in our reduc-
tion. Therefore we need not restrict ourselves to amplifiers that can be constructed
in polynomial time, to prove NP-hard gap result. Any (even nonconstructive) proof
of existence of amplifiers (or expanders) with better parameters than those currently
known implies the existence of (deterministic, polynomial) gap-preserving reductions
leading to better inapproximability result.

This is our paradigm towards tighter inapproximability results inspired by the
paper of Papadimitriou and Vempala on Traveling Salesman problem ([10]), that we
have already used for Steiner Tree problem in [6].

Our results. As a starting point to our gap preserving reductions we state in Theo-
rems 2 and 3 the versions of NP-hard gap results on bounded (constant) occurrence
MaX-E3-LIN-2. Their weaker forms are known to experts and have been already
used ([10], [3], [11], [6])-

We prove structural results about 3-regular amplifiers which play a crucial role in
proving explicit inapproximability results for bounded occurrence optimization prob-
lems. A (2,3)-graph G = (V, E), i.e. a graph with nodes only of degree 2 (Contacts)
and 3 (Checkers), is an amplifier (more precisely, a 3-regular amplifier for its checker
nodes) if for very A C V either |Cut 4| > |ContactsN A, or |Cut A| > |Contacts\ A|.

The parameter 7(G) := % measures the quality of an amplifier; the smaller,
the better. We are able to prove for many bounded occurrence problems a tight
correspondence between 7, := inf{y : 7(G) < + for infinity many amplifiers G} and
inapproximability results. There is a substantial gap between the best upper and
lower bounds on parameters of amplifiers and expanders. Berman and Karpinski
have proved that 7, < 7. In this paper we show slight improvement, 7, < 6.9, based
on the results from [2] and our structural amplifier analysis. But further improve-
ments of estimates on amplifier parameters of randomly generated graphs, pushing
the method to its limits, is in progress.

Consider a probabilistic model of generating (2, 3)-graphs (with sets of Contacts
and Checkers fixed and large enough). In such situation we need to estimate the
probability that the random (2, 3)-graph is an amplifier. It fails to be an amplifier if
there are “bad sets” which violate the condition from the definition. For a single bad
set it is simple to estimate the probability that this bad set doesn’t occur. At the
heart of the problem lies the question of how to estimate the union bound over all
bad sets in better way, than adding all single probabilities. Our structural analysis of
amplifiers allowed to produce significantly smaller list of bad sets which are sufficient
to test for the presence. That leads to more efficient counting methods showing that
most of random (2, 3)-graphs with 7(G) > 6.9 are amplifiers. This result combined
with reductions used by Berman and Karpinski immediately improve (slightly) lower
bounds for numerous bounded occurrence optimization problems.

We developed our method of parametrized reductions (a parameter is a fixed am-



plifier) to prove inapproximability results for E3-Occ-MAX-3-LIN-2 problem, and
problems MAX INDEPENDENT SET and MIN NODE COVER on 3-regular graphs (Sec-
tion 4). The similar method can be applied to all problems studied in [2] (with
modification of amplifiers to bipartite-like for MAx CuT) to improve the lower bound
on approximability. Similarly, for the problem TSP with distances 1 and 2 ([3]).

We include also reductions to some packing and covering problems to state the
best known inapproximability results on (even highly restricted) version of TRIAN-
GLE PACKING, 3-SET PACKING, and 3-SET COVERING problems (Section 4). These
reductions are quite straightforward from 3-MIS, resp. 3-NC and they are included
as inspiration to the new reduction for 3-DIMENSIONAL MATCHING problem (MAX-
3DM) (Section 5). APX-completeness of the problem has been well known even on
instances with at most 3 occurrences of any element, but our lower bound applies
to the instances with exactly 2 occurrences. We do not know about any previous
hardness result on the problem with the bound 2 on the number of occurrences of
elements. The best to our knowledge upper and lower approximation bounds for the-
ses packing and covering problems are summarized in the following table. The upper
bounds are from [5].

Problem Approx. Param. lower | Approx. lower bound
upper bound bound (1« = 6.9)

Max Triangle Packing 1.5+¢ 1+ 5o 1.0072

3-Set Packing 1.54¢ 1+ 53 1.0072

3-Set Covering 1l4+e¢ 1+ 5 1.0070

Max 3-DM 15+¢ 1+ 5 1.0071

Our inapproximability result on MAX-3DM can be applied to obtain explicit lower
bounds for several problems of practical interest, e.g. scheduling problems, some (even
highly restricted) cases of GENERALIZED ASSIGNMENT problem, or the other more
general packing problems.

Gap Problems. To achieve strong (or even tight) inapproximability results for an
optimization problem P, it is useful to study various partial decision subproblems
of P dealing with instances for which the optimum is promised to be either “very
high” or “very low”. We associate to P a promise problem, depending on a pair
of polynomial time computable functions I, h of the size of an input instance and
satisfying 0 < I(-) < h(-).

Definition 1 Let P be an optimization problem, and let 0 < I(-) < h(-) be polyno-
mial time computable functions of the size of an input instance. Define H (“high”
instances) and L (“low” instances), the subsets of the set of instances of the problem
P as follows: H ={I:0PT(I) > h(|I|)}, L={I:0PT(I) <I(I|)}. The {l,h)-gap
version of P is a decision problem whose task is to decide whether o given instance x
is an H or an L instance.

It is rather obvious that showing NP hardness of the (I, h)-gap version of P implies
that it is NP-hard to approximate P within h/I.



2 Inapproximability of subproblems of
Max-E3-Lin-2

In proving inapproximability results we produce new “hard gaps” from those already
known using gap-preserving reductions and their compositions. We start with a re-
stricted version of MAX-LINEAR equations over Zs, namely MAX-E3-LIN-2.

Definition 2 MAX-E3-LIN-2 is the following optimization problem: Given a system
I of linear equation over Zs, with exactly 3 (distinct) variables in each equation. The
goal is to maximize, over all assignments 1 to the variables, the ratio W, where

N(I,v) is the number of equations of I satisfied by 1.

Notation. We use the notation Ek-Occ-MAX-Ed-LIN-2 for the same maxi-
mization problem, where each equation has exactly d variables (hence Ed) and each
variable occurs exactly k times (hence Ek). If we drop an “E” than we have “at most
d variables” and/or “at most k occurrences”.

Denote Q(e, k) the following restricted version of MAX-E3-LIN-2: Given an in-
stance of Ek-Occ-MAX-E3-LIN-2. The problem is to decide if the fraction of more
than (1 — €) or less than (3 + €) of all equations is satisfied by the optimal (i.e.
mazximizing) assignment.

MAX-E3-LIN-2 problem plays a role of the canonical problem in our reductions
due to its simple structure and efficiency. In many gap-preserving reductions it is
easier to start with instances of MAX-E3-LIN-2 where each variable appears bounded
(or even constant) number of times. The corresponding NP-hard gap results even
for such restricted versions of the problem are due to Hastad [4]. They imply the
Theorem 1 below.

Theorem 1 For every e € (0,%) there is an integer ko(e) such that the partial deci-
sion subproblem Q(g,ko(e)) of MAX-E3-LIN-2 is NP-hard.

Proof. Strictly speaking, Hastad’s proof of Theorem 5.4 in [4] shows that for every
e € (0,1) there is an integer k (k < 2" for some explicit absolute constant d) such
that (3 + &,1 — &)-gap version of MAX-E3-LIN-2 is NP-hard even if restricted to
instances with occurrences of each variable bounded by k. But, keeping k = k(e) as
above fixed, there is a polynomial time reduction from the version with occurrences of
variables bounded by k, to the version of MAX-E3-LIN-2 with exactly ko (¢) := (k!)®
occurrences of each variable, such that it preserves optimal value, as follows:

Given an instance I with the set of variables V(I), where each variable x € V(I)
occurs s(z) times, 1 < s(z) < k. We transform I to a new instance I' in which
each variable of V(I') occurs exactly (k!)® times, and with OPT(I') = OPT(I). For
each variable x € V(I) we put into V(I') exactly s(z) variants of z, namely z;,
i=1,2,...,5(x).

For each equation

z+y+z=a, ac{0,1} (E)
of I, we put into I’ a multiset (E') containing exactly % copies of an equation

Tity; +2z=a,



for each triple (i,7,1) with 1 <i < s(z), 1 < j < s(y) and 1 <1 < s(2). If we have
done this for all equations (E) of I, the result is the new instance I' with exactly
(k') occurrences of each variable of V(I').

Clearly OPT(I") > OPT(I), as we can assign to all variants z; (1 <1 < s(x)) for
each variable z € V(I) the same value as to . The key point to prove OPT(I') =
OPT(I) is to show that OPT(I') is achieved on assignments to variables V(I') with
the property that for each variable z € V(I) all the variants z; (1 <1 < s(x)) take
the same value. To show this, it is sufficient to make the following observation: Given
an assignment ¢ to variables V(I') and one fixed variable of V(I), say . One can
modify ¢ on variants of x only, making all variants of z take the same value, without
decreasing the number of satisfied equations by ¢.

This follows since keeping assignment to the variants of the other variables fixed,
we can change the status of equations of I' containing variants of . They are now of
the form z; = a (a € {0,1}, 1 < i < s(x)).

But our construction ensures that all variants of = appear in exactly the same
contexts, and in this context one of the two values (0 or 1) of the variable is at least
as good as the other. Hence we can make all variants of x take this value.

It follows that optimal values and hard gaps are preserved by the above transfor-
mation [ — I'. O

For our applications the strengthening contained in Theorems 2 and 3 are more
convenient.

Theorem 2 For every ¢ € (0, %) there is a constant k() such that for every integer

k > k(g) the partial decision subproblem Q(e, k) of MAX-E3-LIN-2 is NP-hard.

Proof. Theorem 1 says that for every € € (0,1) there is an integer ko(¢) such that

the gap version Q (e, ko(¢)) of MAX-E3-LiN-2 is NP-hard. Repeating each equation of
an instance of Q(g, ko(g)) exactly r times (r being a fixed positive integer) shows that
Q(g, k) with k being a multiple of kg(g), is NP-hard as well. To prove NP-hardness
for all sufficiently large k£ we have to proceed more carefully.

Given ¢ € (0,7), put 7o = [2] and fix an integer k > k(e) := roko(§). To
prove NP-hardness of Q(e, k), we will provide the following reduction from NP-hard
problem Q (£,k0(%)) to Q(e, k).

Take an instance I of Q (5, ko(£)), let V(I) stand for the set of variables in I and
m := |V(I)|. Clearly, 3|mko(5) and I has exactly 3mko(5) equations. Omitting just
finitely many instances, we can assume that m is sufficiently large, say m > 25_5 Since
k > roko(5), we can fix an integer r > ro such that

g

’I“k‘o(2

€
Now we create an instance I’ in which each variable occurs exactly k times. If
k =rko(5), I' consists of r copies of I. If k:=k —rko(5) > 0 (clearly k < ko(5)), we
have to add some equations to r copies of I, to ensure the additional k& occurrences
of each variable.

a) If 3| mk one can easily create additional mT%

equations over V(I) in which each
variable occurs exactly K times (any bipartite graph with bipartition (A, B), |4| = m,
|B| = mTE, veEA = deg(v) =k,ve B = deg(v) =3, can be taken as a pattern
for A = {variables}, B = {equations}). It is easy to see that such graph exists.

b) If 3 fmk, take s € {4,5} such that 3|(mk + sk), and let ¥ be the set of

new variables not occurring in 7. We can create additional %(m% + sk) equations



in which each variable of I occurs exactly k times and each new variable exactly k
times (we can use any bipartite graph with bipartition (AUY, B), |A| =m, |Y| = s,
|B| = $(mk + sk), v € A = deg(v) =k,veY = deglv) =k,ve B =
deg(v) = 3, as a pattern). Analogously as in the previous case, it is easy to see that
such graph exists.

The reduction f : I — I' just described is clearly of polynomial time. Now we
observe that it is in fact a gap-preserving reduction from Q (£,ko(%)) (with finitely
many “small” instances omitted) to Q(g,k). If I € Q (§,ko(5)) satisfies OPT(I) >
(1 —£), then an optimal assignment satisfies more than (1 — £) |I| equations in I.
The same assignment to variables in I’ (extended arbitrarily to new variables) satisfies
at least all copies of equations satisfied in I. Hence

(1—5)
1’|
(The last inequality can be easily checked from our choice of parameters.) On the
other hand, if I € Q(§,ko(§)) satisfies OPT(I) < % + £, then any assignment

to variables in I satisfies less than (3 + £) |I| equations in I. Consequently, any
assignment to variables in I' satisfies less than (3 + £) |I|r of copied equations and

at most all |I'| — |I|r additional equations. Hence
(r + (1] = Jr) 1
|| 2

Now NP hardness of Q(e, k) follows from NP hardness of Q (£,ko(%)). O

To prove hard gap results for some problems using reduction from MAX-E3-LiN-
2 it is sometimes useful, if all equations have the same right hand side. This can
be easily enforced if we allow flipping some variables. The canonical gap versions
Qi(e,2k) of Max-E3-LiIN-2 of this kind are as follows: Given an instance of MAX-
E3-LiIN-2 such that all equations are of the form z + y + z = ¢ and each variable
appears exactly k times negated and k times unnegated. The task is to decide if the
fraction of more than (1 — ¢) or less than (3 + ) of all equations is satisfied by the
optimal (i.e. maximizing) assignment.

The corresponding hard-gap result for this restricted version reads as follows.

OPT(I') > > (1-ce).

op(r) < (2 3)

Theorem 3 For everye € (0,) there is a constant k() such that for every integer

k > k(&) the partial decision subproblems Qo(e,2k) and Q1(e,2k) of MAX-E3-LIN-2
are NP-hard.

Proof. Fix e € (0,1) and k(e) from Theorem 2 such that for every k > k(e) the
problem Q(g, k) is NP-hard. We demonstrate how to prove, for example, NP-hardness
of Qo(e, 2k) for k sufficiently large.

Fix k > k(e) and take any instance I of Q(e, k). We can simply create an instance
I’ of Qo(e,4k) as follows: For each equation z +y + 2z = 0 in I we put 4 equations,
2+y+2=0,T+7+2=0,T+y+z=0,and z +7+z = 0 (all equivalent to
the original one) into I', and for each equation z +y + z = 1 in I we put equations
T+y+2=0,z+7+2=0,z+y+z=0andZT+y+2z=0into I'.

This is a rather trivial gap-preserving reduction proving NP-hardness of Qo(e, 2k)
for all even k > 2k(e). To have the proof even for odd (and sufficiently large) k, we
can use the method of the proof of Theorem 2. Namely, for k large, we reduce from
Q (5,k(5)) first to Qo (£,4k(5)) as above, then take r copies off each equation (with
r such that 0 < 2k — 4k(5)r < 4k(5)), and add a few more equations to have an
instance of Qg(g,2k). We omit the details, that are similar to those of the proof of
Theorem 2. O



3 Amplifiers

In this section we describe our results about the structure and parameters of 3-regular
amplifiers, that we use in our reductions.

Definition 3 A graph G = (V, E) is a (2,3)-graph if G contains only the nodes of
degree 2 (contacts) and 3 (checkers). We denote Contacts = {v € V : degg(v) = 2},
and Checkers = {v € V : degg(v) = 3}. Furthermore, a (2,3)-graph G is an
amplifier (‘more precisely, it is a 3-regular amplifier for its contact nodes) if for every
A CV:|Cut Al > |ContactsN A|, or |Cut A| > |Contacts \ A|, where Cut A = {v €
A, such that there exists u € V'\ A, (u,v) € E}.

Notation. An amplifier G is called a (k, 7)-amplifier if | Contacts| = k and |V| = 7k.
We introduce the notation 7(G) := m for an amplifier G. Let us denote
7. = inf{7y : 7(G) < 7 for infinitely many amplifiers G}.

We have studied several probabilistic models of generating (2, 3)-graphs randomly.
In such situation we need to estimate the probability that the random (2, 3)-graph
G is an amplifier. Tt fails to be an amplifier iff the system of so-called bad sets
B := {A CV :|Cut A < min{|Contacts N A|,|Contacts \ A|}} is nonempty. For a
fixed bad set it is quite simple to estimate the probability that this candidate for a
bad set doesn’t occur. But the question is how to estimate the union bound over all
bad sets in better way, than by adding all single probabilities. It is useful to look for
a small list B, C B, such that if B # ( then B, # 0 as well. In [2] the role of B,
play elements of B of the minimum size. Our analysis shows that one can produce
the significantly smaller list of bad sets which is sufficient to exclude to be sure that
a graph is an amplifier. We elaborate in details on our general results in the concrete
model of randomly generated (k, 7)-wheels, which generalizes slightly the notion of a
wheel-amplifier used by Berman and Karpinski ([2]).

A (k,7)-wheel is a (2,3)-graph G = (V, E) with |V| = 7k and |Contacts| = k, and
with the edge set E splited into two parts E¢ and Ejr. E¢ is an edge set of several
disjoint cycles in G collectively covering V. In each cycle consecutive contacts of G
are separated by a chain of several (at least 2) checkers. Ejs is a perfect matching
for the set of checkers. Here 7 is a rational number, (7 — 1)k is an even integer.

For purpose of this paper we can confine ourselves to the model with E¢ consisting
of 2 cycles. One consists of (1 — 6)k (8 € (0,1)) contacts, separated by chains of
checkers of length 6, and in the second one 6k contacts are separated by chains of
checkers of length 5. For fixed parameters # and k consider two cycles with contacts
and checkers as above and take a random perfect matching for the set of checker nodes.
Then, with the high probability, the produced (k,7 — 6)-wheel will be an amplifier.
More precisely, for an explicit constant 6 € (0, 1), for any rational § € (0, 6p), and any
sufficiently large positive integer k for which 8k is an even integer, (k, 7 —6)-amplifiers
exist.

Theorem 4 7, < 6.9.

The proof of this theorem is quite technical and based on the series of lemmas. For
a (2,3)-graph G = (V, E) we define the relation < on the set P(V) of all subsets V'

A=xB iff |CutA|<|CutB|-|(AAB)n Contacts|

whenever A, B CV and A A B stands for (A\ B) U (B\ A).



Clearly, the relation < is reflexive and transitive. So, < induces a partial order
on the equivalence classes P(V') / =. The equivalence relation = can be more simply
characterized by A = B iff AN Contacts = B N Contacts & |Cut A| = |Cut B|, for
A,B C V. Moreover, forevery ACV, A<Biff V\A<V\B.

Using this relation one can describe the set B of bad sets, as

B:=B(G) ={B CV : neither ) < B, nor V < B}. 1)

Clearly, for every A, B CV, Be€ B & A < B imply A € B. The minimal elements of
the partial order ( P(V), <) play an important role in what follows. We denote

By := By(G) = {B C V : B is a minimal element of (B, <)}.

Clearly, a set By is closed on the complementation operation A — V' \ A for any
subset A C V.

Lemma 1 Let G be a (2,3)-graph and B € Bo(G) be given. Then for every set Z C B
the inequality 2 - |Cut Z N Cut B| < |Cut Z| + |Z N Contacts| holds with the equality iff
B\ Z ~ B. In particular, if Z N Contacts # ) the inequality is strict.

Proof. Clearly,
2-|Cut Z N Cut B| — |Cut Z| = |Cut Z N Cut B| — |Cut Z \ Cut B|. (2)

Using notation (X,Y) := {(z,y) € E: z € X,y € Y} for any disjoint sets X,Y CV,
we have (assuming Z C B)

CutZNCutB = (Z,V\B),

CutZ\CutB=(Z,B\ Z),
Cut(B\Z2)=(Z,B\Z)U(B\ Z,V\ B) (a partition),
CutB=(Z,V\B)U(B\ Z,V\B) (a partition).

Hence we have
|Cut Z N Cut B| — |Cut Z \ Cut B| = |Cut B| — |Cut (B \ Z)|. (3)

If B\ Z ~ B then |Cut B| = |Cut (B \ Z)| and Z N Contacts = 0. If B\ Z % B
then we get |Cut B| — |Cut (B \ Z)| < |Z N Contacts|. Hence

|Cut B| — |Cut (B \ Z)| < |Z N Contacts| 4)

with the strict inequality exactly if B\ Z % B, in particular if Z N Contacts # 0.
Putting (2), (3) and (4) together completes the proof. O

Lemma 2 Let G be a (2,3)-graph. Then for every B € Bo(G) the set Cut B is a
matching in the graph G.

Proof. Let v € V be fixed. Put Z := {v} and ¢(v) := [Cut Z N Cut B|. Obviously
¢(v) is the number of edges of Cut B adjacent to v. Applying Lemma 1 (if v ¢ B we
apply it with V' \ B instead of B) we get 2¢(v) < 3. Hence c¢(v) € {0,1} for every
v € V and Cut B is a matching. O



For a (2,3)-graph G = (V,E) let Z C V be given. Let Gz = (Z, Ez) stand for
the subgraph of G induced by the node set Z. To see that |Cut Z| + |Z N Contacts| =
3|Z| — 2|Ez|, we can argue as follows:

ICutz|= 3  (3-degg,())+ Y = (2—degs,(v)

vEZN Checkers veEZNContacts
= 2(3 —degg, (v)) — |Z N Contacts| = 3|Z| — 2|Ez| — |Z N Contacts|.
vEZ

Given B € By(G), Cut B is a matching in G as follows from Lemma 2. Let Cutters(B)
stand for the set of nodes in B adjacent to Cut B. Clearly for any Z C B, an
edge of Cut B adjacent to v € Cutters(B) belongs to Cut Z iff v € Z. Therefore
|Cut Z N Cut B| = |Z N Cutters(B)|. Hence we can reformulate Lemma 1 as follows:

Lemma 3 Let G be a (2,3)-graph and B € Bo(G) be given. Then for every set Z C B
the inequality | Z N Cutters(B)| < 3|Z| — |Ez| holds with the equality iff B\ Z ~ B.
In particular, if Z N Contacts # 0 the inequality is strict.

The purpose of this lemma is to derive some restrictions on local patterns of Cut B
for a general set B € Bo(G). Given B € By(G), we can test it with many various
Z C B (typically with Gz being a small connected graph) to obtain restrictions on
possible patterns of Cutters(B) in B. Some of basic results of this kind are stated in
the following lemma.

Lemma 4 Let G be a (2,3) graph, B € By(G) and Z C B be given.
(i) If Gz is a tree and |Z| =2k — 1 (k=1,2,...) then |Z N Cutters(B)| < k.

(i) If Gz is a tree and |Z| = 2k then |Z N Cutters(B)| < k + 1. Moreover, this
inequality is strict if Z N Contacts # 0.

(15i) If Gz is a (2k + 1)-cycle then |Z N Cutters(B)| < k.

(w) If Gz is a 2k-cycle then |Z N Cutters(B)| < k. Moreover, this inequality is strict
if Z N Contacts # 0.

Lemma 5 Let G = (V,E) be a (2,3)-graph and B € By(G) be given.

(i) If a,b € Cutters(B) and (a,b) € E, then a,b € Checkers and there are 2 distinct
nodes a', b' € B\ Cutters(B) such that (a,a’) € E and (b,b') € E.

(ii) If a,c € Cutters(B), b € B, (a,b) € E, (b,c) € E, and if exactly one of nodes
a, b and c belongs to Contacts, then there are 2 distinct nodes d, e € B\ Cutters(B),
each adjacent to one of two nodes in {a,b,c} N Checkers.

Proof. (i) If at least one of a, b belongs to Contacts, applying Lemma 4(ii), with
Z := {a,b}, we obtain a contradiction. Hence a,b € Checkers and knowing that
Cut B is a matching, there are a/, b’ € B such that (a,a’) and (b,b’') belong to
E. If o' =V, we get a contradiction using Lemma 4(iii) with Z := {a,b,a’}. Hence
a' #b'. To complete the proof one can conclude that o’ € B\ Cutters(B) (respectively,
b' € B\ Cutters(B)) applying the Lemma 4(i) with Z := {a,b,a'} (respectively, with
Z :={a,b,b'}).

(ii) Clearly there are d,e € B distinct from any of a, b, and ¢, such that the one
of two nodes in {a, b, ¢} N Checkers is adjacent to d, and the other one to c¢. Applying
Lemma 3 with Z := {a,b,c,d} (respectively with Z := {a,b,c,e}) we easily get that
d # e and both, d € B\ Cutters(B) and e € B\ Cutters(B). O



Tt is useful to work with the smaller list of bad sets than By(G). For the purpose
to provide such more restricted list we make our partial order < finer inside the
equivalence classes P(V)/ ~.

For a given (2,3)-graph G = (V, E) let a subset F' of E of “distinguished edges”
be fixed. We define the following relations on the set P (V) of all subset V', whenever
A BCV:

F
A<XB iff either AXB& A% Bor Ax B & |[FNCutA| <|FnNCutB|

F F
A=<, B iff either AXB& A ;Z B, or A XB& min{|A N Checkers|,|Checkers\ A}
< min{|B N Checkers|, | Checkers \ B|}.

Denote

Br(G) :={B CV : B is a minimal element of (B(G), X)},

*)}'

F
=
F

By(G) :={B C V : B is a minimal element of (B(G), <

F F F F F

The equivalence relation = is defined by: A ~ B iff A < B & B < A. Clearly <

F F
is a partial order on equivalence classes P(V)/ =. The equivalence relation ~ can
be also characterized by

ARB iff AnContacts = BNContacts & |Cut A| = |Cut B| & |FNCut A| = |FNCut B|.
Clearly B3.(G) C Br(G) C Bo(G), and
B e Br(G) iff B e By(G) & (A~ B implies |[F N Cut B| < |F N Cut Al).

BeBy(G) iff BeBr(G)& A ~B implies min {|B N Checkers|,|Checkers\ B|}
< min{|A N Checkers|, |Checkers \ A|}, (5)

Lemma 6 Let G be a (2,3)-graph and B € Br(G) be given. Then for every set
Z C B such that B\ Z = B (equivalently, Z C BN Checkers and |Z N Cutters(B)| =

31Z|—|Ez|) |[FNCut ZNCut B| < L|FNCut Z| holds, with the equality iff B\ Z X B.
Proof. Similarly as in the proof of Lemma 1 we get

2-|FNCut ZNCutB|— |[FNCutZ| = |[FNCutB|— |[FNCut(B\ Z)| <0.

Assuming B\ Z = B, the equality means exactly B\ Z X B.0O

Lemma 7 Let G be a (2,3)-graph, B € B5(G) and § # Z C B such that B\ Z ~ B
and 2-|BN Checkers| < | Checkers|+|Z|. Then |FNCut ZNCut B| < +-|FNCut Z|.

Proof. Put A:= B\ Z. From our assumption 2|B N Checkers| < |Checkers| + |Z|
follows | A N Checkers| < |Checkers\ A| and |B N Checkers| — |Z| < | Checkers\ B|. As
B\ Z = B we obtain Z C BN Checkers. Hence,

min{|A N Checkers|,|Checkers\ A|} = |B N Checkers| — | Z|
< min{|B N Checkers|,|Checkers\ B|}.

10



E
Due to (5) we see that B\ Z % B and so in the inequality guaranteed by Lemma 6
we have in fact the strict inequality. O

Let us consider a (2,3)-graph G = (V, E). For B C V, we denote Breq := BN
Checkers. Assume further that no pair of nodes in Contacts is adjacent by an edge. We
convert G to a 3-regular (multi-)graph Greq with a node set Vieq equals to Checkers.
Each node v € Contacts and two edges adjacent to v in G are replaced with an edge
e(v) (later called a contact edge) that connects the pair of nodes that were adjacent to
v in G. For any A C Vieq let CutreqA stand for a cut of A in Greq, and Cuttersyeq(A)
stand for the set of nodes of A adjacent in G, eq to an edge of CutyeqA.

Lemma 8 Let G be a (2,3)-graph with no edge between contact nodes, and let B €
Bo(G). Then |Cut B| = |Cutred(Bred)|, and if any pair of nodes in Contacts is at least
at distance 3 apart, Cutyeq(B) is a matching in G req.

Proof. Tt easily follows from the fact that Cut B is a matching in G (Lemma 2) and

from Lemma 5(i). O

We can summarize the above results for the concrete model of (k, 7)-wheels. Given
a (k,7)-wheel G with the edge set consisting of E¢ (which is union of two disjoint
cycles C1 and C3) and Ejs (which is a perfect matching for the checkers of G). We
consider here the choice F' := E¢ for the special subset of “distinguished edges” in
our amplifier analysis.

Given a bad set B, we will refer to fragments of B, the connected components of B
within cycles C; and C>, and to reduced fragments of Byeq, the connected components
of Bpeq within corresponding reduced cycles.

Proposition 1 Let G be a (k,7)-wheel. Then every set B € Bo(G) has the following
properties:

(i) B is a bad set, i.e. |Cut B| < min{|Contacts N B|,|Contacts \ B|}.
(i) Cut B is a matching in G.
(#i) |Cutped(Bred)| = |Cut B|, and Cutyeq(Breq) is a matching in Greq.
(iv) Any fragment of B contains at least 2 checkers.
(v) End nodes of any reduced fragment of Byeq are not incident to Ep N Cut B.

(vi) Any fragment of B consisting of 3 checkers has none of its nodes incident to
Eyr N Cut B.

(vii) Any fragment of B consisting of 2 checkers and 1 contact has both its checkers
matched with B\ Cutters(B) nodes.

(viii) Any fragment of B consisting of 2 checkers has both its nodes matched with
B\ Cutters(B) nodes.

Every set B € Brp(G) additionally has the following properties:

(iz) Any fragment of B contains at least 3 nodes.

(x) Any fragment of B consisting of 3 checkers has all its nodes matched with B\
Cutters(B).

11



(zi) Any fragment of B consisting of 4 checkers has none of its nodes incident to
Ey N Cut B.

All the above properties apply at the same time to B and B:= Checkers\ B. The
following is less symmetric, it says something more about the smaller of the sets B,
B, if B € B(G)}..

(zii) If B € B(G)} with | BN Checkers| < 1| Checkers|, then no pair of checkers that
are end nodes of (possibly distinct) fragments of B, are matched.

Proof. (i) follows from the definition, (ii) is just Lemma 2, (iii)—(viii) can be eas-
ily proved using (ii), Lemma 2, 3 and 5, (ix)—(xi) using Lemma 6, and (xii) using
Lemma 7. O

Proof of Theorem 4

We do not try to optimize the value of 7, here, just to show that 7, < 6.9. Hence
we can keep the proof close to the one of Berman and Karpinski ([2]). In situations,
where counting method is similar, we refer to their proof for more details.

Given k, for simplicity even, k = 2r. Further given 6 with 6k even, (1—6)k = 2r,
0k = 27y, r1 + ro = r. Consider a cycle C; with 2r; contacts (of G, to be produced)
and each 2 consecutive contacts separated by chain of 6 checkers, and a cycle Cy
(disjoint from C}) with 2rs contacts with those chains of length 5. Take a random
perfect matching for the set of checkers. Our aim is to prove that with probability
tending to 1 (as k — oo) the random graph G generated in this way is an amplifier.
(Strictly speaking, conditionally that G is a simple graph. But it is standard to prove
that resulting multigraph is a simple graph with probability bounded away from 0.)

We want to estimate from above the probability that resulting graph G is not an
amplifier, i.e. the probability of the event B%(G) # 0. (Here F := E is the set of
edges of C' = Cy U Cs.) As in our random matchings checkers are relevant only, it is
more convenient to look at the situation in reduced graph Greq. Put

A(G) = {Byeqa : B € Bp(G)}.
From Proposition 1 the properties of any A € A(G) can be derived, e.g.:
(i) CutreqA is a matching in Gyeq-

(ii) Any reduced fragment of A contains at least 2 checkers, and if it is not incident
to any contact edge it contains at least 3 checkers.

The same can be applied to A := Checkers \ A.

(iii) End nodes of any reduced fragment of A are matched with nodes of A, and end
nodes of any reduced fragment of A are matched with nodes of A.

For A € A(G) and j = 1,2 we use the following notation:

a; = the number of contact edges in C; N Cutyeq(A),
a? = the number of contact edges of C} inside fragments of A,
a; = the number of contact edges of C; inside fragments of A.

12



Hence

aj := a} + a? = the number of contact edges of C; incident to A4,

aj = a} + &? = the number of contact edges of C; incident to A.

a' := aj + a3 = the number of contact edges in Eg N Cutyeq(4),

a® := a? + a2 = the number of contact edges inside fragments of A,

a2 := a2 + a2 = the number of contact edges inside fragments of A.

Denote f; = the number of fragments of A (and A as well) in C; (j = 1,2), and
f = fi+ f2. Clearly, 2f; is the size of Cutyeqa(A) inside C;. Put

s; = the number of checkers in AN Cj,

3; =2(7—j)r; —s; = the number of checkers in An Cj,

s=81+82, §=25 +38 =2(6—60)r —s.

There are possible many B € B}.(G) such that A = Byeq. But for any such B the
important number min{|B N Contacts|, | Contacts \ B|} can be bounded from above
by

a := min{r,a' + min{a?, a*}}.

Hence 2f < a is a necessary condition for A. For any B € B} (G) if A = Byeq and
¢ := |Ep N Cut B|, necessarily ¢ + 2f < a. Moreover s — ¢, § — ¢ have to be even, so
for ¢ we have as possible choices those integers from {0,1,2,...,a—2f — 1} for which
s — ¢ is even. Now we will prove bounds on s; in terms of a;, f;, a;. Any fragment
(in C;) incident to ¢ contact edges (suppose i > 2) contains at least (7 — j)(i — 1)
checkers, and at most (7 — j)(¢ + 1) — 2 checkers.

For + = 0 and ¢ = 1 we obtain lower estimates using Proposition 1, the upper
bounds are trivial. By adding sizes of all fragments we obtain

sj > (T—35)(aj — f3) + (2f; —aj) + (8= 5) [},

where fJ(-) means the number of fragments of A in C; incident to no contact edge.
Similarly,
s; <(T—faj+(G-5)f—(6-ja;, j=12

Analogous bounds we obtain for 3;, replacing a;, f;, fJ(-) by a;, fj, fjo Adding, as
s = 81 + So,
s>b5a—6f+a + fo+ (2f —al),

in particular s > 2a follows.
Similarly, assuming a < 5 and s < 3, we get

s<6a+4f — fi —a1 —bal —4al,

and s < 8a < 4r.

Now let A satisfying properties (i)—(iii) with parameters a, f, s, be given. We can
assume that s < §, otherwise we change the role of A and A. Keeping A fixed let us
estimate the probability p = p(a, f, s) that the random matching will produce G such
that our fixed A belongs to A(G).

Fix ¢ € {0,1,...,a — 2f — 1} such that s — ¢ is even. Now we estimate the
number of perfect matchings of checkers such that A € A(G) for resulting graph G
and |Ey NCut 4| =c.

13



The end points of Epr N Cut A in A can be chosen in (S_CQf ) ways (2f end nodes
of reduced fragments of A are excluded), similarly end points in A in (*2/) ways,
there are ¢! possibilities for the matching with the end points chosen as above. Now,
denoting by '

() = 2
the number of perfect matchings in a clique with 2m nodes, we can simply estimate
the number of perfect matchings of checkers leading to graph with A € A(G) and
|Ear N Cut A| = ¢ by the number

o (50 (59) () ()

One can prove that g (= g) is, in fact, increasing for ¢ € (0,a — 2f) in our setting,
hence

gle) < gla—2f), and Y g(c) <rgla—2f).
Consequently, the probability p(a, f, s) defined above can be estimated like

R () (Y

Now we have to estimate how many sets A satisfying (i)—(iii), and with fixed vector of
parameters (a, f, s), there exist. (Of course, only triples satisfying all relations derived
above for sets in A(G) are relevant.) Let us denote that number by N(a, f, s).

We look at all vectors of parameters (ci, f1,s1) that are compatible with fixed
(a, f,s). Any such (a1, f1,s1) determines compatible (a2, f2,s2) and we estimate
N(a, f,s) < O(r%) - max{Ni (a1, f1, 1) Na(az, f2,82)}, where maximum is taken over
all compatible triples (a1, f1,s1), and Nj(a;, f;,s;) stands for the number of sets in
C; with corresponding parameters (aj, f;, $;).

Now we have several possibilities how to estimate N;(a;, f;,s;) from above.

Trivial estimate. If 2f; reduced fragments, each of length at least 2, forms a

pla, f,s) <

partition of Cj, it can be generated by less than (2(77"2);; —273) ways.
Estimate for s small. Let us assume the clockwise orientation on C;. We select
f; “first ends” of the fragments; this can be done in at most (2(7}_] )"i) ways. Next we
J
distribute the sizes of the fragments; because the sum is s; and each size is at least
. . i—fi . 2UT—7)r; i—fi .
2, it can be done in (* P 7) ways, hence we have estimate ( ( f]?)”) - (% 5 7). This
works well, e.g. for a < 5.
One can get in the elementary way estimate

9 a

00"

just comparing terms when expressed as fractions of factorial products. From this,
probability that a set A with a < {5 will belong to A(G) for a produced graph G
tends to 0 as r approaches infinity.

Alternative countings. If s; is relatively low, in the sense that s; is close to its
lower estimate given earlier, then A in C; is very close to its inner approximant whose
end points are adjacent to contact edges. In fact, the difference d; := s; — (7—j)(a; —
fj) measures the deviation of A in C; from this approximant. If d; is relatively small,
there are only a few candidates for a set ANC; with these parameters a;, f;, s;. This

leads to estimate 5 of a2
N-a-,f-,s- S( J J)(] ])‘
.7( J J ]) 2f] 2f]

p(aa f? S) ) Nl(ala fl;sl)N2(U/2, f2, 82) = 0(7‘_10)(
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Similarly, if s; is close to its upper estimate, then A in Cj is very close to its outer
approximant. Now, the deviation is computed differently: d; := (7 — j)(a; + f;) — s;.
The resulting formula estimating N;(a;, f;, s;) can be taken the same with this choice.
See [2] for more details on this particular way of computing.

Now, for Nj(a;, f;,s;) we take minimum from bounds computed above for bound
on

p(a, f,8) - Ni(a, f1,51) - Na(az, fa, 82).

Using Stirling’s formula and binary entropy function we estimate %log of above ex-
pressions over the range of parameters given by our earlier estimates and a > {5. It
stays negative and bounded away from zero for § € (0,0.1). For such 6, the probabil-
ity that a set A with a > 5 will belong to A(G) for a produced graph G'is bounded
from above by 0(0.95%).

Consequently, 7, < 6.9 easily follows.

4 Amplifier parametrized known reductions

We call HYBRID a system of linear equations over Zs, each equation either with 2 or
with 3 variables. We are interested in hard gap results for instances of HY BRID with
exact 3 occurrences of each variable (a subproblem of E3-Occ-MAX-3-LIN-2). As
suggested in [2], one can produce hard gaps for such restricted instances of HYBRID
by gap-preserving reduction from MAX-E3-LIN-2.

Our approach is simpler than in [2], since we start the reduction from the problem
which is already of bounded (even constant, and possibly very large) occurrence. This
is a crucial point, since the number of occurrences of variables is just the value that has
to be amplified using the expander or amplifier method. In our reductions an amplifier
plays a role of a constant. Therefore we need not restrict ourselves to amplifiers that
can be effectively constructed; any proof of the existence of amplifiers with better
parameters than those currently known, further improves all our inapproximability
results.

Reduction from Q(e, k) to HYBRID(G)

Let ¢ € (0,%), and k be a positive integer such that Q(e, k) is NP-hard. Now we
describe a gap-preserving reduction from Q(g, k) to the corresponding gap-version of
HYBRID. Assume that G = (V, E) is a fixed (k, 7)-amplifier with |Contacts| = k and
|V| = 7k. Let an instance I of Q(e, k) be given, denote by V(I) the set of variables
in I, m := |V(I)|. Take m disjoint copies of G, one for each variable from V(I). Let
G, denote a copy of G that corresponds to a variable z. The contact nodes of G,
represent k occurrences of z in equations of I. Distinct occurrences of a variable z in
I are now represented by distinct contact nodes of G,. For each equation z+y+2z =i
of I (i € {0,1}) we create a hyperedge of size 3, labeled by i. A hyperedge connects
a triple of contact nodes, one from each G, Gy and G,. The edges inside each copy
G, are labeled by 0 and any such edge (u,v) represents the equivalence equation
u+v=0.

The produced instance I' of HYBRID corresponds simultaneously to a system
of equations and a labeled hypergraph. Clearly, nodes correspond to variables, and
labeled (hyper-)edges to equations in an obvious way. The restriction of HYBRID to
these instances will be called as HYBRID(G) in what follows. The most important
property of a produced instance I' is that each variable occurs exactly 3 times in
equations. In particular, each contact node occurs exactly in one hyperedge. If an

instance I has m variables with |I| = mTk equations, then I' has mrtk variables,
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m—k equations with 3 variables, and mk (37 — 1) equations with 2 variables. Hence

|I’| = (97 — 1) equations in total.

Now we show that the above reduction from I to I' preserves the hard gap of
Q(g, k). In fact, there is an affine dependence of OPT(I') on OPT(I). Clearly, any
assignment to variables from V(I) generates an assignment to variables of I’ in natural
way; the value of a variable x is assigned to all variables of G,. Such assignments to
variables of I' are called standard. To show that the optimum OPT(I") is achieved on
standard assignments is easy. In fact, any given assignment ¢ to variables of I’ can
be converted to a standard one in such way that the number of satisfied equations
does not decrease, as follows: consider a variable x from V(I). Assign to all variables
of G, the same value as is assigned to the majority of contact nodes in G, by the
assignment . The fact that G is an amplifier ensures that the number of unsatisfied
equations does not increase. Now, if we do the same for all variables from V(I) one
after another, the result will be a standard assignment. Consequently, OPT(I') is
achieved on standard assignments. But for a standard assignment the number of
unsatisfied equations for I’ is the same as for I. Consequently, OPT(I') depends
affinely on OPT(I), namely (1 — OPT(I"))|I'| = (1 — OPT(I))|I|. Now we see that

2e

OPT(I) >1—¢  implies OPT(I') >1- o and
r_
1 97 —2 2e
PT(I — impli PT(I' T
(0] ()<2+5 implies (0] ()<g7—_1+97—_1

This proves NP-hardness of ($2=2 4 52251 —
Hence, we have just proved the following:

525+ )-gap version of HYBRID(G).

Theorem 5 Assume that e € ( 2 let k be an mteger such that Q(e, k) is NP-hard,
and G be a (k,T)-amplifier. Then (=3 +525,1— -gap version of HYBRID(G)
is NP-hard.

97' 1)

Corollary 1 It is NP-hard to approrimate the solution of E3-Occ-MAX-3-LIN-2
within any constant smaller than 1 + 9;72.

Proof. Inapproximability within g::%;gg 1+ W follows from the Theorem 5.

But for € > 0 arbitrarily small there exists (k, 7)-amplifier w1th T arbitrarily close to
7+« and with k so large that Q(s k) is NP-hard. If » < 1+ g—— we can take those

parameters such that r < 1+

QT 2 2o and 1napprox1mab111ty w1th1n r follows. O

Reductions from HYBRID(G) to other problems

We refer to [2] where Berman and Karpinski provide gadgets for reductions from
HYBRID to small bounded instances of MAXIMUM INDEPENDENT SET and MINIMUM
NobpE CoOVER. We can use exactly the same gadgets in our context, but instead of
their wheel-amplifier we use a general (k,7)-amplifier. The proofs from [2] apply in
our context as well.

Theorem 6 Let ¢ € (0,%), k be a positive integer such that Q(e,k) is NP-hard,
and T be such that a (k,7)-amplifier exists. It is NP-hard to decide whether an in-
stance of MAX-3-1S with n nodes has the maximum size of an independent set above
%n, or below %n. Consequently, it is NP-hard to approrimate the

solution of MAX-3-IS within any constant smaller than 1 + m.
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Similarly, it is NP-hard to decide whether an instance of MIN-3-NC with n nodes
has the minimum size of a node cover above %n, or below %n. Conse-
quently, it is NP-hard to approzimate the solution of MIN-3-NC within any constant
smaller than 1 + m. The same hard-gap and inapprozimability results apply to

3-regular triangle-free graphs.

In the following we present the inapproximability results for three similar APX-
complete problems: MAXIMUM TRIANGLE PACKING, MAXIMUM 3-SET PACKING
problem and MINIMUM 3-SET COVERING problem. From L-reductions used in the
proofs of Max-SNP completeness (see [7] or [9]) some lower bounds can be counted
but results will be worse as the lower bounds presented here.

Maximum Triangle Packing problem. A triangle packing for a graph G = (V, E)
is a collection {V;} of disjoint 3-sets of V', such that every V; induces a 3-clique in
G. The goal is to find cardinality of maximum triangle packing. The problem is
APX-complete even for graphs with maximum degree 4 ([7]).

Maximum 3-Set Packing problem. Given a collection C' of sets, the cardinality
of each set in C'is at most 3. A set packing is a collection of disjoint sets C' C C. The
goal is to find cardinality of maximum set packing. If the number of occurrences of any
element in C is bounded by a constant K, K > 2, the problem is still APX-complete
(1))

Minimum 3-Set Covering Problem. Given a collection C of subsets of a finite
set S, the cardinality of each set in C' is at most 3. The goal is to find cardinality of
minimum subset C' C C such that every element in S belongs to at least one member
of C'. If the number of occurrences of any element in sets of C is bounded by a
constant K > 2, the problem is still APX-complete [9].

Theorem 7 Assume that € € (0,1), k a positive integer such that Q(e, k) is NP-
hard, and T such that there is a (k,T)-amplifier.

(i) It is NP-hard to decide whether an instance of TRIANGLE PACKING with n

nodes has the maximum size of a triangle packing above %n, or be-
low %n. Consequently, it is NP-hard to approximate the solution of

MaxiMUM TRIANGLE PACKING problem (even on 4-regular graphs) within any

constant smaller than 1 + m.

(i) It is NP-hard to decide whether an instance of 3-SET PACKING with n triples and

the occurrence of each element exactly in two triples has the mazrimum size of
a packing above %n, or below %n. Consequently, it is NP-hard
to approximate the solution of 3-SET PACKING with ezactly two occurrences of
each element within any constant smaller than 1 + m.

(#1) It is NP-hard to decide whether an instance of 3-SET COVERING with n triples

and the occurrence of each element exactly in two triples has the minimum size of
a covering above %n, or below %n. Consequently, it is NP-hard
to approzimate the solution of 3-SET COVERING with exactly two occurrences

of each element within any constant smaller than 1 + m.

Proof. Consider a 3-regular triangle-free graph G as an instance of MAX-3-IS from
Theorem 6. (i) Take a line-graph L(G) of G. Nodes of G are transformed to triangles
in L(G) and this is one-to-one correspondence, as G was triangle-free. Clearly, inde-
pendent sets of nodes in G are in one-to-one correspondence with triangle packings
in L(G), so the conclusion easily follows from Theorem 6. (ii) Create an instance of
3-SET PACKING that uses for 3-sets exactly triples of edges of G adjacent to each node
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of G. Clearly, independent sets of nodes in G are in one-to-one correspondence with
packings of triples in the corresponding instance. Now the conclusion easily follows
from the hard-gap for MAx-3-1IS problem. (iii) Now a graph G from Theorem 6 is
viewed as an instance of MIN-3-NC. Using the same collection of 3-sets as in the
part (i) we see that node covers in G are in one-to-one correspondence with coverings
by triples in the new instance. The conclusion follows from the hard-gap result for
MIN-3-NC from Theorem 6. [

5 New reduction for 3-Dimensional Matching

Definition and known results. Given the disjoint sets A, B, and C and a set
T C Ax B xC. A matching for T is a subset 7' C T such that no elements in
T' agree in any coordinate. The goal of the MAXIMUM 3-DIMENSIONAL MATCHING
problem (shortly, MAX-3DM) is to find cardinality of a maximum matching.

The problem is APX-complete even in the case if the number of occurrences of
any element in A, B or C is bounded by a constant K (K > 3) [7]. For ‘planar’
instances problem admits a PTAS ([8]).

Recall that usually the hardness of MAX-3DM is proved by reduction from bounded
instances of MAX-3-SAT. This approach is used in [7] and from given L-reduction
lower bound 1 + ¢ (for a very small €) can be counted. In what follows we present
the new transformation from HYBRID to edge 3-colored instances of MAX-3-IS to
obtain better inapproximability result for MAX-3DM.

Idea: If we have hardness result for MAX-3-1IS on 3-regular edge-3-colored graphs,
it is at the same time the result for MAX-3DM due to the following natural trans-
formation. Suppose that edges of graph G = (V, E) are properly colored with three
colors a, b, c. Now define the sets A = {all edges of color a}, B = {all edges of color
b}, C ={alledges of ¢} and aset T C Ax Bx C as T = {(ey(v), e(v), e.(v)), for all
v € V}, where e;(v) denotes an edge of color ¢ incident to the node v.

It is easy to see that independent sets of nodes in G are in one-to-one corre-
spondence with matchings of an instance obtained by the reduction above. So, the
hardness result for MAX-3DM will immediately follow from the hardness result for
MAX-3-IS on edge-3-colored graphs. It is not clear from Berman-Karpinski reduction
([2]) if their hardness results applies to the instances of MAX-3-IS are (in polynomial
time) edge-3-colorable. Therefore we modify their reduction to obtain hardness result
even for instances of MAX-3-IS that are easily edge-3-colorable.

Theorem 8 Given ¢ € (0, i) and k be an integer such that Q(g,k) is NP-hard. As-
sume T is such that there is a (k,7)-amplifier. Then it is NP-hard to decide whether
a 3-regular edge-3-colored instance of MAX-3-1S with n nodes has the mazrimum size
of an independent set above %n, or below %n. Consequently, it is
NP-hard to decide whether an instance of MAX-3DM with n-triples, each element oc-

curring in exactly two triples, has the mazimum size of a matching above %n,
or below %n. Hence it is NP-hard to approzimate MAX-3DM within any

constant smaller than 1 + ﬁ even on instances with exactly two occurrences of
each element.

Proof. Let e € (0,3), k be a positive integer such that (e, k) is NP-hard, and
G = (V,E) be a fixed (k,7)-amplifier. We describe a reduction of an instance I of
HYBRID(G) to an edge-3-colored instance G’ of MAX-3-IS. Recall that T has 587-|1|

97—1
— 973 : :
= 57— | equations with 2

variables, i3 1= QTL_JI | equations with 3 variables, and 5 :
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a gadget A, for a contact

a gadget A, for a checker z

Figure 1: Example of gadgets for checkers, contacts and equations with two variables.

Figure 2: Equation gadgets with three variables.

variables. Each variable z of I is replaced with a gadget A,. The gadget of a checker
is a hexagon H, in which nodes with labels 0 and 1 alternate. A gadget of a contact
is a hexagon H, augmented with a trapezoid T;, a cycle of 6 (respectively, 8) nodes
that shares one edge with a hexagon H,. Furthermore, we add a chord for an 8-cycle
(see Fig. 1). Again, labels 0 and 1 of nodes in those cycles alternate.

If two variables (i.e. nodes) z, y are connected by an equation (i.e. disjoint edge),
z = y, we connect their hexagons with a pair of edges (so called “connections”) to
form a rectangle in which the in which nodes with label 0 and 1 alternate. The
rectangle thus formed is a gadget of an equation with two variable (see Fig. 1).

If three variables are connected by an equation (i.e. an hyperedge), say, t+y+2z =
0, the trapezoids Ty, T, and T, are coupled with the set S;,. of four special nodes
(see Fig. 2). The trapezoid of the first variable of the equation, T}, is an 8-cycle with
a chord, trapezoids T;, and T, are 6-cycles.

The produced instance G' = (V',E') has n nodes, where n = 4is + 24i3 =
%H |. Edges of G' are 3-colored as depicted on Figures 1-2 such that all con-
nections are of the same color (dotted lines), which alternates on rectangles with the
second color (full lines). On hexagons full line alternates with dashed.

Given an assignment ¢ : V(I) — {0,1}, we can describe an IS in G’ that corre-
sponds to the assignment as follows: Take preliminary a set IV without special nodes
with the property that for each € V(I) NN A, consists of the set of all nodes in 4,
labeled by (). Now we modify N:

e For each equation of the form x = y which is not satisfied by ¢ we remove one
(arbitrary) of two nodes of N from that rectangle, which corresponds to the
gadget of the equation.
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e For each equation of the form z +y+ 2z = 0 (respectively, z+y + z = 1) satisfied
by ¢ we add to N the special node from Sg,, labeled by triple ¢(z)¢(y)e(2).

Any independent set N obtained from some assignment in this way is called standard.
It is easy to count the cardinality of any standard IS, it is 2iy + 113 — UNSAT(p),
where UNSAT(p) means the number of equations of I unsatisfied by ¢. Taking ¢
optimal, i.e. such that UNSAT(¢) = (1 — OPT(I)) - |I|, implies

OPT(G") > max{|N|: N is a standard IS} = 2is + 11i3 — (1 — OPT(J))|{]

n
= WD) (187 + 16 — (1 — OPT(I))(97 —1)).

In what follows we show that, in fact, equality holds, showing that there is a stan-
dard IS in G’ of cardinality OPT(G"). Having this simple functional dependence of
OPT(G") on OPT(I) for granted we immediately conclude the hard gap result claimed
in this theorem from that of HYBRID(G).

Put # = {M : M is an IS in G' with |M| = OPT(G')}. We prove that there is
M € # such that M is a standard IS showing that some extremal elements of .#
have to be standard. The definition of extremality we use looks artificial, but it fits
well to our purpose. Let us keep M € . fixed. If for a subset A of a node gadget A,
the set A N M contains nodes of one type only (i.e. only 0-nodes, or only 1-nodes),
the set A is termed pure; otherwise it is dirty. Let us introduce the following notation
for M: ny (M) is the number of dirty hexagons, ns (M) is the number of special nodes
in M, ng(M) is the number of nodes € M such that for some contact u with H,
pure, z € T, and of distinct type from H, N M. For My, M> € .# we write M1 < M>
whenever (m (Ml),TLQ(Ml),TLg(Ml)) < (nl(MQ),TLQ(MQ),ng(MQ)) in a lexicographic
order.

Now we prove in the series of claims that any minimal element M of (., <) is a
standard IS of G'.

Claim 1 Ifu is a checker then A, (= H,) is pure.

Proof. 1If H, is dirty, then H, N M consists of two opposite nodes ag, a; of H,.
(Here a; has a label 4, the same holds in what follows for all indices.) One of two sides
of H, that are “parallel” to the main diagonal (ag,a;) of H,, say (b1, bo), has both
nodes in the same rectangle. Let ¢g, ¢; stand for the other vertices of this rectangle.
Since (co,c1) € E' there is j € {0,1} such that ¢; ¢ M. But replacing a; € M by
b1_; leads to M' € .# with M' < M, a contradiction. Hence H,, is pure. O

Claim 2 Ifu is a contact with dirty hexagon H,, of its gadget A, then T, is a 6-cycle
and Ay, N M = {ag,a1,co,c1}, where ag,a; € H, \ T, are vertices connected to T,
and co,c1 € T, \ H,, are connected to H,.

Moreover, if T, is a 6-cycle with vertices by, by, cg, di, dy, ¢1 in this order, then
from the 3-variable equation gadget corresponding to u, exactly two special vertices
are in M, those adjacent to dy and d; .

Proof. H, is dirty, thus H, N M are opposite vertices ag, a; of Hy,. One of two
sides of H,, “parallel” to (ag,a1), say (b1,bg), has both vertices in the same equation
gadget. Let cg, c1 stand for the vertices of this gadget that are connected to b; and
bo. If there is j € {0,1} such that ¢; ¢ M (which is always true if by, b1, co and ¢;
forms a rectangle) we get the contradiction in the same way as in the proof of Claim 1;
replacing a; by bi_; in M we get M' € .# with less dirty hexagons. Consequently,
(b1,bo) is an edge of a trapezoid Ty, and ¢; € M for both ¢ € {0,1} (see Fig. 3).
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Assume now, that T, is a 8-cycle with a chord and with nodes by, by, g, €1, dg,
dy, eg, c1 in this order (see Fig. 3). As (dg,dy) € E', there is j € {0,1} such that
d; ¢ M. Now replacing ¢; € M by e;_; and a; € M by by_; we get M' < M, a
contradiction. Consequently, Ty, is a 6-cycle, with {ag,a1,co,c1} C M. Thus clearly
A,NM = {CL(), a, Co, Cl}.

Obviously, special nodes adjacent to either c¢g or ¢; are not in M. To complete
the proof, assume that for some j € {0,1} the special node adjacent to d; is not in
M. But replacing c1—; € M by d; and a1_; by b; we obtain less dirty hexagons, a
contradiction that complete the proof of claim. O

Claim 3 Assume that u is a contact with pure H,. Then H, NT, N M contains a
node, say b;, (j € {0,1} and the notation of nodes is the same as in the proof of
Claim 2).

(i) If T, is pure, then it is also full, i.e. T, N M contains all nodes of T, labeled
by j.

(i) If Ty is a dirty 6-cycle, then T, N M = {b;,di_;} and both special nodes
adjacent to c; and d; belong to M.

(iii) If T, is a dirty 8-cycle with a chord, then T, N M = {b;,e1_;,di_;} and both
special nodes adjacent to c¢; and d; belong to M.

Proof. Take j € {0,1} that coincides with label of each node in H, N M. We first
prove that b; € M (recall that b; € H,NT,). If b; ¢ M and M € 4, a neighbor of
b;, necessarily ¢;_;, belongs to M. But replacing ¢;_; € M by b; leads to M' € .#
with M' < M a contradiction. Consequently, b; € H, NT, N M.

(i) Assume that T, is pure, i.e. T, N M contains nodes labeled by j only. We
prove that T, is full. Fix a node v € Ty, labeled by j. Assume, on the contrary, that
vé M. As M € A, it is only possible if a neighbor of v (necessarily one of special
nodes) belongs to M. Replacing this special node in M by v we obtain M' € .# with
M' < M, a contradiction. Consequently, each v € T, labeled by j belongs to M,
hence T, is pure and full.

(ii) If T, is a dirty 6-cycle, as b; € M, necessarily T, N M = {b;,di_;}. If
the special node adjacent to c¢; (respectively, d;) does not belong to M, replacing
di—; € M by c; (respectively, by d;) leads to M' € .# with M' < M, a contradiction.
Hence both those special nodes belong to M.

(ili) Assume T, is a dirty 8-cycle with a chord. Clearly, at least one of d;_; and
e1—; belongs to M. If only one of them belongs to M, then replacing it in M by e;
leads to M' < M, a contradiction. Now it is obvious that T, N M = {b;,e1_;,d1_;}.
If the special vertex adjacent to ¢; (respectively, d;) does not belong to M, replacing
ei—; € M by c; (respectively, d;) and di_; by e; leads to M' € .# with M' < M, a
contradiction that completes the proof of claim. O

Let us summarize the properties of M € -

21



(i) The gadgets of all checkers are pure.
(ii) If a gadget of a contact is pure, it has a full trapezoid.
The following are the only possibilities of a dirty gadget of a contact u:

(iii) T, is an 8-cycle with a chord, H, is pure, and for some j € {0,1} T, " M =
{bj,e1—j,d1_;} and both special nodes adjacent to ¢; and d; belong to M.

(iv) T, is a 6-cycle, H,, is pure, and for some j € {0,1}, T, " M = {b;,d1_;} and
both special nodes adjacent to c; and d; belong to M.

(v) T, is a 6-cycle, A, " M = {ag,a1,co,c1}, and from the 3-variable equation
gadget corresponding to u exactly 2 special nodes belong to M, namely those
adjacent to dy and d;.

Our aim is to prove that, in fact, the gadget of no contact is dirty. As then all
trapezoids are pure and full, it easily follows (as M € .#) that M is a standard
independent set, completing the proof.

To obtain the proof by contradiction, assume that a gadget of some contact is dirty.
Consider the 3-variable equation gadget in which this dirty contact appears. We can
assume that the corresponding equation is t +y+ 2z =0, thecaseof c +y+2 =1
being completely analogous. Recall that 1), is an 8-cycle with a chord, T, and T, are
6-cycles.

If T, is a dirty set, then for some j € {0,1}, T, " M = {b;,e1—;,d1—;} and both
special nodes adjacent to ¢; and d; belong to M. But in T}, (resp. T>) these special
nodes are connected with nodes of distinct type. It implies, Ty and T, cannot be full
trapezoids and due to (ii), both their gadgets are dirty. The case (v) does not occur
for any of them, because both special nodes from M are not adjacent to d-nodes of T},
(resp. T}). Hence the case (iv) occurs for both, which in turn implies that the special
node adjacent to di_; (in T}) belongs to M, a contradiction.

If T, is a pure set, then it is full (according (ii)) and M contains at most 2 of
special nodes. If we suppose T}, or T, dirty, then M contains exactly 2 special nodes.
But from the property of M, the nodes from M N S,,. are adjacent in T} with two
nodes of distinct type, but one is not d-node. It means (iv) and (v) does not occur
and T is pure. The same arguments hold also for T%,. O

Conclusion.  There is still substantial gap between the lower and upper ap-
proximation bounds for small occurrence combinatorial optimization problems. The
method of parametrized amplifiers shows better the quality of used reductions and
the possibilities for further improvement of lower bounds. But it is quite possible that
the upper bounds can be improved more significantly.

References

[1] P. Berman and T. Fujito: Approzimating independent sets in degree 3 graphs,
Proc. 4th Workshop on Algorithms and Data Structures, Lecture Notes in Com-
puter Science 955, Springer-Verlag, Berlin, 1995, 449-460.

[2] P. Berman and M. Karpinski: On some tighter inapprozimability results, further
improvements, Electronic Colloquium Complexity, Report No. 65, 1998.

[3] L. Engebretsen and M. Karpinski: Approzimation hardness of TSP with bounded
metrics, Proceedings of 28th International Colloquium on Automata, Languages
and Programming (ICALP), Crete, Greece, 2001, LNCS 2076, 201-212.

22



[4]

[5]

[6]

[8]

[9]

[10]

[11]

J. Hastad: Some optimal inapprozimability results, Journal of ACM 48 (2001),
798-859.

C. A. J. Hurkens and A. Schrijver: On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems, SIAM J. Discrete Mathematics 2 (1989), 68-72.

M. Chlebik and J. Chlebikova: Approzimation Hardness of the Steiner Tree
Problem on Graphs, Proceedings of the 8th Scandinavian Workshop on Algorithm
Theory, SWAT 2002, Turku, Finland, 2002, Springer, LNCS 2368 (2002), 170—
179.

V. Kann: Mazimum bounded 3-dimensional matching is MAX SNP-complete,
Information Processing Letters 37 (1991), 27-35.

T. Nishizeki and K. Kashiwagi: On the 1.1 edge-coloring of multigraphs, STAM
J. Discrete Mathematics 3 (1990), 391-410.

C. H. Papadimitriou and M. Yannakakis: Optimization, approximation, and com-
plexity classes, J. Computer and System Sciences 43 (1991), 425-440.

C. H. Papadimitriou and S. Vempala: On the Approximability of the Traveling
Salesman Problem, Proceedings of the 32nd ACM Symposium on the theory of
computing, Portland, 2000.

M. Thimm: On the Approximability of the Steiner Tree Problem, Proceedings
of the 26th International Symposium, MFCS 2001 Maridnske Lazne, Czech Re-
public, August 27-31, 2001, Springer, Lecture Notes in Computer Science 2136
(2001), 678-689.

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject *help eccc’

23



