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Abstract

The deficiency of a propositional formula F in CNF with n variables and m

clauses is defined as m−n. It is known that minimal unsatisfiable formulas
(unsatisfiable formulas which become satisfiable by removing any clause)
have positive deficiency. Recognition of minimal unsatisfiable formulas is
NP-hard, and it was shown recently that minimal unsatisfiable formulas
with deficiency k can be recognized in time n

O(k). We improve this result
and present an algorithm with time complexity O(2k

n
4). Whence the

problem is fixed-parameter tractable in the sense of R. G. Downey and
M. R. Fellows, Parameterized Complexity, Springer, New York, 1999.

Our algorithm gives rise to a fixed-parameter tractable parameteri-
zation of the satisfiability problem: If the maximum deficiency over all
subsets of a formula F is at most k, then we can decide in time O(2k

n
3)

whether F is satisfiable (and we certify the decision by providing either a
satisfying truth assignment or a regular resolution refutation). Known pa-
rameters for fixed-parameter tractable satisfiability decision are tree-width
or related to tree-width. In contrast to tree-width (which is NP-hard to
compute) the maximum deficiency can be calculated efficiently by graph
matching algorithms. We exhibit an infinite class of formulas where max-
imum deficiency outperforms tree-width (and related parameters), as well
as an infinite class where the converse prevails.
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1 Introduction

We consider propositional formulas in conjunctive normal form (CNF) repre-
sented as sets of clauses. A formula is minimal unsatisfiable if it is unsatisfiable
but omitting any of its clauses makes it satisfiable. The recognition of min-
imal unsatisfiable formulas is a computationally hard problem, shown to be
DP -complete by Papadimitriou and Wolfe [29].

Since for a minimal unsatisfiable formula F the number m of clauses is
strictly greater than the number n of variables [1], it is natural to parameterize
minimal unsatisfiable formulas with respect to the parameter

δ(F ) := m − n,

the deficiency of F . Following [24] we denote the class of minimal unsatisfiable
formulas with deficiency k by MU(k).

It is known that for fixed k, formulas in MU(k) have short resolution refu-
tations, and so can be recognized in nondeterministic polynomial time [23].
Moreover, deterministic polynomial time algorithms have been developed for
MU(1) and MU(2), based on the very structure of formulas in the respective
classes [11, 24]. Finally it was shown that for any fixed k, formulas in MU(k)
can be recognized in polynomial time [26, 14]. The algorithm of [26] relies on
the fact that formulas in MU(k) not only have short resolution refutations, but
such refutations can even be found in polynomial time. On the other hand, the
algorithm in [14] relies on the fact that the search for satisfying truth assign-
ments can be restricted to certain assignments which correspond to matchings
in bipartite graphs (we will describe this approach more detailed in Section 4).
Both algorithms have time complexity nO(k) ([14] provides the more explicit
upper bound O(nk+1/2l) for formulas of length l with n variables).

The degree of the polynomials constituting time bounds of the quoted algo-
rithms [26, 14] strongly depends on k, since a “try all subsets of size k”-strategy
is embarked. Consequently, even for small k, the algorithms become imprac-
ticable for large inputs. The theory of parameterized complexity, developed
by Downey and Fellows [13], focuses on this issue. A problem is called fixed-
parameter tractable (FPT ) if it can be solved in time O(f(k) ·nα) where n is the
size of the instance and f(k) is any function of the parameter k (the constant
α is independent from k).

In this paper we show that MU(k) is fixed-parameter tractable, stating an
algorithm with time complexity O(2kn4). The obtained speedup relies on the
interaction of two concepts, maximum deficiency and expansion, both stemming
from graph theory (the graph theoretic concepts carry over to formulas by means
of incidence graphs, see Section 4).

1.1 Maximum deficiency and expansion

The maximum deficiency of a formula F is defined as δ∗(F ) = maxF ′⊆F δ(F )
(thus always δ∗(F ) ≥ 0). This parameter was first considered for formulas
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by Franco and Van Gelder [16]. For minimal unsatisfiable formulas, deficiency
and maximum deficiency agree. Formulas with maximum deficiency 0, called
“matched formulas” in [16], are always satisfiable (for generalizations, see [35]).
The maximum deficiency of a formula can be considered as its distance from
being a matched formula and provides a measure of its hardness.

We call a formula F q-expanding if for every nonempty set X of variables of
F there are at least |X |+ q clauses C of F such that some variable of X occurs
in C. It is known that minimal unsatisfiable formulas are 1-expanding [1] and
that every formula contains some equisatisfiable 1-expanding subset; moreover,
such subset is unique and can be found efficiently [25, 14]. Furthermore, if each
literal of a formula F ∈ MU(k), k ≥ 2, is contained in at least 2 clauses, then F
is 2-expanding [23, 24]. We extend the various quoted results and pinpoint the
importance of the notion of q-expansion for satisfiability decision.

Let F [x = ε] denote the formula obtained from F by instantiating the vari-
able x with a truth value ε ∈ {0, 1} and applying the usual simplifications (see
Section 2.2 for exact definitions). It is known that in general δ∗(F [x = ε]) ≤
δ∗(F ) + 1 holds, and if F is 1-expanding, then even δ∗(F [x = ε]) ≤ δ∗(F ) (see
[25]). Moreover by simultaneous instantiation of δ∗(F ) variables one can reduce
any satisfiable formula F to a formula with maximum deficiency 0 ([14], see
Theorem 1 below). Thus, if k is fixed, then trying all possible instantiations
of k variables can be carried out in polynomial time, but the degree of the
polynomial strongly depends on k. Hence the known approach does not yield a
fixed-parameter tractable algorithm.

Key for our improvement is an efficient algorithm which reduces a given
formula to an equisatisfiable formula F such that

instantiating any variable of F with any truth value 0 or 1 decreases
the maximum deficiency;

we call a formula F with this property δ∗-critical. We show that if every literal
of a 2-expanding formula F occurs in at least two clauses, then F is δ∗-critical.

We present a variant of the Davis-Logemann-Loveland (DLL) algorithm ap-
plying splittings (branchings from F to F [x = 0] and F [x = 1]) to δ∗-critical
formulas only. Consequently, the maximum deficiency decreases at each split-
ting, and so the height of the resulting search tree is bounded by the maximum
deficiency of the input formula. A careful analysis of the reductions applied
at the nodes of the search tree gives the following time complexity (the hidden
constant does not depend on k).

Satisfiability of formulas with n variables and maximum deficiency k
can be decided in time O(2kn3).

The presented algorithm provides certificates for its decision; i.e., if the input
formula is satisfiable, then it outputs a satisfying truth assignment, otherwise a
regular resolution refutation.

To decide whether a formula F belongs to MU(k), we first check δ(F ) =
δ∗(F ) = k; if this holds true, then we check whether F is unsatisfiable, and
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whether F \ {C} is satisfiable for all clauses C of F . This can be accomplished
by n + k + 1 applications of the above result. Hence we get the following.

Minimal unsatisfiable formulas with n variables and n + k clauses
can be recognized in time O(2kn4).

1.2 Fixed-parameter tractable parameterizations of SAT

Several recursively defined parameterizations of the satisfiability problem are
known which allow satisfiability decision in time nO(k) if the considered pa-
rameter is bounded by k; see [30] for references. Such time complexity does
not constitute fixed-parameter tractability (however, it appears that no fixed-
parameter intractability results are known; the W-hierarchy of [13] provides a
means for intractability results).

Fixed-parameter tractability can be achieved by bounding the tree-width of
the considered formulas. Tree-width is usually defined for graphs, but can be
applied to formulas via incidence or primal graphs; we refer to the former as
“incidence tree-width” and to the latter as “primal tree-width,” see Section 7 for
details. Formulas with bounded incidence tree-width have also bounded primal
tree-width, but the converse does not hold; hence incidence tree-width is the
more general parameter.

Gottlob, et al. [19] show that satisfiability of formulas with bounded primal
tree-width is fixed-parameter tractable, applying general methods developed in
[19] for constraint satisfaction problems. By means of tree-decompositions, for-
mulas can be transformed into acyclic constraint satisfaction problems (CSPs)
which in turn can be solved efficiently. Branch-width is another tree-width
related parameter; it agrees with tree-width up to a multiplicative constant.
Alekhnovich and Razborov [2] show fixed-parameter tractable satisfiability de-
cision for formulas with bounded branch-width. The algorithm developed in [2]
is an extension of the algorithm of Robertson and Seymour [32] for computing
branch-decompositions. Alekhnovich and Razborov also discuss the relation of
branch-width and the “resolution width” of Ben-Sasson and Wigderson [4]. The
algorithms of [19] and [2] are suitable for use in praxis.

A variant of Courcelle’s Theorem (see, e.g., [13]) allows to achieve fixed-
parameter tractability even for larger classes of formulas: In [9] it is shown
that if a “k-expression” for the directed incidence graph of a formula F is given
(thus its directed clique-width is at most k, see Section 7.2 for definitions), then
satisfying assignments of F can be counted in time O(f(k)·l). Although it is not
known whether graphs of clique-width k can be recognized in polynomial time
for fixed k ≥ 4, the result of [9] yields fixed-parameter tractable satisfiability for
formulas with bounded incidence tree-width (for, graphs of bounded tree-width
have also bounded clique-width [10]).

Both tree-with and branch-width are NP-hard to compute [33, 3] (in con-
trast to maximum deficiency, which can be computed efficiently by matching
algorithms); however, for fixed k it can be decided efficiently whether a given
graph has tree-width (or branch-width) k.
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How is maximum deficiency related to the quoted parameters? We show the
following.

1. There are formulas with bounded primal tree-width (implying bounded
incidence tree-width) but arbitrary high maximum deficiency.

2. Conversely, there are formulas with bounded maximum deficiency
but arbitrary high incidence clique-width (implying arbitrary high in-
cidence tree-width and primal tree-width).

Thus tree-width (resp. branch-width) and maximum deficiency are in a cer-
tain sense incomparable.

Finally, we mention some fixed-parameter results for a certain subclass PIF2

of so-called “pure implicational formulas” (PIF2 contains propositional formulas
whose only connective is the implication, and where each variable occurs at
most twice; negations are not allowed, but a formula may contain the constant
f (falsum)). In [15] it is shown that satisfiability of PIF2 formulas with k
occurrences of the symbol f can be decided in time O(kkn2); thus satisfiability
is fixed-parameter tractable. The time complexity has been recently improved to
O(3kn2), k ≥ 4, by means of dynamic programming techniques [21]. Although
any CNF formula F can be translated into an equisatisfiable PIF2 formula P (see
[20]), the number of f occurrences in P always exceeds the maximum deficiency
of F , at least if the translation of [20] is used.

A more in-depth study of the fixed-parameter complexity of parameteriza-
tions of the satisfiability problem and their relative strength is carried out in a
forthcoming paper [34].

2 Notation and preliminaries

2.1 Formulas

We assume an infinite supply of propositional variables. A literal is a variable
x or a complemented variable x; if y = x is a literal, then we write y = x;
we also use the notation x1 = x and x0 = x. For a set S of literals we write
S = {x : x ∈ S }; S is tautological if S ∩ S 6= ∅. A clause is a finite non-
tautological set of literals; the empty clause is denoted by �. A finite set of
clauses is a CNF formula (or formula, for short). The width of a clause is its
cardinality, and the width w(F ) of a formula is the width of a largest clause of
F (or 0 if F is empty). The length of a formula F is the sum of widths of its
clauses. For a literal x we write #x(F ) for the number of clauses of F which
contain x. A literal x is a pure literal of F if #x(F ) ≥ 1 and #x(F ) = 0; x is a
singular literal of F if #x(F ) = 1 and #x(F ) ≥ 1.

A literal x occurs in a clause C if x ∈ C ∪ C; var(C) denotes the set of
variables which occur in C. For a formula F we put var(F ) =

⋃

C∈F var(C).
Let F be a formula and X ⊆ var(F ). We denote by FX the set of clauses of F
in which some variable of X occurs; i.e.,

FX := {C ∈ F : var(C) ∩ X 6= ∅ }.
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F(X) denotes the formula obtained from FX by restricting all clauses to literals
over X , i.e.,

F(X) := {C ∩ (X ∪ X) : C ∈ FX }.

2.2 Truth assignments

A truth assignment is a map τ : X → {0, 1} defined on some set X of variables;
we write var(τ) = X . If var(τ) is just a singleton {x} with τ(x) = ε, then we
denote τ simply by x = ε. We call τ empty if var(τ) = ∅. A truth assignment τ is
total for a formula F if var(τ) = var(F ). For x ∈ var(τ) we define τ(x) = 1−τ(x).
For a truth assignment τ and a formula F , we put

F [τ ] = {C \ τ−1(0) : C ∈ F, C ∩ τ−1(1) = ∅ };

i.e., F [τ ] denotes the result of instantiating variables according to τ and applying
the usual simplifications. A truth assignment τ satisfies a clause if the clause
contains some literal x with τ(x) = 1; τ satisfies a formula F if it satisfies
all clauses of F (i.e., if F [τ ] = ∅). A formula is satisfiable if it is satisfied
by some truth assignment; otherwise it is unsatisfiable. A formula is minimal
unsatisfiable if it is unsatisfiable and every proper subset of F is satisfiable. We
say that formulas F and F ′ are equisatisfiable (in symbols F ≡sat F ′) if either
both are satisfiable or both are unsatisfiable.

A truth assignment α is autark for a formula F if var(α) ⊆ var(F ) and
α satisfies F

var(α); that is, α satisfies all affected clauses. Note that the empty
assignment is autark for every formula, and that any total satisfying assignment
of a formula is autark. The key feature of autark assignments is the following
observation of [28].

Lemma 1. If α is an autark assignment of a formula F , then F [α] is an
equisatisfiable subset of F .

Thus, in particular, minimal unsatisfiable formulas have no autark assign-
ments except the empty assignment. If xε is a pure literal of F , (x, ε) ∈
var(F ) × {0, 1}, then clearly x = ε is an autark assignment (and F [x = ε]
can be obtained from F by the “pure literal rule”).

2.3 Resolution and Davis-Putnam resolution.

If C1, C2 are clauses and C1 ∩C2 = {x} holds for some literal x, then the clause
C = (C1 ∪ C2) \ {x, x} is called the resolvent of C1 and C2.

Let F be a formula. A sequence C1, . . . , Cn is a resolution derivation from F
if for each i ∈ {1, . . . , n} either Ci ∈ F (“Ci is an axiom”), or Ci is the resolvent
of Cj and Cj′ for some 1 ≤ j < j′ ≤ i− 1 (“ Cj and Cj′ are the parents of Ci”).
In general, a clause in a resolution derivation may have different “histories”;
that is, the clause may have different pairs of parents, and it may be both, an
axiom and a derived clause. However, we tacitly assume that some arbitrary
but fixed history is given. A resolution derivation is a resolution refutation if it
contains the empty clause.
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A thread of a resolution derivation R is a subsequence D1, . . . , Dk of R such
that for each i = 2, . . . , k, Di−1 is a parent of Di in R. A resolution derivation
R is regular if for each thread D1, . . . , Dk of R we have (D1 ∩ Dk) ⊆ Di,
i = 1, . . . , k. It is well known that a formula is unsatisfiable if and only if it has
a regular resolution refutation.

Consider a formula F and a literal x of F . We obtain a formula F ′ from F
by adding all possible resolvents w.r.t. x, and by removing all clauses in which
x occurs. We say that F ′ is obtained from F by Davis-Putnam resolution and
we write DPx(F ) = F ′. It is well known that F ≡sat DPx(F ). In fact, the so
called Davis-Putnam procedure successively eliminates variables in this manner
until either the empty formula or a formula which contains the empty clause is
obtained. The Davis-Putnam procedure can be considered as a special case of
regular resolution (cf. [37]).

Usually, DPx(F ) contains more clauses than F , however, if #x(F ) ≤ 1 or
#x(F ) ≤ 1, then clearly |DPx(F )| < |F |. In the sequel we will focus on DPx(F )
where x is a singular literal of F .

3 Graph theoretic tools

All considered graphs are finite and simple (no multiple edges or self-loops).
We denote a bipartite graph G by the triple (V1, V2, E) where V1 and V2 give
the bipartition of the vertex set of G, and E denotes the set of edges of G. An
edge between v1 ∈ V1 and v2 ∈ V2 is denoted as ordered pair (v1, v2). NG(X)
denotes the set of all vertices y adjacent to some x ∈ X in G, i.e., NG(X) is the
(open) neighborhood of X . For graph theoretic terminology not defined here,
the reader is referred to [12].

A matching M of a graph G is a set of independent edges of G; i.e., distinct
edges in M have no vertex in common. A vertex of G is called matched by M ,
or M -matched, if it is incident with some edge in M ; otherwise it is exposed by
M , or M -exposed. A matching M of G is a maximum matching if there is no
matching M ′ of G with |M ′| > |M |. A maximum matching of a bipartite graph
G = (V1, V2, E) can be found in time

O(|V1 ∪ V2|1/2 · |E|)

by the algorithm of Hopcroft and Karp [22], see also [27].
Let M be a matching of a graph G. A path P in G is called M -alternating

if edges of P are alternately in and out of M ; an M -alternating path is M -aug-
menting if both of its ends are M -exposed. If P is an M -augmenting path,
then

M ′ := (M \ E(P )) ∪ (E(P ) \ M),

the symmetric difference of M and the set of edges E(P ) which lie on P , is a
matching of size |M | + 1. In this case we say that M ′ is obtained from M by
augmentation. Conversely, by a well-known result of Berge [5], a matching M
is a maximum matching if there is no M -augmenting path.
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In our considerations we often have to deal with bipartite graphs for which
an “almost” maximum matching is given. In such cases it would be inefficient
to construct a maximum matching from scratch, since a maximum matching
can be obtained by just a few augmentations:

Lemma 2. Let G = (V1, V2, E) be a bipartite graph and M a matching of G
which exposes s1 vertices of V1 and s2 vertices of V2. Then we can obtain a
maximum matching M ′ of G in time O(min(s1, s2) · (|E| + |V1 ∪ V2|)).

Proof. Alternating paths are just directed paths in the bipartite digraph ob-
tained from G by orienting the edges in M from V1 to V2, and orienting the
edges in E \ M from V2 to V1. Hence we can find an M -augmenting path by
breadth first search starting from the set of M -exposed vertices in V2. Thus,
an M -augmenting path can be found in time O(|E| + |V1 ∪ V2|). Since each
augmentation decreases the number of exposed vertices in V1 and in V2, the
lemma follows.

We say that a bipartite graph G = (V1, V2, E) is q-expanding if q ≥ 0 is an
integer such that |NG(X)| ≥ |X | + q holds for every nonempty set X ⊆ V1.
Note that by Hall’s Theorem, G is 0-expanding if and only if G has a matching
of size |V1| (see [27]).

Let M be a matching of G. We define RG,M to be the set of vertices of G
which can be reached from an M -exposed vertex in V2 by some M -alternating
path (see Figure 1 for an illustration). By means of this concept, we can easily
obtain the basic graph theoretic results needed for our considerations:

︸ ︷︷ ︸

V2 ∩ RG,M

V1 ∩ RG,M
︷ ︸︸ ︷

︸ ︷︷ ︸

V2 \ RG,M

V1 \ RG,M
︷ ︸︸ ︷

Figure 1: A bipartite graph G with a maximum matching M (indicated by bold
lines).

Lemma 3. Given a maximum matching M of a bipartite graph G = (V1, V2, E),
V = V1 ∪ V2, then the following statements hold true.

(i) RG,M can be obtained in time O(|V | + |E|).

(ii) No edge joins vertices in V1 \ RG,M with vertices in V2 ∩ RG,M ; no edge
in M joins vertices in V1 ∩ RG,M with vertices in V2 \ RG,M .

(iii) All vertices in V1 ∩ RG,M and V2 \ RG,M are matched vertices.
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(iv) If G is not 0-expanding, then |V1 \ RG,M | > |NG(V1 \ RG,M )|.

(v) |V2 ∩ RG,M | − |NG(V2 ∩ RG,M )| = |V2| − |M |.

(vi) If RG,M 6= ∅, then RG,M induces a 1-expanding subgraph of G.

Proof. Let Si denote the set of M -exposed vertices in Vi, i = 1, 2.
(i) We consider G as a directed graph as in the proof of Lemma 2; now RG,M

contains just the vertices which can be reached from vertices in S2 by a directed
path. Hence RG,M can be obtained by breadth-first-search in time O(|V |+ |E|).

(ii) Suppose there is some edge (u, w) ∈ E with u ∈ V1 \ RG,M and w ∈
V2 ∩ RG,M . If w ∈ S2, then u ∈ RG,M , a contradiction; hence w /∈ S2. By
definition of RG,M , there is an M -alternating path P from some s ∈ S2 to w;
the last edge of P is traversed from V1 to V2, hence it belongs to M ; consequently
(u, w) /∈ M . Now P, u is an M -alternating path from s to u, and so u ∈ RG,M ,
again a contradiction. Thus there is no edge between vertices in V1 \ RG,M

and V2 ∩ RG,M . A similar argument shows that no edge of M joins vertices in
V1 ∩ RG,M with vertices in V2 \ RG,M .

(iii) Consider any vertex u ∈ V1 ∩ RG,M and let P be some M -alternating
path from some s ∈ S2 to u (P exists by definition of RG,M ). It follows that u
must be M -matched, since otherwise P would be M -augmenting, contradicting
the maximality of M . On the other hand, vertices in V2 \RG,M are M -matched
since S2 ⊆ RG,M by definition.

(iv) By (ii) and (iii), M matches the vertices in (V1 \RG,M ) \ S1 to vertices
in V2 \ RG,M and vice versa. Hence |V1 \ RG,M | − |S1| = |(V1 \ RG,M ) \ S1| =
|V2 \ RG,M | ≤ |NG(V1 \ RG,M )|. If G is not 0-expanding, then S1 6= ∅ follows
by Hall’s Theorem.

(v) By (ii) and (iii), M matches the vertices in V1 ∩ RG,M to vertices in
(V2 ∩ RG,M ) \ S2 and vice versa. Hence |S2| = |V2 ∩ RG,M | − |V1 ∩ RG,M | =
|V2∩RG,M |−|NG(V2∩RG,M )|. In turn, |S2| = |V2|−|M | by definition of RG,M .

(vi) Choose any nonempty set X = {u1, . . . , un} ⊆ V1 ∩ RG,M . We have to
show that |NG(X)∩RG,M | ≥ n+1. Let w1, . . . , wn ∈ V2 such that (ui, wi) ∈ M
for i = 1, . . . , n. By (ii) above, {w1, . . . , wn} ⊆ RG,M . Choose any x ∈ X . Since
x ∈ RG,M , there is some M -alternating path P which starts in some s ∈ S2

and ends in x. Let (u, w) be the first edge occurring on P with u ∈ X . Since
P traverses (u, w) from w to u, (u, w) /∈ M and so w /∈ {w1, . . . , wn}. However,
w ∈ NG(X) ∩ RG,M ; hence |NG(X) ∩ RG,M | ≥ |{w, w1, . . . , wn}| = n + 1
follows.

We note in passing that we get the same set RG,M for every maximum
matching M of G; this follows from the fact that every maximum matching
M ′ matches the vertices in V1 ∩RG,M (these vertices belong to every minimum
vertex cover [1]).

Let G = (V1, V2, E) be a bipartite graph. The deficiency of G is defined
as δ(G) := |V2| − |NG(V2)| (if V1 contains no isolated vertices, then δ(G) =
|V2|−|V1|). The maximum deficiency of G is defined as δ∗(G) := maxY ⊆V2

|Y |−
|NG(Y )|. Note that δ∗(G) ≥ 0 follows by taking Y = ∅. The next lemma, a
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direct consequence of Lemma 3(v), is well-known (see, e.g., [27]). It shows that
δ∗(G) can be calculated efficiently.

Lemma 4. A maximum matching of a bipartite graph G = (V1, V2, E) exposes
exactly δ∗(G) vertices of V2.

Lemma 5. Let G = (V1, V2, E) be a 1-expanding bipartite graph and let Y be a
proper subset of V2. Then |Y | − |NG(Y )| ≤ δ∗(G) − 1.

Proof. Choose a vertex w ∈ V2 \ Y . Since G − w is 0-expanding, there is a
maximum matching M of G which exposes w. Let S2 be the set of M -exposed
vertices of V2. By the preceding lemma, |S2| = δ∗(G). Since w ∈ S2 \ Y ,
|Y ∩ S2| ≤ δ∗(G) − 1 follows. However, every vertex in Y \ S2 is matched to
some vertex in NG(Y ), thus |NG(Y )| ≥ |Y \S2|. Consequently |Y |− |NG(Y )| ≤
|Y | − |Y \ S2| = |Y ∩ S2| ≤ δ∗(G) − 1.

4 Matchings and expansion of formulas

To every formula F we associate a bipartite graph I(F ) whose vertices are the
clauses and variables of F , and where a variable is adjacent to the clauses in
which it occurs; that is, I(F ) = (var(F ), F, E(F )) with (x, C) ∈ E(F ) if and
only if x ∈ var(C); see Figure 2 for an example1. We call I(F ) the incidence
graph of F . Note that |E(F )| equals the length of F .

v w x y z

{v, x, y} {v, w, y, z} {w, x, z}

Figure 2: The incidence graph I(F ) of the formula F = {{v, x, y}, {v, w, y, z},
{w, x, z}}.

By means of this construction, concepts for bipartite graphs apply directly
to formulas. In particular, we will speak of q-expanding formulas, matchings
of formulas, and the deficiency and maximum deficiency of formulas. That is,
a formula F is q-expanding if and only if |FX | ≥ |X | + q for every nonempty
set X ⊆ var(F ). The deficiency of a formula F is δ(F ) = |F | − |var(F )|;
its maximum deficiency is δ∗(F ) = maxF ′⊆F δ(F ′). If var(F ) = ∅, then F is
q-expanding for any q, and we have δ∗(F ) = |F | ≤ 1. Note that 1-expanding
formulas are exactly the “matching lean” formulas of [25].

In terms of formulas, the above Lemmas 4 and 5 read as follows (see [25] for
an alternate proof of Lemma 7).

1If we label edges (x,C) of I(F ) with + or − for x ∈ C or x ∈ C, respectively, then we get
a “formula graph” as considered in [14]; cf. also the “directed incidence graphs” in Section 7.2.
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Lemma 6. A maximum matching M of a formula F exposes exactly δ∗(F )
clauses.

Lemma 7. If F is a 1-expanding formula and F ′ a proper subset of F , then we
have δ∗(F ′) ≤ δ∗(F ) − 1.

A matching M of a formula F gives rise to a partial truth assignment τM

as follows. For every (x, C) ∈ M we put τM (x) = 1 if x ∈ C, and τM (x) = 0 if
x ∈ C. If |M | = |F |, then τM evidently satisfies F ; thus we have the following
(this observation has been made in [36] and [1]).

Lemma 8. If a formula F has a matching which matches all clauses, i.e., if
δ∗(F ) = 0, then F is satisfiable.

Formulas F with maximum deficiency 0 are termed matched formulas in
[16] (the probabilistic analysis of [16] shows that, in a certain sense, matched
formulas are more numerous than formulas belonging to several well-known
classes, including extended-, renamable-, and q-Horn formulas, CC-balanced
formulas, and single lookahead unit resolution (SLUR) formulas). For example,
the formula F of Figure 2 is matched, since all clauses of F are matched by the
matching M = {(v, {v, x, y}), (w, {v, w, y, z}), (x, {w, x, z})}. M gives rise to
the satisfying truth assignment τM with τM (v) = 0, τM (w) = 1, τM (x) = 0.

The next lemma is essentially [14, Lemma 10].

Lemma 9. Given a formula F of length l and a maximum matching M of F ,
then we can find in time O(l) an autark assignment α of F such that F [α] is
1-expanding; M ∩ E(F [α]) is a maximum matching of F [α].

Proof. We apply the construction of Lemma 3 to the incidence graph I(F ).
Thus F splits into formulas F1 = F ∩ RI(G),M and F2 = F \ F1. We consider
Mi = M ∩ E(Fi), i = 1, 2. Consequently, α := τM2

is an autark assignment of
F with F [α] = F1. Moreover, by Lemma 3, F [α] is 1-expanding and M1 is a
maximum matching of F [α].

In view of Lemma 1 we get the following corollary (see also [1, 16]).

Corollary 1. Minimal unsatisfiable formulas are 1-expanding. Hence δ∗(F ) =
δ(F ) holds for minimal unsatisfiable formulas.

The following result of [14] extends Lemma 8 to formulas with positive max-
imum deficiency.

Theorem 1 (Fleischner, et al. [14]). A formula F is satisfiable if and only
if F [τ ] is a matched formula for some truth assignment τ with |var(τ)| ≤ δ∗(F ).

Thus, if δ∗(F ) ≤ k for some fixed constant k, then we can decide satisfiability
of F by checking a polynomial number of truth assignments. The time analysis
of [14] gives the following estimation.
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Theorem 2 (Fleischner, et al. [14]). Let F be a formula of length l on
n variables and let k be any fixed integer. If δ∗(F ) ≤ k, then we can decide
satisfiability of F in time O(nk+1/2l).

If the maximum deficiency is at most one, then we get the following.

Lemma 10. Let F be a formula of length l on n variables. If δ∗(F ) ≤ 1, then
we can find a satisfying truth assignment of F (if it exists) in time O(nl).

Proof. First we obtain a maximum matching M of F in time O(
√

nl) using the
Hopcroft-Karp algorithm (see Section 3). Since δ∗(F ) ≤ 1, M exposes at most
one clause (Lemma 6). We apply Lemma 9 and obtain an autark assignment α
of F and a matching M ′ of F ′ = F [α] in time O(l). If F ′ = ∅, then α satisfies
F and we are done. Now assume F ′ 6= ∅. Since F ′ is 1-expanding, δ∗(F ′) = 1
follows.

Consider (x, ε) ∈ var(F ′)×{0, 1} and F ′′ := F ′[x = ε]. There is at most one
clause C0 ∈ F ′′ with (x, C0∪{xε−1}) ∈ M ′ and at most one clause C1 ∈ F ′′∩F ′

which is M ′-exposed (possibly C0 = C1). For all other clauses C of F ′′ we
can choose yC ∈ var(F ′′) such that (yC , C) ∈ M ′ or (yC , C ∪ {xε−1}) ∈ M ′.
Thus, the edges (yC , C) form a matching M∗ of F ′′ which exposes at most two
clauses (C0, C1). Hence we need at most two augmentations to extend M ∗ to
a maximum matching M ′′ of F ′′. Thus M ′′ can be obtained in time O(l). If
M ′′ matches all clauses of F ′′ (i.e., if δ∗(F ′′) = 0), then τM ′′ satisfies F ′′, and
consequently τ := α ∪ τM ′′ ∪ {(x, ε)} satisfies F .

By Theorem 1, F ′ is satisfiable if and only if δ∗(F ′[x = ε]) = 0 for some
(x, ε) ∈ var(F ′) × {0, 1}. Thus the claimed time complexity follows.

5 The main reductions

5.1 δ
∗-critical formulas

We call a formula F δ∗-critical if δ∗(F [x = ε]) ≤ δ∗(F ) − 1 holds for every
(x, ε) ∈ var(F ) × {0, 1}. The objective of this section is to reduce a given
formula F efficiently to a δ∗-critical formula F ′ ensuring δ∗(F ′) ≤ δ∗(F ) and
F ≡sat F ′. Thus δ∗-critical formulas constitute a “problem kernel” in the sense
of [13].

First we pinpoint a sufficient condition for formulas being δ∗-critical.

Lemma 11. 2-expanding formulas without pure or singular literals are δ∗-crit-
ical.

Proof. Let F be a 2-expanding formula without pure or singular literals, |F | =
m. Choose any (x, ε) ∈ var(F ) × {0, 1} and consider F ′ = F [x = ε]. We can
write F = {C1, . . . , Cm} such that for integers r, s, t with 1 ≤ r ≤ s ≤ t ≤ m we
have

xε ∈ Cj ⇔ 1 ≤ j ≤ r;
x1−ε ∈ Cj ⇔ r + 1 ≤ j ≤ t;

x1−ε ∈ Cj and Cj \ {x1−ε} ∈ F ⇔ r + 1 ≤ j ≤ s;
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we have r ≥ 2 and t ≥ r + 2. We put Dj := Cj \ {x1−ε} and get

F ′ = {Ds+1, . . . , Dm} = {Ds+1, . . . , Dt, Ct+1, . . . , Cm}.

We choose a maximum matching M of F which exposes C1 and C2. (Such
matching exists: since F is 2-expanding, F2 = F \ {C1, C2} is 0-expanding;
and since F has no pure or singular literals, var(F2) = var(F ). Thus F2 has a
maximum matching M with |M | = |var(F2)| = |var(F )|; such M is a maximum
matching of F .) The matching M gives rise to a (possible non-maximum)
matching M ′ of F ′ by setting

M ′ = { (y, Dj) : (y, Cj) ∈ M, y 6= x, s + 1 ≤ j ≤ m }.

We show that the number of M ′-exposed vertices of F ′ is strictly smaller than
the number of M -exposed vertices of F . That is, |I ′| < |I | for I = { 1 ≤ j ≤
m : Cj is M -exposed } and I ′ = { s + 1 ≤ j ≤ m : Dj is M ′-exposed }.

Let jx ∈ {1, . . . , t} be the unique integer such that (x, Cj) ∈ M . If jx ≤ s,
then |I ∩ {s + 1, . . . , m}| = |I ′|; otherwise, if jx > s, then |I ∩ {s + 1, . . . , m}| =
|I ′|−1. Thus |I∩{s+1, . . . , m}| ≥ |I ′|−1 holds in any case. On the other hand,
since 1, 2 ∈ I by the choice of M , we have |I ∩ {1, . . . , s}| ≥ 2. Consequently

|I | = |I ∩ {1, . . . , s}| + |I ∩ {s + 1, . . . , m}| ≥ 2 + |I ′| − 1 ≥ |I ′| + 1.

By means of Lemma 6 we conclude δ∗(F ) = |I | > |I ′| ≥ δ∗(F ′). Thus F is
δ∗-critical as claimed.

5.2 First step: eliminating pure and singular literals

Consider a sequence S = (F0, M0), . . . , (Fq , Mq) where Fi is a formula and Mi is
a maximum matching of Fi, 0 ≤ i ≤ q. We call S a reduction sequence (starting
from (F0, M0)) if for each i ∈ {1, . . . , q} one of the following holds:

• Fi = Fi−1[αi] for some nonempty autark assignment αi of Fi−1.

• Fi = DPxi
(Fi−1) for a singular literal xi of Fi−1.

Note that var(Fi) ( var(Fi−1), hence q ≤ |var(F0)|. Evidently, F0 and Fq are
equisatisfiable. Furthermore, we have the following.

Lemma 12. Let (F0, M0), . . . , (Fq , Mq) be a reduction sequence. Any satisfying
truth assignment τq of Fq can be extended to a satisfying truth assignment τ0

of F0; any regular resolution refutation Rq of Fq can be extended to a regular
resolution refutation R0 of F0.

Proof. We put I = { 1 ≤ i ≤ q : Fi = Fi−1[αi] }, and I ′ = { 1 ≤ i ≤ q : Fi =
DPxi

(Fi−1) }; I ∩ I ′ = ∅ and I ∪ I ′ = {1, . . . , q}.
If τq is a satisfying assignment of Fq , then we get a satisfying assignment of

F0 by setting τ0 = τq ∪
⋃

i∈I αi.
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We obtain inductively a regular resolution refutation R0 of F0 as follows.
Let Ri be a regular resolution refutation of Fi for some i ∈ {1, . . . , q}. If i ∈ I ,
then Ri is trivially a regular resolution refutation of Fi−1, since Fi ⊆ Fi−1.
Now assume i ∈ I ′. Let C1, . . . , Ck be the clauses of Fi−1 which contain x or x.
Every axiom C of Ri which is not contained in Fi−1 is the resolvent of clauses
Cj , Cj′ , 1 ≤ j, j′ ≤ k. Thus C1, . . . , Ck, Ri is a regular resolution refutation of
Fi−1.

In the proof of the next lemma we have to proceed very carefully, since the
time complexities stated in our main results depend directly on it.

Lemma 13. Let F0 be a formula on n variables with δ∗(F0) ≤ n, and let M0

be a maximum matching of F0. We can construct in time O(n3) a reduction
sequence (F0, M0), . . . , (Fq , Mq), q ≤ n, such that exactly one of the following
holds.

(i) δ∗(Fq) ≤ δ∗(F0) − 1;

(ii) δ∗(Fq) = δ∗(F0), Fq is 1-expanding and has no pure or singular literals.

Proof. We construct the reduction sequence inductively; assume that we have
already constructed (F0, M0), . . . , (Fi−1, Mi−1) for some i ≥ 1. We obtain Fi

applying the first of the following cases which is appropriate.
Case 1: Fi−1 is not 1-expanding. We apply Lemma 9 and obtain a nonempty

autark assignment α of Fi−1. We put Fi := Fi−1[α] and Mi := Mi−1 ∩ E(Fi).
Case 2: Fi−1 has a pure literal xε, (x, ε) ∈ var(Fi−1)×{0, 1}. We remove the

clauses which contain xε from Fi−1 and get an equisatisfiable proper subset Fi.
(Note that Fi = Fi−1[x = ε] and that x = ε is an autark assignment of Fi−1; cf.
the discussion in Section 2.2.) Since Fi−1 is 1-expanding, δ∗(Fi) ≤ δ∗(Fi−1)− 1
follows by Lemma 7. The matching M ′

i = Mi−1 ∩ E(Fi) is possibly not a
maximum matching of Fi, but it exposes not more clauses of Fi than Mi−1

exposes clauses of Fi−1; thus we need at most δ∗(Fi−1) augmentations to get a
maximum matching Mi of Fi (cf. Lemma 6). We put q = i and do not extend
the reduction sequence any further.

Case 3: Fi−1 has a singular literal xε, (x, ε) ∈ var(Fi−1) × {0, 1}. We put
Fi = DPx(Fi−1). For integers 1 ≤ s ≤ t ≤ m we can write

Fi−1 = {C1, . . . , Cm},
Fi = {Ds+1, . . . , Dm} = {Ds+1, . . . , Dt, Ct+1, . . . , Cm},

such that xε ∈ C1, x1−ε ∈ Cj for 2 ≤ j ≤ t, and Dj is the resolvent of C1

and Cj for j = s + 1, . . . , t (that is, for j ∈ {2, . . . , s}, the resolvent of C1 and
Cj is either tautological, or it is already contained in Fi). We may assume,
w.l.o.g., that (y1, C1) ∈ Mi−1 for some variable y1 ∈ var(Fi−1) (for, if C1 is
Mi−1-exposed, we consider the matching Mi−1 \ {(x, Cjx

)}∪{(x, C1)}) instead;
jx is the unique integer in {1, . . . , t} with (x, Cjx

) ∈ Mi−1).
We define the matching

M ′
i = { (y, Di) : (y, Ci) ∈ M, y 6= x, s + 1 ≤ i ≤ m }.
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If there is some j ∈ {s+1, . . . , t} such that Cj is Mi−1-matched but Dj is M ′
i -ex-

posed, then (x, Cj) ∈ Mi−1 follows; and so, since y1 is M ′
i -exposed and since

y1 ∈ var(Dj) = (var(C1)∪var(Cj))\{x}, we conclude that M ′′
i = M ′

i∪{(y1, Dj)}
is a matching of Fi which exposes at most δ∗(Fi−1) clauses. Otherwise, if such
j does not exist, we simply put M ′′

i = M ′
i . In any case, M ′′

i exposes at most
δ∗(Fi−1) clauses of Fi, and so δ∗(Fi) ≤ δ∗(Fi−1) follows by Lemma 6.

Case 3a: s = 1; (i.e., |Fi| = |Fi−1| − 1). We have var(Fi) = var(Fi−1) \ {x},
and consequently, the matching M ′′

i is a maximum matching of Fi; we put
Mi = M ′′

i .
Case 3b: s > 1; (i.e., |Fi| < |Fi−1| − 1). Since M ′′

i exposes at most δ∗(Fi−1)
clauses, we need at most δ∗(Fi−1) augmentations to obtain a maximum match-
ing Mi of Fi. We put q = i, and do not extend the reduction sequence any
further.

We show that in Case 3b even δ∗(Fi) ≤ δ∗(Fi−1) − 1 holds. Since Fi−1 is
1-expanding, we can choose for every clause C ∈ Fi−1 some maximum matching
of Fi−1 which exposes C. In particular, we can assume that C2 is Mi−1-exposed
(and simultaneously, by the same argument as above, that C1 is Mi−1-matched).
Then, however, the matching M ′′

i constructed above exposes at most δ∗(Fi−1)−1
clauses of Fi. Hence δ∗(Fi) ≤ δ∗(Fi−1) − 1 follows by Lemma 6.

In each of the above cases, the construction of Fi can be carried out in time
O(n2); in Cases 1 and 3a this also suffices to construct Mi. In Cases 2 and 3b
we have to perform at most δ∗(Fi−1) ≤ n augmentations; thus, by Lemma 2,
time O(n3) suffices for Cases 2 and 3b. Since q ≤ n, and since Cases 2 and 3b
occur at most once (we stop the construction of the reduction sequence in both
cases), the claimed time complexity follows.

5.3 Second step: reduction to 2-expanding formulas

By the results of the previous section we can efficiently reduce a given formula
until we end up with a formula which is 1-expanding and which has no pure
or singular literals. In this section we present further reductions which yield to
δ∗-critical formulas.

Theorem 3 below is due to Lovász and Plummer [27, Theorem 1.3.6] and
provides the basis for an efficient test for q-expansion (see Lemma 14). We state
the theorem using the following construction.

From a bipartite graph G = (V1, V2, E), x ∈ V1, and q ≥ 1, we obtain the
bipartite graph Gqx by adding new vertices x1, . . . , xq to V1 and adding edges
such that the new vertices have exactly the same neighbors as x; that is,

Gqx = (V1 ∪ {x1, . . . , xq}, V2, E ∪ {xiy : xy ∈ E }).

Theorem 3 (Lovász and Plummer [27]). A 0-expanding bipartite graph
G = (V1, V2, E) is q-expanding if and only if for every x ∈ V1 the graph Gqx is
0-expanding.

15



Lemma 14. Given a bipartite graph G = (V1, V2, E) and a maximum matching
M of G. For every fixed integer q ≥ 0, deciding whether G is q-expanding and,
if G is not q-expanding, finding a “witness set” X ⊆ V1 with |NG(X)| < |X |+q,
can be performed in time O(|V1| · |E| + |V2|).
Proof. We may assume that G has no isolated vertices (for, if x ∈ V1 is isolated,
then G is not 0-expanding and {x} is a witness set; on the other hand, we can
delete any isolated vertex in V2 without affecting q-expansion). We compute the
set of vertices RG,M (recall the definition in Section 3). If G is not 0-expanding,
V1 \RG,M is a witness set by Lemma 3(iv), and we are done. Hence we assume
that G is 0-expanding; i.e., |M | = |V1|.

For each vertex x ∈ V1 we perform the following procedure. We obtain
the graph Gqx = (V ′

1 , V ′
2 , E′) with V ′

1 = V1 ∪ {x1, . . . , xq} and V ′
2 = V2. Note

that the given matching M is also a matching of Gqx, and that x1, . . . , xq are
exactly the M -exposed vertices of V ′

1 . We extend M to a maximum matching
M ′ of Gqx by at most q augmentations. Now Gqx is 0-expanding if and only if
|M ′| = |V ′

1 | = |V1| + q.
Assume that Gqx is not 0-expanding; i.e., V ′

1 contains M ′-exposed ver-
tices. As above, we obtain the set RGqx,M ′ and put X ′ := V ′

1 \ RGqx,M ′ .
Lemma 3(iv) yields |NGqx

(X ′)| < |X ′|. Since X ′ contains M ′-exposed vertices,
and since every M ′-exposed vertex of V ′

1 belongs to {x1, . . . , xq} by construc-
tion, {x1, . . . , xq} ∩ X ′ 6= ∅ follows. We show that {x, x1, . . . , xq} ⊆ X ′ holds.
Suppose to the contrary that for some x′, x′′ ∈ {x, x1, . . . , xq} we have x′ ∈ X ′

and x′′ /∈ X ′. Since x′′ ∈ RGqx,M ′ , Gqx contains an M ′-alternating path P
which starts in some M ′-exposed vertex of V ′

2 and ends in x′′. For the last edge
(x′′, y) of P , y ∈ RGqx,M ′ ∩V ′

1 follows. Since NGqx
(x′) = NGqx

(x′′) by construc-
tion of Gqx, we have (y, x′) ∈ E′. This, however, is impossible by Lemma 3(ii).
Hence indeed {x, x1, . . . , xq} ⊆ X ′. We put X := X ′ \ {x1, . . . , xq}. Since
NGqx

(X ′) = NG(X), we have |NG(X)| < |X ′| = |X | − q; thus X is a witness
set.

If we perform the above construction for all x ∈ V1, we either end up with
a witness set X ⊆ V1, |NG(X)| < |X | + q, or we may conclude by means of
Theorem 3 that G is q-expanding.

It remains to estimate the required time. The preprocessing (identification
of isolated vertices and the construction of RG,M ) can certainly be carried out
in time O(|V1| + |V2| + |E|); see Lemma 3(i). This estimation is dominated by
the claimed time complexity. For each x ∈ V1 we construct Gqx, perform at
most q augmentations, and construct RGqx,M ′ . In view of Lemmas 2 and 3(i),
and since q is a fixed constant, each of these three tasks can be carried out in
time O(|V1| + |V2| + |E|). Moreover, after the preprocessing, G has no isolated
vertices, thus |V1| + |V2| = O(|E|). Hence we need at most time O(|V1| · |E|)
to process all vertices in V1; this estimation is dominated by the claimed time
complexity as well.

Lemma 15. Let F be a 1-expanding formula without pure or singular literals,
and let X ⊆ var(F ) with |FX | ≤ |X |+1. Then F \FX ≡sat F and δ∗(F \FX) ≤
δ∗(F ) − 1.
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Proof. Since F is 1-expanding, |FX | = |X | + 1 follows. We show that F(X)

is satisfiable. Because F is 1-expanding, every clause C ∈ F is exposed by
some maximum matching MC of F . Any maximum matching of F matches the
variables in X to clauses in FX ; hence, for every C ∈ FX , the assignment τMC

(see Section 4 for the definition) satisfies FX \ {C}. Every proper subset G of
F(X) is a subset of (FX \ {C})(X) for some C ∈ FX ; thus τMC

satisfies G. We
conclude that F(X) is either satisfiable or minimal unsatisfiable.

If F(X) is minimal unsatisfiable, then |F(X)| ≥ |X |+1 by Corollary 1; on the
other hand, |F(X)| ≤ |FX | = |X | + 1; hence the deficiency of F(X) is exactly 1.
In [11] it is shown that every minimal unsatisfiable formula with deficiency 1
different from {�} has a singular literal; however, every singular literal of F(X)

is also a singular of F , but F has no singular literals by assumption. Thus
F(X) cannot be minimal unsatisfiable, and must therefore be satisfiable. Since
a satisfying total assignment α of F(X) is a nonempty autark assignment of F
with F [α] = F \ FX , we conclude by Lemma 1 that F ≡sat F \ FX . Using
Lemma 7, we get δ∗(F \ FX) ≤ δ∗(F ) − 1.

Lemma 16. Let F be a 1-expanding formula without pure or singular literals,
m = |F |, n = |var(F )|, and let M be a maximum matching of F . We need
at most O(n2m) time to decide whether F is 2-expanding, and if it is not, to
find an autark assignment α of F with δ∗(F [α]) ≤ δ∗(F ) − 1 and a maximum
matching M ′ of F [α].

Proof. We apply Lemma 14 to the incidence graph of F . Thus O(n2m) time
suffices to decide whether F is 2-expanding, and if it is not, to find a set X ⊆
var(F ) with |FX | = |X | + 1. Note that δ∗(F(X)) ≤ 1, and by the preceding
lemma, F(X) is satisfiable. By means of Lemma 10 we can find a satisfying
total assignment α of F(X) in time O(|X |2 · (|X | + 1)) ≤ O(n2m). Since α is
a nonempty autark assignment of F , δ∗(F [α]) ≤ δ∗(F ) − 1 follows (Lemmas 1
and 7). We consider the matching M ′ = M ∩E(F [α]). Since M matches every
variable x ∈ X to some clause C ∈ FX , and since |FX | − |X | = 1, it follows
that M matches at most one variable y ∈ var(F [α]) ⊆ var(F ) \ X to a clause
C ∈ FX . Consequently, at most one variable of F [α] is M ′-exposed. Therefore,
we need at most one augmentation to obtain a maximum matching M ′ of F [α];
this requires O(nm) time (Lemma 2). Whence the lemma is shown true.

We summarize the results of this section.

Theorem 4. Let F0 be a formula on n variables with δ∗(F0) ≤ n, and let M0 be
a maximum matching of F0. We can obtain in time O(n3) a reduction sequence
(F0, M0), . . . , (Fq , Mq), q ≤ n, such that exactly one of the following holds:

(i) δ∗(Fq) ≤ δ∗(F0) − 1;

(ii) δ∗(Fq) = δ∗(F0) and Fq is δ∗-critical.

Proof. First we construct a reduction sequence S = (F0, M0), . . . , (Fp, Mp) by
means of Lemma 13. If δ∗(Fp) ≤ δ∗(F0) − 1, then S is the required reduction
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sequence and we are done; hence assume δ∗(Fp) = δ∗(F0). Now Fp is 1-ex-
panding and has no pure or singular literals (Lemma 13). We apply Lemma 16
to Fp and Mp. If Fp is 2-expanding, then Fp is δ∗-critical by Lemma 11; thus
S is the required reduction sequence and we are done as well. If, however,
Fp is not 2-expanding, then Lemma 16 provides an autark assignment α of Fp

with δ∗(Fp[α]) ≤ δ∗(Fp) − 1 and a maximum matching M ′ of Fp[α]. The con-
catenation S, (Fp[α], M ′) is the required reduction sequence. The claimed time
complexity follows directly from Lemmas 13 and 16.

6 Proof of the main results

It remains to combine the results of the preceding sections to gain our main
results.

Theorem 5. Satisfiability of formulas with n variables and maximum deficiency
k can be decided in time O(2kn3). The decision is certified by a satisfying truth
assignment or a regular resolution refutation of the input formula.

Proof. Let F be any given formula with |var(F )| = n, |F | = m, and δ∗(F ) = k.
Consequently, m ≤ n + k, and the length l of F is at most nm ≤ n(n + k).

By trivial reasons, we can decide satisfiability of F in time O(2n), i.e., by
constructing a binary tree T , a “DLL tree”: The root is labeled by F , and
each vertex which is labeled by a formula F ′ with var(F ) 6= ∅ has two children,
labeled by F ′[x = 0] and F ′[x = 1], respectively, for some x ∈ var(F ′). The
leaves of F are labeled by ∅ or {�}. F is satisfiable if and only if some leaf w is
labeled by ∅. In this case, the path from the root to w determines a satisfying
truth assignment of F . On the other hand, if F is unsatisfiable, then all leaves
must be labeled by {�}. Now T gives rise to a regular resolution refutation R
of F by means of the following (well known) construction:

The formula {�} has the trivial resolution refutation R = �. Let F be a
formula and (x, ε) ∈ var(F ) × {0, 1}. If Rε is a regular resolution refutation
of F [x = ε], then adding x1−ε to some of the clauses in Rε yields a regular
resolution derivation R′

ε of {x1−ε} from F . The concatenation R′
0, R

′
1, � is a

regular resolution refutation of F .
Hence the theorem holds trivially if k ≥ n; next we consider the non-trivial

case k < n.
We apply the Hopcroft-Karp algorithm to the incidence graph of F and find

a maximum matching M of F in time O(l
√

n + m) ≤ O(n3).
We are going to construct a search tree T of height ≤ k such that each

vertex v of T has at most 2 children and is labeled by a reduction sequence Sv.
If Sv = (F0, M0), . . . , (Fr , Mr), then we write first(v) = F0 and last(v) = Fr.

We construct T inductively as follows. We start with a root vertex v0, and
we label it by a reduction sequence constructed by means of Theorem 4, starting
from (F, M). Assume that we have already constructed some search tree T ′. If
var(last(v)) = ∅ for all leaves v of T ′, then we halt. Otherwise, we pick a leaf v
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of T ′ with var(last(v)) 6= ∅; let Sv = (F0, M0), . . . , (Fr, Mr). By Theorem 4, one
of the following holds:

(i) δ∗(Fr) ≤ δ∗(F0) − 1;

(ii) δ∗(Fr) = δ∗(F0) and Fr is δ∗-critical.

In the first case we add a single child v′ to v, and we label v′ by a reduction
sequence starting from (Fr, Mr); i.e., first(v′) = Fr.

In the second case we pick a variable x ∈ var(Fr) and obtain the formulas
F ′ = Fr[x = 0] and F ′′ = Fr[x = 1]. We construct maximum matchings M ′

and M ′′ of F ′ and F ′′, respectively. As above, M ′ and M ′′ can be obtained by
the Hopcroft-Karp algorithm in time O(n3) (in practice it may be more efficient
to construct M ′ and M ′′ from Mr as in the proof of Lemma 11). We add two
vertices v′ and v′′ as children of v to T ′. We label v′ and v′′ by a reduction
sequence starting from (F ′, M ′) and (F ′′, M ′′), respectively; i.e., first(v′) = F ′

and first(v′′) = F ′′.
For any pair of vertices v, v′, if v′ is a child of v, then δ∗(first(v′)) ≤

δ∗(first(v)) − 1. Hence the construction terminates and we get a tree T of
height at most δ∗(F ) = k. Hence T has at most 2k − 1 vertices. It follows now
from Theorem 4 that time O(2kn3) suffices for constructing T .

If v is a leaf of T , then deciding satisfiability of last(v) is trivial, since
last(v) = ∅ or last(v) = {�}. However, since first(v) ≡sat last(v) holds for
all vertices v of T , and since for a non-leaf v, last(v) is satisfiable if and only if
first(v′) is satisfiable for at least on of its children v′, we can inductively read off
from T whether F is satisfiable. That is, similarly to the DLL tree considered
above, F is satisfiable if and only if last(v) is satisfiable for at least one leaf v of
T . Moreover, Lemma 12 allows us to obtain from T a satisfying truth assign-
ment (if F is satisfiable) or a regular resolution refutation (if F is unsatisfiable)
similarly as from a DLL tree as described above. Thus the theorem is shown
true.

Theorem 6. Minimal unsatisfiable formulas with n variables and n+k clauses
can be recognized in time O(2kn4).

Proof. If k ≥ n, then the theorem holds by trivial reasons, since we can enu-
merate all total truth assignments of F in time O(2n); hence we assume k < n.
Let F = {C1, . . . , Cm}, m = n + k < 2n. If F is minimal unsatisfiable, then
it is 1-expanding and so δ∗(F ) = δ(F ) = k (see Corollary 1). This neces-
sary condition can be checked efficiently (Lemma 9). Furthermore, we have to
check whether F is unsatisfiable, and whether Fi := F \{Ci} is satisfiable for all
i ∈ {1, . . . , m}. This can be accomplished by applying m+1 times the algorithm
of Theorem 5. We have verified that F is 1-expanding, hence δ∗(Fi) ≤ k − 1
by Lemma 7. Thus the over-all time complexity O((m + 1)2kn3) ≤ O(2kn4)
follows.
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7 Maximum deficiency vs. tree-width

Tree-width, a popular parameter for graphs, was introduced by Robertson and
Seymour in their series of papers on graph minors, see, e.g., [7] for references.
Let G be a graph, T = (V, E) a tree, and χ a labeling of the vertices of T
by sets vertices of G. Then (T, χ) is a tree-decomposition of G if the following
conditions hold:

(T1) Every vertex of G belongs to χ(t) for some t ∈ V ;

(T2) for every edge (v, w) of G there is some vertex t of T such that v, w ∈ χ(t);

(T3) for any vertices t1, t2, t3 of T , if t2 lies on a path from t1 to t3, then
χ(t1) ∩ χ(t3) ⊆ χ(t2).

The width of a tree-decomposition (T, χ) is the maximum |χ(t)| − 1 over all
vertices t of T . The tree-width tw(G) of G is the minimum width over all tree-
decompositions of G. Note that trees have tree-width 1 (the only purpose of
“−1” in the definition of tree-width is to make this statement true).

For fixed k ≥ 1, deciding whether a given graph has tree-width at most k
(and computing a tree-decomposition of width ≤ k, if it exists) can be done
efficiently (in quadratic time by Robertson and Seymour [31], and even in linear
time by Bodlaender [6]). Computing the tree-width of a given graph, however,
is an NP-hard problem [3].

The following lemma is well-known (and not difficult to show).

Lemma 17. Let (T, χ) be a tree-decomposition of a graph G and let K ⊆ V (G)
be a set of vertices which induces a complete subgraph in G. Then K ⊆ χ(t) for
some vertex t of T .

The primal graph P (F ) of a formula F is the graph whose vertices are the
variables of F , two variables are joined by an edge if and only if both variables
occur together in a clause. We will consider tree-width of primal graphs as well
as tree-width and incidence graphs of formulas; for a formula F we call tw(I(F ))
the incidence tree-width and tw(P (F )) the primal tree-width of F .

7.1 Tree-width of primal graphs

In [19] the following is shown.

Theorem 7 (Gottlob, et al. [19]). Satisfiability of formulas with bounded
primal tree-width is fixed-parameter tractable.

The proof of this result relies on the fact that a formula can be considered
as a constraint satisfaction problem (CSP) over the universe {0, 1}; in [19] it is
shown that CSPs over a fixed universe and of fixed tree-width can be “fixed-
parameter transformed” into an equivalent acyclic CSP. Since it is well-known
that acyclic CSPs can be solved in linear time, Theorem 7 follows.

The next lemma follows directly from Lemma 17 (recall from Section 2.1
that w(F ) = maxC∈F∪{�} |C|).
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Lemma 18. w(F ) ≤ tw(P (F )) + 1 ≤ |var(F )| holds for every formula F .

Next we construct formulas with small maximum deficiency and large primal
tree-width.

Theorem 8. For every k ≥ 1 there are minimal unsatisfiable formulas F such
that δ∗(F ) = 1 and tw(P (F )) = k.

Proof. We consider formulas used by Cook ([8], see also [37]) for deriving expo-
nential lower bounds for the size of tableaux refutations. Let k be any positive
integer and consider the complete binary tree T of height k+1, directed from the
root to the leaves. Let v1, . . . , vm, m = 2k+1, denote the leaves of T . For each
non-leaf v of T we take a new variable xv , and we label the outgoing edges of v
by xv and xv , respectively. For each leaf vi of T we obtain the clause Ci consist-
ing of all labels occurring on the path from the root to vi. Consider the formula
F = {C1, . . . , Cm}. It is not difficult to see that F is minimal unsatisfiable
(in fact, it is “strongly minimal unsatisfiable” in the sense of [1]). Moreover,
since |var(F )| = 2k+1 − 1, we have δ∗(F ) = δ(F ) = 1. Since |Ci| = k + 1,
tw(P (F )) ≥ k follows from Lemma 18. On the other hand, tw(P (F )) ≤ k,
since we can define a tree-decomposition (T, χ) of width k for F as follows. For
each leaf vi of T we put χ(v) = var(Ci); for each non-leaf w we define χ(w) as
the set of variables xv such that v lies on the path from the root of T to w (in
particular, xw ∈ χ(w)).

Theorem 9. For every k ≥ 1 there are minimal unsatisfiable formulas H such
that δ∗(H) = k and tw(P (H)) ≤ 2.

Proof. We consider the formula H :=
⋃k

i=0 Hi where H0 = {{z0}}, Hk =
{{zk−1}}, and for i = 1, . . . , k − 1,

Hi := {{zi−1, xi, yi}, {xi, yi}, {xi, yi}, {xi, yi, zi}}.

It follows by induction on k that δ(H) = k and that H is minimal unsatisfiable.
Hence δ∗(H) = k. We define a tree-decomposition (T, χ) of H taking the
path v0, . . . , vk for T and setting χ(vi) = var(Hi). The width of this tree-
decomposition is at most 2, hence tw(H) ≤ 2 follows.

Results similar to Theorems 8 and 9 can be obtained for branch-width as
considered for formulas by Alekhnovich and Razborov [2].

7.2 Tree-width of incidence graphs

Since the maximum deficiency is defined in terms of incidence graphs, we will
compare it with incidence tree-width.

The next result (which seems to be well-known, [18]) indicates that incidence
tree-width is the more general parameter than primal tree-width.

Lemma 19. For every formula F we have

tw(I(F )) ≤ max(tw(P (F )), w(F )) ≤ tw(P (F )) + 1.
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Proof. Let (T, χ) be a tree-decomposition of P (F ) of width k. By Lemma 17 we
can choose for every clause C ∈ F some vertex tC of T such that var(C) ⊆ χ(tC).
We obtain a tree T ′ from T by adding for very clauses C ∈ F a new vertex
t′C and the edge (tC , t′C). Finally, we extend the labeling χ to T ′ defining
χ(t′C) = var(C) ∪ {C}. We can verify that (T ′, χ) is a tree-decomposition of
I(F ) by checking the conditions (T1)–(T3). Since |χ(t′C)| = |C| + 1, the width
of (T ′, χ) is the maximum of k and w(F ). However, Lemma 17 also implies that
tw(P (F )) ≥ w(F ) − 1, hence the result is shown true.

On the other hand, there are formulas whose primal graphs have arbi-
trary high tree-width and whose incidence graphs are trees (i.e., have tree-
width 1); take, for example, the minimal unsatisfiable formula {{x1, . . . , xn},
{x1}, . . . , {xn}}.

The question rises whether Theorem 7 can be generalized to incidence tree-
width. Below we answer this question positively, deploying a variant of Cour-
celle’s Theorem.

First we give some definitions taken from [10]. Let k be a positive integer.
A k-graph G is a graph whose vertices are labeled by integers from {1, . . . , k}.
We consider any graph as k-graph with all vertices labeled by 1. We call the
k-graph consisting of exactly one vertex v labeled by i ∈ {1, . . . , k} an initial
k-graph and denote it by i(v). Let C(k) denote the class of k-graphs which can
be constructed from initial k-graphs by means of the following three operations.

(C1) If G, H ∈ C(k) and V (G)∩V (H) = ∅, then the union of G and H , denoted
by G ⊕ H , belongs to C(k).

(C2) If G ∈ C(k) and i, j ∈ {1, . . . , k}, then the k-graph ρi→j(G) obtained from
G by changing the labels of all vertices which are labeled by i to j belongs
to C(k).

(C3) If G ∈ C(k), i, j ∈ {1, . . . , k}, and i 6= j, then the k-graph ηi,j(G) obtained
from G by connecting all vertices labeled by i with all vertices labeled by
j belongs to C(k).

The clique-width cw(G) of a graph G is the smallest integer k such that G ∈ C(k).
Constructions of a k-graph using the above steps (C1)–(C3) can be represented
by k-expressions, terms composed of i(v), G ⊕ H , ηi,j(G) and ρi→j(G). Thus,
a k-expression certifies that a graph has clique-width ≤ k. For example, the
4-expression

ρ2→1(η1,2(2(y) ⊕ ρ2→1(η1,2(2(x) ⊕ ρ2→1(η1,2(1(v) ⊕ 2(w)))))))

represents a construction of the complete graph K4 on {v, w, x, y}, hence
cw(K4) ≤ 2). In view of this example it is easy to see that any complete graph
has has clique-width ≤ 2, hence a result similar to Lemma 17 does not hold for
clique-width.

The above definitions apply also to directed graphs except that in construc-
tion (C3) the added edges are directed from label i to label j. Thus, we can
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consider k-expressions for a directed graph D and we can define the directed
clique-width dcw(D) of D as the smallest k such that D has a k-expression. Let
D be a directed graph and GD its underlying undirected graph (i.e., G is ob-
tained from D by “forgetting” the direction of edges and by identifying possible
parallel edges); since every k-expression for D is also a k-expression for GD ,
cw(GD) ≤ dcw(D) follows.

The next result is due to Courcelle and Olariu [10] (see also [9]).

Theorem 10 (Courcelle and Olariu [10]). Let D be a directed graph and
(T, χ) a width k′ tree-decomposition of GD. Then we can obtain in polynomial
time a k-expression for D with k ≤ 22k′+1 + 1. Thus dcw(D) ≤ 22tw(GD)+1 + 1.

From the incidence graph I(F ) of a formula F we obtain a directed graph
Id(F ) by orienting edges (x, C) from C to x if x ∈ C, and from x to C if x ∈ C;
we call Id(F ) the directed incidence graph of F .

Courcelle, et al. [9] show the following.

Theorem 11 (Courcelle, et al. [9]). Given a formula F of length l and a
k-expression for Id(F ) (thus dcw(Id(G)) ≤ k). Then the number of satisfying
total truth assignments of F can be counted in time O(f(k) · l) where f is some
function which does not depend on F .

The proof of this result is based on a variant of Courcelle’s Theorem: If k is
a constant and a k-expression for a directed graph D is given, then statements
formulated in a certain fragment of monadic second-order logic (MS1) can be
evaluated on D in linear time. Satisfiability of F can be formulated as an MS1

statement on Id(F ): F is satisfiable if and only if there exists a set of variables
V0 such that for every clause C ∈ F , Id(F ) contains either an edge directed from
C to some variable in V0, or it contains an edge directed from some variable in
var(F ) \ V0 to C.

Before we can apply Theorem 11 to a given formula we have to find a k-ex-
pression for its directed incidence graph; though, it is not known whether k-ex-
pressions can be found in polynomial time for constants k ≥ 4 (see, e.g., [9]).
Anyway, in view of Theorem 10, we can use the previous result to improve on
Theorem 7 by considering incidence graphs instead of primal graphs.

Corollary 2. Satisfiability of formulas with bounded incidence tree-width is
fixed-parameter tractable.

Note, however, that a practical use of Theorem 11 is very limited because
of large hidden constants and high space requirements; cf. the discussion in [9].
Nevertheless, it seems to be feasible to develop algorithms which decide satisfi-
ability directly by examining a given tree-decomposition of the incidence graph,
without calling on Courcelle’s Theorem.

Next we show a result similar to Theorem 8.

Theorem 12. For every k ≥ 1 there are formulas F such that δ∗(F ) = 1 and
dcw(Id(F )) ≥ cw(I(F )) ≥ k.
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Proof. Let k be a positive integer and let q be the smallest odd integer with
q ≥ max(3, k− 1). We consider the q× q grid Gq (see Figure 3 for an example).
We denote by vi,j the vertex of row i and column j. Evidently, Gq is bipartite;

Figure 3: The grid G7; bold edges indicate the maximum matching M7.

let V1, V2 be the bipartition with v1,1 ∈ V2 (in Figure 3, vertices in V1 are drawn
black, vertices in V2 are drawn white). Since q is odd, we have |V1| = (q2+1)/2−
1 and |V2| = (q2 + 1)/2. Next we obtain a formula Fq with I(Fq) = Gq : We
consider vertices in V1 as variables, and we associate to every vertex vi,j ∈ V2

the clause {vi,j−1, vi,j+1, vi−1,j , vi+1,j} ∩ (V1 ∪ V1). As shown in [17], any q × q
grid, q ≥ 3, has exactly clique-width q + 1; hence dcw(Id(Fq)) ≥ cw(I(Fq)) =
cw(Gq) ≥ k.

Consider the matching Mq of Gq consisting of all the edges (vi,2j , vi,2j+1)
for i = 1, . . . , q and j = 1, . . . , (q − 1)/2, and the edges (v2i,1, v2i+1,1) for i =
1, . . . , (q − 1)/2 (in Figure 3, edges of Mq are indicated by bold lines). Since
|Mq| = |V1|, Mq is a maximum matching and Fq is 0-expanding. By Lemma 6
δ∗(Fq) = δ(Fq) = 1 follows. (Moreover, since every vertex of Gq can be reached
by an Mq-augmenting path from the only unmatched vertex v1,1, it follows from
Lemma 3(vi) that Fq is 1-expanding.)

It can be shown that every formula whose incidence graph is a square grid is
satisfiable (i.e., such formulas are “graph-satisfiable” [35]); hence the formulas
Fq constructed in the preceding proof are satisfiable. Since for a directed graph
D the directed clique-width of any induced subgraph of D does not exceed the
directed clique-width of D, it is not difficult to obtain from Fq unsatisfiable
formulas of high directed clique-width and constant maximum deficiency. How-
ever, it would be interesting to find minimal unsatisfiable formulas with such
property.
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8 Final remarks

We have shown fixed-parameter tractability of the following problems:

(i) Recognition of minimal unsatisfiable formulas with bounded deficiency.

(ii) Satisfiability of formulas with bounded maximum deficiency.

Furthermore, we have shown that tree-width and related parameters which
allow fixed-parameter tractability of SAT are incomparable with maximum de-
ficiency. In contrast to tree-width, maximum deficiency can be computed effi-
ciently.

It is remarkable that maximum deficiency as well as tree-width (and the
above mentioned variants) ignore the polarities of literal occurrences: we do not
distinguish between x ∈ C and x ∈ C for a variable x and a clause C when we
form primal or incidence graphs. Hence some important information gets lost.
We think that other translations of formulas into graphs could benefit from this
information.
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