
DPLL with Caching
A new algorithm for #SAT and Bayesian Inference

Fahiem Bacchus Shannon Dalmao Toniann Pitassi
Department of Computer Science

University of Toronto
Toronto, Ontario

Canada, ON M5S 3G4
[fbacchus

�
sdalmao

�
toni]@cs.toronto.edu

December 19, 2002

Abstract

Bayesian inference and counting satisfying assignments are important problems with numerous ap-
plications in probabilistic reasoning. In this paper, we show that plain old DPLL equipped with mem-
oization can solve both of these problems with time complexity that is at least as good as all known
algorithms. Furthermore, DPLL with memoization achieves the best known time-space tradeoff. Al-
though their worst case time complexity is no better, our DPLL based algorithms have the potential to
achieve much better performance than known algorithms on problems which possess additional struc-
ture. Probabilistic models of real situations tend to have such additional structure.

Electronic Colloquium on Computational Complexity, Report No. 3 (2003)

ISSN 1433-8092




1 Introduction

Bayesian inference (BAYES) is an important and well-studied problem with numerous practical applications
in probabilistic reasoning. A great deal of research has gone toward understanding this problem, and devel-
oping both approximate and exact algorithms for it (e.g., [Pea88, Hec93, Dec96, BFGK96, PP91, Dar01]).

In this paper, inspired by the importance of BAYES, we address the closely related problem #SAT. The
decision versions of both #SAT and BAYES are #P-complete [Val79a, Val79b, Rot96]. Furthermore, there
are natural polynomial-time reductions from each problem to the other [LPI01]. These reductions preserve
much of the problem structure, and thus algorithmic insights for one problem can readily be translated into
algorithmic insights for the other. In fact, there exists a more general problem (described in Section 4) of
which both BAYES and #SAT are instances. It is not difficult to recast the standard algorithms for BAYES

and #SAT (including those presented here) into algorithms for this general problem, and thus automatically
obtain a way of using these algorithms for either problem. This in itself is an interesting exercise, as algo-
rithms for BAYES have mainly focused on exploiting the structure of problem instances (so that their run
times are a function of structural properties of the input), whereas algorithms for #SAT have tended to focus
on exploiting the structure of problem classes (so that they yield worst case guarantees on, e.g., all problems
in the class 2-CNF). Thus algorithms for BAYES yield new algorithms for #SAT with different performance
guarantees.

The main contribution of the paper, however, comes from a different perspective: viewing #SAT as a
generalization of the simpler problem SAT. Here our motivation comes from the phenomenal performance
exhibited by recent DPLL [DLL62] SAT solvers on structured problems arising from real domains. For
example, when run on SAT encodings of bounded model checking problems [BCC � 99], the most recent
DPLL based SAT solvers, e.g, Zchaff [MMZ � 01], can regularly solve unsatisfiable instances involving
50,000 variables and 200,000 clauses in less than a 1,000 seconds. So the natural question is whether or
not some of this performance can be preserved when we generalize DPLL to solve #SAT. If so, then the
potential to significantly improve our ability to solve BAYES exists, either by translating BAYES to #SAT, or
by lifting DPLL to solve the more general problem and thus solving BAYES directly.

We first show that the obvious extension of DPLL to solve #SAT can perform very badly in comparision
with standard BAYES algorithms (recast to solve #SAT). Examining why the obvious extension of DPLL
fails, reveals that much of its computation is redundant: the same computation can be repeated exponentially
many times. Caching previous computations is an obvious solution, but there are a number of choices
available as to what to cache. We show that different caching schemes produce quite complex differences in
the behavior of DPLL, and yield different performance guarantees. Nevertheless, we are able to show that
with caching DPLL can perform surprisingly well. In fact, one of our main results is to describe a relatively
simple caching scheme that allows DPLL to polynomially-simulate all of the known state-of-the-art BAYES

algorithms with respect to time.
Furthermore, our DPLL based algorithm retains the potential of standard DPLL to perform much better

than its worst case guarantees on problems that arise from real domains. In particular, it can automatically
take advantage of structure in the problem instance that would mostly be ignored by the standard BAYES

algorithms.
An outline of the paper follows. In Section 2, we define #SAT, discuss standard DPLL and DPLL

adapted to #SAT, and present the graph theoretic notion of branch width that we will use to characterize
problem structure. In Section 3, we describe algorithms for #SAT based on different caching schemes for
DPLL, and we give a complexity analysis of our algorithms in terms of the branch width of the underlying
hypergraph. In Section 4 we show how our algorithms apply not only to #SAT but also to BAYES. To do
this, we show that both BAYES and #SAT are instances of a more general problem, and we describe how to
recast our DPLL algorithms (as well as known algorithms for BAYES) to solve this more general problem. In

1



Table 1 Standard DPLL algorithm for SAT

DPLL
�����

if
�

has no clauses, output “satisfiable” and HALT
else-if

�
does not contain an empty clause then

choose a variable � that appears in
�

Call DPLL
����� �
	����

Call DPLL
����� �
	�
 �

return

Section 5, we compare our algorithms to well-known algorithms for BAYES. In Section 6, we discuss some
advantages of our algorithms over previous ones, and finally we conclude in Section 7 with open problems
and related work.

2 Background

2.1 SAT and #SAT

The SAT decision problem is defined as follows. Let ������� 
�� ��� �������
� ����� be a collection of � Boolean ( � / � )
variables, and let

� � � � be a ! -CNF Boolean formula on these variables with " clauses.1 An assignment# to the Boolean variables � is satisfying if it makes the formula True (
� � # � �$� ) and unsatisfying if it

makes the formula False (
� � # � �%� ). The decision problem SAT asks, given a Boolean formula

� � � � in
! -CNF, does it have a satisfying assignment?

The #SAT search problem asks, given a Boolean formula
��� � � in ! -CNF, how many of its assignments

are satisfying? Thus #SAT is concerned not just with the existence of a satisfying assignment, but with the
number of satisfying assignments. Valiant [Val79a, Val79b] showed that the decision version of #SAT is #P
hard even when the clause size, ! , is 2. Roth [Rot96] showed that the problem is hard even to approximate
in many important cases. For example, it is hard to approximate even when

� � � � is monotone, or Horn, or
2-CNF.

2.2 DPLL and #DPLL

DPLL is the most popular complete algorithm for SAT. Variations of DPLL have recently been applied to
solve generalizations of SAT (including #SAT) [Dub91, Zha96, BL99, BP00, LMP00]. The standard DPLL
algorithm for solving SAT is given in Table 1. We use the notation

��� �
	��'&(

to denote the new CNF formula

obtained from reducing
�

by setting the variable � to 0 or 1.
A decision tree over binary variables � 
��������
� �)� is a binary tree where each internal node in the tree is

labeled with a variable ��* such that each variable appears at most once on each path in the tree. The two
outgoing edges of each node are labeled with the two different settings of the variable � * labeling the node:
�)*+�,� and ��*-�.� , and each leaf of the tree is labeled with either 0 or 1. Note that any total truth assignment# to the underlying variables is consistent with exactly one path of / . A decision tree / over � 
 �������
� � �
represents a CNF formula

��� � 
���������� ��� � if for every total truth assignment # , the value of the leaf node on
the path consistent with # is equal to

� � # � . Notice that a given
�

will in general have many decision trees
of varying sizes that can represent it.

1For simplicity, and without loss of generality, we assume that we are dealing with 0 -CNF, for some constant 0 , rather than
clauses of arbitrary length.

2



� :
� � ��� � � � ��� ��� �	�


 


 



 


 


��
��

��
��

� :
� � � � � ��� ��� �	�


 


 
 


��
���

� : � ���	� �
:
� ��� ��� �	�


 
 
 ���
� : � � � �	�
 
 ��

� : � ���	� � : �
�
� : �
�

�
:
� ��� ��� �	�


 
 
 ���
� : � � � �	�
 
 ��

� : � ���	� � : �
�
� : �
�

Figure 1: A decision tree for the formula
� � � � � � � ��� ��� �	�

Table 2 DPLL algorithm for computing #SAT

#DPLL
�����

Returns the probability of
�

if
�

has no clauses, return 1
else-if

�
has an empty clause, return 0

else
Choose a variable � that appears in

�
return #DPLL

����� �
	�� ��� 

��� #DPLL

����� �
	�
 ��� 

�

Figure 1 gives an example of a decision tree for
� � � � � � � ��� ��� �	� . Each vertex shows the variable

labeling it and, after the ‘:’, the subformula being solved in this subtree. The left branch from a vertex
always corresponds to setting the vertex’s variable to False, while the right branch corresponds to setting
the variable to True. DPLL for SAT is an algorithm for creating a decision tree (using various heuristics
for choosing the next variable to split on) in a depth-first manner, and halting whenever the first leaf labelled
by “1” is found.

A slight modification of DPLL allows it to count all satisfying assignments as it traverses the entire
decision tree. Table 2 gives the #DPLL algorithm for counting. The algorithm actually computes the prob-
ability of the set of satisfying assignments under the uniform distribution. Hence, the number of satisfying
assignments can be obtained by simply multiplying by � � , where � is the number of variables in

�
. For a

particular formula, solving SAT can take much less time than counting all assignments, since we can ter-
minate the algorithm in the former case whenever the first satisfying assignment is found. However, the
same exponential worst-case time bounds apply to both DPLL and to #DPLL. For unsatisfiable formulas,
both algorithms have to traverse an entire decision tree before terminating. Thus, we need to exhibit an
infinite sequence of unsatisfiable formulas such that any decision tree for these formulas has exponential
size. It is implicit in [Hak85, BP96] that any decision tree for the formulas encoding the (negation of the)
propositional pigeonhole principle have exponential size, and thus DPLL and #DPLL take exponential-time
on these examples.

This lower bound does not, however, help us discriminate between algorithms, since all known algo-
rithms for #SAT and BAYES run in exponential-time in the worst case. More useful bounds arise from
considering structural properties of the input problem. A method for characterizing structure in the input
problem is presented next.

3



2.3 Complexity measures and tree-width

Associated with every CNF formula
�

is an underlying hypergraph � � ��� ��� �
, where

�
is the set of vari-

ables appearing in
�

and each clause generates a hyperedge in
�

containing the variables of the clause. The
“width” of this hypergraph is the critical measure of complexity for essentially all state-of-the-art algorithms
for #SAT and BAYES.

There are three different (and well known) notions of width that we will define in this section. We will
also show that these different notions of width are basically equivalent. These equivalences are known,
although we need to state them and prove some basic properties between them, in order to analyze our new
algorithms, and to relate them to standard algorithms.

Definition 1 Let � � ��� ��� �
be a hypergraph. A branch decomposition for � is a binary tree / such

that each node of / is labelled with a subset of
�

. There are
� � �

many leaves of / , and their labels are in
one-to-one correspondence with the hyperedges

�
. For any other node � in / , let � denote the union of

the leaf labellings of the subtree rooted at � , and let � denote the union of the labellings of the rest of the
leaves. Then the label for � is the set of all vertices � that are in the intersection of � and � . The branch
width of a branch decomposition / for � is the maximum size of any labelling in / . The branch width of
� is the minimum branch width over all branch decompositions of � .

Example 1 Figure 2 shows a particular branch decomposition /	��
 for the hypergraph � � ��� ��� �
where� � � � � � �
� ��� �
� � and

� � � � � � � �
� � � � � ��� � � � � �
� � � � � �
� � � � � ��� � � . /���
 has branch width 3.

�
�


 


 
 


��
���

� � ��� �
� �

 



 

��

��
� � �
� ��� �

 
 
 ���� � � � �
� � � � ��� �

� � �
� �
� � ��� �
� �

 
 ��� � �
� � � � �
� �

Figure 2: A branch decomposition of width 3 for � � � � � � � �
� � � � � ��� � � � � ��� � � � ���
� � � � � �
� �	�

Definition 2 Let �$� ��� ��� �
be a hypergraph, and let � ����� 
 �������
� ���� be an ordering of all of the vertices

in
�

, where � �* is the ����� element in the ordering. This induces a sequence of hypergraphs � 
�� � � �������
� � �
where � ��� 
 and � * �



is obtained from � * as follows. All edges in � * containing ���* are merged into

one edge and then � �* is removed. Thus the underlying vertices of � * �



are � �* �

 ������� � �� . The induced width

of � under � is the size of the largest edge in all the hypergraphs � 
 �������
� � � . The elimination width of �
is the minimum induced width over all orderings � .

Example 2 Under the ordering � �$� � � � �
� ��� �
� � the hypergraph � of Example 1 produces the following
sequence of hypergraphs:

� 
 � � � � � � �
� � � � � ��� � � � � ��� � � � ���
� � � � � �
� �	�
� � � � � � �
� ��� � � � � �
� � � � � ��� � � � � �
� � �
� � � � � � ��� �
� � � � � �
� � � � � ��� �	�
�"! � � � � �
� � � � � �
� �	�
� # � � � � �	�

4



The induced width of � under � is 3—the edges
� � � � �
� ���

� 
 , � � �
� ��� ���
� � and

� � ��� �
� ���
� � all

achieve this size.

Tree width is the third notion of width. Unlike branch and elimination widths, tree width is defined
over ordinary graphs, not hypergraphs. But it is easy to reduce a hypergraph to a graph by replacing each
hyperedge with a clique of ordinary edges.

Definition 3 Let � � ��� ��� �
be a hypergraph. Then the moralized graph or primal graph, ��� � ����� ��� � �

corresponding to � is as follows. First,
� � � � , and secondly, an edge

�
� �	� � is in

� �
if and only if � and

�
occur together in some edge

�
of � .

Definition 4 Let � � ��� ��� �
be an undirected graph. A tree decomposition of � is a binary tree / such

that each node of / is labelled with a subset of
�

in the following way. First, for every edge
� � �	� �
� � ,

some leaf node in / must have a label that contains both � and
�
. Secondly, given labels for the leaf nodes

every internal node � contains � ���
in its label if and only if � is on a path between two leaf nodes � 


and � � whose labels contain � . The tree width of a tree decomposition / for � is the maximum size of any
labelling in / , and the tree width of � is the minimum tree width over all tree decompositions of � .

Example 3 The moralized graph for � of Example 1 is the graph ��� � ��� ��� �
with

� � � � � � �
� ��� �
� �
and

� � � � � � � � � � � �
� � � � � ��� � � � � �
� � � � � ��� � � � ���
� � � � � ��� �	� . Note that every non-binary hyperedge 
 of �
yields a clique of edges over the verticies of 
 in � � . Figure 3 shows / � 
 a tree decomposition for � � . / � 

has tree width 4.

� � ��� �
� �

 



 
 

��

���
� � �
� ��� �
� �


 


 


��
��

� � � � �
� ��� �

 
 
 ���� � � � �
� � � � ��� �

� � �
� �
� � ��� �
� �

 
 ��� � �
� � � � �
� �

Figure 3: Tree decomposition for � �

The next three lemmas show that these three notions are basically equivalent.

Lemma 1 (Robertson and Seymour [RS91]) Let � be a hypergraph and let � � be the corresponding
moralized graph. Then the branch width of � is at most the tree width of ��� plus 1, and the tree width of
��� is at most 2 times the branch width of � .

Lemma 2 Let � � ��� ��� �
be a hypergraph with a branch decomposition of width � . Then there is an

ordering � of the vertices
�

such that the induced width of � under � is at most � � .

Proof: Let � � ��� ��� �
be a hypergraph of branch width � and let / � 
 be a tree decomposition of the

moralized graph of � , with width at most � � . We can assume without loss of generality that the labels of
the leaves of / � 
 are in a one-to-one correspondence with the edges of � . For an arbitrary node " in / � 
 ,
let ��������� � " � be the set of vertices in the label of " , ��� be the tree rooted at " , ���������� !�!" � " � be the union
of the labels of the leaf nodes in � � (i.e., the hyperedges of � appearing below � � ), and #$�&%'�)( � " � be the
distance from " to the root.

5



Let � be any vertex of � , and let � � � ���!" � � � be the set of leaves of / � 
 that contain � in their label. We
define ��� #�� � � � to be the deepest common ancestor in / � 
 of all the nodes in � � ��� �!" � � � , and the depth of a
vertex, #$�&%'�)( � � � , to be #$� % �)( � ��� #$� � � � � . Note that � � � �$� ��� � ��� #$� � � � � , since the path from the left-most
leaf in � � � ���!" � � � to the right-most leaf must pass through ��� #$� � � � ; and that � does not appear in the label
of any node outside of the subtree rooted at ��� #$� � � � , since no leaf outside of this subtree contains � .

Finally let �,� � 
�������� � �)� be any ordering of the vertices such that if #$� %'�)( ��� ��� #$�&%'�)( � � � , then
�

must follow � in the ordering. We use the notation
���
� � to indicate that

�
follows � in the ordering � (and

thus
�

will be eliminated after � ). We claim that the induced width of � is at most the width of / � 
 , i.e., � � .
Consider �
	�� 
����

���
, the subtree rooted at ��� #$� � � � , and � � �!���  ��" � ��� #$� � � � � , the union of the labels of the

leaves of ��	�� 
����
���

. We make the following observations about these vertices.

1. If
� � � � �!���  ��" � ��� #$� � � � � and

���
� � , then

� � � �$��� � � ��� #$� � � � � and ��� #$� ��� � must be an ancestor of��� #$� � � � (or equal).
���
� � implies that #$� % �)( ��� ��� #$� %'�)( � � � . There must be a path from the leaf in

�
	�� 
����
���

containing
�

to ��� #$� ��� � , and since ��� #$� ��� � is at least as high as ��� #$� � � � the path must go
through ��� #$� � � � (or we must have ��� #$� � � � � ��� #�� ��� � ). In either case

� � � �$��� � � ��� #$� � � � � .
2. If

� � � � �!���  ��" � ��� #$� � � � � and
���
� � then ��� #$� ��� � must lie inside ��	�� 
����

���
so ��� #$� ��� � must be a

descendant of ��� #�� � � � (or equal).
���
� � implies that #$� %'�)( ��� ��� #$� % �)( � � � . There must be a path

from the leaf in ��	�� 
����
���

containing
�

to ��� #�� ��� � , and since ��� #$� ��� � is at least as deep as ��� #$� � � �
there must either be a further path from ��� #$� ��� � to ��� #�� � � � , or ��� #$� ��� � � ��� #$� � � � .

Note further that condition 2 implies that if
���

� � and
�

appears in ��	�� 
����
���

, the subtree below��� #�� � � � , then all hyperedges in the original hypergraph � containing
�

must also be in � 	�� 
����
���

.
We claim that the hyperedge produced at stage � in the elimination process when ��* is eliminated is

contained in � �$��� � � ��� #$� � � * � � . Since the size of this set is bounded by � � , we thus verify that the induced
width of � is bounded by � � .

The base case is when � 
 is eliminated. All hyperedges containing � 
 are contained in the subtree below��� #�� � � 
 � , thus the hyperedge created when � 
 is eliminated is contained in ���������� !�!" � ��� #$� � � 
 � � . All other
vertices in ���������� !�!" � ��� #$� � � 
 � � follow � 
 in the ordering so by the above they must label ��� #�� � � 
 � and
� � �!���  ��" � ��� #$� � � 
 � �� � �$��� � � ��� #$� � � 
 � � .

When ��* is eliminated there are two types of hyperedges that are unioned together: (a) the remaining
hyperedges containing � * that were part of the original hypergraph � , and (b) the remaining hyperedges
containing � * that were produced as � 
�������� � �)*"! 
 were eliminated. For the original hyperedges, all of these
are among the leaves below ��� #�� � � * � , and thus are contained in � � �!���  ��" � ��� #$� � ��* � � . Now consider a new
hyperedge produced by eliminating one of the previous variables, say the variable

�
. This hyperedge is

contained in � �$� ��� � ��� #$� ��� � � by induction, which in turn is contained in � � �!���  ��" � ��� #$� ��� � � . Moreover, it
must be that �$#&%(' ��� � is in ��	�� 
����

��)*�
. Otherwise, �$#&%+' ��� � cannot contain � * in its label (no node outside

the subtree below ��� #�� � � * � has �)* in its label), and the hyperedge created when
�

is eliminated also cannot
contain � * . Since �$#&%(' ��� � is in ��	�� 
����

��),�
, we get that the hyperedge created when

�
was eliminated is

contained in � � �!���  ��" � ��� #$� � � * � � since this is a superset of � �������  �!" � ��� #$� ��� � � .
In sum the hyperedge created when � * is eliminated is contained in ���������� !�!" � ��� #$� � ��* � � , since all of the

hyperedges containing � * at this stage are in this set. Furthermore, all vertices � 
 ������� � � *"! 
 are removed
from this hyperedge, thus it contains only variables following �-* in the ordering. Hence, by (1) above this
hyperedge is contained in � �$� ��� � ��� #$� � � * � � .

Example 4 The tree decomposition / � 
 given in Figure 3 has the property that it has tree width no more
than twice the branch width for the branch decomposition /	��
 given in Figure 2. / � 
 gives rise to the
ordering � �$� � � � �
� ��� �
� � . For example, the deepest common ancestor of the vertex 2 is the node labeled

6



� � �
� �

 



 

��

��
� � ��� �
� �


 


 


��
��

� � �
� ��� �
� �

 



 

��

��
� � � � �
� ��� �

 
 
 ���� � � � �
� � � � ��� �

� � �
� �
� � �
� �

� � �
� �

Figure 4: Tree decomposition for � ��� � � � �
� ��� �
� �
� � �
� ��� �
� � (the left child of the root), while the deepest common ancestor of the vertex 1 is the node labled� � � � �
� ��� � (the left child of deepest common ancestor of 2). Hence 2 must follow 1 in the ordering. As shown
in Example 2, � has induced width 3, which is less than twice the branch width of the branch decomposition
/���
 .
Lemma 3 Let � be a hypergraph with elimination width at most � . Then the moralized graph � � has a
tree-decomposition of tree width at most � � � . And hence, � has a branch decomposition of tree width at
most � � � .
Proof: Let � � � 
��������
� ��� be an elimination ordering for � . Then we will construct a tree decomposition
for � � , the moralized graph of � � ��� ��� �

, using � as follows. Initially, we have
� � �

trees, each of size
1, one corresponding to each edge ' � �

. We first merge the trees containing � 
 into a bigger tree, / 
 ,
leaving us with a new, smaller set of trees. Then we merge the trees containing � � into a bigger tree, / � .
We continue in this way until we have formed a single tree, / . Now we fill in the labels for all intermediate
vertices of / so that the tree is a tree-decomposition. That is, if " and � are two leaves of / and they both
contain some vertex � , then every node along the path from " to � must also contain � in its label. It is not
too hard to see that for each ��* , the tree /�* (created when merging the trees containing �+* ) has the property
that all labels of / * are contained in '
*�� ��* , where '�* is the hyperedge created when ��* is eliminated. Thus
the treewidth of the final tree / can be no larger than the induced width of � plus 1.

Example 5 Figure 4 shows the tree decomposition generated by the elimination ordering � ��� � � � �
� ��� �
� �
for � from Example 1. � has induced width 3 and the resulting tree decomposition has tree width 4.

2.4 Complexity as a function of branch width

The best algorithms for BAYES (and thus for #SAT) run in time � � � ���
�

where � is the branch width of the
underlying hypergraph of the input. We first show that #DPLL, the simple extension of DPLL for #SAT,
performs poorly under this metric.

Theorem 4 There exist families of CNF formulas with underlying branch width 0 such that counting satis-
fying assignments using #DPLL on these formulas takes exponential time.

Proof: Consider a 3CNF formula over
� � variables consisting of � disjoint clauses. This formula has

branch width 0; however, any complete decision tree requires exponential size. Therefore the #DPLL algo-
rithm will require exponential time.

7



Table 3 #DPLL algorithm with simple caching

#DPLLSimpleCache(
�

)
If InCache

� � � � �
, return

else
Pick a variable � in

�
� ! � � � � 	��
#DPLLSimpleCache

��� ! ��
� � � � � 	�


#DPLLSimpleCache
���

�
�

AddToCache
��� �

GetValue
��� ! � � 


��� GetValue
���

�
� � 


� �
return

3 DPLL with caching

3.1 The algorithms

If one considers the example used to prove Theorem 4 it can be seen that #DPLL’s poor performance
arises from the fact that during the course of its execution the same subproblem can be encountered and
recomputed many times. Our previous example also demonstrates this. Figure 1 shows that a run of #DPLL
on

� � � � � � � � � ��� � � �	� using this decision tree will encounter the subproblem
� ��� � � �	� twice: once

along the path
� � �,� � � �%� � and again along the path

� � ��� � .
One way to try to prevent this duplication is to apply memoization. More specifically, associated with

every node in the DPLL tree is a formula
�

such that the subtree rooted at this node is trying to compute
the number of satisfying assignments to

�
. When performing a depth-first search of the tree, we can keep

a cache that contains all formulas
�

that have already been solved, and upon hitting a new node of the tree
we can avoid traversing its subtree if the value of its corresponding formula is already stored in the cache.
In the above example, we will cache

� ��� � � �	� , when we solve it along the path
� � � � � � � � � thereby

truncating the subtree below
� � ��� � .

The above form of caching, which we will call simple caching can be easily implemented as shown in
Table 3. On return the value of the input formula has been stored in the cache, so a call to GetValue

�����
will

return the desired value.2

In addition to formulas stored in the cache there are also the following obvious formulas whose values
are easy to compute:

� The empty formula
�
�

containing no clauses. Its value is 1.

� Any formula containing the empty clause. All of these formulas have value 0.

� Any formula containing only one clause. If the clause contains
�

variables its value will be ���


��� (the

probability of satisfying the clause).

Obvious formulas need not be stored in the cache, rather their values can be computed as required. We
say that a formula is known if its value is currently stored in the cache or if it is obvious. If � is a set of
formulas we assign it a value equal to the product of the values of the formulas in it.3 We say that � is
known if either (a) all

� * � � are known, or (b) there exists a
� * � � whose value is known to be 0.

The algorithm uses the following (low complexity) subroutines to access its cache.
2The cached value is actually the probability of � , so we must multiply it by 	�
 to get the number of satisfying assignments.
3If � is the conjunction of a set � of pairwise disjoint formulas, this value will be the probability of �

8



Table 4 #DPLL algorithm with caching

#DPLLCache
� � �

If InCache
� � � , return

else
� � RemoveCachedComponents

� � �
Pick a variable � in some component

� � �
� ! � ToComponents

����� �(	�� �
#DPLLCache

� � � � � �
� � ! �

� � � ToComponents
����� �(	�
 �

#DPLLCache
� � � � � �

� � �
�

AddToCache
��� �

GetValue
� � ! ���



� � GetValue

� � �
� � 


� �
return

1. AddToCache
��� � � � : adds to the cache the fact that formula

�
has value � .

2. InCache
� � � : takes as input a set of formulas � and returns true if � is known.

3. GetValue
� � � : takes as input a set � of known formulas and returns the value of the set (i.e., the

product of the values of its formulas).

Surprisingly, simple caching, does reasonably well as the following theorem shows.

Theorem 5 For solving #SAT on � variables, #DPLLSimpleCache runs in time bounded by � � � ������� �
�

where � is the underlying branch width of the instance.

The proof of this theorem is given below. Although #DPLLSimpleCache does fairly well, its perfor-
mance is not quite as good as the best BAYES algorithms (which run in time � � � � �

�
). One of our main

contributions is to show that a slightly more sophisticated variant of caching allows #DPLL to perform as
well as the best known algorithms.

This version is very similar to #DPLLSimpleCache. The algorithm creates a DPLL tree, as described
above, caching intermediate formulas as they are computed. However, the algorithm takes as input formulas
that have been decomposed into disjoint components, and the intermediate formulas it caches are similarly
stored as disjoint components. Thus, if we have already computed the number of satisfying assignments for�

and for � , where
�

and � are over disjoint sets of variables, we will be able to compute the number of
satisfying assignments for

�
	
� without further work.

The new algorithm uses the subroutines previously defined along with two additional (low complexity)
subroutines.

4. ToComponents
�����

: takes as input a formula
�

, breaks it up into a set of minimal sized disjoint com-
ponents, and returns this set.

5. RemoveCachedComponents
� � � : returns the input set of formulas � with all known formulas re-

moved.

The input to #DPLLCache is a set of disjoint formulas. That is, to run #DPLLCache on the formula
�

we initially make the call #DPLLCache
�
ToComponents

����� �
. When the call #DPLLCache

� � � returns, the
cache will contain sufficient information so that the call GetValue

� � � will return the desired value.
We will now state our upper bound on the runtime of #DPLLCache. The proof is given below.

9



Table 5 #DPLL algorithm with caching and linear space

#DPLLSpace
� � �

If InCache
� � � , return

else
� � RemoveCachedComponents

� � �
Pick a variable � in some component

� � �
� ! � ToComponents

����� �(	�� �
#DPLLCache

� � � � � �
� � ! �

� � � ToComponents
����� �(	�
 �

#DPLLCache
� � � � � �

� � �
�

AddToCache
��� �

GetValue
� � ! ���



� � GetValue

� � �
� � 


� �
RemoveFromCache

� � ! � � �
�

return

Theorem 6 For solving #SAT on � variables, #DPLLCache runs in time bounded by � � � 
 � � � ���
�

where �
is the underlying branch width of the instance.

Finally, we present a third variant of #DPLL with caching that achieves a nontrivial time-space tradeoff.
This algorithm is the natural variant of #DPLLCache, modified to remove cached values so that only linear
space is consumed. The only change in the algorithm from #DPLLCache is that it utilizes one additional
subroutine:

6. RemoveFromCache
� � � : takes as input a set of formulas (a set of components) and removes all of

them from the cache.

After splitting a component with a variable instantiation and computing the value of each part, #DPLLSpace
cleans up the cache by removing all of these sub-components, so that only the value of the whole component
is retained.

The following theorem shows that #DPLLSpace has time and space complexity that is the same as
recursive conditioning [Dar01].

Theorem 7 For solving #SAT on � variables, #DPLLSpace uses only space linear in � and runs in time
bounded by � � ��������� �

�
where � is the underlying branch width of the instance.

3.2 Proofs of Theorems 5–7

For the proofs of theorems 5 and 6 we will need some common notation and definitions. Let
�

be ! -CNF
formula with � variables and " clauses, let � be the underlying hypergraph associated with

�
with branch

width � . By [Dar01], there is a branch decomposition / ��
 of � of depth � ������� " � and width � � � � .
Recall that the leaves of / ��
 are in one-to-one correspondence with the clauses of

�
. We will number

the vertices of / ��
 according to a depth-first preorder traversal of / ��
 . For a vertex numbered � , let
� *

denote the subformula of
�

consisting of the conjunction of all clauses corresponding to the leaves of the
tree rooted at � . Let � � �!������� �!" � � * � be the set of underlying variables in the (sub)formula

� * . Recall that in a
branch decomposition each vertex � of / ��
 is labelled with � �$��� � � � � , the set of variables in the intersection of
� ��� � �$��� �!" � � * � and � � � � �$� � ��" � � � � * � . Each node � in / ��
 partitions the clauses of

�
into three sets of clauses:� * , ���* , and

�
	* , where
���* is the conjunction of clauses at the leaves of / ��
 to the left of

� * , and
��	* is the

conjunction of clauses at the leaves to the right of
� * .

10



All of our DPLL caching algorithms achieve the stated run time bounds by querying the variables in
a specific, static order. That is, down any branch of the DPLL decision tree, � / the same variables are
instantiated and they are instantiated in the same order. The variable ordering used in � / is determined
by the depth-first pre-ordering of the vertices in the branch decomposition / ��
 and by the labeling of these
vertices. Let

�
� � � � ������� � � � �	� * � denote the variables in � �$��� � � � � that do not appear the label of an eariler vertex

of /���
 . Note that since the width of / ��
 is � ,
� * � � for all � . Let � ������� � � be the sequence of vertex numbers

of /���
 . Then our DPLL algorithm will query the variables underlying
�

in the following static order:

� � � �
� 
�� � � � � � 
 � � � ������� � � � 
��	� 
 � � � � � � � � �������
� � � � �	� � � ������� � � ��� � � � ������� � � ��� �	� � ��� �

� 
 � � � � ����� � ��� � � , and
� 
����������	� � � � . Note that for some vertices � of / ��
 , nothing will be queried

at this vertex since all of the variables in its label may have occured in the labels of earlier vertices. Our
notation allows for these vertices to be skipped. The underlying complete decision tree, � / , created by our
DPLL algorithms on input

�
is thus a tree with

� 

�
� � � �����

�
� � � � levels. The levels are grouped into� layers, with the � ��� layer consisting of

� * levels. Note that there are �
	 nodes at level � in DT, and we will
identify a particular node at level � by

� � ��� � where
�

is a particular assignment to the first � variables in the
ordering, or by

� ��
 � � � ��� � , where
��
 � � � is the � ��� pair in the ordering � , and

�
is as before.

The DPLL algorithms carry out a depth-first traversal of � / , keeping formulas in the cache that have
already been solved along the way. (For #DPLLSimpleCache, the formulas stored in the cache are of
the form

� � �
, and for #DPLLCache and #DPLLSpace, the formulas stored are various components of

ToComponents
� � � � �

.) If the algorithm ever hits a node where the formula to be computed has already
been solved, it can avoid that computation, and thus it does not do a complete depth-first search of � / but
rather it does a depth-first search of a pruned version of � / . For our theorems, we want to get an upper
bound on the size of the pruned tree actually searched by the algorithm.

We will have the following running example to help explain the proofs. Consider what happens when
we apply one of our DPLL algorithms to the formula

� � � � ��� � � � � � � � 
 � � � � � � ��� � � ! � � � � 
 � � ! � � � � # � ��� � � � � 
 � ��� � � � � # � ��� � ��� � � � ��� � ��� �	� �
using the branch decomposition given in Figure 5. The nodes in the figure have two labels. The top label
is the number of the node according to the preorder depth-first traversal. The bottom label for node � is
� �$��� � � � � , the set of variables in the interesection of � � �!������� �!" � � * � and � � �!���$� � ��" � � � � * � . In this example
there are 15 vertices in / ��
 , but only 8 nonempty layers, one for each of the eight variables. The resulting
variable ordering is as follows:

� � � � � � � �� ��� ����
� � � � � �� ��� ����

� � � � � �� ��� �� �
� �"! � � �� ��� �� #

� � ��� � � �� ��� ���$
� � � � � � �� ��� �� %

� � � � � � �� ��� ���&
� � � � � � �� ��� �� '

� �

This notation explains, for example, that the first variable, � 
 , is queried when we reach vertex 2; the second
variable, � � , is queried when we reach vertex 3; and the seventh and eight variables, � � and � � , are not
queried until we reach vertex 14 of the branch decomposition.

Theorem 5 For solving #SAT on � variables, #DPLLSimpleCache runs in time bounded by � � � ������� �
�

where � is the underlying branch width of the instance.

Proof:
We want to show that the size of the pruned tree (in other words, the size of the subtree of � / actually

searched by #DPLLSimpleCache) is at most � � � ������� �
�
.

11



1�
�


 


 



 


 


��
��

��
��

2� � �

 



 

��

��

3� � � � �
 
 ��
4� � �
� �

5� � �
� �

6� � � � �
 
 ��
7� � ��� �

8� � ��� �

9� � �

 



 
 

��

���

10� � �
� �
 
 ��
11� � ��� � 12� � ��� �

13� � �

 
 
 ���

14� � � ! ��� � 15� ! ��� �

Figure 5: Branch Decomposition for
� � � � �+� ��� � � � � � 
 � � � � � � ��� ��� ! � � � � 
 ��� ! � � � � # � ��� � � � � 
 �

� � � � � � # � � � � � � � � � � � � � � �	�

When backtracking to a particular node
� � ��� � � � ��
 � � � ��� � at level � in � / , the formula put in the cache,

if it is not already known, is of the form
� � �

. (Recall
�

is a setting to the first � variables.) However, we
will see that although there are �
	 different ways to set

�
, the number of distinct formulas of this form is

actually much smaller than � 	 . Consider a partial assignment,
�
, where we have set all variables up to and

including
��
 � � � , for some


�� � � and some � � ���
. The number of variables set by

�
(the length of

�
) is� 


�
� � � �����

�
� � ! 
 � � .

Let
� ! denote the partial assignment that is consistent with

�
where only the variables in

�
that came

from the labels of the vertices on the path from the root of /	��
 up to and including vertex



are set. The idea
is that

� ! is a reduction of
�
, where

� ! has removed the assignments of
�

that are irrelevant to
� �

and
��	�

.
Consider what happens when the DPLL algorithm reaches a particular node

� ��
 � � � ��� � at level � of� / . At that point the algorithm is solving the subproblem
� � �

, and thus, once we backtrack to this node,� � � � � �� � � 	 � � � � 	 � 	� � �
is placed in the cache, if it is not already known. Note that all variables in

the subformula
� ��

are set by
�
, and thus either

� �� � � � � , in which case nothing new is put in the cache,
or

� �� � � � � in which case
� � � � � � � � 	 � 	� � � � � � � ��� 	 � 	� � ���

is put in the cache. Thus, the set of
distinct subformulas placed in the cache at level ��� ��
 � � � is at most the set of all subformulas of the form� � � ��� 	 � 	� � ���

, where
� ! is a setting to all variables in the labels from the root to vertex



, plus the variables��
 � � � ��� � � � ��
 � � � . There are at most % � � such variables, where



has depth % in /	��
 (the each label has at

most � variables since this is the width of / ��
 ). Hence the total number of such
� ! ’s is at most � ����� 


�
. This

implies that the number of subtrees in � / at level � � � that are actually traversed by #DPLLSimpleCache
is at most � � � ��� 
 � � � � �	� 


�
, where % is the depth of node



in / ��
 . Let 
 be the number of nodes in � /

that are actually traversed by #DPLLSimpleCache. Then, 
 is at most � � � ����� ����� �
�
, since 
 is the sum of the

number of nodes visited at every level of � / and for each node



in /	��
 , % � � ������� " � � � ������� � � .
The overall runtime of #DPLLSimpleCache is at most 
 � , where again 
 is the number of nodes in � /

that are traversed by the algorithm. This can be seen by noticing that for every node in � / that is traversed,
the algorithm takes time proportional to the size of the cache, which is at most 
 . Thus, #DPLLSimpleCache
runs in time

� � � � ����� ����� �
� � � � � � � �	� ����� �

�
.

In the above running example, consider the set of all � # partial restrictions
�

where we have set all
variables up to and including the fifth level. For this case,

� �
 � � � � ��� � � � � � � � 
 � � � � � � � � � � ! � � � � 
 � � ! �	� ,

12



� 
 � � � � � # � ��� � � � � 
 ����� �	� and
�
	
 � � � � � # � ��� � ��� � � � ����� ��� �	� . ���
 �

will have vanished by level
5, and While there are � # possible formulas

� � �
, the number of distinct formulas in this set is only � � ,

corresponding to all possible ways to set variables � 
 and � # .

Theorem 6 For solving #SAT on � variables, #DPLLCache runs in time bounded by � � � 
 � � � ���
�

where �
is the underlying branch width of the instance.

Proof: We prove the theorem by placing a bound on the number of times #DPLLCache can branch on any
variable � 	 . Using the notation specified above, � 	 corresponds to some pair

��
 � � � in the ordering � used by
#DPLLCache. That is, ��� is the � ’th new variable in the label of vertex



of the branch decomposition / ��
 .

When #DPLLCache utilizes the static ordering � , it branches on, or queries, the variables according to
that order, always reducing the component containing the variable � * that is currently due to be queried.
However, since previously cached components are always removed (by RemoveCachedComponents in the
algorithm), it can be that when it is variable � * ’s turn to be queried, there is no component among the active
components (i.e., the components of the current recursive call that remain after all known components are
removed) that contains ��* . In this case, #DPLLCache simply moves on to the next variable in the ordering,
continuing to advance until it finds the first variable that does appear in some active component. It will then
branch on that variable reducing the component it appears in, leaving the other components unaltered.

This implies that at any time when #DPLLCache selects � 	 as the variable to next branch on it must be
the case that

1. � 	 appears in an active component. In particular the value of this component is not already in the
cache.

2. No variable prior to � 	 in the ordering � appears in any active component. All of these variables
have either been assigned a particular value by previous recursive invocations, or the component they
appeared in has been removed because its value was already in the cache.

In the branch decomposition / ��
 let � be


’s parent (or



itself if



has no parent). We claim that whenever

#DPLLCache selects � 	 as the next variable to branch on, the active component containing � 	 must be a
component that has arisen from a reduction of

���
(the conjunction of the clauses below � ), � � #��  !� � ��� � . In

particular, at this stage
� �

has been reduced by the assignments made by #DPLLCache’s previous recursive
invocations, it has been split into components, and all known components have been removed.

First, if � � 

, then



is the root of / ��
 , � � is the original formula

�
, and the claim is trivial. Otherwise,

we know that all of the variables in � �$��� � � � � have been removed from all active components, since all of these
variables must precede � 	 in the ordering � . But by the definition of the labels in a branch decomposition,
this means that � ��#��  � � � � � can share no variables with any other active component. Hence, at this stage,
� � #��  � � � � � is a set of components disjoint from the other active components. Since � 	 is in � �$��� � ��
 � and



is in the subtree below � , � 	 must be in one of these components if it is in any component.

At this stage, prior to the removal of known components, � ��#��  � � � � � can only be in one of at most
� ��� �	�

�
different configurations. Of the variables prior to � 	 in � only those from � �$� ��� � � � (at most � ) and

� �$��� � ��
 � (at most � � � since � 	 is the � ’th new variable in � �$� ��� ��
 � ) appear in
� �

and thus only their settings
can affect the form of

�
�
at this stage. Thus the active component containing � 	 can appear in at most � � ���

�
different configurations and #DPLLCache can branch on � 	 at most � � ���

�
times as each time one more of

these configurations gets stored in the cache.

13



Thus with � variables we obtain a bound on the number of branches in the decision tree explored by
#DPLLCache of � � � � �

�
. Clearly, the number of branches explored also bounds the run time.

Theorem 7 For solving #SAT on � variables, #DPLLSpace uses only space linear in � and runs in time
bounded by � � ��������� �

�
where � is the underlying branch width of the instance.

Proof: Let
�

be a ! -CNF formula with � variables and " clauses and let � be the underlying hypergraph
associated with

�
. Unlike the previous proofs, we will begin with a tree decomposition (rather than a branch

decomposition) / � 
 of depth � ��� ��� " � and width � � � � . We can assume without loss of generality that the
leaves of / � 
 are in one-to-one correspondence with the clauses of

�
. Each node � in / � 
 partitions

�
into

three disjoint sets of clauses:
� * , the conjunction of clauses at the leaves of the subtree of / � 
 rooted at � ,� �* , the conjunction of clauses of leaves of / � 
 to the left of

� * , and
� 	* , the conjunction of clauses of leaves

of / � 
 to the right of
� * . Let � be a non-leaf node of / � 
 and let

�
and ! denote its left and right children,

respectively. The label ���$� ��� � � � associated with node � in / � 
 contains exactly those variables that occur in
both

���
and

���
. #DPLLSpace will query the variables associated with the labels of / � 
 according to the

depth-first preorder traversal. Let the variables in � �$��� � � � � not appearing in an earlier label on the path from
the root to node � be denoted by � � � � � � � � � � ������� � � � �	� * � . Note that the variables in � � � � are exactly the
variables that occur in both

���
and

���
(where

�
and ! are the children of � ) but that do not occur outside of� * . If we let � be the total number of nodes in / � 
 , then #DPLLSpace will query the variables underlying

�
in the following static order:

� � � � � � � � � ������� � � � � � �
Note that some � � � � may be empty. The underlying decision tree, � / , created by #DPLLSpace is a com-
plete tree with � levels. We will identify a particular node � at level � of � / by � � � � ��� � where

�
is a

particular assignment to the first � variables in the ordering, or by � � � ��
 � � � ��� � . In the latter notation
�+� ��
 � � � means that at level � , we query the � ��� variable in � ��
 � .

We point out that #DPLLSpace as defined earlier, specifies that we must choose the next variable to split
on from the set of variables that currently occur in an active component. However, to simplify this proof,
we will query the variables in the static ordering as defined above and thus a variable may be queried even
if it does not occur in any active component. However it is not hard to see that this can only increase the
runtime and does not lead to any real changes in the run of the algorithm. This is because when a variable,
� , is queried that is not part of any component of � , the sets � ! and � � are unchanged.

#DPLLCache carries out a depth-first traversal of � / , storing the components of formulas in the cache
as they are solved. However, now components of formulas are also popped from the cache so that the total
space ever utilized is linear. If the algorithm ever hits a node where all of the components of the formula to
be computed are known, then the algorithm can avoid traversing the subtree rooted at that node. Thus the
algorithm does not do a complete depth-first search of � / but rather it does a depth-first search of a pruned
version of � / .

During the (pruned) depth-first traversal of � / , each edge that is traversed is traversed twice, once in
each direction. At a given time 
 in the traversal, let

� � � 
 � � � be the set of edges that have been traversed,
where

� 

are the edges that have only been traversed in the forward direction, and

� � are the edges that
have been traversed in both directions. The edges in

� 

constitute a partial path � starting at the root of � / .

Each edge in � is labelled by either 0 or 1. Let � 
���������� � � be the set of all subpaths of � (beginning at the
root) that end in a 1-edge. Let

� 
������������ �
be subrestrictions corresponding to � 
�������� � � � except that the last

variable that was originally assigned a 1 is now assigned a 0. (For example, if � is
� � 
 ��� � � � � � � � ! �

14



� � � # �.� � ��� �,� � � � �,� � , then
�)
 � � � 
 �,� � � � � � � , and

� � � � � 
 � � � � � �%� � � ! � � � � # �,� � . Then
the information that is in the cache at time 
 contains / #�� # " ��# � '�� 
 � � � � ��) � , � � ! .

For a node



of / � 
 and corresponding subformula
� �

, the contexts of
� �

is a set of variables defined
as follows. Let

��
 
���������� 
 
 � denote the vertices in / � 
 on the path from the root to



(excluding



itself).
Then the contexts of

� �
is the set � # � 
 '�� 
 � � � � � � � ��
 
 � � � ��
 � � � �����

� � ��
 
 � . Intuitively, the context of� �
is the set of all variables that are queried at nodes that lie along the path to



. Note that when we reach

level �-� ��
 � � � in � / , where the first variable of � ��
 � is queried, we have already queried many variables,
including all the variables in � # � 
 '�� 
 � � � � � . Thus the set of all variables queried up to level ��� ��
 � � � can
be partitioned into two groups relative to

� �
: the irrelevant variables, and the set � # � 
 '�� 
 � � � � � of relevant

variables. We claim that at any arbitrary level � � ��
 � � � in � / , the only nodes at level � that are actually
traversed are those nodes

� ��
 � � � ��� � where all irrelevant variables in
�

(with respect to
� �

) are set to 0. The
total number of such nodes at level �+� ��
 � � � is at most ��� ��� � ���

�
� � �
	�� � � �	� which is at most � � ����� � . Since this

will be true for all levels, the total number of nodes in � / that are traversed is bounded by � � ������� � . Thus,
all that remains is to prove our claim.

Consider some node � � � ��
 � � � � # � in � / . That is, # � # 
 # � ����� # � ! 
�
 
 ����� 

� !


, where for each � , # *

is an assignment to the variables in � � � � , and

 
 ����� 


� !



is an assignment to the first � � � variables in � ��
 � .
Let the contexts of

� �
be � ��
 
(� � ����� � � ��
 
 � , % � ����� � . Now suppose that # assigns a 1 to some non-context

(irrelevant) variable, and say the first such assignment occurs at #��� , the 
 ��� variable in #�� , � � 
 � � . We
want to show that the algorithm never traverses � .

Associated with # is a partial path in � / ; we will also call this partial path # . Consider the sub-
path/subassignment � of # up to and including # �

� � � . If # is traversed, then we start by traversing
� . Since the last bit of � is 1 (i.e., #��� � � ) when we get to this point, we have stored in the cache
/ #�� # " ��# � '�� 
 � � � � � � where

�
is exactly like � except that the last bit, # �� , is zero. Let

�
be the first

node in

 
 � 
 � ������� 
 
 with the property that the set of variables � � � � are not queried in � . (On the path

to



in / � 
 ,
�

is the first node along this path such that the variables in � � � � are not queried in � .) Then
/ #�� # " ��# � '�� 
 � � � � � � consists of three parts: (a) / #�� # " ��# � '�� 
 � � � �� � � � , (b) /�#�� # " ��# � '�� 
 � � ��� � � � , and
(c) /�#�� # " ��# � '�� 
 � � � 	� � � � .

Now consider the path � � that extends � on the way to � in � / , where � � is the shortest subpath of# where all of the variables � � � � for � � �
have been queried. The restriction corresponding to � � is

a refinement of � where all variables in � � � � � � � � � �
����� � � � � � � are set. Since we have already set

everything that occurs before
�
, we will only go beyond � � if some component of /�#�� # " ��# � '�� 
 � � � � ��� �

is not already in the cache. / #�� # " ��# � '�� 
 � � � � ��� � consists of three parts: (a) / #�� # " ��# � '�� 
 � � � �� � ��� � ,
(b) /�#�� # " ��# � '�� 
 � � ��� � � � � , and (c) / #�� # " ��# � '�� 
 � � �
	� � � � � . Because we have set everything that occurs
before

�
, all formulas in (a) will be known. Since � � and

�
agree on all variables that are relevant to

� �
,

/ #�� # " ��# � '�� 
 � � � � � � � � � / #�� # " ��# � '�� 
 � � � � � � � and hence these formulas in (b) in the cache. Similarly
all formulas in (c) are in the cache since /�#�� # " ��# � '�� 
 � � � 	� � ��� � � /�#�� # " ��# � '�� 
 � � � 	� � � � . Thus all
components of / #�� # " ��# � '�� 
 � � � � ��� � are in the cache, and hence we have shown that we never traverse
beyond � � and hence never traverse � . Therefore the total number of nodes traversed at any level ��� ��
 � � �
is at most � � 
 , where % is the depth of



in / � 
 , as desired.

4 The connection between BAYES and #SAT

Here we formalize the problem BAYES and show how both BAYES and #SAT are instances of a more general
problem. We also demonstrate how the standard algorithms for BAYES, as well as our new DPLL-based

15



algorithms for #SAT, can in fact be applied to this more general problem. This automatically allows us to
apply any of these algorithms to either problem.

BAYES is concerned with the problem of computing probabilities in a Bayesian Network (BN). Invented
by Pearl [Pea88], a Bayesian network is a triple

��� ��� ��� �
where

��� ��� �
describes a directed acyclic graph

(DAG), in which the nodes
� � ��� 
 ������� � � � � represent discrete random variables, edges represent direct

correlations between the variables, and associated with each random variable
� * is a conditional probability

table CPT (or function),
� * ��� * � � ��� * � � � �

, that specifies the conditional distribution of
� * given different

assignments of values to its parents in
��� ��� �

, �
��� * � . A BN represents a joint distribution over the random

variables
�

in which the probability of any assignment
� � 
��������
� �)� � to the variables is given by the equation

� � � � 
���������� ��� � �
��
* 	�


� * � �)* � � � �)* � � �

where
� * � �)* � � � �)* � � is the CPT

� * evaluated at this particular assignment.
Thus a BN represents a particular distribution in a convenient and often compact way. Fundamental

to the BN representation is that it supports a deep connection between the graphical structure and various
independencies that hold of the distribution. We say that two random variables � and � are independent
given a set of variables

�
if
� � � � � � � � � � � � � � � for all values � ,

�
and � of the variables

�
, � , and � . In

the distribution represented by a BN, a variable is independent of its nondescendants in the DAG given a set
of values for all of its parents. Further independence statements that follow from these local statements can
be computed in polynomial-time using the graph-theoretic notion of % -separation [Pea88].

At its most basic, BAYES is the problem of computing the distribution of a variable
� * given a particular

assignment to some of the other variables # : i.e.,
� � ��� * � # � . Since

� * has only a finite set of values (say
! values), this problem can be further reduced to that of computing the ! values

� � ��� *�� � 	 # � and then
normalizing them so that they sum to 1.

4.1 A more general problem

An important conceptual contribution of [Dec96] was to define a more general (and in our view more fun-
damental) problem, and to observe that BAYES is an instances of this problem. It is easy to show, as we
do below, that #SAT is also an instance of this more general problem. The general problem is specified as
follows. The input is

� � ��� ��	 �
, where

	 � � � 
�������� � �
�
�

is a set of functions and
� � � � 
�������� ��� � is a

set of discrete valued variables. The range of each function is fixed depending on the problem, and can be
boolean, or a subset of the integers or of the real numbers. Each function

� * has a domain set '
*�
 � . The
problem is to compute � � � � � � ����� � �



� 
 � ' 
 � � � � � '�� ��� ����� � �

�
� ' �

�
.

To solve an instance of BAYES, i.e., to compute
� � ��� * � � 	 # � given a BN with some set of CPT

functions
	

, we simply reduce the functions
� * � 	

by setting the variables assigned in # and setting
� * to

the value
�
, and then sum out the remaining variables. This clearly is an instance of the general problem.

#SAT can equally well be recast as an instance, f, of this general problem. Let
�

be a CNF formula
over the variables

� � � � 
���������� �)� � . Let
� � ��� ��	 �

where each clause � * of
�

will be viewed as a
function

� * � 	
on the underlying variables � � �!���$� � ��" � � * � . For each assignment to � � �!� �$��� �!" � � * � , � * will

return 1 if the assignment satisfies � * and 0 otherwise. Clearly the number of satisfying assignments for
�

is � ��� � ��� ����� � �


� 

� � ��� � �$��� �!" � � 
 � � � � � � � � �!� �$��� �!" � � � � � � ����� � �

�
� � � �!���$� � ��" � � �

� �
:

Our DPLL algorithms described in Section 3 can be easily modified to solve the general problem. Now
the input,

�
, to the DPLL algorithm is a set of functions,

	 � � � 
���������� �
�
�
, over a set of discrete valued

variables,
� � � � 
��������
� ��� � , as described above. We want to compute � ��� ����� � �



� 
 � ' 
 � � ����� � �

�
� ' �

�
.

DPLL chooses a variable, ��* , and for each value 
 of � * it recursively solves the reduced problem
� � ��) 	��

.

16



(Hence, instead of a binary decision tree it builds a ! -ary tree). The reduced problem
� � ��) 	��

is to compute
� ��� ����� ���) � �

���)�� � ����� � ��� � 
 � ' 
 ��� ��) 	�� � ����� � �
�
� ' �

��� ��) 	�� �

where for an arbitrary � , ��� � ' � ��� ��) 	�� is
���

reduced by setting � * � 
 . That is, the problem is to sum out
the remaining variables given that � * has been set to 
 . #DPLL simply recurses until all the functions in	

have been reduced to constant values (or one has been reduced to zero). #DPLLSimpleCache caches
the reduced problem to avoid recomputing it, and #DPLLCache caches the solution to components of the
reduced problem. Each component consists of a subset of the functions in the reduced problem, such that
the union of the domain sets of these functions is disjoint from the domain set of all functions in any other
component.

5 Comparison with known algorithms

5.1 Variable Elimination

Variable or bucket elimination (VE) [Dec96] is perhaps the most fundamental algorithm for BAYES. It has
been shown to be closely related the all of the other algorithms [KDLC01] for BAYES, and it gives the same
runtime and space guarantees as the best known BAYES algorithms.4

Now we describe the VE algorithm applied to the more general problem. Let � be the underlying
hypergraph associated with the functions

� * . That is, there is one edge '
* corresponding to the domain
set of each function

� * . Variable elimination begins by choosing an elimination ordering for the variables� � � � 
���������� �)� � , call it ��� 
 ������� � � �� . The algorithm proceeds in � phases. For the first phase, all functions
involving � � 
 ,

	 �	� �
, are collected together, and a new function is obtained by “summing out” � � 
 . The new

function takes the product of all functions in
	 � � �

when ��� 
 is set to one, and adds this to the product of the
functions in

	 �	� �
when ��� 
 is set to zero (or more generally it sums

	 �	� �
over all of ��� 
 ’s possible values). This

induces a new hypergraph, � 
 , where the set of functions
	 � � �

is replaced by the single new function. This
process continues until all � variables are “summed out”. It is not too hard to see that the time and space
complexity of this algorithm is exponential in the elimination width of � under � , and therefore the overall
time is also bounded by the elimination width of � .

Theorem 8 The runtime and space of variable elimination for
�

is at most � � � � � � where � is the elimina-
tion width of the associated hypergraph � .

Since SAT is a special case of counting satisfying assignments, it is interesting to think about variable
elimination applied in this more restrictive setting. We can solve SAT using the same formulation as that
given above for #SAT. However, for SAT, rather than preserve the exact number of assignments. the new
functions computed at each stage need only preserve whether or not the conjunction of the old functions is
satisfiable. This can be accomplished by representing these new functions symbolically as a set of clauses.
Furthermore, at the � -th stage, a function that preserves satisfiability can be obtained from the previous
functions by generating all clauses that can be obtained by resolving on � �* , and then discarding all old
clauses containing ���* . This resolution step corresponds to the summing out operation, and it is precisely the
Davis-Putnam (DP) algorithm for satisfiability!5

4In practice the join-tree clustering algorithm [LS88] is the most popular algorithm for BAYES. [KDLC01] shows how this
algorithm can be reduced to a version of VE that remembers some of its intermediate results.

5Dechter and Rish [RD00] have previously made a connection between DP and variable elimination. They were thus able to
show, as does the above, that DP runs in time 
���
 	���� .

17



In some cases this symbolic representation of the functions can be substantially more compact than a
straight-forward tabular representation. A useful example to study is applying variable elimination to a
2-CNF formula

�
. If we merely want to determine whether or not

�
is satisfiable, then all new functions

generated by applying variable elimination (DP) to
�

will have a 2-CNF representation, and thus the whole
algorithm will run in polynomial-time. However, when we apply variable elimination to

�
to count the num-

ber of satisfying assignments, it is not clear how to represent the new functions generated more succinctly
than in a tabular (truth-table) form, and thus the runtime becomes exponential in the branch width.

5.2 Conditioning

Recursive conditioning [Dar01] is another algorithm for BAYES. It operates differently from VE, but it also
solves the more general problem. Hence it also can be used to solve #SAT. As above, let

�
be a CNF formula

and let � be its associated hypergraph. Recursive conditioning begins with a branch decomposition / of �
with width � and height % . It operates as a % -phase divide-and-conquer algorithm as follows. Let ��������� � / �
be the set of variables in the label of / ’s root node. The algorithm computes the number of satisfying
assignments for

�����
for all truth assignments # to the variables ��������� � / � . The final solution is the sum of

the solutions to these subproblems. Each subproblem is solved recursively, by setting variables as dictated
by the branch decomposition.

The most efficient version of the algorithm remembers intermediate calculated values. The runtime and
space of this version of the algorithm is � � � � � � , where � is the branch width and � is the number of
variables in

�
.

Theorem 9 [Dar01] The runtime and space of recursive conditioning is at most � � � � � � where � is the
branch width of the hypergraph associated with the functions

� * of the problem.

6 Advantages of DPLL

As noted in the introduction, DPLL tends to display an average case performance that is vastly superior to
its worst case performance. In this section we point out a few reasons why our various versions of #DPLL
might retain this kind of superiority in their average case behavior.

In section 4 we described how DPLL solves the input problem by solving a set of reduced instances of
the problem where the reductions arise from assigning variables. Once we make some sequence of variable
assignments in the DPLL tree, some of the original functions of the problem might be reduced to constants.
For example, if every variable in ' * , the domain of one of the input functions

� * , has been set, then
� * will be

reduced to a single value (its value when evaluated at this assignment). If any of the input functions reduce
to zero, our DPLL algorithms need not descend any further—the reduced subproblem must have value 0.6

In VE the corresponding situation is when one of the intermediate functions, � * , produced by summing out
some of the variables, has value 0 for some setting of its inputs. In VE there is no obvious way of gaining
compuational efficiency from this: � * is computed all at once after all of the previous functions have been
computed. This kind of early termination supported by DPLL is the key reason for its superior average case
behavior.

Dynamic variable ordering is another essential component in DPLL’s efficiency. Our algorithms retain
the ability to use dynamic variable orderings. In particular, say that the input problem is

�
, and we first

branch on the assignments � * � � and � * � � . There is no reason to suppose that a good elimination
ordering for solving

� � ��) 	�

is also good for solving

� � ��) 	��
. Our algorithms are free to choose different

orderings for each subproblem (and recursively, different orderings for the subsequent decompositions of
6For #SAT this corresponds to the situation where a clause becomes empty.

18



these subproblems). VE is forced to use a single elimination order since it does not decompose the problem
in this way. Recursive conditioning potentially has some flexibility, but it is still forced to use an ordering
that separates the problem into disjoint pieces.

Finally, it can be that some of the input functions become constant prior to all of their variables being set
(e.g., a clause might vanish because one of its literals has become true), or they might become independent of
some of their remaining variables. This means the subproblems

� � ��) 	�

and

� � ��) 	��
might have quite different

underlying hypergraphs. Our DPLL-based algorithms automatically take advantage of this fact, since they
work on these reduced problems separately. VE, on the other hand, does not decompose the problem in
this way, and hence cannot take advantage of this structure. In BAYES this situation corresponds to context-
specific independence where random variable

�
might be dependent on the set of variables

� � � � � when
we consider all possible assignments to these variables (so

� ��� � � � � � � � is one of the input functions),
but when

� � True it might be that
�

becomes independent of � (i.e.,
� ��� � � � � � � ����� 	�
 might be a

function �
��� � � � rather than �

��� � � � � � ). Currently only ad-hoc methods have been proposed [BFGK96]
to take advantage of this kind of structure.

7 Conclusions

In this paper we have studied DPLL with caching and analyzed the performance of various types of caching
for counting satisfying assignments and for Bayesian inference. The same caching methods can also be
applied to the special case of SAT. Using the same ideas, it can be shown that DPLL with simple caching
can polynomially simulate ordered and regular resolution. This is interesting since it is known that ordered
and regular resolution provide exponential savings in some instances over DPLL, but it has been hard to take
advantage of these savings without a clear procedure for implementing regular resolution. Our results are
thus related to the recent paper [AR02] that basically show that ordered resolution proofs of satisfiability (a
special type of regular resolution proof) can give rise to proofs that are substantially more efficient than the
width-based algorithm.

We rephrase a problem posed by Rina Dechter and [AR02], namely is it possible to solve SAT or #SAT

simultaneously in time ��# � ��� � � � � ���
�

and polynomial space? If not, can one give a hardness result along
these lines?

The permanent and determinant of a boolean matrix are important algebraic functions that fit very nat-
urally into the general framework discused in Section 4. For both of these functions, the sum is over the
set of all permutations, and thus the underlying dependency graph will be highly interconnected. It is a
classic result that the decision problem corresponding to the permanent is ��� complete whereas the deter-
minant is computable in polynomial-time. Recent work establishes that approximating the permanent is also
polynomial-time computable [JSV01]. Is it possible to show that there is an efficient DPLL style algorithm
for these polynomial time problems?

8 Acknowledgements

We thank Michael Littman for many valuable conversations and insights related to this work.

References

[AR02] A. Aleknovich and A. Razborov. Satisfiability, branch-width and tseitin tautologies. In Pro-
ceedings of FOCS, 2002.

19



[BCC � 99] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking using
sat procedures instead of bdds. In Proc. 36th Design Automation Conference, pages 317–320.
IEEE Computer Society, 1999.

[BFGK96] Craig Boutilier, Nir Friedman, Moises Goldszmidt, and Daphne Koller. Context-specific inde-
pendence in bayesian networks. In Proceedings of the Twelfth Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI 96), pages 115–123, Portland, OR, 1996.

[BL99] E. Birnbaum and E. L. Lozinskii. The good old Davis Putnam procedure helps counting mod-
els. J. Artif. Intell. Research (JAIR), 10:457–477, 1999.

[BP96] Paul W. Beame and Toniann Pitassi. Simplified and improved resolution lower bounds. In
Proceedings 37th Annual Symposium on Foundations of Computer Science, pages 274–282,
Burlington, VT, October 1996. IEEE.

[BP00] R. J. Bayardo and J. D. Pehoushek. Counting models using connected components. In Pro-
ceedings of the AAAI National Conference (AAAI), pages 157–162, 2000.

[Dar01] Adnan Darwiche. Recursive conditioning. Artificial Intelligence, 126:5–41, 2001.

[Dec96] Rina Dechter. Bucket elimination: A unifying framework for probabilistic inference. In Pro-
ceedings of the 12th Conference on Uncertainty in Artificial Intelligence (UAI-96), pages 211–
219. Morgan Kaufmann Publishers, 1996.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Commu-
nications of the ACM, 4:394–397, 1962.

[Dub91] Olivier Dubois. Counting the number of solutions for instances of satisfiabiltiy. Theoretical
Computer Science, 81:49–64, 1991.

[Hak85] A. Haken. The intractability of resolution. Theoretical Computer Science, 39:297–305, 1985.

[Hec93] David Heckerman. Causal independence for knowledge acquisition and inference. In Proceed-
ings of the 9th Conference on Uncertainty in Artificial Intelligence (UAI93), pages 122–127,
Washington, D.C., 1993.

[JSV01] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm for the
permanent of a matrix with non-negative entries. In Proceedings of the 33rd ACM Symposium
on Theory of Computing, 2001.

[KDLC01] K. Kask, R. Dechter, J. Larrosa, and F. Cozman. Unifying tree-decomposition schemes for
automated reasoning. Technical Report R92, UC Irvine, 2001.

[LMP00] Michael L. Littman, Stephen M. Majercik, and Toniann Pitassi. Stochastic Boolean satisfiabil-
ity. Journal of Automated Reasoning, 2000. To appear.

[LPI01] M. Littman, T. Pitassi, and R. Impagliazzo. New and old algorithms for belief net inference
and counting satisfying assignments. Unpublished manuscript, 2001.

[LS88] S.L. Lauritzen and D.J. Spiegelhalter. Local computation with probabilities on graphical struc-
tures and their application to expert systems. Journal of the Royal Statistical Society Series B,
50(2):157–224, 1988.

20



[MMZ � 01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient
sat solver. In Proc. of the Design Automation Conference (DAC), 2001.

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo, CA,
2nd edition, 1988.

[PP91] D. Poole and G. M. Provan. What is the most likely diagnosis? In P.P. Bonissone, M. Henrion,
L.N. Kanal, and J.F. Lemmer, editors, Uncertainty in Artificial Intelligence 6, North Holland,
1991. Elsevier Science Publishers B.V.

[RD00] I. Rish and R. Dechter. Resolution versus search: Two strategies for SAT. Journal of Automated
Reasoning, 24(1):225–275, January 2000.

[Rot96] Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1–2):273–302,
1996.

[RS91] Neil Robertson and P.D. Seymour. Graph minors x. obstructions to tree-decomposition. Journal
of Combinatorial Theory, Series B, 52:153–190, 1991.

[Val79a] Leslie G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8:189–201, 1979.

[Val79b] Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal of
Computing, 9:410–421, 1979.

[Zha96] Wenhui Zhang. Number of models and satisfiability of sets of clauses. Theoretical Computer
Science, 155:277–288, 1996.

21

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092



